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ABSTRACT This contribution introduces a vector interpretation to unify the description of torque develop-
ment in rotating electrical machines. The motivation behind this attempt is the necessity of applying different
physical interpretation and calculation methods, such as Lorentz force, Maxwell stress tensor, co-energy
methods etc., for predicting and estimating different torque components, e.g. synchronous torque, oscillating
torque, cogging torque, reluctance torque etc., in different rotating electrical machines. The unified vector
model describes and estimates the different torque components in rotating electrical machines with an
apprehensible concise formulation. Beyond that, the other most frequently used tools and terms in the field
of electrical machines, such as Park and Clark transformations, phasor diagram etc., can be derived directly
from this model, which has also a simplifying didactic contribution to a conventional course of electrical
machines.

INDEX TERMS Rotating electrical machines, Lorentz force, Maxwell stress tensor, reluctance force,
cogging torque.

I. INTRODUCTION
For a complete and convenient description of torque forma-
tion in electrical machines, several interpretations are used
in different cases and thus terms like reluctance torque, syn-
chronous torque, cogging torque, hysteresis torque, which are
estimated with different methods such as rotating field theory,
Lorentz force [1], co-energy [2], Maxwell Stress Tensor [3],
MMF method [4] etc., are useful. In addition, there are other
mathematical tools for a simple analysis and description
of the behavior of the electrical machines, such as phasor
diagram, Park and Clark transformation, Goerges diagram,
etc. The fact that the complete description of the functioning
principle of electrical machines requires different tools and
interpretations raises the question whether there is a unified
description, from which different torque interpretations and
mathematical tools can be derived. Any attempt to create
a unified model to describe electrical machines will only
be successful, if a compressed mathematical model can be
used to describe all the properties and behaviors of electrical
machines in a unified manner.

A conventional course of electrical machines usually
begins with the fundamentals of magnetic circuits and tra-
ditionally continues with describing the functionality of
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permanent magnet DC machines with Lorentz force formu-
lation at least in case the armature conductors are placed
around a slotless rotor. This method describes correctly the
resulting torque. However, a paradox arises as the conduc-
tors rest in the slot. To solve this, an alternative method
for describing the force in DC machines is usually used
based on the formulation of the mechanical output power,
as a product results of armature current and the induced
voltage (Uind Ia = Tω). This will result in the same Lorentz
force formulation in the case of a slotless armature [8].
However, it is not possible to calculate the starting torque,
since the output power should be divided by zero speed. The
mechanical powermethod can also be used for other electrical
machines [5]–[7]. However, it is not possible to estimate
the cogging torque using this method. For synchronous and
asynchronous machines and especially for calculating the
oscillating torques, and also winding factors and harmonics
of induced voltage, the rotating field theory is used [9]. This
method assumes a fine distribution of a so-called electrical
loading around the internal circumference of a stator with
an infinite permeability. It also assumes that this electrical
loading is proportional to the tangential component of the air
gap flux density. Knowing this, the rotating field theory is
used for calculating the constant and oscillating components
of the torque, but cannot be directly used for estimating
the reluctance torque. For calculating the cogging torque,
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the energy or rather co-energy method is a favorable method,
in order to avoid the labor-intensive process of calculating the
tangential component of the air gap flux density [10], [11].
Ignoring the oscillating torque components, alone for describ-
ing the different torque components of a V-type perma-
nent magnet synchronous machine, we need different torque
interpretations.

The synchronous torque ( 32piqϕPM term) is described as
intention to align the rotor flux with the stator flux, the reluc-
tance part of the torque ( 32p(Ld − Lq)id iq term) is described
with the principle of the reluctance force, the intrinsic inten-
tion to minimize the air gap and the cogging torque as the
change of energy due to the rotation [12]. The question
is, weather there exists a unified description of electromag-
netic torque generation in rotating electrical machines, which
can physically and also mathematically describe all differ-
ent torques, regardless of their originations. We answer this
question by first introducing, a mathematical object, here-
inafter called Tensor. In the second part, the vector model
is described and estimated for different boundary cases. For
the sake of simplicity, all estimations are done for two-pole
electrical machines. Naturally, the theory described in the
next sections is applicable to multi-phase multi-pole rotating
electrical machines.

II. ROTATING TENSOR
For a physical parameter with a sinusoidal spatial distribu-
tion on its domain θ , the Tensor T k,li,j is defined by its four
attributes i, j, k and l:

T k,li,j =Amcos (k2π f1t + β) ·e
j∗(ij)
· ej
∗(2π ftl)

·


1

ej
∗( 2πi )

...

ej
∗(i−1) 2πi )


(1)

and describes time-varying rotating vectors. By definition is
the T 0,0

0,0 the amplitude of the Tensor and f1 is the amplitude
frequency. j∗ is the complex number. The attributes i, j, k
and l represent the order, position, frequency in time and
spatial domain. f is the fundamental frequency of the rotating
Tensor in spatial domain (θ) of Tensor T k,li,j . Figure 1 shows
several Tensors in different cases. It is to be noted that this
formulation should result in i vectors beginning at a phase
angle of j. The decisive aspect is the validity range of the
vectors. Assuming a fifth order Tensor T 0,0

5,0 . According to
the equation (1) this formulation results into five vectors in
positions [0, 72◦, 144◦, 216◦, 288◦] indicated in Figure 2-a.
The first vector has a validity range of [−36◦ 36◦], which
means that this vector can only interact with vectors locating
in this range. For clarification assume the summation of the
three Tensors T1,0

u1,0 , T
1,0
v1,−2π/3 and T

1,0
w1,−4π/3 . Each Tensor repre-

sents five vectors indicated in Figure 2-b. The first vector of
T1,0
u1,0 and the fourth vector of T1,0

v1,−2π/3 and the thrid vector
of T1,0

w1,−4π/3 can be added together to build the first vector

FIGURE 1. Rotating Tensor a) T 1,0
5,0 : 5th-order time varying vectors,

b) T 0,−1
5,0 : 5 × 5th-order rotating fields (counter clockwise), c) three-phase

time-varying field and fundamental rotating field, d) rotor fields with 1st,
3rd, 5th and 7th-order spatial harmonics interacts with stator fields
(MMF ) with 1st, 5th and 7th order spatial harmonics to generate a
constant torque and a pulsating torque with a 6f component (f = 50 Hz).

FIGURE 2. Validity region of the vectors: a) fifth order Tensor and the
validity range of the first vector at zero, [−36◦ 36◦], b) the summation of
three Tensors which results into a rotating vector; T1,0

u5,0
in red at zero,

T1,0
v5,−2π/3

in blue at 24◦ and T1,0
w5,−4π/3

in green at −24◦.

of the summation result since the fourth vector of T1,0
v5,−2π/3

and the third vector of T1,0
w5,−4π/3 are at angles 24

◦ and −24◦

respectively an hence in the validity range of the first vector of
T1,0
u5,0 , [−36

◦ 36◦]. Since the vectors are built with exponential
functions with a natural validity of [0◦ 360◦], the angles of
the vectors have to be multiplied with factor 5 for the correct
summation result. The angle of the resulted vector has to be
then divided by 5.

For a comprehensive description of torque generation in
electrical machines, three mathematical operations, namely
summation, cross multiplication and projection, are suf-
ficient. If the Tensor is reduced to a first-order vector,
e.g. T 0,0

1,δ , the summation is exactly the vector summation. For
a three-phase symmetrical machine, the summation of three
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time-variant Tensors for the first, fifth, seventh etc. (but not
third, sixth, ninth etc.) will result in:

U k,0
i,0 + V

k,0
i,−2π3
+W k,0

i,−4π3
=

3
2
T
0,
√

2
3 ksin(

π i
3 )

i,0 (2)

For a two-pole three-phase machine with a three-phase
MMF of21,0

u1,0 ,2
1,0
w1,−2π/3

and21,0
v1,−4π/3 , the rotating fields can

be estimated directly from equation 2 [13].
For the first harmonic (i = 1, k = 1), the summation gives

the fundamental harmonic field rotating with fundamental
frequency (ω = 2π f1t), for the third harmonic (i = 3, k = 1),
the summation does not result in a rotating vector and for
the seventh harmonics (i = 7, k = 1), it results into seven
rotating vectors rotating with ω/7. For a machine with only
the fifth spatial harmonic (i = 5) and f1 current harmonics
(k = 1), this results in five vectors rotating counterclockwise
with ω/5 (Figure 1-b). For the fifth spatial harmonics (i = 5)
and 5f 1 current frequency (k = 5), e.g. coming from power
electronic, it results in five vectors rotating counterclockwise
with ω.

The multiplication of the two Tensors Ak1,l1i1,j1
and Bk2,l2i2,j2

is
only allowed for tensors with the same order i. The cross
multiplication results in:

C0,0
0,0 = Ak1,00,0 B

k2,0
0,0 sin i · ((l1 − l2)2π ft + j1 − j2) (3)

where Ak1,00,0 is the instantaneous value of the Tensor Ak1,l1i1,j1
.

For reduced Tensors T 0,0
1,0 (vectors), the cross multiplication is

geometrically the area of a parallelogram, the sides of which
are the two Tensors. The cross multiplication of a rotating
time-invariant Tensor (k = 0) and a stationary time-variant
Tensor (l = 0) with the same initial positon (j1 = j2 = j) and
(l1 = k2) results in:

A0,l11,j × B
k2,0
1,j =

1
2
A0,00,0B

0,0
0,0 sin (2θ) (4)

This (1/2) factor is the same factor present when formulat-
ing the induced voltage of a reluctance machine and will be
mentioned later. Since each Tensor describes a sinusoidal dis-
tribution in spatial domain, they could also be considered as
fields. Hence, equation (4) is the summation of a rotating field
with a time-variable field, which will be used to estimate the
reluctance torque in the next sections. Although summation
and multiplication of Tensors are sufficient for estimating the
electromagnetic torque by the vector theory, another useful
operator is the projection of Tensor Ak1,l1i1,j1

on Tensor Bk2,l2i2,j2
and can generally be formularized as:

Ak1,l1i,j1
⊥Bk2,l2i,j2

= Ck1,0
i,j2+2π ftl2

cos((l1 − l2)2π ft + j1 − j2) (5)

Equation (5) can be used to estimate the projection of a
vector on a vector (A0,01,δ⊥B

0,0
1,0), a rotating vector on a vector

(A0,11,δ⊥B
0,0
1,0), Figure 3-b, a rotating vector on a rotating vector

(A0,11,δ⊥B
0,1
1,0), Figure 3-d a time-variant vector on a stationary

vector (A1,01,δ⊥B
0,0
1,0), Figure 3-a and a time-varying vector on

a rotating vector, Figure 3-c, e.g.:

A1,01,δ⊥B
0,−1
1,0 = A0,01,ωtcos(δ + ωt) (6)

FIGURE 3. Projection of one vector (red) on the other vector:
a) a time-varying vector on a vector, b) a rotating vector on a vector,
c) a time-varying vector on a rotating vector, d) a rotating vector with a
rotational speed of 2ω on another rotating vector with a rotational
speed of ω.

The projection of a time-variant vector on a stationary
vector (A1,01,δ⊥B

0,0
1,0) is also known as Clark transformation

and the projection of a time-varying vector on a rotating
vector is also known as Park transformation [14]. Applying
the projection rule of equation (5) of a three-phase system on

d0,11,0 and q0,11,− π2
leads to:


I1,0u1,0
I1,0v

1,− 2π
3

I1,0w
1,− 4π

3

⊥d0,11,0 =


I1,0u1,ωt cos(θ − 0)

I1,0v1,ωt cos(θ −
2π
3
)

I1,0w1,ωt
cos(θ −

4π
3
)

 (7)

and
I1,0u1,0
I1,0v

1,− 2π
3

I1,0w
1,− 4π

3

⊥q0,11, π2
=


I1,0u1,ωt− π2

cos(θ − 0+
π

2
)

I1,0v1,ωt− π2
cos(θ −

2π
3
+
π

2
)

I1,0w1,ωt− π2
cos(θ −

4π
3
+
π

2
)

 (8)

The factor θ = ωt in T 1,0
1,ωt is the position of the d and

q axis, respectively, and the projection result of equation (7)
and (8) is exactly the power invariant Park transformation:

[
Id
Iq

]
=

 cos(θ ) cos(θ −
2π
3
) cos(θ −

4π
3
)

−sin(θ) −sin(θ −
2π
3
) −sin(θ −

4π
3
)


×

 Iu
Iv
Iw


It is obvious that also the higher order of the dq

transformation can be estimated using the projection rule.
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The contributions of each phase on the d and q axes are
illustrated in Figure 4.

FIGURE 4. Estimation and illustration of Park transformation: a) magenta:
projection of the phase U (red) on the rotating d-axis, yellow: projection
of the phases V and W (blue and green) on rotating d-axis b) projection of
the phases U, V, W on the rotating q-axis.

III. VECTOR THEORY OF ELECTRICAL MACHINES
The electromagnetic torque can be formulated as the multi-
plication result of two Tensors:

M = Ak1,l1i,j1
× Bk2,l2i,j2

(9)

where Ak1,l1i,j1
is the cause and Bk1,l1i,j1

is the effect. For rotating
electrical machines, A is the magnetomotive force (current)
and B is the flux (linkage). The torque arises as a response to
the deviation of the resulting flux from the flux which would
have occurred as a result of the applied magnetomotive force.
Ak1,l1i,j1

is the ith MMF harmonic of a rectangular coil
spanned along a cylinder, e.g. stator of a rotating electrical
machine. The well-known winding coefficients can either be
considered in Ak1,l1i,j1

, in this case Bk2,l2i,j2
is the flux, or the

winding coefficients are considered in Bk2,l2i,j2
(flux linkage),

andAk1,l1i,j1
is the current. It should be noted that the flux Tensor

has to be calculated directly from the air gap flux density
distribution (including also the spatial harmonics) multiplied
by the pole pitch area. The cross multiplication creates an
analogy to the classical mechanics in which the altitude over
the ground is similar to the angle between MMF and flux
Tensors.

In the next sections, a comparison of results estimated with
the vector model is compared to other known formulations for
some boundary cases.

For an ideal permanent magnet synchronous machine with
only the first spatial harmonic, the torque can be estimated
from rotating field theory. This method assumes a fine distri-
bution of a so-called electrical loading A around the internal
circumference of a stator with an infinite permeability and
assuming that the tangential component of the air gap field
intensity originates from this electrical loading:∫ x2

x1
A(x, t)dx = 2(x, t) =

∮
EH · dEs

=

∫ x2

x1

(
Ht,δ − Ht,Fe

)
dx (10)

where Ht,δ and Ht,Fe are the tangential components of the
field intensity in the air gap [9]. With sinusoidal distributions,
according to the rotating field theory, the torque can be given
by:

T =
1
2
R2lÂν′ B̂µ′

∫ 2π

0
[cos(

(
ν′ + µ′

)
γ ′ − 2π

(
fν′ + fµ′

)
t

−
(
ϕν′ + ϕµ′

)
)+ cos(

(
ν′ − µ′

)
γ ′ − 2π

(
fν′ − fµ′

)
t

−
(
ϕν′ − ϕµ′

)
)]dγ (11)

where ν′,µ′ are the stator and rotor field harmonics, and γ ′ is
the mechanical angle. For the first harmonic (ν′ = µ′ = 1),
only the second part of the integral has the non-zero value and
results in:

T = R2lÂ1B̂12π
1
2
cos(−ϕν′ − ϕµ′ ) (12)

where R and l are the radius and length of the machine. For
ϕν′ − ϕµ′ = δ and considering the relations for MMF and
flux, we obtain:

RA1 = 2s and ψ = πRlB1 (13)

Due to the fact that the original formulation of the rotating
field theory supposes a sinusoidal distribution of electrical
loading and the here presented vector theory a cosine distri-
bution (cos

(
δ − π

2

)
= sin(δ)), the equation (9) will result in:

T = 2sψ sin (δ) (14)

where 2s =
3
2 Is and ψ = ψPM . In the next step, the same

torque will estimated using the vector model. Assuming a
three-phase distributed current with I0,0u0,0 = Im, the sum of
all phases results in a rotating field according to equation (2):

I1,0u1,0 + I
1,0
v1,0 + I

1,0
w1,0
=

3
2
I0,1s1,0 = 2

0,1
s11,0

(15)

Assuming a two-pole permanent magnet rotor with sinu-
soidal flux distribution, according to the vector theory,
the torque is given by:

T = 20,1
s11,0
× ψ

0,1
1,δ = 2

0,0
s10,0
·ψ

0,0
10,0
· sin(δ)

=
3
2
Isψ1 sin (δ) =

3
2
IqψPM (16)

which is the same result as predicted by the rotating field
theory using equation (11). For the 5th spatial harmonic
(ν′ = µ′ = 5), according to the rotating field theory
(fν′ = f1, fµ′ = 5f1), the oscillating torque with six times
the fundamental frequency is given by:

T = R2lA5B52π
1
2
cos(−6ωt + δ −

π

2
) (17)

The vector interpretation also predicts the same torque.
As it is mentioned in the previous section the rotational speed
of the fifth order Tensor of the stator MMF is ω/5 and
counterclockwise. Since the rotor field and its harmonics are
mechanically connected to the rotor the fifth order field of the
rotor also rotates with ω in the direction of the fundamental
field so clockwise. That means for each 1θ that the stator
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MMF rotates in counterclockwise direction the rotor rotates
51θ in clockwise direction. Hence the angle between the Two
Tensors changes with 61θ respectively 6ωt:

T = 2s
0,−1/5
5,δ/5 × ψ

0,1
5,0 = 2

0,0
s10,0
·ψ

0,0
10,0
· sin(δ − 6ωt) (18)

IV. RELUCTANCE TORQUE
The torque of a salient-pole machine is normally estimated
from the power equation after some mathematical deriva-
tion. The beauty of the vector theory is the fast estimation
of the same torque completely geometrically. As mentioned
before, the multiplication of Tensors can also be represented
as the area of a parallelogram, the sides of which are the
two Tensors. According to Figure 5, the area between the

Tensors 20,1
s11,0

and ψ0,1
11,0

can be estimated as the geometrical

difference of the areas under the large rectangle and the
areas 1 to 6:

T = (ϕRd +2sd )(ϕRq +2sq)−
1
2
ϕRdϕRq −

1
2
2sd2sq

−2sdϕRq −
1
2
2sd2sq − (2sdϕRq +

1
2
ϕRdϕRq) (19)

Substituting 2s with 3
2 Is will result in

2sqϕRd −2sdϕRq =
3
2
(Ld − Lq)id iq (20)

and thereby the synchronous torque (equation 16) and the
reluctance torque (equation 20) can be derived with the same
theory.

FIGURE 5. Reluctance torque. The Tensor multiplication of stator MMF
(blue) and rotor flux (red) is equal to the gray area bordered with MMF
and flux Tensors.

Also, the Lorentz force can be estimated using the vector
theory. Assume a rectangular armature coil with a width and
length of 2r and l with an area of 2rl, imposed to a con-
stant flux of a DC machine’s stator poles with constant flux
density EB. Suppose the rectangular coil rests perpendicular
to the stator flux so that the surface unit vector of the coil is
perpendicular to the stator flux density vector. The Lorentz
force acts on the two conductors of the armature coil, which
are carrying currents in opposite direction. The starting torque

can be easily estimated using the Lorentz force (for each
conductor):

EF = I · El × EB (21)

The Torque is then given by:

M = Er × EF = 2rlBI (22)

where the term 2rlB is the flux and hence, the torque can be
summarized as:

T = ψI (23)

The same can be estimated also with the vector theory
according to equation (9). Since the vector theory is based on
cosine distributions, and theMMF and flux of the sample DC
machine of this example have rectangular shapes, the torque
can estimated as the sum of all harmonics:

T =
∑

p
2

0,0
p,0 × ψ

0,0
p,− π2

=
1
2
(
4
π
I1ψ1−

4
3π

I
3
ψ3 +

4
5π

I
5
ψ5

−
4
7π

I7ψ7 + · · · ) =
∑∞

n=p

2
nπ
ψnInsin

(nπ
2

)
(24)

The factor 4
nπ comes from estimating theMMF harmonics

of a rectangular coil. The resulting series of equation (24) can
also result from the following product (based on trigonomet-
ric relations) which reconstructs the original current and flux:{∑∞

v=1,3,...
Ivsin(vθ)

}
·

{∑∞

n=1,3,...
ψn sin

(
nθ +

nπ
2

)}
= Iψ (25)

V. ENERGY
The co-energy method is also a well-known method for
torque calculation in electrical machines which can be
obtained by considering the change in co-energy of the
system produced by a small change in rotor position
when the currents are held constant. Suppose a basic
two-pole non-salient machine with infinite permeability.
Thus, the whole energy is stored in the air gap with a length
of g. The peak value of the resultant MMF in the air gap can
be estimated from the Tensor summation result of stator20,1

S1,0
and rotor 20,1

R1,0
according to the angle between them γ :

(20,1
T1,0

)
2
=

(
2

0,1
S1,0

)2
+

(
2

0,1
R1,0

)2
+ 2

(
2

0,1
S1,0

) (
2

0,1
R1,0

)
cos (γ )

(26)

The RMS value of the resultant field intensity H in the air
gap is:

H =
Hm
√
2

(27)

The average energy density (energy per volume) can be
given by:

w′ =
µ0

2
H2
=
µ0

4

(20,1
T1,0

)
2

g2
(28)
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For a machine with a diameter D and length L, the stored
energy is given by:

W =
[(
2

0,1
S1,0

)2
+

(
2

0,1
R1,0

)2
+ 2

(
2

0,1
S1,0

) (
2

0,1
R1,0

)
cos (γ )

]
×
µ0

4g2
[πDLg] (29)

The torque can be estimated as follows:

T = −
∂W
∂g
=
µ0

2g
2

0,0
S0,0
2

0,0
R0,0

sin(γ )(πDL) (30)

The rotor flux can be estimated from 2
0,0
R0,0

:

ψR =
µ0

g
2

0,1
R0,0

πDL
2

(31)

And finally substituting20,1
S1,0
=

3
2 Im in equation (31), will

result in equation (16).

VI. OTHER TORQUES IN ELECTRICAL MACHINES
Suppose a simplified two-pole salient-pole machine of
Figure 6 which has a zero field current (only reluctance
torque) and sinusoidal air gap reluctance with a locked rotor
(locked rotor position).

FIGURE 6. Reluctance Torque, a) rotating time-varying field, b) constant
rotating MMF in green and time-varying rotating field in red, c)
time-varying rotating field as a sum of a rotating field (green) and a
time-varying field (blue), dq-axes.

Applying a three-phase voltage to the motor, the reluctance
torque according to the well-known reluctance torque formu-
lation is given by:

T =
3
ω

U2

2

(
1
Xd
−

1
Xq

)
sin(2θ) (32)

The conventional derivation of equation (32) originates
from the formulation of the output power. For estimating this
torque using the vector theory, we need two Tensors accord-
ing to equation (9). Applying the rotating MMF starting at

zero position, it can be observed that a time-variable rotating
field (red arrow in Figure 6) rotates at fundamental frequency.
At 90 degree, the flux value is at its minimum. The rotating
time-variant flux could be reconstructed as a summation
of a rotating field with constant amplitude (green), ψ0,1

1,0 ,
and a time-variable stationary field (blue), ψ1,0

1,0 . According
to the vector theory, the torque is a result of the Tensor
multiplication of two Tensors, in this case a rotating field
and a time-variant field, which according to equation (4),
is given by:

A0,11,j × B
1,0
1,j =

1
2
C0,0
0,0 sin (2θ) (33)

revealing the term 1
2 sin (2θ) in equation (32), that is also

present in all reluctance torques. Also, the correct value of
the torque C0,0

0,0 can be estimated using the vector theory. The
rotating MMF , 20,1

1,0, induces two time-varying vectors in d
and q axes, ψ1,0

d1,0
and ψ1,0

q1,0 . According to the multiplication
rules, equation (3), the torque can be given by:

T = 21,0
0,1
× (ψ1,0

d1,0
+ ψ1,0

q1, π2
) = 20,0

0,0ψ
0,0
d0,0

sin (ωt)

−2
0,0
0,0ψ

0,0
q0,0cos(ωt) (34)

Since the time variation is included in the (ωt) term,
the peak values can be substituted in ψ0,0

0,0 , ψd and ψq, and
2

0,0
0,0,

3
2 Iq and

3
2 Id . Hence, the equation (34) results in:

T =
3
2
(ψd Iq − ψqId ) =

3
2

(
Ld − Lq

)
Id Iq

= 3
Id
√
2

Iq
√
2

(
Xd − Xq

) 1
ω

(35)

Using the trigonometric function relations:

1
2
sin (2γ ) = sin (γ ) cos(γ ) (36)

and substituting Ud and Uq:

Uq = Xd id , Ud=−Xqiq, Uq = Ucos(γ ), Ud = Usin(γ )

(37)

will result into:

T = 3
(
U
Xd

)(
U
Xq

) (
Xd − Xq

) 1
ω

=
3
2ω

(
U2

XqXd

) (
Xd − Xq

)
sin(2γ ) (38)

While 2
0,1
1,0 can generate a double-frequency torque

(T 0,0
0,0 sin (2θ)), a 20,1

2,0 could generate a torque four times the
fundamental frequency (T 0,0

0,0 sin (4θ)). This fact will be used
in the next step to estimate the cogging torque.
Figure 7 shows a 12-slot, 2-pole motor with radially mag-

netized permanent magnets in no-load operation. The field of
application of the method presented in the previous section
(Figure 6) is reduced to two times the slot pitch (here 60◦).
Hence, comparing to Figure 6, the two slots are equivalent
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to the q-axis of the machine in Figure 6 and the two teeth
are comparable to the salient poles (d-axis). Reduced on a
domain of 60◦, the 5th and 7th harmonics of the permanent
magnets generate the fundamental component of the MMF
and the 11th and 13th harmonics generate the second-order
MMF (compare to 20,1

1,0 and 20,1
2,0 of the previous example

of Figure 6). In other words, for the machine of Figure 7,
according to the vector theory, 20,0

5,0 and 20,0
7,0 will generate

a 6f torque pulsation and the 20,0
11,0 and 2

0,0
13,0 produce a 12f

torque pulsation.
The mentioned MMFs can be estimated as a function of

the coercivity force HPM and the height of the permanent
magnet lPM . The corresponding cross section for calculating
the flux along the slot axis ψN and along the tooth axis ψZ
should accordingly be estimated with a cross-sectional area
spanned over two teeth. Although20,0

5,0,2
0,0
7,0,2

0,0
11,0 and2

0,0
13,0

are the dominantMMFs for generating the cogging torque of
Figure 7, other orders ofMMFs also have their contributions
to the cogging torque. Nevertheless, estimating the cogging
torque by vector theory:

Tcog ∝
∑

n=5,7,11,13

1
n
· HPM · lPM · (ψn

Z − ψ
n
N ) (39)

will lead to the results indicated in Figure 8.
The examples and special cases considered in this paper

are solely handled to compare the compatibility of the vector
theory to other conventional methods. The method can also
be verified for other cases. Also, the phasor diagrams can
be modified using the vector theory. To include the effect
of higher harmonics of the induced voltage into the phasor
diagram, the principle of the first harmonic linkage is applied.
In this case, the effect of higher harmonics is simply added to
the stray reactances in the phasor diagram. Using the vector
model, this could be handled separately.

FIGURE 7. Cogging torque; the domain of Figure 6-d is reduced to a
domain of two tooth pitches. Hence, the N- and Z-axes are analog
to q- and d-axis of figure 6-d.

By application of the projection, summation and multipli-
cation rules of the introduced vector theory, it is possible to
explain different effects in electrical machines with a unified
theory. The rotation tensor of equation (1) or Figure 1-a is a
symmetrical Tensors. Hence, all i components of the Tensor

FIGURE 8. Cogging torque; Comparison between FEM results obtained
from the Maxwell stress tensor method with vector theory calculated with
5th, 7th, 11th and 13th harmonics of MMF and flux Tensors.

T k,li,j have the same character. It is also possible to introduce
asymmetrical tensors in which the last term of equation (1),
the matrix, is not symmetrical anymore. This result in a Ten-
sor with i unsimilar components. Since the amplitude values
(f1, β, k) can be defined independent from spatial attributes
(f , j, l), it is also possible to perform unsymmetrical and
transient calculations. In this case, the winding parameters
(current, voltage, frequency) can be influenced independently
from the coil parameters (winding factor, position, etc.).
In general case for a 2p-pole machine the i component of the
Tensor should be substituted with pi.

The examples explained in this contribution are solely
supposed to introduce the idea and show its potential of sim-
plifying and unifying the calculation of electrical machines.
The idea will be further developed for calculating the other
aspects in electrical machines, such as winding factors, radial
forces, eccentricity etc.

VII. CONCLUSION
A conventional course in an electrical machine applies dif-
ferent methods and tools to describe its functionality. These
methods are best optimized for a precise and simple descrip-
tion of different effects in electrical machines. Besides using
these interpretation and estimation tools, it would be didac-
tically helpful to uniformly explain different phenomena of
electrical machines best with a compact formulation in order
to create (at least didactically) a coherency between several
tools, methods and interpretations.

This contribution is answering the fundamental question:
Is there a compact general description of rotating electrical
machines which can unify different models, tools and inter-
pretations, such as rotating field theory, reluctance torque,
Lorentz force, Park transformation, phasor diagram, etc.?

To answer this question, a general model of rotating elec-
trical machines is introduced. The mathematical tool for
describing the theory is based on a four-dimensional rotating
time-variant vector. The Tensor represents a powerful tool,
from which also other essential tools in the field of rotating
electrical machines, such as Clark and Park transformation,
phasor diagrams, Goerges diagram and winding factors can
be derived. This has the advantage of bringing all these tools
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together relating them to one another. Based on the rotating
Tensor the vector model is introduced.

The vector theory has a concise formulation that is able
to explain and estimate different torque generation principles
normally derived from Lorentz force, Maxwell Stress Tensor,
reluctance force, cogging torque, etc. using a unified theory.
The comparison to other conventional methods is described
for some simple boundary cases in this contribution to clarify
the idea behind this development. However, this method can
be used for calculatingmore complex phenomena in electrical
machines which will be pursued in future works.

The tool and the torque formulation has to and will be
further developed for the prediction of other phenomena in
rotating electrical machines, such as radial forces and acous-
tic noises, winding factors, eccentricity, etc.
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