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Abstract: Polymer-supported electrophilic halogenate(I) complexes 2 and 3 promote 

smooth addition to vinyl and allylsilanes without loss of the silyl group. In conjunction with 

Amberlyst A26 (OH− -form) vinyl silanes are converted into epoxysilanes.
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Introduction

Recently, the development and applications of polymer-supported reagents have seen a dramatic 

increase in interest [1]. Functionalized matrices can be used in excess to drive reactions in solution to 

completion and are finding application in high throughput, automated parallel syntheses [2]. In some 

cases major differences between reactions on polymer supports and their low-molecular mass 

analogues have been observed [3]. Apart from differences in reaction rates, altered regio- and 

stereoselectivity has been described in some cases using functionalized polymers. E. g. Patchornik and 
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coworkers encountered that crosslinked poly(maleimide) in which 70% of the repeat units were N-

brominated gave a different set of bromination products in reactions with cumene than N-

bromosuccinimide [4]. These properties give polymer-supported reagents additional attraction. Thus, 

in this communication we report on the unexpected clean cohalogenation of allyl and vinylsilanes 

which is promoted by functionalized polmers with electrophilic properties.

Results and Discussion

Recently, our interest in new electrophilic halogen-ate(I) complexes [5] has led to the development 

of the first polymer-bound iodine azide source (1) [6] as well as of functionalized polymers (2)-(4) 

which are loaded with synthetic equivalents of acylated hypohalites [7]. All of these electrophilic 

reagents promote 1,2-cohalogenations of various alkenes [8,9] under very mild conditions and with 

high efficiency [7].
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In this paper, we disclose reactions of vinyl and allylsilanes with polymer-supported electrophilic 

reagents (2) and (3) which instead to the expected desilylation lead to 1,2-addition products. In fact, 

numerous methods [10] are known for effecting iododesilylation of vinyl and allylsilanes using 

different iodonium sources like ICl, IBr, IBF4, and NIS [11]. It is generally accepted that the reaction is 

initiated by attack of the electrophilic iodonium source to the double bond to form a cyclic iodonium 

ion and formation of β-silicon stabilized cation. After rotation around the C-C-bond a planar 

orientation between the empty p-orbital and the C-Si bond is achieved which allows facile removal of 

the silyl group by a nucleophile. In some instances, additional stabilization of the intermediate 

carbocation by the solvent was accounted [11].

In contrast to these results, we observed formation of the 1,2-addition products (11)-(13) when 

vinylsilanes (5) and (6) were treated with polymer-supported reagents (2) and (3) in dichloromethane 

(Table 1). In fact, dimethylphenylsilyl-substituted alkene (6) reacted much slower than 1-trimethylsilyl-

cyclohexene (5). In a similar manner the even more reactive allylsilanes (7)-(9) gave 1,2-

cohalogenation products (14)-(16) in moderate yield [12]. Only alkynylsilane (10) was unreactive 

under the conditions typically employed [13]. This latter result is in sharp contrast to the treatment of 

terminal alkynes with functionalized polymer (3) which affords alkynyl iodides[7b].

As an extensions of these studies, we utilized iodate(I) reagent (3) and Amberlyst A26 (OH−- form) 

for developing a simple addition/cyclization protocol. Starting from vinylsilanes (5) and (6), crude 1,2-

cohalogenation products (11) and (12) were further transformed under basic conditions to the 

corresponding epoxysilanes (17) and (18) in good yield and with high purity (Scheme 1).
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Table 1. Haloacetoxylation of vinyl and allyl silanes.

Alkene Reagent

a
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c
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a Refer to Experimental Section. b All reagents are employed in excess with reference to the amount 

of polymer-bound halide specified by the commercial provider [13]. c All yields refer to isolated pure 

products. Yields in parentheses refer to crude products. d Formation of the 1,2-cis-addition byproduct 

was proven by 1H-NMR-spectroscopy of the crude product.
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In conclusion, polymer-supported haloate(I)-complexes promote cohalogenation of allyl and 

vinylsilanes under very mild conditions without exerting substantial desilylation. These reagents allow 

easy product isolation, are conveniently recycled [14] and finally are potentially useful for automated 

solution phase synthesis.

Experimental

General Methods

1H- and 13C-NMR spectra were measured with 200 MHz (50 MHz) using tetramethylsilane as the 

internal standard. CDCl3 is the solvent for all NMR experiments. All solvents used were of reagent 

grade and were further dried. Reactions were monitored by TLC on silica gel 60P254 and detected either 

by UV-absorption or by staining with H2SO4/ 4-methoxybenzaldehyde in ethanol. Flash column 

chromatography was performed on silica gel 60 (230-400 mesh).

General Procedure for the Preparation of Polymer-Bound Reagents 2 and 3

A suspension of polymer bound halide (available from Fluka; 3.5 mmol/g bromide and 2.9 mmol/g) 

and PhI(OAc)2 (1.8 eq.) in dry CH2Cl2 (2.5 mL/mmol halide anion) under nitrogen was shaken at 300 

rpm for 24 h at room temperature. The yellowish suspension was protected from light. Filtration and 

washing of the resin with CH2Cl2 (3x) and drying in vacuo afforded the light yellow reagents.

General procedure for the 1,2-cohalogenation of silylated alkenes

A mixture of alkene (1 eq.) and resin (for number of eq. refer to Table 1) were shaken at 300 rpm 

under light protection in dry CH2Cl2 (1.5 ml / mmol) at rt. Completion of the reaction was monitored 

by tlc. Filtration terminated the reaction. The resin was washed with CH2Cl2 (3x) and the combined 

organic washings and filtrate were concentrated under reduced pressure. In some cases, further 

purification by column chromatography was necessary. Selected physical and spectroscopic data for 

cohalogenation products 12 and 14 (final purification by flash column chromatography on silica gel: 

petroleum ether/ethyl acetate 50:1).

12: colourless oil; 1H NMR (CDCl3): δ = 7.58 and 7.35 (m, 5H, Ph), 4.50 (ddd, 1H, J= 6.5, 5.4, 3.1 Hz, 

2-H), 3.67 (d, 1H, J= 3.1 Hz, 3-H), 3.42 (dd, 1H, J= 9.3, 5.4 Hz, 1-H), 3.35 (dd, 1H, J= 9.3, 6.5 Hz, 1´-

H), 3.25 (s, 3H, OCH3), 1.91 (s, 3H, OAc), 0.49 [s, 6H, Si(CH3)2]; 
13C NMR (CDCl3): δ = 189.5 (s, 

C=O), 135.5 (s, ipso Ph), 133.9, 127.7 (d, ortho and meta Ph), 129.6 (d, para Ph), 74.2 (t, C-1), 70.2 

(d, C-2), 58.8 (q, OCH3), 20.9 (q, OAc), 20.1 (d, C-3), -2.38 and -3.13 [q, Si(CH3)2]; Anal. Calcd. for 

C14H21IO3Si: C, 42.86; H, 5.40; I, 32.35. Found: C, 42.59; H, 5.21; I, 30.99.

14: colourless oil; 1H NMR (CDCl3): δ = 7.60 and 7.30 (m, 5H, Ph), 4.79 (dddd, 1H, J= 8.3, 5.6, 5.0, 

5.0 Hz, CHOAc), 3.33 and 3.18 (2dd, 2H, J= 10.4, 5.0 Hz, CH2-I), 1.87 (s, 3H, OAc), 1.36 (dd, 1H, J= 
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14.8, 8.3 Hz, CH2Si), 1.24 (dd, 1H, J= 14.8, 5.6 Hz, CH2-Si), 0.35, 0.34 [2s, 6H, Si(CH3)2]. -
13C NMR 

(CDCl3): δ = 170.1 (s, C=O), 137.8 (s, ipso Ph), 133.5, 127.9 (d, ortho and meta Ph), 129.2 (d, para

Ph), 70.6 (d, CHOAc), 22.4 (t, CH2Si), 20.9 (q, OAc), 12.4 (t, CH2-I), -2.5 and -2.7 [q, Si(CH3)2]; 

Anal. Calcd. for C13H19IO2Si: C, 43.10; H, 5.29; I, 35.03. Found: C, 42.91; H, 5.40; I, 34.15.
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