
Defining Frames to Structure Agile Development in Hybrid
Settings - A Multi-Case Interview Study

Nils Prenner
Leibniz Universität Hannover
Software Engineering Group

Germany
nils.prenner@inf.uni-hannover.de

Jil Klünder
Leibniz Universität Hannover
Software Engineering Group

Germany
jil.kluender@inf.uni-hannover.de

Kurt Schneider
Leibniz Universität Hannover
Software Engineering Group

Germany
kurt.schneider@inf.uni-hannover.de

ABSTRACT
Companies often combine agile and plan-basedmethods to so-called
hybrid development approaches to benefit from the advantages of
both. Recent research highlights conflicts introduced when combin-
ing agile and plan-based approaches in the different phases of the
software lifecycle. For example, using both agile and plan-based
methods during the requirements engineering of a project requires
a decision on how many requirements should be gathered up-front
and how many can be gathered during the runtime of a project.
These conflicts need to be solved in order to construct a successful
development approach. In order to investigate why the conflicts
exist, how they are addressed in industry, and how they are related
to each other, we performed a multi-case interview study with 15
practitioners. Our results reveal that the conflicts exist because
companies use plan-based approaches to structure their agile de-
velopment and define spaces of freedom and flexibility at the same
time. From this insight and our results, we derive a theory that
shows how companies structure their development stepwise by
defining frames.

CCS CONCEPTS
• Software and its engineering → Agile software develop-
ment; Waterfall model; Requirements analysis; Software imple-
mentation planning; Software architectures.

KEYWORDS
Hybrid development approaches, plan-based development, agile
development, multi-case interview study

ACM Reference Format:
Nils Prenner, Jil Klünder, and Kurt Schneider. 2022. Defining Frames to
Structure Agile Development in Hybrid Settings - A Multi-Case Interview
Study. In Proceedings of the International Conference on Software and System
Processes and International Conference on Global Software Engineering (IC-
SSP’22), May 20–22, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3529320.3529324

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICSSP’22, May 20–22, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9674-5/22/05.
https://doi.org/10.1145/3529320.3529324

1 INTRODUCTION
On the one hand, software companies want to be adaptable to chang-
ing requirements and need to deal with uncertain requirements
[1, 8]. Further, they want to develop new features fast and have a
short time-to-market [17]. Therefore, companies increasingly im-
plement agile methods [1, 8]. On the other hand, companies have to
satisfy safety and security requirements, manage a large-scale devel-
opment, and need planning stability [3, 5]. Because of these reasons,
companies also use plan-based methods and combine them with
agile methods to hybrid development approaches [21]. Kuhrmann
et al. [12] define hybrid approaches as any combination of agile or
plan-based methods. This includes also development approaches
where only agile methods are combined with each other. These
approaches are less problematic since they do not need to combine
opposite principles [21]. In this paper, we want to analyze how to
deal with these opposite principles, thus focusing on development
approaches where agile and plan-based methods are combined, i.e.,
a subset of hybrid approaches. We call these approaches agile-plan-
based hybrid approaches (short: APH approaches) [21].

Problem Statement: The combination of agile and plan-based de-
velopment approaches leads to conflicts in the development process.
The conflicts arise because companies need agile and plan-based
methods similarly for the same activity 1 and have to decide how
much emphasis they have to put on either agile or plan-based meth-
ods [21]. We identified conflicts in the requirements engineering,
architecture, planning, coordination, and documentation activity
[21]. For example, the conflict in the requirements engineering
activity arises between up-front and continuous requirements anal-
ysis. Plan-based approaches strive for an up-front requirements
engineering because it clarifies the project. Agile development ap-
proaches use an agile requirements engineering to react to changes
and to deal with uncertain requirements. In APH approaches, both
kinds of requirements engineering approaches are used in combina-
tion, requiring to find the right balance. If the up-front requirements
engineering is used too much, requirements may are gathered that
are wrong. Too few up-front requirements engineering hinders
the development team from getting a proper understanding of the
project. Therefore, a successful development approach requires a
compromise between agile and plan-based practices. This applies
to each of the above-mentioned activities.

In previouswork [21], we identified a research gap regarding how
these compromises can be reached and which additional practices
are necessary to properly combine agile and plan-based approaches.

1An activity describes a collection of tasks and practices that have the same goal, e.g.
requirements engineering.

34

https://doi.org/10.1145/3529320.3529324
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3529320.3529324
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3529320.3529324&domain=pdf&date_stamp=2022-05-19


ICSSP’22, May 20–22, 2022, Pittsburgh, PA, USA Prenner et al.

Objective: In this paper, we want to better understand why the
conflicts exist and how they are addressed by companies in order
to guide researchers and practitioners. We also want to reach an
overall theory of how the conflicts are connected.

Contribution: To investigate the conflicts and to build a theory
about their existence and their solution, we applied Grounded The-
ory. Our data collection is based on a multi-case interview study
with 15 participants. Our results show that the conflicts exist be-
cause the companies want to structure their agile development
and define borders and free spaces in which the development can
move. We identified five areas that companies structure by using
plan-based methods. These areas are: Requirements engineering,
architecture, planning, testing, and coordination. Throughout the
paper, we call the structures that are defined in each area frames.
We further analyzed the dependencies between these frames and
discovered that they build upon each other during the creation of
an APH approach.

Outline: The remainder of the paper is structured as follows: In
Section 2, we present related work and background information to
our research, followed by Section 3, where we present our research
design. In Section 4, we present the results of our interview study
and explain each identified frame in detail and the dependencies
among them. In Section 5, we discuss our findings and the threats
to validity. In the end, we conclude in Section 6.

2 RELATEDWORK AND BACKGROUND
The systematic investigation of hybrid approaches started with the
HELENA study 2 that is based on a systematic literature review by
Theocharis et al. [24]. They analyzed which development methods
were combined in practice and discovered a wide use of hybrid
approaches. The Helena study asked practitioners about their used
methods and practices [14]. Noll and Beecham [19] analyzed the
data and found out that 66 % of the cases use an APH approach.
Klünder et al. [11] discovered that most often Scrum, Iterative
Development, Kanban, Waterfall, and DevOps are combined. Tell
et al. [23] could confirm the assumption by West et al. [25] that a
lot of companies follow the "Water-Scrum-Fall" like process.

General investigations of APH approaches are mostly done on
the level of methods and practices as in the papers mentioned
before. Apart from that, several case studies exist that, however, only
investigate a special example but do not provide general insights.

Bick et al. [2] investigated the coordination challenges in large-
scale software development based on the planning misalignment in
a hybrid development approach. They recommend to use regular
inter-team meetings to improve dependency awareness. Further,
they propose an iterative planning process on inter-team level that
runs ahead of the development process and permits an iterative
adjustment process on team level.

Cao et al. [16] describe the benefits of an up-front architecture
phase combined with extreme programming. A stable up-front
architecture creates a foundation where different services can be
built upon. It also gives the developers a clearer understanding of
the whole system and dependencies can be managed more easily.

2Hybrid development approaches in software system development:
www.helenastudy.wordpress.com

Heeagar and Nielsen [8] describe the challenge due to the inflex-
ibility of documents in APH approaches and the effort to change
them. Their presented solution is to write lower-level documenta-
tion iteratively and fill the lower-level specification accordingly to
the information that comes in.

Kautz and Madsen [10] investigated agile development in prac-
tice in a case study and discovered that plan-based approaches
give a structure to the development process by long-term planning
specifications, while agile practices allow flexibility.

These examples point to existing conflicts in APH approaches be-
tween agile and plan-based methods. In our previous work [21], we
conducted a systematic mapping study and identified the following
five conflicts:

Conflict between up-front and continuous requirements
engineering: This conflict concerns the difficulty of the decisions
about how much up-front requirements engineering is necessary
and when the project should switch to a continuous requirements
engineering.

Conflict betweenup-front and continuous architecture and
design: This conflict describes the difficulty of the decision about
how much up-front design of the software architecture is neces-
sary and when the project switches to a continuous design of the
architecture.

Conflict between central decision making and self-orga-
nized teams: This conflict concerns the decision about how far
teams are self-organized and when central decision-making takes
over.

Conflict between long- and short-term planning: This con-
flict emerges because companies have to decide how much up-front
planning can be used and how it is used together with short-term
planning.

Conflict between explicit documentation and tacit know-
ledge: This conflict concerns how much documentation is needed
and which information can be kept in the heads of the project
members.

Next to the conflicts in APH approaches, we conducted a sys-
tematic mapping study to analyze the general patterns for the
organization of hybrid approaches [20]. We found three general
methods to organize APH approaches. The first method is the
Waterfall-Agile-Method (WAM). It uses the five waterfall model
with its phases (requirements engineering, architecture, develop-
ment, testing, and operations) as the main method with an agile part
during the development phase. The second method is the Waterfall-
Iterations-Method (WIM). It consists of iterations with the phases
of the waterfall model inside these iterations. The last method is
the Pipeline-Method (PM). There, the phases of the waterfall model
are performed in parallel for different increments. For example
in an iteration I, the increment N is developed. During the same
iteration, the requirements are elicited and analyzed for increment
N+1 and quality assurance is performed for increment N-1. In the
next iteration I+1, all increments migrate to the next phase. We also
found out that the WIM and PM are often combined with the WAM
during development.

35



Defining Frames to Structure Agile Development in Hybrid Settings - A Multi-Case Interview Study ICSSP’22, May 20–22, 2022, Pittsburgh, PA, USA

3 RESEARCH METHOD
In our literature research [20, 21], we discovered conflicts that exist
in APH approaches and which methods are used by companies
to organize APH approaches. However, we only discovered the
existence of these conflicts without any information about how
they can be solved and their connection to the organization of APH
approaches. We aim at creating a theory about how the conflicts
are connected to each other.

Our research is based on Grounded Theory which does not
use a concrete research question but allows common concepts to
emerge from the data that represent themost important topics of the
participants [6, 7]. Further, it aims at discovering the relationships
between them and forming an overall theory. Therefore, we decided
to adopt Grounded Theory as our research method. In the following,
we describe our Grounded Theory procedure in detail.

3.1 Study Design and Data Collection
For the data collection, we decided to conduct an interview study,
where we can get insights into multiple cases. An interview study
also allows discussing interesting points with the interviewees in
more detail, compared to a survey study. We looked for participants
that work or have worked in a project with a hybrid setting in a
company. Since the conflicts affect different areas of the develop-
ment process, we looked for different roles, like project managers,
product owners, developers, and testers. To acquire participants, we
stated an invocation among the industry contacts of our research
institute and on LinkedIn. In total, we interviewed 15 practition-
ers in Germany that work with an APH approach. Table 1 shows
an overview of the interviewees with their experience, role, the
business context of their project, and project size. The participants
come from different business areas, like finance, insurance, auto-
motive, and the development of business processes. The size of the
development teams ranges from 3 to 80.

For our study, we used semi-structured interviews. They pro-
vide a structure and direction for the interview and allow at the
same time to explore interesting topics and do not hinder the in-
terviewees to mention important points [9]. For conducting the
interviews, we followed the guidelines by Runeson and Höst [22]
and Hove and Benta [9]. The interviews were conducted between
April and December 2021 and lasted about 60 minutes on average.
The interviews were recorded and transcribed afterward by the first
author. One interview was not recorded due to technical difficulties.
However, in this case, we noted the relevant information during
the interview.

For the interviews, we defined a rough course. At the start, we
asked the interviewees about their background, experience, and the
project they are involved in order to get a better understanding of
the context. Further, we asked about the role they embody in those
projects and which tasks and responsibilities they have. The next
block of questions covered the process of the project. This includes
the question about up-front activities, which methods, practices,
and artifacts are used during development, and which activities
are performed at the end of the project. During this part, we also
inquired about the reasons or advantages behind the use of the
described activities, practices, and artifacts. This enables us to get

a better general understanding of the projects and take the project
context into account when analyzing the results.

In the second part of the interview, we covered, as far as appli-
cable, the handling of the described conflicts [21]. Here we asked
how far plan-based and agile approaches are used for the activities
and why. At the end of the interview, we asked for challenges and
problems in APH approaches that were not already covered by our
questions.

3.2 Data Analysis
The coding process of Grounded Theory consists of open, axial,
selective, and theoretical coding and was performed by the first
author. The results and codes were discussed with the second author
afterward. To demonstrate our coding process in more detail, we
show how we extracted one of our main categories the coordination
frame from the transcripts. Figure 1 shows the example.

The first step in our coding process was to divide the transcripts
into independent paragraphs that describe one distinguished topic.
The topics of the paragraphs were summarized with keywords. Af-
terward, we assigned codes to the keywords which describe the
keywords with two or three words. As all the interviews were held
in German, we translated all presented phrases into English. The
following example shows one of these paragraphs:

Raw Data:"Self-organization usually ends where we have a fundamental
question that not only affects our team, but also other teams. Mostly, it is
fundamental technical matters, because the technical requirements mostly
concern a special team. Fundamental questions usually go up (project lead),
we wouldn’t like to organize that ourselves."
Keyword: Self-organizations ends at fundamental technical topics that
concerns more teams.
Code: Team border

In this example, the interviewee describes that fundamental ques-
tions where decisions affect the whole project and not only the
single development team are cleared with the project or architec-
ture lead of the project. Therefore, we assigned the code team border.
After the open coding process, we applied axial coding to the codes
to form concepts by constant comparison of the codes. The con-
cept we derived from similar codes like the one above is borders of
self-organization.

Codes Concepts Category

Team border

Task border Borders of self-organization 

Project parameter border

Meetings

Central coordination Practices of coordination Coordination Frame

Iteration Planning

Better communication

Faster development Advantages of self-organization

Unloading of management

Figure 1: Example of codes, concepts and category

The emerging concepts were again constantly compared to form
categories to reach the next level of abstraction. During the analysis

36



ICSSP’22, May 20–22, 2022, Pittsburgh, PA, USA Prenner et al.

of the concepts, we found out that self-organization is defined by
borders in order to define free spaces for the teams and not lose
control over the teams.

After axial coding, we applied selective coding to identify the
core category. We identified that the companies use the plan-based
elements in their development approach to structure their agile
development. With the plan-based methods, they delimit the field
in which a project can move. Therefore, we named our core cate-
gory: Frames for the agile development. The last step in our coding
process is theoretical coding where the relationships between differ-
ent concepts and categories were analyzed. This step was further
supported by the use ofmemoing, where we documented important
thoughts during the coding process. We see that self-organization
is, for example, influenced by the architecture of the software. The
more dependencies the development teams have to each other or to
other projects the less self-organized are they. The data collection
and analysis were conducted iteratively in order to react to emerg-
ing themes in the process. In this way, we identified an additional
conflict in the testing area and incorporated it in our interview
course.

4 FRAMES IN APH APPROACHES
During our described coding process, we discovered that the projects
define the coarse boundaries for the project at the beginning. These
boundaries take into account the content of the project (require-
ments), the planning parameters (timeline and budget), the architec-
ture, the testing process, and the coordination of the teams. These
boundaries were also called frames, which is why we decided to
choose this term:

Interviewee 01: "I’m more a friend of saying: Define it roughly first, then I’ll
have a frame in which I can move."

The frames are used to give the project structure and stability and
define a free space in which the project can move and be flexible at
the same time.

Finding 1: Companies use APH approaches to give structure and
stability to their agile development and define boundaries in which
the project can move. The identified frames are: The requirements
engineering, the architecture, the planning, the testing, and the
coordination frame.
In the following, we describe each of the frames in more detail
and the relationships between the frames.

4.1 The Planning Frame
Companies and customers need a rough estimation of the required
time, budget, and skills for the whole project to set the frame for
the project and to plan other projects.

Interviewee 10: "[The developers] look at the customer’s scope and what the
complexity of the application is. And then they estimate how long it will take.
With such a risk, this timeline can be upheld."

Regarding the management of the projects’ scope, we discovered
differences resulting in four different modes. In the last column of

Table 1, we show which modes we identified in each case. These
different modes influence how the project is planned.

On the one side of the spectrum is the Framed-Agile-Mode (FAM).
In these cases, the requirements are not known and changes can
always occur. Therefore, the companies only set the initial time,
budget, and skill frame for the whole project and let the scope be
flexible by adapting the priority of features. The difference between
the FAM and a pure agile approach is that in a pure agile approach
estimations for a whole project are not performed.

Interviewee 01: "That is I have to say that I will somehow deliver parts of the
software by a certain date, but then, of course, I cannot say exactly what the
content is."

We named the second mode Milestone-Agile-Mode (MAM). In these
cases, we often observe requirements that have a deadline when
they have to be implemented and deployed. They are often also
referred to as must haves. These requirements mostly have a fixed
scope with a fixed time. In order to be flexible enough, the compa-
nies plan the development of the other requirements in an agile
way around the milestones of the project. In these cases, the com-
pany also flexibly assesses whether other features can be pre- or
postponed.

Interviewee 11: "There are start of production dates, where things just have
to be there. [...] If needed, you reduce the scope. There is a certain baseline
that needs to be implemented. [...] And then, there is always a handful of
requirements that are just so low in priority [...] that they are simply not
implemented."

The third mode is the Plan-based-Agile-Mode (PAM). In this mode,
the requirements are uncertain, but the customer or company needs
planning certainty. The solution is to divide the development in
periods for which the scope is fixed and planned. These periods
have a duration between three and six months.

Interviewee 13: "It makes sure that what the teams will do over the next three
months is very, very clear. [...] The other involved projects are not as agile
as we are. Therefore, for us, it is a compromise at this interface [to the other
projects]."

The last mode we discovered is the Execution-Agile-Mode (EAM). In
these cases, the requirements are often known, but the solution is
uncertain. Despite the unknown solution, the scope and time frame
for the whole project is often defined beforehand. Nevertheless, the
companies use agile methods but apply them rather as a manage-
ment and control tool. For example, the structure of Scrum enables
the project lead to always have an overview of the status of the
project.

Interviewee 05: "Sprint planning, backlog, sprint review, daily scrum [...] are
very important building blocks that you can use to build up a month [...] as
a project manager [...]. Further, as a project manager, I know where we stand
every day."

Agile methods also encourage constant communication between
different teams and departments. Since the solution is often un-
known in these cases, this is beneficial, because it enables a fast
reaction when problems arise. However, in these cases, the mere
application of agile methods does not lead to agility, since change

37



Defining Frames to Structure Agile Development in Hybrid Settings - A Multi-Case Interview Study ICSSP’22, May 20–22, 2022, Pittsburgh, PA, USA

Table 1: Demographics of the Interview Participants

ID Experience (Years) Role Project Project Size (# of people) Development Approach Mode

01 25 Project Manager / Software Architect IT services for banks 5 - 20 WAM + PM Framed Agile

02 > 30 Project Manager IT service for banks 30 - 50 WAM + PM + WIM Milestone Agile

03 > 25 Product Manager IT services for banks 15-20 PM Plan-based Agile

04 0.5 Software Architect IT service for insurance 20 -30 WAM + PM Milestone Agile

05 > 10 Tester IT service for banks 20 WAM + PM Agile Execution

06 10 Developer Automotive supplier 4 WAM Agile Execution

07 25 Product Owner / Software Architect Supplier for satalites 10 PM Milestone Agile

08 > 4 Developer Accessmanagement System 3 WAM + PM Milestone Agile

09 35 Agile Coach IT services for insurance 30 WAM + PM Framed Agile

10 > 5 Resource Manager IT services for business processes 50 WAM Agile Execution

11 8 Agile Coach IT services for business processes 5 -10 WAM + PM Milestone Agile

12 13 Developer / Software Architect
IT services for a railroad company 90 WAM + PM + WIA Milestone Agile
IT services for insurance 5 WAM Agile Execution

13 7 Agile Coach IT serives for logistic 7 - 11 WAM + PM Framed Agile / Plan-based Agile

14 > 10 Agile Coach IT services for insurance 10 - 30 WAM + PM Framed Agile

15 > 30 Product Owner Automotive supplier 60 - 80 PM Milestone Agile

requests have often to be used to change the scope.

Finding 2:We identified four different modes of how the scope
is managed in APH approaches: The Framed-Agile, the Milestone-
Agile, the Plan-Based-Agile, and the Agile-Execution-Mode. The
scope can be either rather fixed or be adapted by reevaluating the
priority of requirements.

If several teams are involved in the project, a roadmap helps to
show how the different parts of the projects are connected and
where dependencies to other projects exist. It gives the project
more structure and stability and enables project managers and de-
velopers to keep an overview.

Interviewee 11: "Like pieces of a puzzle. Sometimes something depends on
something else. [...] These roadmaps are super helpful to keep track of things,
especially in large projects."

However, the roadmap must remain on the level of a vision. A
too narrow roadmap demands too much rework if changes occur.
A good roadmap needs to remain maintainable. The roadmap has
to be constantly adjusted to changes. The most important planning
task is the constant review of the status and planning the develop-
ment order of new features.

Interviewee 11: "A roadmap changes and it changes extremely fast. [...] The
more fine-grained you write it down, the more you document yourself to death
because it is a living document. It needs constant care and maintenance."

4.2 The Requirements Engineering Frame
The next identified frame is defined during the up-front require-
ments engineering phase. The phase sets a frame of the content
of the project by creating a common understanding of the project
and its vision. This is important to give the project a goal and to
set initial boundaries in which the developers and stakeholders
can move. The creation of a common understanding fosters the
transparency of the project and ensures that the project does not

go in the wrong way right from the beginning.

Interviewee 06: "Because in the past, and that was perhaps also the problem,
[...] we never gave any thought to the requirements beforehand and didn’t
even know where to go. And [up-front RE] definitely helps to think a little
more about the requirements in this phase and get clarity about it."

This way, stakeholders can also be sure that their requirements
are considered. Especially, if there are many stakeholders, it is
beneficial to collect all their requirements at the beginning. Later,
during the project, it is sometimes difficult to reach all stakehold-
ers. Compliance requirements or other important non-functional
requirements, like security or performance, have to be considered
directly at the beginning of the project and, hence, need to be con-
sidered beforehand.

Interviewer: "Is there a benefit to extend the up-front requirements engineering
phase?
Interviewee 12: "Yes, if you have a lot to do with compliance and have to
fulfill a lot of legal requirements. Or lots of framework conditions that are
impossible to avoid."

However, it happens that customers want to discuss details that are
often uncertain and unknown. This introduces the risk of getting
lost in details, losing overview, and discussing detailed require-
ments under vagueness. This is especially important because it
creates an apparent certainty that is not there in reality.

Interviewee 13: "We’re talking about a 30,000€ block right now. If you [cus-
tomer] had listened, you would have heard it’s a million plus or minus 30%.
That is we are talking about information in the absolute blur range. Then
[up-front requirements engineering] has no value."

The ideal point to end the up-front requirements engineering phase
is when the project participants reach a rough and common under-
standing of the application and the vision for the project.

38



ICSSP’22, May 20–22, 2022, Pittsburgh, PA, USA Prenner et al.

Interviewee 01: "My goal at the beginning of a project is to understand these
requirements at least on a detailed level so that (a) I understand them and
(b) that I am able to give at least a rough indication of how complex the
implementation would be."

This point is refined by the ability of the project participants to give
a rough estimation for the project. This includes statements about
the estimated cost and length of the project and which employees
are needed for the project. These estimations can be provided in
conjunction with a risk assessment about how certain these estima-
tions are. When everyone agrees on these rough estimations and
has the gut feeling to have sufficient information, to begin with the
development, the development can start. If the requirements are
rather uncertain, it is also possible to only concentrate on one suc-
cessful use case and the functionality that is needed for this use case.

Finding 3: The up-front RE phase strives to give a first under-
standing of the project such that the team members can provide a
coarse estimation of the duration, the cost, and the needed skills.

We analyzed the tasks that are used by companies to reach this
point during the up-front requirements engineering phase. The
most important task is an analysis of what the customer needs.

Interviewee 08: "We did [requirements analysis] by using prototypes and
wrote down beforehand which use cases exist."

During the analysis, different use cases are gathered and analyzed.
Based on these insights, the needed features and their functionality
can be derived. Epics are reported to be a suitable practice to retain
the overview (without getting lost in detailed story cards). Since
the scope of the project is often variable, the requirements have
to be analyzed regarding their priority. The requirements that are
most valuable for the customer have the highest priority. Another
suitable practice is the creation of a roadmap, helping to present
the vision and the direction for the project. It is important to keep
the roadmap on the level of a vision to manage changes and let
enough flexibility. A roadmap helps to convey the vision among
the project team and fosters transparency of the project.

Finding 4: The requirements engineering frame consists of the
coarse use cases of the software that form a vision for the project.

In the column "Development Approach" of Table 1 we present
an overview of which of the three described methods to organize
APH approaches were used by the investigated cases to organize
their whole approach (WAM, WIA, or PM). In 12 out of 15 cases,
the Waterfall-Agile-Method (WAM) was used. The data shows that
almost all cases use the WAM to set a requirements engineering
frame for the project. The three cases that use only the Pipeline-
Method (PM) are continuous projects that partly run for years and
therefore do not need an initial phase.

The initial requirements engineering phase at the beginning
of the project only sets a frame for the requirements. During the
development phase, iterative requirements engineering is used.
Our results show that all cases use the PM for their requirements
engineering during the development phase. The tasks during the
iterative requirements engineering are:

1. Intake of new requirements: New requirements have to be
gathered and evaluated regarding their business value.

2. Estimation: To create a better understanding of these require-
ments, the developers can take a look at them and evaluate their
feasibility. Based on this, the developers give a rough estimation of
the effort to implement these requirements.

3. Backlog Grooming: At the beginning of the project, the require-
ments are gathered on the level of epics. During the development,
these epics have to be filled with more detailed user stories.

4. Refinement: The user stories that are considered ready for
development by the product owner are presented to the developers
and discussed in regular refinement meetings.

5. Planning of Development: If also the developers give their
approval of the user stories and consider them as ready for devel-
opment, the user stories can be planned.

4.3 The Architecture Frame
An up-front architecture provides a technical frame for the devel-
opment in which the teams can move and provides an overview
of the application. Also, up-front architecture has benefits or even
has to be conducted. Important non-functional requirements like
performance or security have to be considered at the beginning
because it is often difficult to integrate them later.

Interviewee 01: "Capacity, availability, performance is something that I have
to take into account very early on in the design, otherwise I’ll hit a wall there.
Also, if I have very strict security requirements, then I have to incorporate
them into the design right from the start."

The most often mentioned point is to define the interfaces at the
beginning of the project. This enables the development teams to
move freely in their designated area.

Interviewee 09: "If the interfaces are clear, then it doesn’t really matter what
the implementation looks like behind them."

Also, the technological framework conditions, like coding language
or the infrastructure of the application, have to be set. However,
there is the risk of defining too much architecture up-front, because
it reduces the project’s degrees of freedom and often leads to re-
work.

Interviewee 12: "The more fine-grained you make the architecture, the more
frequently you have to revise it afterward [...]. I’m more in favor of letting the
architecture evolve over time. [...] Under the condition that certain framework
conditions are met, such as security, for example."

A too detailed architecture leads to a loss of oversight. Sometimes,
architecture has to be globally created for the whole project because
all parts need to exactly fit together. However, an architecture that
is too narrow for the whole project slows down the development
teams since they often wait for decisions. Also, the teams need
some degree of freedom in which they can move.

Interviewee 11: "The deeper and more specific you make the architecture at
this point, the more the conversations go in a direction that is not productive.
You actually want to avoid this at this point, because you tend to pay attention
to this overall crosscut and then let the individual teams run their own course."

39



Defining Frames to Structure Agile Development in Hybrid Settings - A Multi-Case Interview Study ICSSP’22, May 20–22, 2022, Pittsburgh, PA, USA

Interviewee 09: "If people are pinned on [...] an architecture, then they have
to wait for others at certain points. The architecture imposes a constraint on
developers, making them slower."

Finding 5: The up-front architecture focusses on the definition
of interfaces considering important non-functional requirements.

In all cases where the WAM is used, it is also used for architec-
ture. Only three cases integrated the architecture activity directly
into the PM. In most cases, the architecture was developed during
the implementation. However, often, there is a role or a team that
maintains the architecture frame.

Finding 6: The architecture phase in the PM is often omitted, but
the architecture is governed by a team or person.

Architecture is closely bound to the documentation of a project.
Documentation is important and the trend we observed in our inter-
view study is to document rather too much than too little. However,
documentation also has to be written and maintained. This makes
documentation an exhausting task. Our results show that compa-
nies only document things that are necessary for the understanding
of the software and concern the architecture. Here it is important
to document the structure of the software that represents an overall
overview.

Interviewee 01: "Know how my system is set up. How is it structured. What
interfaces do I have. What components do I have. What functionalities do I
have. What do these components represent."

If documentation is merely another depiction of something that
already exists, it is not used. Further, models that can be easily
derived from the code source are often not documented. How-
ever, code documentation is still considered important. To evaluate
documentation, senior developers are asked to determine if the doc-
umentation suffices enough to understand the software. Knowledge
that can be obtained from books or other sources is not documented.

Interviewee 12: "The documentation of professional knowledge is unnecessary.
Further, if I have a model that is derived from a source, I have to ask myself:
Do I need this model?"

Finding 7: Information that is necessary to understand the soft-
ware is documented, while textbook knowledge and information
that are easily to obtain are not documented.

4.4 The Testing Frame
We identified an additional conflict in the testing area. The con-
flict exists because plan-based approaches propagate to separate
testing from the developers to ensure a structured testing process,
while agile approaches propagate testing by the developers to en-
sure fast feedback. To assure that all tests are conducted, a testing
frame with which the teams work has to be defined. This defines
which tests are conducted by the developers and if an additional
test team is necessary. Our results show that only one case uses the
WAM for testing. That means that all companies strive to deploy
regularly and test iteratively during development. According to
our results, test automation is essential for fast development and
supports agility because it generates fast feedback.

Interviewee 11: "What is always very good is to automate the system tests."

We observe that the companies strive to shorten the period between
implementation and tests. Therefore, all unit tests are conducted
by the developers. When it comes to integration and system tests,
there are two variants of how the tests are conducted. The first op-
tion is that these tests are conducted by an extra team. The second
option is to let these tests also in the hands of the developers. The
advantage of the first option is to have a clear test responsibility
and a team that steers the whole testing process. Further, this way
the developers can focus on the development work.

Interviewee 12: "One advantage is that you don’t know when you roll it
out, whether it will still work with the others. If you haven’t tested properly
or communicated with the others, then of course a test team that channels
everything a bit is worth its weight in gold."

In eight cases, the companies used the PM with an extra test team
to conduct the tests. In these cases, a synchronized release rhythm
to the test team among all development teams has to be defined to
coordinate the test process.

There are also benefits of having the tests performed by the de-
velopers. An extra test team slows down the development because
teams cannot deploy directly. Also, found errors have to be first
reported back to the developers before they can fix them which also
delays the development. The test responsibility in the hand of the
developers facilitates having an executable version of the software
at the end of each sprint and increases the quality awareness of the
team. However, this also takes time from the sprint.

Interviewee 12: "The closer testing and deployment are located to the devel-
opment team, the faster [the developers] get feedback and can fix things."

Finding 8: To set the testing frame, the companies decide which
tests can be conducted by the developers and which by an extra
test team (if even necessary) and set a release rhythm for the
development teams.

4.5 The Coordination Frame
The last frame we identified considers the coordination activity. The
participants see self-organized as beneficial because it leads to more
communication between the teams, a faster development, and the
project leader is unburdened. However, self-organization also has
its boundaries because not all decisions can be made by the team
itself. To have a structured development, plan-based approaches
propagate more central decision-making. To give the teams orienta-
tion and security regarding their degree of freedom and to provide
structure, a frame for coordination has to be set. In large-scale set-
tings, the teams have to comply with the general framework and
rhythm of the project and are limited in their self-organization.

Interviewee 12: "The self-organization ends at the sprint and iteration grid.
Of course, we are bound by these dates."

If questions arise that do not only concern the single team but
also the whole company or project, the project lead or manager is
brought into the decision. This is, self-organization is limited to
questions that only affect the single development team.

40



ICSSP’22, May 20–22, 2022, Pittsburgh, PA, USA Prenner et al.

Interviewee 01: "I can only do self-organization within my team as long as it
only affects the nucleus of this team. As a team, I cannot make a decision for
my company, for example."

Further boundaries are set if the project parameters, like the time
or budget frame, are affected by the decision in the team or the
team has to fundamentally deviate from the task.

Interviewee 01: "Of course, if the teams say, we need more money now, they
cannot just decide that themselves."

Finding 9: Self-organization ends where decisions have to be
made that affects the whole project, the parameter of the project
or the team deviates fundamentally from their designated tasks.
In these cases, central decision-making is used.

4.6 Dependencies between the Frames
Grounded Theory not only consists of the categories that emerge
from the data but also of the dependencies between these categories
(theoretical coding and memoing). In Figure 2, we show the five
frames and their influence on each other. In the following, we
describe each of the dependencies in detail.

Requirements 
Frame

Planning Frame

Architecture 
Frame

Coordination
Frame

D1

D2

D3
D9

Testing Frame

D5
D7

D4 D10

D8

D6

Context

Figure 2: Dependencies among the categories

The context, in which a project is located, influences how the
frames are defined. In this study, the context describes the kind
of application that is developed, the environment of the project
(technical infrastructure, dependencies to other projects etc.), and
the customers and stakeholders.

Dependency 1: In cases with a lot of stakeholders, a high com-
plexity or high criticality of the application more effort to create the
understanding of the project is needed. The certainty of the require-
ments influences when the requirements frame becomes too narrow.

The requirements engineering frame aims to set an understand-
ing and vision for the project. The more complex a project is, the
more effort is needed to get an understanding. If a lot of stake-
holders are involved, it is even more difficult. Also, the criticality
determines how long it takes because all relevant requirements
have to be gathered.

Interviewee 11: "And then there are projects that intervene intensively in the
vertical structure of an organization [...]. There are a lot of departments that
use the application. You have to collect the requirements first properly."

On the other hand, the certainty of the requirements, especially
in the details, determines when the framing for the project becomes
too narrow and requirements are discussed under uncertainty.

Dependency 2: The degree of understanding and the certainty of
the requirements influence how precisely the project parameters can
be defined.

The requirements frame defines how well the project team can
estimate the project. If the requirements and/or the solution are
uncertain, there can always be changes or delays in the develop-
ment. Therefore, the parameters can only be roughly estimated and
have to be checked regularly. The more both aspects are certain,
the better is the estimation.

Dependency 3: Non-functional requirements, dependencies, and
the requirements certainty influence how narrow the architecture
frame for the software has to and can be.

In our results, we see that especially critical non-function re-
quirements like security performance have to be considered right
from the beginning. They decide how detailed the architecture
needs to be. If the software does not stand alone but has many
dependencies to other projects, an analysis of the interfaces and
how the architecture fits into the existing applications has to be
performed. Further, in large-scale development, it is important to
have a closer look at the architecture and define the interfaces and
the structure in order to enable the teams to work independently
and give them boundaries in which they can work.

Interviewee 11: "I nail down the requirements and the communication of the
systems based on the interface. If I describe it first and put some effort into
it, then I really don’t care what the systems do on the left and right. That’s
what they need and then they can get along with each other."

However, the architecture must not be too narrow, because
changes can occur especially if the requirements are uncertain.
An analysis of the degrees of freedom has to be performed in order
to be as flexible as possible within the defined frame.

Dependency 4: The analysis of dependencies and interfaces influ-
ences if a planning roadmap for the project is needed.

The more the single components of an application or the appli-
cation itself are independent, the fewer long-term planning and
milestones are needed. If the project teams do not need to consider
other projects, a roadmap is rather obstructive, since it needs re-
work in cases of changes. If different development teams depend
on each other, a roadmap is useful to have an overview of how all
parts of the project are connected. However, the roadmap should
be on the level of a vision in order to keep it maintainable in cases
of changes.

Interviewer: "Do you use a roadmap?"
Interviewee 01: "No, this is only used if you have dependencies to fixed
releases."

Dependency 5: The customer or company decides how the scope
has to be handled, which influences how the project is planned.

Our results show that scope cannot always be handled as flexibly
as it should. In a dialog with the customer, the conditions regarding
the scope have to be determined. Since APH approaches also oper-
ate in a complex area, where the requirements and the solution are
uncertain, the scope should be as flexible as possible in order to be

41



Defining Frames to Structure Agile Development in Hybrid Settings - A Multi-Case Interview Study ICSSP’22, May 20–22, 2022, Pittsburgh, PA, USA

able to react to changes.

Interviewee 02: "I do something, I show what I’ve got there and then I’ll look
at it. If it comes out that I want to have it differently now, then I can react
and act much more flexibly."

Dependency 6: The resilience of the software against single fail-
ures influences whether the testing is done by the developers or by an
extra test team.

In case of an architecture that does not lead to a system crash if
single features or services fail, the tests can be rather in the hands
of the developers. In these cases, the developers get faster feedback
for their work. However, if all services depend on each other and
need careful integration, the system is less resilient against single
failures. In these cases, the integration and system tests should be
laid outside of the single development teams.

Dependency 7: The testing frame is influenced by how new soft-
ware can be deployed and if customers demand a high level of test
assurance.

Software companies are often bound to the deployment cycles
of their customers or the software needs to be integrated into a
larger system. In these cases, software cannot be deployed regularly.

Interviewee 03: "You give the release into production once a year. The entire
time in between you have frozen time for production and you are only allowed
to access the systems if very urgent bug fixes are necessary."

However, in other cases weekly or even daily deployment is pos-
sible. Based on these factors, the rhythm of the test cycles has to be
set. If further a high test assurance, traceability, and documentation
are needed, an extra test team for integration and system tests is
beneficial.

Dependency 8: The architecture frame influences the degree of
self-organization of the teams.

If there are clear interfaces between the development teams, they
can be rather self-organized in their team bubble. If there exist a lot
of dependencies, more planning and oversight between the team is
necessary. To support this, the architecture can be governed more
globally for the whole project. This can be performed by one person
or a team. An integration team can support the collaboration of
different development teams. However, the architecture frame must
not be too narrow since it takes freedom from the development
teams and slows them down.

Dependency 9: The planning frame influences how centralized
the planning has to be and how much room for inter-team planning
is needed.

If there are a lot of dependencies between teams or to other
projects, the whole planning has to be governed more centralized
via a roadmap. In order to avoid losing the overview, a person or
team can support the planning and coordination of different teams.
Development teams with several dependencies need more room
for coordination, for example, by additional regular meetings, like
Scrum of Scrum. Coordination can also be supported by integrating
the Waterfall-Iteration-Method (WIA) into the PM. At the begin-
ning of an iteration, the teams can use a phase to clear dependencies.

Interviewee 03: "And we also talked about queries, agreements, additions,
changes, and so on. And this time is what I call set-up time. And you should
actually allow yourself this set-up time before the developer phase. But we
do not do that. Instead, this set-up time of coordination is shifted to the
development phase."

Dependency 10: The testing frame influences the degree of self-
organization of the development teams.

Besides the architecture and planning, the testing frame influ-
ences how self-organized the development teams are. If the single
development team can conduct all the integration testing on their
own, they are more self-organized and have a shorter feedback
span. If the development teams have to follow the directives from
the test team, they are less self-organized, and the whole process
lasts longer.

Interviewee 13: "If you deploy code in three months and an error occurs, you
won’t know anymore what you did there."

5 DISCUSSION
Companies similarly need planning certainty and flexibility. There-
fore, based on our results, we state that one of the main reasons to
create APH approaches is to stabilize and structure agile develop-
ment to a certain point to reach a degree of security for the customer,
company, and developers. We discovered that companies do this by
framing their agile development. These frames give structure but
also leave room for flexibility. The described conflicts [21] exists
because for the definition of these frames the opposing principles of
agile and plan-based development have to be weighed against each
other. To not define the frames too narrow, it has to be analyzed
which principles of agile development should be kept and which
can be neglected. For example, our results show that the flexibility
of the scope has a major influence on the agility of a project. The
different modes we discovered form a spectrum and the flexibility
of the scope is one key element of the difference between merely
doing agile and being agile.

Our results show that during the framing process the single
frames build upon each other and define stepwise the development
approach. This supports the perception of Boehm and Turner [4]
who describe that APH approaches are built up rather than tailored
down. Only after the framing process is done, the development
approach can be actually filled with methods and practices. In
the literature, APH approaches are mostly discussed on the level
of methods and practices [11, 23]. Existing approaches to create
and tailor hybrid development approaches depend solely on which
methods and practices from agile and plan-based approaches should
be chosen [4, 15, 23]. However, the results of our previous work
[21] and this study show that the mere discussion of methods and
practices is by far not sufficient to build APH approaches. This argu-
mentation is supported by the finding of Kuhrmann et al. [13]. They
discovered that the used methods and practices have little influence
on the perceived degree of agility. Based on that, we state that the
framing process is an important missing link in the creation of APH
approaches. After the companies define the frames, they can build
their development process. We see that the WAM together with the
PM is a good framework for APH approaches. In the following, we
list different recommendations to guide practitioners while defining

42



ICSSP’22, May 20–22, 2022, Pittsburgh, PA, USA Prenner et al.

the process of an APH approach based on our insights from this
study and previous work:

Recommendation 1:We recommend to only use the requirements
and architecture phase of the WAM to frame the project and to
omit the testing and operations phase of the WAM. The project
team should strive to create a runnable tested version at least after
each iteration. This enables the team to get feedback and always
be able to deploy.

Recommendation 2: We recommend that the scope of the project
is flexible since also APH approaches operate in complex areas
(Framed-Agile-Mode). Even, if there are concrete milestones that
have to be fulfilled, the scope has to be partly flexible to have
buffer. We also recommend using rather short planning cycles to
generate fast feedback. However, if the scope is not flexible, we
recommend using the Plan-Based-Agile-Mode instead of the Agile-
Execution-Mode because it uses more of the advantages of agile
development. In these cases, the period for which scope has to be
fix has to be determined. It is important to choose shorter periods
to prevent uncertainties. The creation of solution concepts for new
requirements can facilitate the estimation and planning of these
requirements. If the Agile-Execution-Mode has to be used after all,
the project has to be carefully tracked in order to see issues early.

Recommendation 3: We recommend to create a concrete frame-
work for the iterative requirements engineering to ensure a contin-
uous flow. We further recommend understanding the information
flow of requirements as a waterfall. To ensure a high quality of
requirements and structure of the process the steps of the waterfall
have to be carefully defined. We recommend using a hierarchy
among the requirements documentation to support the hybrid na-
ture of the project. There should be a common understanding of
how requirements should look like to properly implement them.

Recommendation 4: We recommend keeping the testing as near
to the developers as possible in order to create fast feedback cycles
and facilitate the fixing of errors. If software can not be regularly
deployed during the development cycles, we, nevertheless, recom-
mend synchronizing as much of the testing with the planning cycle,
especially integration testing to create regularly a runnable version
of the software and get feedback.

For the future, the research community has to consider that the
sole combination of agile and plan-based methods and practices
might not solve the problem. It might be necessary to define new
methods and practices that combine the principles of agile and
plan-based development or even define combined principles for
APH approaches. Here, the research community can support the in-
dustry. Companies are often narrowed on their day-to-day business
and chose rather fast and easy solutions that serve as temporary so-
lutions. They often do not have the time to consider the big picture
and the theory behind methods and practices.

5.1 Threats to Validity
Ourwork is subject to some threats to validity.We discuss according
to Maxwell [18], descriptive, theoretical, and interpretive validity
and generalizability.

Descriptive Validity. Descriptive validity considers the correct-
ness of the made observations. To mitigate this threat we recorded
the interviews and transcribed them afterward for the analysis.

Theoretical Validity. Theoretical validity considers the extent
to which we were able to collect the relevant aspects. We choose
a multi-case interview study to get a general insight into APH
approaches that is not limited to one case. We used semi-structured
interviews to be able to explore interesting points that come up
during the interview. The interview questions were directly derived
from our previous work and discussed with other researchers in
the field of agile and hybrid approaches. This may created a bias
because we were focused on these aspects. In order to mitigate this
threat, we added open questions at the end of the interviews to
collect information that the interviewees view as important, but
we did not cover with our questions. Further, we conducted the
data collection and analysis iteratively to react to new themes. We
followed the guidelines by Runeson and Höst [22] and Hove and
Benta [9] to get genuine answers. Most important, we assured the
anonymity of our participants.

Interpretive Validity. The interpretative validity considers the
conclusions drawn from the data. To minimize this threat we fol-
lowed the coding procedure of Grounded Theory. The whole coding
process was conducted by the first author which increases the mono
researcher bias. To prevent this effect, the process was reviewed
by the second author and the results were discussed. We observe a
large agreement among the participants and different points were
mentioned multiple times by different interviewees. We identified
no contradictory statements. Therefore, we consider our results
and findings as valid.

Generalizability. Our interview study consists of only 15 partici-
pants and all came from Germany. This impairs the generalizability
of our results. However, we strove to include different business
contexts, roles, and project sizes in our study to see the application
of APH approaches under different contexts and perspectives.

6 CONCLUSION
We conducted a multi-case interview study to investigate how com-
panies handle the conflicts in APH approaches. We discovered that
the conflicts exist because companies want to set frames for their
agile development. We identified five different frames that are de-
fined by companies: the requirements engineering, the architecture,
the planning, the testing, and the coordination frame. Especially
the requirements, architecture, and planning frame serve to give a
structure in which the development teams can move.

The frames provide an abstract view on APH approaches that
is necessary to understand them better. Due to this abstract view,
we do not cover all necessary considerations for the creation of
APH approaches. Instead, this work shall increase the mindfulness
of practitioners and researchers for the existence of these frames
and their important role in the creation of APH approaches. Fur-
ther, it shall guide the way towards a systematic creation of APH
approaches. For that, the concrete relationship between the frames
and the actual development process have to be further investigated.

ACKNOWLEDGMENTS
We thank all interviewees for participating in our interview study.

43



Defining Frames to Structure Agile Development in Hybrid Settings - A Multi-Case Interview Study ICSSP’22, May 20–22, 2022, Pittsburgh, PA, USA

REFERENCES
[1] D. Batra, W. Xia, D. Meer, and K. Dutta. 2010. Balancing agile and structured de-

velopment approaches to successfully manage large distributed software projects:
A case study from the cruise line industry. Communications of the Association for
Information Systems 27 (01 2010), 379–394.

[2] S. Bick, K. Spohrer, R. Hoda, A. Scheerer, and A. Heinzl. 2018. Coordination
Challenges in Large-Scale Software Development: A Case Study of Planning
Misalignment in Hybrid Settings. IEEE Transactions on Software Engineering 44,
10 (2018), 932–950.

[3] Jean Binder, Leon IV Aillaud, and Lionel Schilli. 2014. The Project Management
Cocktail Model: An Approach for Balancing Agile and ISO 21500. Procedia -
Social and Behavioral Sciences 119 (2014), 182 – 191. Selected papers from the
27th IPMA (International Project Management Association), World Congress,
Dubrovnik, Croatia, 2013.

[4] Barry W Boehm, Barry Boehm, and Richard Turner. 2004. Balancing agility and
discipline: A guide for the perplexed. Addison-Wesley Professional.

[5] Torgeir Dingsøyr, Nils Brede Moe, Tor Erlend Fægri, and Eva Amdahl Seim. 2018.
Exploring Software Development at the Very Large-Scale: A Revelatory Case
Study and Research Agenda for Agile Method Adaptation. Empirical Softw. Engg.
23, 1 (Feb. 2018), 490–520.

[6] B.G. Glaser. 1992. Emergence Vs Forcing: Basics of Grounded Theory Analysis.
Sociology Press.

[7] Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine de Gruyter, New York, NY.

[8] Lise Tordrup Heeager and Peter Axel Nielsen. 2020. Meshing agile and plan-
driven development in safety-critical software: a case study. Empirical Software
Engineering 25, 2 (2020), 1035–1062.

[9] S. E. Hove and B. Anda. 2005. Experiences from conducting semi-structured
interviews in empirical software engineering research. In 11th IEEE International
Software Metrics Symposium (METRICS’05). 10 pp.–23.

[10] Karlheinz Kautz and Sabine Madsen. 2010. Understanding Agile Software Devel-
opment in Practice. International Conference on Information Resources Manage-
ment (2010).

[11] Jil Klünder, Regina Hebig, Paolo Tell, Marco Kuhrmann, Joyce Nakatumba-
Nabende, Rogardt Heldal, Stephan Krusche,Masud Fazal-Baqaie, Michael Felderer,
Marcela Fabiana Genero Bocco, Steffen Küpper, Sherlock A. Licorish, Gustavo
Lopez, Fergal McCaffery, Özden Özcan Top, Christian R. Prause, Rafael Priklad-
nicki, Eray Tüzün, Dietmar Pfahl, Kurt Schneider, and Stephen G. MacDonell.
2019. Catching Up with Method and Process Practice: An Industry-informed
Baseline for Researchers. In Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice (Montreal, Quebec, Canada)
(ICSE-SEIP ’19). IEEE Press, Piscataway, NJ, USA, 255–264.

[12] Marco Kuhrmann, Philipp Diebold, Jürgen Münch, Paolo Tell, Vahid Garousi,
Michael Felderer, Kitija Trektere, Fergal McCaffery, Oliver Linssen, Eckhart
Hanser, and Christian R. Prause. 2017. Hybrid Software and System Development
in Practice: Waterfall, Scrum, and Beyond. In Proceedings of the 2017 International
Conference on Software and System Process (Paris, France) (ICSSP 2017). Association
for Computing Machinery, New York, NY, USA, 30–39.

[13] Marco Kuhrmann, Paolo Tell, Regina Hebig, Jil Ann-Christin Klunder, Jurgen
Munch, Oliver Linssen, Dietmar Pfahl, Michael Felderer, Christian Prause, Steve
Macdonell, Joyce Nakatumba-Nabende, David Raffo, Sarah Beecham, Eray Tuzun,
Gustavo Lopez, Nicolas Paez, Diego Fontdevila, Sherlock Licorish, Steffen Kupper,
Guenther Ruhe, Eric Knauss, Ozden Ozcan-Top, Paul Clarke, Fergal Hugh Mc Caf-
fery,Marcela Genero, Aurora Vizcaino,Mario Piattini, Marcos Kalinowski, Tayana
Conte, Rafael Prikladnicki, Stephan Krusche, Ahmet Coskuncay, Ezequiel Scott,
Fabio Calefato, Svetlana Pimonova, Rolf-Helge Pfeiffer, Ulrik Pagh Schultz, Roga-
rdt Heldal, Masud Fazal-Baqaie, Craig Anslow, Maleknaz Nayebi, Kurt Schneider,
Stefan Sauer, Dietmar Winkler, Stefan Biffl, Cecilia Bastarrica, and Ita Richardson.
2021. What Makes Agile Software Development Agile. IEEE Transactions on
Software Engineering (2021), 1–1. https://doi.org/10.1109/TSE.2021.3099532

[14] Marco Kuhrmann, Paolo Tell, Jil Klünder, Regina Hebig, Sherlock Licorish, and
Stephen MacDonell. 2018. HELENA Stage 2 Results. https://doi.org/10.13140/
RG.2.2.14807.52649

[15] Steffen Küpper, Andreas Rausch, and Urs Andelfinger. 2018. Towards the system-
atic development of hybrid software development processes. In Proceedings of
the 2018 International Conference on Software and System Process. ACM, 157–161.

[16] Lan Cao, K. Mohan, Peng Xu, and B. Ramesh. 2004. How extreme does extreme
programming have to be? Adapting XP practices to large-scale projects. 37th
Annual Hawaii International Conference on System Sciences (2004), 10 pp.–.

[17] Isabel Laux and Johann Kranz. 2019. Coexisting Plan-driven and Agile Methods:
How Tensions Emerge and Are Resolved. International Conference on Information
Systems (ICIS) (12 2019).

[18] Joseph Maxwell. 1992. Understanding and Validity in Qualitative Research.
Harvard Educational Review 62 (01 1992), 279–300.

[19] John Noll and Sarah Beecham. 2019. How Agile Is Hybrid Agile? An Analysis
of the HELENA Data, Xavier Franch, Tomi Männistö, and Silverio Martínez-
Fernández (Eds.). Product-Focused Software Process Improvement, 341–349.

[20] Nils Prenner, Carolin Unger-Windeler, and Kurt Schneider. 2020. How Are
Hybrid Development Approaches Organized? A Systematic Literature Review.
In Proceedings of the International Conference on Software and System Processes
(Seoul, Republic of Korea) (ICSSP ’20). Association for Computing Machinery,
New York, NY, USA, 145–154.

[21] Nils Prenner, Carolin Unger-Windeler, and Kurt Schneider. 2021. Goals and
challenges in hybrid software development approaches. Journal of Software:
Evolution and Process 33, 11 (2021), e2382.

[22] P. Runeson and Martin Höst. 2008. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering 14 (2008),
131–164.

[23] Paolo Tell, Jil Klünder, Steffen Küpper, David Raffo, Stephen MacDonell, Jürgen
Münch, Dietmar Pfahl, Oliver Linssen, and Marco Kuhrmann. 2021. Towards
the statistical construction of hybrid development methods. Journal of Software:
Evolution and Process 33, 1 (2021), e2315.

[24] Georgios Theocharis, Marco Kuhrmann, Jürgen Münch, and Philipp Diebold.
2015. Is water-scrum-fall reality? on the use of agile and traditional develop-
ment practices. In International Conference on Product-Focused Software Process
Improvement (PROFES’15). Springer, 149–166.

[25] DaveWest, Mike Gilpin, Tom Grant, and Alissa Anderson. 2011. Water-scrum-fall
is the reality of agile for most organizations today. Forrester Research 26 (2011),
1–17.

44

https://doi.org/10.1109/TSE.2021.3099532
https://doi.org/10.13140/RG.2.2.14807.52649
https://doi.org/10.13140/RG.2.2.14807.52649

	Abstract
	1 Introduction
	2 Related Work and Background
	3 Research Method
	3.1 Study Design and Data Collection
	3.2 Data Analysis

	4 Frames in APH Approaches
	4.1 The Planning Frame
	4.2 The Requirements Engineering Frame
	4.3 The Architecture Frame
	4.4 The Testing Frame
	4.5 The Coordination Frame
	4.6 Dependencies between the Frames

	5 Discussion
	5.1 Threats to Validity

	6 Conclusion
	Acknowledgments
	References

