

ADDITIVE MANUFACTURING OF METALLIC MULTI-MATERIAL PARTS:

LOCAL CONDUCTIVITY ADJUSTMENT THROUGH FUNCTIONALLY GRADED MATERIAL TRANSITIONS OF 316L AND CUCRZR

Motivation and Goal

Precise adjustment and control of physical properties by varying material ratios by

- Deriving a method to model specimens of functionally graded materials (FGM)
- Verifying the manufacturability of FGM specimens using powder bed fusion of metals using a laser beam
- Increasing electrical conductivity by heat treatment

Methods and Materials

- Materials used: 316L/ CuCrZr
- Methodological generation of different FGM specimens
- Electrical conductivity measurement according to eddy-current-method (FOERSTER Sigmatest 2.069)
- Two-stage heat treatment (solution annealing and age hardening) to increase conductivity

Experimental Setup

Aconity MIDI+ with integrated multi-material Aerosint SPD Recoater V1.0

Specimen size: 60 x 15.4 x 4 mm³
Laser power: 150 W (316L), 500 W (CuCrZr)

Scan speed: 600 mm/s (316L), 550 mm/s (CuCrZr)

Focus diameter: 80 μm
Voxel size: 500 μm
Layer thickness: 40 μm

Results

- Adjustment of the electrical conductivity by varying the material ratios
- Conductivity increases with increasing copper content from 1.3 MS/m up to 8.6 MS/m (as-built, voxel size: 2 mm)
- A two-stage heat treatment leads to a four-fold increase in electrical conductivity (from 10,1 MS/m up to 43,5 MS/m)

