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On the renormalization group fixed 
point of the two‑dimensional Ising 
model at criticality
Alexander Stottmeister * & Tobias J. Osborne 

We analyze the renormalization group fixed point of the two‑dimensional Ising model at criticality. 
In contrast with expectations from tensor network renormalization (TNR), we show that a simple, 
explicit analytic description of this fixed point using operator‑algebraic renormalization (OAR) is 
possible. Specifically, the fixed point is characterized in terms of spin‑spin correlation functions. 
Explicit error bounds for the approximation of continuum correlation functions are given.

The statistical mechanics of classical lattice systems continue to present fascinating and remarkable physics. The 
stochastic geometry exhibited by models as fundamental and elementary as the Ising  model1 exhibits a beautiful 
structure whose active study persists to the current  day2. Most intriguing here is the critical phenomena of the 
model as it approaches a phase  transition3. Applications of the Ising model and its generalisations range from 
 superconductivity4, fault-tolerant quantum  computation5, high energy  physics6, to  genetics7,8 and the social 
 sciences9 and beyond. The two-dimensional case of the Ising model is one of the most well-studied systems in 
statistical physics, with nearly 80 years of history dating back at least to 1944, with the celebrated work of Lars 
 Onsager10, who solved the the model on a square lattice in the absence of external magnetic field. This solution is 
the cornerstone of much of modern statistical physics, and thereby the Ising model has become the benchmark 
for analytic and numerical methods alike.

During the past decade tensor  networks11 have risen to prominence as a powerful tool to study complex 
systems. These have a rich history originating in the works of  Kadanoff12 and  Wilson13, the density matrix 
renormalization  group14, and branching out into a multitude of methods with a wide variety of applications from 
2D systems through to models with anyonic excitations. One fascinating area of such works applies modern 
tensor-network techniques to classical models of statistical physics. This was arguably revolutionized by the tensor 
renormalization group (TRG) of Levin-Nave15 having a wide range of  applications16–19, which has been refined in 
various forms, in particular to deal with entanglement of local degrees of freedom such as tensor entanglement-
filtering renormalization  group20, high-order tensor renormalization  group21–26, tensor network renormalization 
(with or without positivity)27–29. Here impressive numerical results suggest the general applicability of the TRG, 
and relatives such as tensor network renormalization, as a general purpose method for investigating partition 
functions of classical lattice models. Although the TRG does flow to a fixed point off criticality – i.e., an infinite 
bond dimension is required to express the fixed-point tensor – it is still useful for the study of critical phenomena. 
The goal of explicitly computing fixed-point tensors for critical systems—closely related to the approximation of 
continuum limits—is still an outstanding challenge for tensor-network methods.

The desire for an explicit RG capable of describing the continuum limit of lattice discretizations of quantum 
field theories has led to the recent development of operator algebraic renormalization (OAR)30–37. This emerging 
RG method is closely related to tensor network methods such as the multi-scale entanglement renormalization 
ansatz (MERA)38,39, and has enjoyed notable recent successes in the computational and analytic approximation 
of a variety of quantum field theories, from conformal field theories to higher-dimensional models. It is an 
intriguing open question to determine whether OAR is applicable in the context of classical criticality and, if so, 
whether it can furnish any information about the fixed-point tensor at phase transitions.

In this Letter we demonstrate that OAR is capable of exactly representing critical points of classical lattice 
models. To do this we generalize OAR to apply to partition functions of classical lattice models and analytically 
compute the action of the OAR group on the transfer operator of the 2D Ising model. We obtain thereby an 
explicit and analytic representation of the fixed-point tensor. In accordance with expectations arising in previous 
TRG studies we find that this tensor requires an infinite bond dimension.
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Basics of 2d Ising
The two-dimensional anisotropic Ising model on a N ×M square lattice with periodic boundary conditions can 
be naturally formulated as a tensor network (see Fig. 1), i.e. its canonical partition,

is given in terms of the tensor Aµµ′σσ ′ = δµ.σ e
K1µµ

′
eK2σσ

′ with µ,µ′, σ , σ ′ ∈ {±1} as well as horizontal and 
vertical coupling constants K1,K2.

Spin-spin and other correlation functions are conveniently expressed using the horizontal transfer matrix 
VM (see Fig. 2) naturally given in the σ (3)-basis40,41:

where eσ = ⊗M
j=−Meσj , σ

(3)
j eσj = σjeσj . As an operator on the Hilbert space HM = ⊗M

j=−MC
2 , associated with 

each row of the lattice, the transfer matrix VM takes the form,

where tanh(K∗
2 ) = e−2K2 and C(K2) = 2 sinh(2K2) , which decomposes into operators associated with vertical 

couplings, V (1)
M = (2 sinh(2K2))

M
2 e

K∗
2

∑M−1
j=−M σ

(1)
j  , and horizontal coupling respectively V (3)

M = e
K1

∑M−1
j=−M σ

(3)
j σ

(3)
j+1 . 

While the partition function is given by the trace of the horizontal transfer matrix, ZMN = tr(VM) , the correla-

tion functions are more naturally expressed using the symmetrized transfer matrix V (sym)

M =
(

V
(3)
M

)
1
2V

(1)
M

(

V
(3)
M

)
1
2 

resulting in:

where σ (3)
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(

V
(sym)

M

)k
σ
(3)
j

(

V
(sym)

M

)−k.
OAR for 2d Ising. Exploiting the operator-algebraic structure of the transfer matrix formulation, we can apply 

OAR to analyze the large-scale behavior of correlation functions: V (sym)

M  is a positive, trace-class operator on HM 
inducing a quasi-free Gibbs state, ρMN = 1

ZMN

(

V
(sym)

M

)N , on the quantum spin chains given in terms of the Pauli 
algebra PM = ⊗M−1

j=−MM2(C) . By the Jordan-Wigner transform, aj =
(
∏

−M≤l<j σ
(1)
l

)

1
2 (σ

(3)
j + iσ

(2)
j ) , the latter is 

isomorphic to the algebra of complex fermions AM = ACAR (hM) with one-particle Hilbert space hM = ℓ2(�M) , 
�M = {−M, ...,M − 1} (The boundary conditions for hM are chosen such that V (3)

M  is an exponential of quadratic 
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Figure 1.  Illustration of the partition function ZMN in (a) as a two-dimensional tensor network built from the 
local tensor A in (b). Dashed lines indicate contractions due to periodic boundary conditions.
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Figure 2.  Illustration of the Horizontal transfer matrix VM associated with the tensor A.
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expressions in annihilation and creation  operators40. For finite M, the eigenstate corresponding to the largest 
eigenvalue of V (sym)

M  is obtained with anti-periodic boundary conditions for hM ). We define the renormalization 
group transformation (A trace-preserving quantum channel), E : S2M → SM , that coarse grains states on the 
chain of twice the length, S2M , to those on the given length, SM , by its dual quantum channel, α : AM → A2M:

The dual quantum channel is naturally given by an  isometry33, R : hM → h2M:

for ξ ∈ hM and a(ξ) =
∑M−1

j=−M ξ̄jaj . The coefficients hn are given by the low-pass filter of a real, orthonormal, 
compactly supported scaling function s ∈ Cr(R) , satisfying the scaling equation s(x) =

∑

n∈Z hn2
1
2 s(2x − n) 

(appropriately periodized to comply with the boundary conditions)42. The renormalization group transformation 
takes a particularly simple form in momentum space,

where ξ̂θ =
∑M−1

j=−M e−iθ jξj for θ ∈ π
M {−M, ...,M − 1} . In this way, we realize (discrete) renormalization group 

flow lines within the state space SM by,

using the Gibbs state ρMN  as an input. On the Pauli algebra PM , the coarse graining takes the form: 
E( · ) = ptr(U∗

M( · )UM) , where ptr is the partial trace with respect to the natural embedding HM
2
⊂ HM , and 

UM is a unitary parametrized by the low-pass filter hn which coincides with the wavelet disentangler in Refs.43,44 
(see Supplementary Material for further details). Fig. 3 illustrates how (8) can be interpreted in terms of TNR 
which is dual to the construction of a MERA.

Infinite volume formulation
We can avoid additional complications in the discussion of the renormalization group fixed point due to bound-
ary conditions, necessary for the algebras PM , AM at finite M and N by passing to an infinite volume formulation, 
i.e. M,N → ∞ : First, we observe that imposing the asymptotic scaling conditions,

(5)tr(E(ρ)A) = tr(ρ α(A)), ρ ∈ S2M , A ∈ AM .

(6)α(a(ξ)) = a(R(ξ)), R(ξ)j′ =
M−1
∑

j=−M

ξj

∑

n∈Z
hnδ2j,j′−n

(7)R(ξ̂ )θ ′ = 2
1
2m0(θ

′)ξ̂2θ ′ , m0(θ
′) = 1√

2

∑

n∈Z
hne

−iθ ′n,

(8)ρ
(m)
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Figure 3.  Illustration of a single renormalization group step in OAR applied to the transfer matrix VM (indices 
are suppressed, note that ZM1 = Z

(1)
M

2
1
 ). The disentangler UM can be decomposed into 2-local operations which 

defines the renormalized tensor A(1) with increased horizontal bond dimension by the results of Ref.44 combined 
with singular value decomposition.
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for β , t(3), t(1) > 0 for N → ∞ , provides a Gibbs state, ρMN
N→∞−−−−→ρM = 1

ZM
e−βHM , of the transverse-field Ising 

Hamiltonian at inverse temperature β as a consequence of Trotter’s product formula,

Second, we note that the definition of the dual quantum channels α : AM → A2M is compatible with taking the 
infinite volume limit, lim−→M

AM = ∪MAM = A , in the sense of quasi-local  algebras45, which leads to a descrip-
tion of the limit M → ∞ in terms of the fermion algebra, A = ACAR (h) , with one-particle space h = ℓ2(Z) , 
and the renormalization group transformation, α : A → A , defined by the analogue of (6). The dynamics on A 
is determined by the Hamiltonian H, formally given by (10) for M → ∞ , which is still well-defined as a deriva-
tion on strictly local elements of A . In this limit, the Gibbs states ρM provide quasi-free KMS-states ωβ : A → C 
determined by the two-point function:

The covariance operators C(1)
β  , C(2)

β  have momentum-space kernels,

where zθ = t(1) − eiθ t(3) . The expressions remain meaningful in the limit β → ∞ providing a ground state of H 
on A . Evaluating the renormalization group flow (8) results in sequences of renormalized states ω(m)

β = ωβ ◦ αm 
which are quasi-free by construction and, thus, determined by their two-point functions:

Fixed points and admissible scaling limits are determined by analyzing the convergence of (13) for m → ∞ 
under suitable renormalization conditions imposed on the couplings t(1), t(3) and the inverse temperature β.

The fixed point at criticality
In the quantum spin-chain formulation, the critical line corresponds to equal couplings t(3) = t(1) = t in the 
Hamiltonian (10) in the limit β → ∞ , which is equivalent to K1 ≈ K∗

2  (at large N ≫ 1 by (9)), i.e. the criti-
cal line of the two-dimensional Ising model given by the tensor A corresponding to the well-know critical 
coupling K = K1 = K2 = 1

2 ln(1+
√
2) in the isotropic case. In view of (13), we have zθ = t(1− eiθ ) and 

|zθ |2 = 4t2 sin
(

1
2 θ

)2 . Using the change of variables k = 2mθ and noting that tanh(β|zθ |)
β→∞−−−−→1− δθ ,0 , we find:

by Lebesgue’s dominated convergence theorem applied to 
∏m

n=1 m0(2
−nk)

m→∞−−−−→ŝ(k)42, see also Ref.33, Lem. 3.7 
for an adapted decay estimate for m0 . By passing to the self-dual chiral Majorana fields, ψ±|j = e±i π4 aj + e∓i π4 a†j  , 
we recognize that the limits in (14) are the vacuum two-point functions of the c = 1

2 free-fermion conformal 
field theories (CFTs) of the two chiral halves of the critical Ising fixed point:

where (ξ ∗ s)(x) =
∑

j∈Z ξjs(x − j) for ξ ∈ h . We directly infer from (15) that the scaling function s controls the 
resolution at which the CFT is probed.

Error bounds on fermions correlations
It is an immediate consequence of the construction that explicit error bounds on the approximation of dynamical 
fermionic n-point functions of the scaling limit state ω can be derived using the methods  of33,34:

(10)HM = −
M−1
∑

j=−M

(

t(3)σ
(3)
j σ

(3)
j+1 + t(1)σ

(1)
j

)

.

(11)ωβ(a(ξ)a
†(η)) = �ξ ,C(1)

β η�, ωβ(a
†(ξ)a†(η)) = �ξ̄ ,C(2)

β η�.

(12)
C
(1)
β (θ , θ ′) = π

(

1+ℜ
(

zθ
|zθ |

)

tanh(β|zθ |)
)

δ(θ − θ ′), C
(2)
β (θ , θ ′) = −iπℑ

(

zθ
|zθ |

)

tanh(β|zθ |)δ(θ − θ ′),

(13)

ω
(m)
β (a(ξ)a†(η)) = 1

4π

∫ π

−π

dθ
(

1+ℜ
(

zθ
|zθ |

)

tanh(β|zθ |)
)

2m
(

m−1
∏

n=0

|m0(2
nθ)|2

)

ξ̂2mθ η̂2mθ ,

ω
(m)
β (a†(ξ)a†(η)) = − i

4π

∫ π

−π

dθ ℑ
(

zθ
|zθ |

)

tanh(β|zθ |)2m
(

m−1
∏

n=0

|m0(2
nθ)|2

)

ξ̂−2mθ η̂2mθ .

(14)

ω(m)
∞ (a(ξ)a†(η)) = 1

4π

∫ 2mπ

−2mπ
dk

(

1+ 1−cos(2−mk)

2| sin( 12 2−mk)|

m
∏

n=1

|m0(2
−nk)|2

)

ξ̂kη̂k
m→∞−−−−→ 1

4π

∫ ∞

−∞
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given a set of one-particle vectors ξ1, ..., ξn ∈ h and effective lattice times t(0)1 , ..., t
(0)
n  as well as continuum times 

t1, ..., tn (referring to the effective dynamics H after rescaling m-times and the massless free-fermion dynamics 
in the scaling limit respectively). In particular, we find,

for |t1|, ..., |tn| ∈ [0,T] , large effective lattice times t(0)i ∼ 2mti , and some constant CT > 0 otherwise only depend-
ing on one-particle norms of ξ1, ..., ξn and the scaling function s. In general, the error in (16) can only be small 
for large effective lattice times just as the equal-time correlation approximate their continuum counterparts at 
large distances, as seen from (15). But, here an exponential separation of effective lattice and continuum times 
is not necessary at the expense of a slower decay of the error δ (see Supplementary Material).

Instability of the fixed point at criticality
The question of stability of fixed points in the framework of TNR has been of interest  recently46. Although, we 
cannot address this question for OAR in full detail in this Letter, we can make the following observation: In the 
space of quasi-free (initial) states characterized by covariance operators C = Cβ(t

(1), t(3)) in the sense of (11), 
it is an immediate consequence of (13) that the critical state given by Ccrit. = Cβ=∞(t, t) is unstable, because 
zθ
|zθ |

m→∞−−−−→ sign (�) and |zθ |
m→∞−−−−→t(1)|�| for θ = 2−mk and � = 1− t(3)

t(1)
∈ [−∞, 0) ∪ (0, 1] (non-critical). In par-

ticular, at β = ∞ , the states are driven towards: (1) the disorder fixed point � = 1 ( t(1) = const., t(3) = 0 ) for 
� ∈ (0, 1] , or (2) the order fixed point � = −∞ ( t(1) = 0, t(3) = const. ) for � ∈ [−∞, 0) . By a similar reasoning 
that led to (14), the disorder fixed point is given by the Fock state with respect to a, a† while the order fixed 
point is given by the anti-Fock state (resulting from an equal weight mixture of the two extremal ground states 
of HM at t(1) = 0).

Spin‑spin correlations
The correspondence between quasi-free states on A and even states on the infinite-volume Pauli algebra 
P = ⊗j∈ZM2(C) allows for a characterization of the critical fixed point in terms of spin-spin correlation 
functions,

for j1 ≤ ... ≤ j2n ≤ j2n+1 , where �(ξ , η) = a(ξ − iη)+ a†(ξ + iη) , ξ , η ∈ l2(Z) , is Araki’s self-dual  field45. These 
correlation functions are precisely the scaling limits of the Ising correlation functions (4) at criticality K1 = K∗

2  
for k1, ..., kn = 0 . The quasi-free structure of ω allows for the evaluation of (18) in terms of a Pfaffian, which 
further reduces to well-known Toeplitz  determinant40,47 with the crucial difference that scaling-limit two-point 
function is given by (14). The real-time, analytic continuations of the critical Ising correlation functions with 
k1, ..., kn  = 0 can be obtained from (14) by means of the scaling limit of the time-evolution of HM (see Supple-
mentary Material for a sketch).

Other scaling limits
Inspecting (13) it is straightforward to construct massive and finite-temperature scaling limits: If we impose 
the renormalization conditions � = 1− t(3)

t(1)
∼ 2−mµ0 > and β ∼ 2mβ0 for arbitrary µ0 ≥ 0 and β > 0 , we will 

obtain the equilibrium state at temperature β0 of a free fermion quantum field of mass m0:

where ωµ0(k)
2 = µ2

0 + k2 is the massive continuum dispersion relation, (ξ ∗ s)(x) =
∑

j∈Z ξjs(x − j) for ξ ∈ h , 
and t(3) m→∞−−−−→t . As before, the scaling function s controls the resolution at which the continuum quantum field 
is probed.

We have presented an explicit description of the critical fixed point of the two-dimensional classical Ising 
model using OAR which may be understood as a Wilson-Kadanoff RG scheme dual to tensor-network meth-
ods. In particular, if OAR is applied to density matrices given in terms of transfer matrices of classical lattice 
systems, it is operationally dual to a (thermal) MERA derived from  TNR39. Our explicit representation of the 
critical fixed point relies on an implementation of OAR using wavelet methods that was previously introduced in 
Refs.32–35, and the duality with TNR is manifestly exhibited by the unitary defining the coarse-graining channel 
E (see Supplementary Material), which directly corresponds to the exact disentangler of Evenbly and White for 
the ground state of the Ising quantum  chain43,44. In our construction of the scaling limit, a particularly impor-
tant role is played by the scaling function associated with a given low-pass filter, as this function controls the 
resolution at which the fixed-point tensor is probed at unit scale – either in terms of fermionic or spin-spin cor-
relation functions. As a direct consequence of this feature we explicitly observe a universal large-scale behavior 
independent of the specific choice of scaling functions. Another important advantage of our method over other 

(17)δ = δ(m,T) ≤ 2−mCT ,

(18)ω(σ
(3)
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...σ
(3)
j2n

) = ω

(

n
∏
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∏

lk=j2k−1

�(0, iδlk )�(δlk+1, 0)
)

, ω(σ
(3)
j1

...σ
(3)
j2n+1

) = 0,

(19)
ωµ0,β0(a(ξ ∗ s)a†(η ∗ s)) = 1

4π

∫ ∞

−∞
dk

(

1+ µ0
ωµ0 (k)

tanh(β0tωµ0(k))
)

|ŝ(k)|2ξ̂kη̂k ,

ωµ0,β0(a
†(ξ ∗ s)a†(η ∗ s)) = i

4π

∫ ∞

−∞
dk k

ωµ0 (k)
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approaches such as the exact MERA is the provision of explicit, provable error bounds on the approximation 
of correlation functions for sufficiently regular scaling functions that are independent of the design problem of 
Hilbert-pair  wavelets48. Such error bounds allow for a direct understanding of the simulation of QFTs/CFTs by 
quantum  computers34. We have exhibited a direct correspondence of the critical fixed point with the vacuum 
(or Neveu-Schwarz) sector of the Ising CFT with an explicit formula for the two-point functions of the self-dual 
chiral Majorana field (see (15)). By our method, it is possible obtain fixed points corresponding to other sectors, 
e.g., the Ramond sector, by working in a finite-volume setting including different, e.g., anti-periodic, boundary 
conditions, which will be discussed elsewhere. In addition, we are planning to further clarify the relation of our 
construction of the scaling limit of the Ising model with previously known results about the Ising QFT/CFT 
– specifically via spin-spin correlation  functions41,49–51 and the explicit construction of the spin field  operator52.

Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary 
information files].
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