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Phenotypic drug screening in a human fibrosis model 
identified a novel class of antifibrotic therapeutics
Michael Gerckens1, Kenji Schorpp2†, Francesco Pelizza3†, Melanie Wögrath1,4, Kora Reichau5,6, 
Huilong Ma5,6, Armando-Marco Dworsky1,4, Arunima Sengupta1, Mircea Gabriel Stoleriu1,7,4, 
Katharina Heinzelmann8,9, Juliane Merl-Pham10, Martin Irmler11, Hani N. Alsafadi9,4,12, 
Eduard Trenkenschuh13, Lenka Sarnova14, Marketa Jirouskova14, Wolfgang Frieß13,  
Stefanie M. Hauck10, Johannes Beckers11,15,16, Nikolaus Kneidinger4,17, Jürgen Behr4,7,17, 
Anne Hilgendorff1,4, Kamyar Hadian2, Michael Lindner4,7,18, Melanie Königshoff8,9, Oliver Eickelberg8, 
Martin Gregor14, Oliver Plettenburg5,6,19, Ali Önder Yildirim1, Gerald Burgstaller1,4*

Fibrogenic processes instigate fatal chronic diseases leading to organ failure and death. Underlying biological 
processes involve induced massive deposition of extracellular matrix (ECM) by aberrant fibroblasts. We subjected 
diseased primary human lung fibroblasts to an advanced three-dimensional phenotypic high-content assay and 
screened a repurposing drug library of small molecules for inhibiting ECM deposition. Fibrotic Pattern Detection 
by Artificial Intelligence identified tranilast as an effective inhibitor. Structure-activity relationship studies con-
firmed N-(2-butoxyphenyl)-3-(phenyl)acrylamides (N23Ps) as a novel and highly potent compound class. N23Ps 
suppressed myofibroblast transdifferentiation, ECM deposition, cellular contractility, and altered cell shapes, 
thus advocating a unique mode of action. Mechanistically, transcriptomics identified SMURF2 as a potential ther-
apeutic target network. Antifibrotic activity of N23Ps was verified by proteomics in a human ex vivo tissue fibrosis 
disease model, suppressing profibrotic markers SERPINE1 and CXCL8. Conclusively, N23Ps are a novel class of 
highly potent compounds inhibiting organ fibrosis in patients.

INTRODUCTION
Fibrotic diseases affect nearly every tissue in the body, account for 
more than 45% of all deaths in the industrialized world, and 
progressive forms of the disease rapidly lead to organ dysfunction, 
organ failure, and ultimately death (1–3). Because of its ubiquitous 
existence and high mortality, fibrosis, or “scarring,” has become a 
high medical need for novel drug discovery strategies (3, 4). How-
ever, effective antifibrotic therapeutics are missing from the clinic. 
The lack of antifibrotic therapies and its concomitant high medical 
need is best exemplified by idiopathic pulmonary fibrosis (IPF), 
which is a rapidly progressive and fatal fibrotic disorder. Patients 
with this common form of interstitial fibrotic lung disease face a 
median survival time of 3 to 5 years (5–7). Currently, only two 
approved antifibrotic drugs for IPF are on the market, pirfenidone 
and nintedanib; however, both substances partially slow down the 

rate in lung function decline but do not stop disease progression 
(8–10). Therefore, new therapeutic strategies and approaches are 
urgently required.

In fibrotic pathogenesis, repetitive and constant injury leads to a 
sustained and self-perpetuating activation of fibroblasts, leading to 
their transdifferentiation into synthetic and highly contractile –
smooth muscle actin (SMA)–expressing myofibroblasts that 
massively deposit extracellular matrix (ECM), which stiffens the lung 
and destroys normal lung architecture (3, 6, 11, 12). The matrisome 
of fibrotic ECM was shown to harbor a disease- and progression-
specific signature of fibrillar collagens (types I, III, and V), proteo-
glycans, fibronectin, glycosaminoglycans, matrix-Gla protein, and 
microfibrillar-associated proteins (11, 13–16).

Of all profibrotic signals reported, multifunctional transforming 
growth factor–1 (TGF1) is the most intensively studied and a 
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central player in various fibrotic diseases capable of triggering 
transdifferentiation of fibroblasts into myofibroblasts (17–21). 
TGF1 binds to the TGF1 receptor, and downstream signaling 
occurs by posttranslational modifications of cytoplasmic members 
of the SMAD family, which act as transcription factors in the cell 
nucleus, regulating the expression of common profibrotic genes, 
including ECM proteins (22–25). Plasminogen activator inhibitor-1 
(PAI-1) is an essential downstream target of the TGF1 pathway, 
suppressing the fibrinolytic system and is considered as a therapeutic 
target option for fibrosis (26). In addition, in IPF, profibrotic 
interleukin-8 (IL-8) was recently found to be secreted by a special 
fibrogenic mesenchymal progenitor cell population with autocrine 
effects on proliferation and motility and paracrine effects on 
macrophage recruitment (27).

However, target-based antifibrotic drug discovery faced failure 
for a substantial number of molecules to successfully translate into 
the clinics (28–31). In contrast, because of a much higher efficiency, 
pathway-unbiased phenotypic drug screening has gained momentum 
in first-in-class drug discovery (32), especially when patient-derived 
primary cells, physiological relevant stimuli, and a readout close to 
the clinical end point were applied (33).

In this study, we deployed an unprecedented phenotypic high-
throughput/-content drug discovery approach using human patient 
material, and identified N-(2-butoxyphenyl)-3-(phenyl)acrylamides 
(N23Ps) as novel and highly potent [median inhibitory concentra-
tion (IC50) < 1 M] antifibrotic compounds mechanistically acting 
in the TGF1-based network of SMURF2/SMAD (de)ubiquitination. 
These data support further development of N23Ps as a therapeutic 
option for fibrosis.

RESULTS
ECM deposition in activated IPF patient–derived  
human fibroblasts
The aberrant and excessive deposition of ECM by pathologically 
activated fibroblasts and the concomitant increase in tissue stiffen-
ing are hallmarks of fibrogenesis, an irreversible and fatal process 
that progresses to organ dysfunction (3, 11). The abnormal activa-
tion of fibroblasts and their transformation into highly synthetic 
and contractile myofibroblasts occurs by processes of repeated 
tissue (micro)injuries, subsequent inflammation, and reactivation of 
developmental signaling pathways such as TGF1, Wnt, Shh, Bmp, 
and, recently, IL-11 (6, 34). However, during disease progression, 
TGF1 acts as a profibrotic master regulator inducing an activated 
physiological state in fibroblasts transforming them into highly 
contractile myofibroblasts that aberrantly deposit ECM-forming 
scar tissue (6, 11, 21).

Here, we developed and established a disease-relevant and inno-
vative high-throughput phenotypic screening assay for drug dis-
covery purposes that uses patient-derived primary human lung fibroblasts 
(phLFs). The amount of ECM deposited by these myofibroblasts 
was used as assay readout, which closely mimics the clinical end 
point of fibrotic diseases. phLFs were isolated by outgrowth from 
fibrotic lung tissue obtained from explanted lungs from five differ-
ent patients with IPF (Fig. 1, A and B), expanded to 5 × 108 cells per 
patient until passage 5, and lastly frozen for subsequent screening 
purposes. Figure 1C lays out the workflow of the entire assay. How-
ever, immunolabeling of ECM proteins led to a substantial staining 
of intracellular nonfibrillar components, even without detergent 

permeabilization of phLFs, which led to false ECM quantification 
(fig. S1A). This was also exemplified by treatment with brefeldin A, 
an inhibitor of protein secretion (fig. S1, B and C). Conclusively, 
only immunolabeling of living cells before fixation led to exclusive 
staining of ECM components.

Next, automated high-resolution three-dimensional (3D) image 
acquisition was accomplished by confocal laser scanning microscopy 
and subsequent surface rendering allowed quantification of 3D 
ECM depositions. Automated cell count of cell nuclei served as 
normalization (Fig. 1D).

High-resolution 3D confocal imaging of immunolabeled phLFs 
revealed single ECM fibers appearing outside and on the surface of 
cells (Fig.  1E). Similarly, coimmunostaining of collagen I and 
collagen V disclosed an intricate extracellular fiber network, with 
partial colocalization of both collagen I and V subtypes, and areas of 
single-stained ECM fibers (Fig.  1F). In addition, 16-hour live 4D 
imaging of phLFs notably revealed active deposition and assembly 
of ECM fibers (Fig. 1G and movie S1). Together, by establishing a 
unique patient-derived human fibrosis model, we demonstrated the 
exclusive 3D quantification of ECM deposition in high spatial 
resolution (Fig. 1H).

A patient-derived human fibrosis model
Transdifferentiation to myofibroblasts is induced by treatment with 
profibrotic TGF1 mimicking the fundamental biological process 
leading to fibrotic diseases. Here, we applied active TGF1 (1 ng/ml) 
on patient-derived phLFs (phLFs+TGF1) and subsequently quantified 
a significant increase in cytoskeletal SMA expression by 2.3-fold 
compared to untreated phLFs hallmarking myofibroblasts (Fig. 2A).

Next, for the selection of fibrosis-relevant ECM biomarkers for 
the quantitative assay readout, we bioinformatically compared a 
recently published human myofibroblast surface proteome con-
taining 1126 proteins with 284 “core matrisome” proteins (Fig. 2B) 
(35, 36). We obtained a pool of 17 deregulated ECM protein candi-
dates (Fig. 2B) and selected collagen I and fibulin 1, two different 
ECM proteins marking collagen and elastic fibers, respectively 
(Fig. 2C). Furthermore, collagen I and collagen V were among the 
highest abundant transcripts especially expressed in myofibroblasts 
in the IPF cell atlas (37). Therefore, we included collagen V as a 
supplementary ECM deposition marker. The analysis of all three 
ECM proteins collagen I, fibulin 1, and collagen V after TGF1 
treatment displayed a significant increase in deposition (Fig.  2D) 
but did not affect cell numbers of human fibroblasts (Fig. 2E). 
Similarly, protein analysis exhibited a significant increase in intra-
cellular (3.4-fold) and secreted collagen I (3.2-fold) and collagen V 
(3.9- and 10.7-fold, respectively) after TGF1 stimulation (fig. S2, A 
and B). As proof of concept for ECM deposition inhibition in 
phLFs+TGF1, we used ethyl-3,4-dihydroxy-benzoate (EDHB), which 
reportedly inhibits prolyl-4-hydroxylases and collagen synthesis 
(38, 39). EDHB (50 M) successfully inhibited ECM deposition in 
phLFs+TGF1 (Fig.  2,  F  and  G). Furthermore, intracellular protein 
expression of collagen I and collagen V was significantly inhibited 
in a dose-dependent manner, with mostly similar effects on fibulin 
1 expression (fig. S2C). In line, secretion of collagen I was entirely 
abolished by EDHB treatment (fig. S2D).

Notably, specific blocking of the TGF1 receptor using the in-
hibitor SB-431542 resulted in an inhibition of ECM deposition in 
phLFs (fig. S3, A to D). Recently, a pro–fibrotic cocktail (FC) 
containing TGF1, platelet-derived growth factor AB (PDGF-AB), 
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Fig. 1. 3D assessment of ECM deposition using IPF patient–derived phLFs. (A) phLFs are derived from explanted IPF lungs, expanded in cell culture, and used for 
high-throughput drug screening and hit validation. (B) Clinical data of patients from which the phLFs were derived. (C) Graphical representation of the actual workflow 
used in the ECM deposition assay. (D) Software-based volume rendering of confocal z-stacks of immunostained ECM (collagen I in red) is used for the quantification of 
ECM volume and automated cell count (Hoechst-stained cell nuclei in blue). Scale bar, 500 m. (E) Orthoview of a confocal z-stack of phLFs (red) depositing collagen V 
(green) exclusively outside (indicated by white arrows) and on the surface of the cells. Cell nuclei are stained by Hoechst (blue). Scale bars, 50 and 25 m. (F) Intricate 3D 
ECM network of collagen I (red)– and collagen V (green)–stained fibers, demonstrating areas of colocalizing fibers (white arrows) and single fibers (white arrowheads). Cell 
nuclei are stained by Hoechst (blue). The confocal z-stack is shown as a maximum intensity projection. Scale bar, 50 m. (G) 4D confocal time-lapse imaging of phLFs for 
16 hours showing various dynamic processes occurring during the assembly of single collagen I ECM fibers (red). White arrows indicate single ECM fibers. Colored 
asterisks indicate single cell-nuclei (Hoechst in blue) of distinct cells. Scale bar, 50 m. (H) Illustration of ECM fibers surrounding fibroblasts (left), intra- and extracellular 
staining of matrisome proteins with conventional staining protocol after fixation (middle), and exclusive ECM labeling using live immunofluorescence (IF) staining 
before cell fixation (right).
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tumor necrosis factor– (TNF), and lysophosphatidic acid (LPA) 
was used to trigger a profibrotic response in cultured lung tissue 
slices (40). Now, by applying exactly this, FC to phLFs in our ECM 
deposition assay while simultaneously blocking the TGF1 receptor 
using the inhibitor SB-431542, no enhanced ECM deposition was 
observed (fig. S3, E to H). Therefore, we concluded that in our as-
say, only TGF1 was effective in enhancing ECM deposition. In 
summary, we developed an effective 3D fibrosis disease model 
based on IPF patient–derived human (myo)fibroblasts that is 
successfully interfered by pharmacological small molecules acting 
as inhibitors of ECM deposition.

Deep learning identifies antifibrotic compounds in a  
high-content screening of a U.S. Food and Drug 
Administration–approved drug library
To identify novel inhibitors of ECM deposition in our human fibrosis 
model, we used automatized high-content screening in combina-
tion with a novel deep learning hit-detection algorithm. Thus, we 
screened a U.S. Food and Drug Administration (FDA)–approved 
drug library of a unique collection of 1509 marketed drugs at a 
concentration of 100 M. To efficiently interpret the huge amount 
of imaging data obtained, we developed a novel Fibrotic Pattern 
Detection by Artificial Intelligence (FANTAIL) algorithm. FANTAIL 
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Fig. 2. 3D fibrosis disease model using IPF patient–derived phLFs. (A) phLFs treated with TGF1 (1 ng/ml) transdifferentiated to myofibroblasts that incorporated 
SMA (green) into actin stress fibers. Cell nuclei are stained by Hoechst (blue). Scale bar, 200 m. Quantification of the mean fluorescence intensity (MFI) of SMA expression 
of three different patient phLFs after TGF1 treatment (n = 3). (B) Venn diagram showing an overlap of 17 ECM proteins between the myofibroblast surface proteome 
(pink) and a published core matrisome (blue). (C) Heatmap of protein expression levels of ECM proteins on the surface of myofibroblasts (phLFs+TGF1), identifying 
collagen I and fibulin 1 among the highest up-regulated ECM proteins. Red and blue indicate high and low protein expression levels, respectively. (D) 3D confocal immuno-
fluorescence microscopy of phLFs and phLFs+TGF1. phLFs+TGF1 showed increased ECM deposition of collagen I (red), collagen V (green), and fibulin 1 (yellow). Cell nuclei 
were stained by Hoechst (blue). The confocal z-stack is shown as a maximum intensity projection. Scale bar, 500 m. (E) Software-based quantification of the deposited 
ECM volume displays a significant increase in the amount of deposited ECM in phLFs+TGF1, whereas the amount of cells remains unchanged. n = 4 (four different patient 
phLFs). Statistics: One-way analysis of variance (ANOVA) with Bonferroni-correction. UT, untreated; ns, not significant. (F) 3D confocal immunofluorescence microscopy 
assessing the ECM deposition of phLFs, phLFs+TGF1, and phLFs+TGF1+EDHB. EDHB treatment inhibits the ECM deposition of collagen I (red), collagen V (green), and fibulin 
1 (yellow). Cell nuclei were stained by Hoechst (blue). The confocal z-stack is shown as a maximum intensity projection. Scale bar, 500 m. (G) Software-based quantifica-
tion of the deposited ECM volume of data shown in (F). Data are presented as means ± SEM. Differences between groups were evaluated with paired t tests. *P < 0.05.
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deployed a trained deep convolutional neuronal network (CNN) 
(Fig. 3A) to discriminate fibrotic from nonfibrotic ECM patterns in 
3D confocal microscopy images (Fig. 3B) and hyperparameter opti-
mization (n = 3 and np = 128) led to a 98.83% sensitivity and 100% 
specificity (fig. S4, A to E). In addition, we trained the CNN to 
classify toxic compounds by applying training sets of phLFs+TGF1 
plus 5% ethanol. False-positive hits due to cytotoxicity were clearly 
distinguished from nontoxic hits, and thus FANTAIL produced a 
hit rate of 2% (Fig. 3B). Subsequently, images of positive hits were 
clustered by a uniform manifold approximation and projection 
(UMAP), which removed immunofluorescence artifacts (Fig.  3C 
and fig. S4F). This resulted in 31 of 1509 FDA-approved drugs 
actively inhibiting ECM deposition in phLFs+TGF1, which were 
classified according to the manufacturer’s molecular target class 
annotations (Fig. 3D). Next, to further emphasize the relevance of 
IPF-derived patient cells for screening outcomes, we rescreened the 
same FDA-approved drug library as before but now using the 
human fetal lung fibroblast cell line HFL1. Other cell lines such as 
CCL-151 lung fibroblasts were tested but were not functional in our 
assay (fig. S5, A to C). In addition, we detected substantial tran-
scriptional differences between HFL1, CCL-151, and IPF-phLFs, 
especially after TGF1 stimulation (fig. S5, D to H). Now, by 
performing a rescreening of the FDA-approved drug library with 
HFL1 fibroblasts, FANTAIL produced 53 hits (3.4%) but altogether 
generated only two overlapping hit compounds between HFL1 and 
IPF-phLFs (fig. S5, I and J). Last, statistical testing by Monte Carlo 
simulation confirmed that the experimental outcome is based on 
true biological variations between the cells used, which altogether 
strongly advocates the usage of IPF patient–derived phLFs for 
antifibrotic drug development campaigns (fig. S5K). Conclusively, 
we provide here experimental evidence that the usage of a human 
fetal fibroblast cell line (HFL1) generates a hit profile substantially 
diverse from IPF-phLFs, which might be directly caused by 
biological dissimilarities between both cell types, particularly after 
TGF1 stimulation.

It was highly encouraging that in our list of 31 active hits derived 
from the screening campaign using IPF-phLFs, we identified several 
compounds that have been evaluated for treatment of IPF in pre-
clinical (vorinostat) or even clinical trials (sildenafil and bosentan). 
The resulting 31 hits were clustered, and chemotherapeutics and 
anti-infectives, as well as compounds with assumed nonspecificity 
at the tested concentration, or those containing toxophoric groups 
were deprioritized. From the 16 remaining compounds, we selected 
N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid (tranilast) for further 
profiling. Tranilast was chosen for further examination because of 
its good efficacy in inhibiting matrix deposition in our screening 
assay, along with its well-documented in vivo bioavailability, safety, 
and tolerance. In addition, tranilast was of interest because of its 
utilization as an antiallergic drug for treatment of bronchial asthma 
and its use in keloid and hypertrophic scar treatment. However, the 
exact mode of action (MoA) of this compound is still unknown 
(41, 42). Next, we performed dose-response experiments to validate 
tranilast’s inhibitory effect on ECM deposition. Expression of ECM 
markers (collagen I, collagen V, and fibulin 1) was significantly 
inhibited by tranilast treatment at concentrations of >150 M 
(Fig.  3,  E  and  F) that was not due to cytotoxic effects (fig. S6A). 
Concomitantly, we observed a significant dose-dependent reduction 
of cytosolic protein expression of SMA, fibulin 1, collagen I, and 
collagen V after tranilast treatment (fig. S6, B to D). Furthermore, 

mRNA transcripts of SMA/ACTA2 and collagen I, but not of 
collagen V and fibulin 1, were decreased by tranilast (fig. S6E), 
indicating a decoupled regulation of gene and protein expression. 
Thus, by integrating FANTAIL and high-content screening into 
our human fibrotic disease model, we successfully identified a panel 
of small molecules with antifibrotic activity displaying efficient 
inhibition of ECM deposition.

Structure-activity relationship studies find a novel series 
of highly potent antifibrotics
In our human fibroblast–based assay the inhibition by tranilast 
occurred only at very high concentrations (>150 M). Therefore, 
we performed structure-activity relationship (SAR) studies of com-
mercially available small-molecule tranilast derivatives along with 
newly designed compounds produced by medicinal chemistry 
efforts (fig. S7, A to C). By applying our ECM deposition assay 
using collagen V and fibulin 1 as readouts in dose-response rela-
tionship studies, we found a novel series of 2-butoxy–substituted 
derivatives (N23Ps), which were >100-fold more potent compared 
to tranilast in inhibiting ECM deposition (Fig. 4, A and B, and fig. 
S7, D and E). In particular, cmp4, cmp12, cmp17, and cmp18, all of 
which were characterized by a 2-butoxy substitution at R1, as well 
as distinct substitution patterns of methoxy, ethoxy, and butoxy 
groups at R6 and R7, were found to be active at 10 M (fig. S7, A 
and B). Further dose response studies of cmp4, cmp12, cmp17, and 
cmp18 demonstrated that specifically these modifications resulted 
in highly active compounds with substantial potency increases: 
>53-fold (collagen V) and >45-fold (fibulin 1) for cmp4, >10-fold 
(collagen V) and >10-fold (fibulin 1) for cmp12, >10-fold (collagen 
V) and >10-fold (fibulin 1) for cmp17, and >1000-fold (collagen V) 
and >500-fold (fibulin 1) for cmp18 (Fig. 4B and fig. S7D).

Furthermore, testing of cmp24 to cmp35 (at 10 M), which were 
all newly synthesized by medicinal chemistry efforts, produced two 
compounds with increased potency: first, a 2-o-benzyl substitution 
in cmp35 at R1 and, second, a benzodioxol in cmp31 (fig. S7C). In 
subsequent dose-response experiments, these substitutions resulted 
in a >10-fold (fibulin 1 and collagen V), as well as >10-fold (fibulin 
1 and collagen V) potency increase for cmp31 and cmp35, respec-
tively (Fig. 4B and fig. S7E). Reduction of ECM deposition by cmp4, 
cmp12, cmp17, cmp18, cmp31, and cmp35 was not only specific 
for lung fibroblasts but was also highly effective (inhibition at 50 nM) 
in TGF1-treated human dermal fibroblasts (fig. S7, F and G), 
which possibly advocates for a core fibrogenic target pathway.

As cmp4 displayed an identical potency increase (98-fold) for 
collagen V and fibulin 1, we used it as an N23Ps prototype in all 
subsequent experiments. Next, to investigate cytotoxic activity and 
real-time inhibition of N23Ps, we applied confocal 4D live-cell 
imaging of phLFs+TGF1 together with cmp4 (wc = 10 M) for a period 
of 48 hours (Fig.  4C and movie S2). Subsequent quantification 
unequivocally displayed a dynamic inhibition of ECM deposition 
by cmp4 without showing cell death (Fig. 4D). Additional live-dead 
immunofluorescence staining of phLFs+TGF1+cmp4 confirmed fibro-
blast viability (Fig. 4E). We did, however, observe an outstanding 
morphology switch of phLFs+TGF1 compared to phLFs+TGF1+cmp4 
(Fig. 4E). We analyzed this finding further in subconfluently cultured 
phLFs+TGF1 and phLFs+TGF1+cmp4 by assessing cell morphology 
parameters, demonstrating a significant switch from elongated to 
round cells, including an extensive rearrangement of the actin cyto-
skeleton (Fig. 4F). These substantial morphology changes, observed 
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Fig. 3. FANTAIL using a CNN for hit identification within ECM deposition screening data of 1509 FDA-approved compounds. (A) Outline of the supervised multilayered 
deep CNN developed for detecting fibrotic and nonfibrotic patterns in images containing deposited ECM derived from 3D confocal microscopy of immunofluorescently 
labeled collagen I, collagen V, and fibulin 1. (B) The training dataset consisted of assay controls and additional samples treated with phLFs+TGF1 plus 5% ethanol (EtOH). 
The CNN network was exclusively trained to detect inhibitors of ECM deposition and false-positive hits due to cytotoxic effects. (C) UMAP clustering of predicted hits 
sorted out false-positive hits due to immunofluorescence artifacts. After this final filtering, N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid (tranilast) was determined a 
promising candidate for repurposing in IPF. (D) Pie chart demonstrating the classification of detected hits into groups of similar molecular functions and biological 
processes. Tranilast is classified within the G protein–coupled receptor (GPCR) targeting molecules. (E) 3D confocal microscopy of immunofluorescently labeled collagen 
I (red), collagen V (green), and fibulin 1 (yellow) to validate the inhibitory effect of tranilast-treated phLFs+TGF1 on the deposition of ECM in a dose-dependent manner 
(untreated, vehicle, 75, 150, and 300 M). Cell nuclei were stained by Hoechst (blue). The confocal z-stack is shown as a maximum intensity projection. Scale bar, 500 m. 
(F) Quantification and statistical analysis of the inhibitory effects of tranilast on phLFs+TGF1 on ECM deposition of collagen I, collagen V, and fibulin 1 normalized to the number 
of cells. *P < 0.05 and **P < 0.01. Statistics: One-way ANOVA with Bonferroni correction. All quantitative data represent means ± SEM. n = 3 (three different patient phLFs).
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Fig. 4. Dose-response relationships of N23Ps, live imaging of ECM deposition, and cell morphology switch. (A) Structural formula for tranilast and N23Ps (cmp4 and 
cmp18) indicating 2-butoxy substitution at R1 (see fig. S7A) and IC50 values. (B) Dose-response curves of collagen V and fibulin 1 ECM deposition for N23Ps (cmp4 and 
cmp18) compared to tranilast for determining IC50 values. n = 3 (three different patient phLFs). (C) Tables of IC50s for active N23Ps compared to tranilast. (C) 3D confocal 
images displayed as maximum intensity projection of deposited ECM taken as frames from a live-cell experiment demonstrating dynamic ECM deposition in phLFs, 
phLFs+TGF1, and phLFs+TGF1+cmp4 during 48 hours. Immunostained collagen I and fibulin 1 depicted as one common signal (= ECM deposition) as a gold look-up table. 
Cell nuclei in blue (Hoechst). Scale bar, 500 m. (D) Quantification by MFI of dynamic deposition of collagen I and fibulin 1 in phLFs, phLFs+TGF1, and phLFs+TGF1+cmp4 
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cmp4-treated cells and identifying a morphology switch from elongated to round cells. Cell nuclei were stained by Hoechst (blue). Scale bar, 50 m. (F) Confocal images 
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extensive actin cytoskeletal rearrangements (red). Software-based segmentation of the cells in the images by CellProfiler allowed for the statistical analysis that exhibited 
significant changes in cell shape and eccentricity toward round cells after cmp4 treatment. Scale bar, 500 m. Data are presented as means ± SEM. Differences between 
groups were evaluated with paired t tests. *P < 0.05. n = 3 (three different patient phLFs).
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with N23Ps but not with tranilast, might strongly indicate an 
exclusive MoA for N23Ps. Together, in our SAR studies, replace-
ment of 2-carboxy-phenyl at R1 with a 2-butoxy group in tranilast 
strongly increased its antifibrotic activity with a concomitant 
morphological phenotype switch, which strongly advocates for the 
discovery of a new therapeutic class of highly potent antifibrotics 
with a unique MoA.

N23Ps activate a unique antifibrotic regulatory network
To further interrogate a molecular mechanism for N23Ps, we applied 
microarray-based transcriptomics and in-depth software-based 
network analysis comparing bulk transcriptomes of transdifferenti-
ated myofibroblasts (phLFs+TGF1) with those inhibited by cmp4 
(Fig. 5A). The entire microarray data of phLFs from three different 
patient samples were submitted to Gene Expression Omnibus 
(GSE141905). We found 2076 genes significantly deregulated in 
phLFs+TGF1 versus phLFscontrol, 661 genes were significantly dereg-
ulated in cmp4-inhibited phLFs+TGF1 + cmp4 versus phLFs+TGF1, and 
1102 genes significantly deregulated in phLFs+cmp4 versus phLFscontrol 
[all >2-fold, false discovery rate (FDR) < 10%] (Fig. 5B). The 20 highest 
and lowest deregulated genes from the analyses phLFs+TGF1+cmp4 
versus phLFs+TGF1, phLFs+TGF1 versus phLFscontrol, and phLFs+cmp4 
versus phLFscontrol are displayed as heatmaps (fig. S8, A to C). Among 
the differentially regulated genes (fold change > 2, FDR < 10%) of 
phLFs+TGF1 and phLFs+TGF1+cmp4, we found 362 overlapping genes 
(Fig. 5C). A majority (279) of these overlapping genes were counter-
regulated by cmp4 in phLFs+TGF1 + cmp4, whereas the remaining 
49 and 34 transcripts were either only up- or down-regulated in 
phLFs+TGF1 and phLFs+TGF1 + cmp4, respectively (fig. S8D). A 
detailed gene set enrichment analysis (GSEA) of phLFs+TGF1+cmp4 
revealed a negative enrichment for profibrotic functional gene sig-
natures such as collagen formation, ECM organization, and smooth 
muscle contraction after cmp4 treatment (Fig. 5D).

Usually, in omics analyses, hierarchical clustering dendograms 
and heatmaps of expression data are the gold standard to find 
coregulated and functionally related genes. However, in multi-
dimensional datasets, the complexity is often too intricate to unravel 
interesting interactions. Therefore, we developed UMAP–regulation 
pattern clustering (UMAP-RPC) assay, a novel bioinformatic tool 
for facilitating pattern analysis in omics data (fig. S8, E to G). Here, 
clustering of genes depends on similarities in the expression patterns 
of each condition. To exemplify this, fig. S8F displays two patterns 
of transcript regulation across different conditions, one for matrix 
metalloproteinase-1 (MMP1), which is up-regulated in phLFs+cmp4 
and phLFs+TGF1+cmp4, and a second condition for myosin heavy 
chain 1 (MYH11), which is up-regulated in phLFs+TGF1 only. After 
applying UMAP-RPC, we color-coded fold changes of transcript 
regulation for each gene (Fig. 5E). With that, we identified gene 
clusters that were clearly distinct in their expression patterns be-
tween the various conditions tested. Most genes in cluster A (red) 
were found up-regulated in phLFs+TGF1 only, whereas genes in 
cluster B (green) were up-regulated in both, phLFs+TGF1+cmp4 and 
phLFs+cmp4, but not in phLFs+TGF1 (Fig. 5E). Next, both gene clusters 
were analyzed in the STRING database for functional interactions 
(43). Cluster A (red) included subnetworks involved in ECM orga-
nization (HSA-1474244) and the actin cytoskeleton (GO:0015629) 
(Fig. 5F), which mostly are myofibroblast differentiation markers 
(fig. S9A). Cluster B (green) included functional subnetworks of 
deubiquitination (HSA-5688426), laminin interactions (HSA-3000157), 

Rho guanosine triphosphatase (GTPase) effectors (HSA-195258), 
and ECM receptor interactions (hsa04512) (Fig. 5G and fig. S9B). 
Within cluster B, we identified two N23P-mediated up-regulated 
TGF1 pathway inhibitors SMURF2 (3.19-fold, FDR < 10%) and 
CDCP1 (17.41-fold, FDR < 10%) (44), which both act as potential 
druggable antifibrotic molecular targets (Fig. 5F and fig. S9B).

N23Ps block myofibroblast transdifferentiation and cellular 
contractility in a SMURF2-dependent manner
Next, in relationship to the functional interactions found in gene-
cluster A of Fig. 5F, we explored N23Ps inhibitory effect on fibrosis-
related biological processes such as fibroblast-to-myofibroblast 
transdifferentiation and cellular contractility. Myofibroblast trans-
differentiation was significantly inhibited in N23P-treated phLFs+TGF1 
(Fig. 6, A and B). Furthermore, N23Ps blocked the TGF1-induced 
contraction of phLFs in a 3D collagen contraction assay (Fig. 6, C and D). 
In addition, TGF1 prestimulation of phLFs 24 and 48 hours before 
N23P treatment prevented the inhibition of ECM deposition (fig. 
S10, A to D). In addition, N23Ps blocked ECM deposition of colla-
gen V but not of fibulin 1 only in concurrent treatment with TGF1 
(fig. S10, E to H). Still, the decline in fibulin 1 deposition without 
TGF1 treatment might be due to the phLFs’ basal intrinsic 
TGF1 secretion and its autocrine effect. In summary, this implies 
a suppression in TGF1 induced transdifferentiation of phLFs 
into myofibroblasts by N23Ps, indicated by an inhibition of ECM 
deposition.

SMURF2, which we identified in gene cluster B of Fig. 5G, is a 
ubiquitin E3 ligase promoting the degradation of SMADs, and 
SMURFs are crucial intracellular signaling effectors in the TGF1 
signaling pathway (45). Here, to gain mechanistic insight of N23P-
related regulation in TGF1-dependent myofibroblast transdiffer-
entiation, we performed a loss-of-function study using SMURF2 
small interfering RNA (siRNA) knockdown. For that, we successfully 
depleted SMURF2 expression in IPF-phLFs by 70% (Fig. 6E). As 
shown previously, cmp4 treatment significantly inhibited SMA 
protein expression in TGF1-treated IPF-phLFs; however, this 
inhibition was prevented in SMURF2-depleted phLFs+TGF1+cmp4 
(Fig. 6F), as well as phenotypically in myofibroblasts (Fig. 6G). In 
conclusion, N23Ps act via SMURF2-inhibited TGF1 signaling and 
thus block fibroblast-myofibroblast transdifferentiation with con-
sequences for cell contractility and ECM deposition (Fig. 6H).

N23Ps inhibit a fibrotic signature in a human  
ex vivo fibrosis model
Last, we examined antifibrotic activity of N23Ps in a highly complex 
ex vivo human 3D tissue culture model (3D-LTC). Previously, we 
have demonstrated that living human precision cut lung slices 
(hPCLSs) treated with a pro-FC (TGF1, TNF, PDGF-AB, and 
LPA) revealed a specific fibrotic signature (40,  46). This human 
ex vivo model for IPF can successfully mimic injury and early fibrosis-
like responses in human lung tissue. We treated the hPCLS from 
three different patients (n = 3) with FC, control cocktail, FC plus 
cmp4, or FC plus tranilast (Fig. 7A). Subsequent comprehensive 
proteome profiling of these samples by high-performance liquid 
chromatography–tandem mass spectrometry (LC-MS/MS) resulted 
in 135 significantly (P < 0.05) deregulated proteins in hPCLS+FC of 
an overall 3362 detected proteins. The 20 significantly highest and 
lowest abundant proteins in hPCLS+TGF1 are depicted as a heatmap 
in fig. S11A.
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Fig. 5. Genome-wide transcriptomic analysis of N23Ps identifying a unique antifibrotic target network. (A) Experimental outline of transcriptional analysis of the 
human fibrosis model and treatment with ECM deposition inhibiting N23Ps. (B) Volcano plots depicting all significantly differentially expressed genes (>2-fold, FDR < 10%) 
in phLFs+TGF1 phLFs+TGF1+cmp4 and phLFs+cmp4 highlighting the 10 highest (red) and lowest (blue) abundant transcripts. FC, fold change. (C). Venn diagram showing 362 
overlapping genes between 2076 deregulated genes in phLFs+TGF1 and 661 deregulated genes in phLFs+TGF1+cmp4. (D) GSEA of phLFs+TGF1+cmp4 showing a negative 
enrichment for profibrotic gene signatures such as collagen formation, ECM organization, and smooth muscle contraction. (E) UMAP-RPC overlaying each gene in its 
cluster with color-coded transcript abundances as fold change. Up-regulated genes are depicted in red, and down-regulated genes are depicted in blue. Boxed cluster A 
(red) designates genes that were mostly found up-regulated in phLFs+TGF1 only, and boxed cluster B (green) designates genes that were up-regulated in phLFs+TGF1+cmp4 
and phLFs+cmp4. (F) On the basis of STRING DB analysis, cluster A included functional subnetworks of molecular components involved in the ECM organization (green) and 
the actin cytoskeleton (pink). (G) On the basis of STRING DB analysis cluster B included functional subnetworks of deubiquitination (yellow), laminin interactions (red), Rho 
guanosine triphosphatase (GTPase) effectors (green), and ECM receptor interactions (blue).
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Fig. 6. Inhibition of myofibroblast transdifferentiation and contractility in a SMURF2-dependent manner. (A) Confocal microscopy images of phLFs concomitantly 
treated with TGF1 and active N23Ps and stained for SMA (red) and Hoechst (blue) reducing SMA-positive myofibroblasts. Scale bar, 500 m. (B) Quantification of 
myofibroblasts by MFIs depicted in (A) exhibiting a significant inhibition of myofibroblast transdifferentiation. n = 3 (three different patient phLFs). (C) 3D collagen gel 
contractility assay (scale bar, 2000 m) and its (D) quantification demonstrating a significant inhibition of cellular contractility by cmp4. n = 3 (three different patient 
phLFs). (E) Depletion of SMURF2 in IPF-phLFs by siRNA knockdown showing a significant reduction in gene expression of >70%. n = 3 (three different patient phLFs). 
(F) Protein expression analysis by Western blotting exhibiting a significant up-regulation of SMA protein expression in IPF-phLFs+TGF1+cmp4 depleted of SMURF2. n = 4 
(four different patient phLFs). (G) Confocal microscopy images of IPF-phLFs+TGF1+cmp4 depleted of SMURF2 and stained for SMA (red) and Hoechst (blue). Scale bar, 200 m. 
(H) Diagram depicting a possible MoA of N23Ps by a SMURF2-inhibited TGF1 signaling and prevention of fibroblast-myofibroblast transdifferentiation. *P < 0.05, 
**P < 0.01, and ***P < 0.001. Statistics: One-way ANOVA with Bonferroni correction. All quantitative data represent means ± SEM.
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Notably, a substantial number of proteins within this short list 
are related to tissue fibrosis (indicated by red asterisks in fig. S11A), 
and most of these proteins were highly abundant in hPCLS+FC but 
of low abundance in hPCLS+FC+cmp4 and hPCLS+FC+tranilast (Fig. 7C). 
Conversely, specific low abundant proteins in hPCLS+FC were mostly 
enriched in hPCLS+FC+cmp4 and hPCLS+FC+tranilast (Fig. 7C). Next, 
we applied UMAP-RPC (fig. S11B) on 580 proteins (P < 0.1) to 
generate clusters of similar protein abundances (Fig.  7D). We 
identified four unique protein clusters: Cluster A contained proteins 
that were highly abundant in hPCLS+FC, but not in hPCLS+FC+cmp4 
or hPCLS+FC+tranilast. Vice versa, cluster C enclosed proteins of low 
abundance in hPCLS+FC, but of high abundance in hPCLS+FC+cmp4 
or hPCLS+FC+tranilast. Cluster B and cluster D exhibited different 
protein abundance patterns for hPCLS+FC+cmp4 and hPCLS+FC+tranilast, 
which again could strongly advocate for a different MoA of N23Ps 
versus tranilast in human lung tissue. Analysis of functional protein 
interactions of cluster A by STRING database resulted in subnet-
works of fibrosis-related proteins involved in ECM organization 
(HSA-1474244), actin cytoskeleton (GO:0015629), and IL signaling 
(HSA-449147) (fig. S11, C and D). Notably, these subnetworks were 
overlapping with those we found before in the transcriptomics data 
of phLFs (fig. S9A). Next, we experimentally validated single fibrosis-
relevant proteins within the detected subnetworks in living hPCLS+FC 
and hPCLS+FC+cmp4 by immunoblotting and enzyme-linked immuno-
sorbent assay (ELISA). Here, secreted PAI-1/SERPINE1 and cytoplasmic 
CXCL8/IL-8, which were the two highest abundant proteins found in 
hPCLS+FC proteomics, were significantly expressed in hPCLS+FC, but 
not in untreated controls as well as in hPCLS+FC+cmp4 (Fig. 7, F and G). 
These findings clearly demonstrate an antifibrotic activity for novel 
N23Ps in the human ex vivo fibrosis model of IPF. Conclusively, our 
data strongly support a unique antifibrotic therapy route for human 
lung fibrosis by novel highly potent N23Ps, which mechanistically act 
through an inhibitory mode within the TGF1 network of protein 
(de)ubiquitination mediated by SMURF2 expression up-regulation.

DISCUSSION
In this study, we have used human lung tissue, in cellulo by apply-
ing human IPF-derived primary lung fibroblasts and ex vivo by 
hPCLS, to set up a highly relevant phenotypic screening and validation 
platform for chemical compounds, respectively. The high-throughput 
screening assay provides a robust and clinically relevant readout by 
quantification of ECM deposition. Hit identification was accomplished 
by an artificial intelligence (AI) model (FANTAIL) on the basis of 
deep learning CNNs analyzing 3D confocal microscopy images. In 
the screening phase, we identified tranilast, a cinnamoylanthranilate, 
as hit compound and subsequent SAR studies led to the discovery of 
a novel highly potent class of ECM deposition inhibitors, which 
were N23Ps. Mechanistically, we identified a regulatory subnetwork 
within the TGF1 signaling network of SMAD (de)ubiquitination 
specifically affected by N23Ps. To the best of our knowledge, neither 
a chemically similar compound nor compounds displaying similar 
biological effects are known. This pathway might act as a yet un-
identified druggable target network in clinical antifibrotic therapy 
strategies. Last, to demonstrated human disease relevance, antifibrotic 
efficacy of N23Ps was successfully illustrated in a fibrosis ex vivo 
model based on human living PCLS.

The time-consuming and costly endeavor of drug discovery 
essentially discriminates two screening approaches: target- and 

phenotype-based projects. The prerequisite of target-based screen-
ing platforms is exact knowledge about a single disease-relevant 
molecular target through a given MoA. However, biology is highly 
complex and interconnects through intricate networks. Thus, many 
compounds found by target-based screening attempts lastly fail in 
preclinical and clinical trials (33). Besides, preclinical in vivo disease 
models are also often nonpredictive and produce misleading re-
sults, which cannot be translated into the clinics. For instance, the 
extensively used murine experimental lung fibrosis bleomycin model 
fails in recapitulating features of IPF. However, more advanced 
disease models of repetitive bleomycin injury, radiation, or virally 
induced models do exist (47, 48). However, despite a vast number of 
antifibrotic compounds preclinically tested in vivo, only nintedanib 
and pirfenidon successfully proved clinical efficacy. Both drugs 
slow down disease progression but do not stop it (49, 50). There-
fore, innovative drug discovery platforms that rely on special key 
criterions might be more successful for translational efforts. Three 
of these criteria were reviewed and defined by Vincent et al. (33): (i) 
usage of primary patient-derived primary cells, (ii) disease-relevant 
stimuli that produce desired phenotypes, and (iii) assay readouts 
close to the clinical end point. Here, we used phLFs derived from 
lung explants from patients with IPF. The functionality and pheno-
typic characteristics of these phLFs cultured in vitro was intensively 
investigated in the past (35, 51). phLFs showed consistent expression 
of fibroblastic surface markers until passage 7 but turned senescent 
from passage 10 on (51). This gives a reasonable window to expand 
phLFs between passages 1 to 5, which generates enough cells to lastly 
screen up to 30,000 compounds or even more. Reportedly, IPF-
derived primary human fibroblasts are fundamentally different in 
their genomic profile and consequently have altered signaling path-
ways when compared to normal fibroblasts (52). However, these 
isolated phLFs were not subjected to long-term in vitro culturing, 
which per se still might introduce selective, functional, or even 
genetically modifications during long-term tissue culture (53). In 
our own observations, unchallenged IPF-derived fibroblasts did not 
primarily deposit more ECM when compared to normal fibroblasts. 
Therefore, we used a reliable trigger-able fibrotic system in vitro by 
applying profibrotic TGF1. Thus stimulated, the IPF-phLFs exces-
sively produced and deposited massive insoluble ECM fibers, which 
we exploited as a robust assay readout. Deposited ECM plays a 
major role in the regulation of tissue architecture, mechanosensing, 
and cytokine release and in clinically relevant mechanics and diffu-
sion capacity of the lung. Equally important, all molecular targets 
upstream of the measured end point can be chemically modulated, 
thus possibly finding novel ECM deposition inhibitors and molecu-
lar targets.

Moreover, we developed an end-to-end deep learning model 
based on the analysis of thousands of images of immunofluorescently 
stained ECM acquired by automated high-throughput microscopy. 
FANTAIL was set up as a convolutional neural network (CNN) and 
trained to identify qualitative and quantitative differences between 
treated and untreated phLFs, which means classifying “healthy” 
from “fibrotic” ECM, as well as detecting compound-related cyto-
toxic effects. We demonstrated feasibility of training an end-to-end 
deep learning CNN from a relatively small training set using aggressive 
data augmentation and fragmentation of original high-resolution 
3D microscopy images into tiles. This reduces efforts and costs to 
produce large, high-quality training dataset as a major limitation of 
deep-learning CNN usage. Together, the role of deep learning in 
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drug discovery has been manifold and finds applications in com-
pound activity predictions, generation of new chemical structures, 
chemical reaction predictions, calculating ligand-protein interactions, 
and biological imaging analysis (54). CNNs were applied to biological 
image analysis based on immunofluorescent mostly for feature 
extraction purposes, subtyping of cells, tracking of cells, colony 
counting, or even in a label-free fashion (55). Recently, in dermatology, 
a deep-learning model based on a CNN was successfully applied to 
image data of skin lesions for an automated diagnosis of skin cancer 
(56). To the best of our knowledge, so far, no deep-learning models 
have been developed that analyze complex ECM structures based 
on high-resolution microscopy immunofluorescent images as 
presented in this study. FANTAIL detects patterns inside the 
complex ECM images regardless of their orientation, splitting factor, 
distortion, or truncation. In contrast, shallow machine learning 
algorithms, or even non-AI, hit detection systems, often rely on 
manually engineered image features, which could lead to a loss of 
crucial information in the images, especially when dealing with 
images displaying a network of intricate and delicate ECM fibers. 
Moreover, pretrained AI hit detection systems can be optimized in 
hit accuracy by applying appropriate training sets. The aspect of 
accuracy in hit detection, especially specificity, becomes highly 
critical particularly when huge libraries will be tested.

FANTAIL identified tranilast in our screening data as an efficient 
antifibrotic hit compound. In a second step, on the basis of SAR 
studies, we found and developed novel derivatives of tranilast by 
introducing a 2-butoxy substitution at R1 (N23Ps), which resulted 
in a notably higher ECM deposition inhibition potency (>100-fold). 
Unexpectedly, N23Ps additionally affected fibroblasts causing a 
switch from elongated to round cell shapes. Contrarily, tranilast 
only exhibited decreasing matrix deposition but no cell morphology 
changes. This might hint at a possible unique MoA of N23Ps. The 
MoA of tranilast is still elusive, although inhibitory effects on cell 
proliferation are reported to be related with TGF1 signaling (57). 
However, it is reported that the carboxy function of tranilast is re-
quired for displaying optimal inhibitory effect in TGF1-stimulated 
collagen synthesis in cultured mesangial cells (58). By microarray-
based transcriptomics and a unique subsequent UMAP-RPC em-
bedding, we were able to identify unique signaling networks that were 
affected by N23Ps. One of these functional networks included the Gene 
Ontology (GO) term “deubiquitination” (REACTOME: HSA-5688426), 
including SMURF2 as one of the most up-regulated genes. SMURFs, 
or SMAD-ubiquitination-related factors, are E3 ubiquitin ligases 
that inactivate SMADs by ubiquitination and subsequent protea-
somal degradation. As N23Ps induced the expression of SMURF2 and 
thus blocked TGF1 signaling, this specific route might highlight 
an innovative antifibrotic strategy for clinical therapy (Fig. 6H).

One potential limitation of the presented screening approach is 
that phLFs would become senescent starting at passage 10 (51), 
which possibly limits the screening of extremely large compound 
libraries. We have successfully expanded phLFs for the screening of 
libraries up to 30,000 compounds, and even a larger numbers of 
phLFs could be generated for bigger screens. Besides, the current 
workflow of the ECM deposition assay allows de facto only screen-
ing for TGF1 effects preventing transdifferentiation of phLFs into 
myofibroblasts. This strategy opens new avenues for the discovery 
of new molecular entities (NMEs) or molecular targets that, if effec-
tive, are capable of stopping disease progression not only in IPF and 
preventing acute disease exacerbations (59, 60) but also for fibrosis 

in other organs such as skin and liver. Moreover, ECM resolu-
tion would be favorable, which might trigger regenerative pro-
cesses and consequently confer symptomatic benefits for patients. 
However, such a screening approach would require an altered assay 
setup. In addition, comparing transcriptomics of the in vitro hu-
man cellular fibrosis model with proteomics from the ex vivo PCLS 
fibrosis model might produce a potential separation between the de-
tected pathways due to different complexities found in both mod-
els. Moreover, technical issues arise, like applying agarose-filling 
for PCLS generation, which interestingly interferes with RNA ex-
traction leading to low-quality RNA with consequences for down-
stream processes such as transcriptional analysis. However, in the 
future, our laboratory will apply advanced single-cell genomics de-
rived from the ex  vivo fibrosis model and from animal disease 
models, both of which will shed unprecedented insights into 
the MoA of antifibrotic compounds. Thus, N23Ps as a new and 
highly potent antifibrotic compound class might successfully trans-
late and stop disease progression in fatal fibrotic lung diseases such 
as IPF and fibrosis affecting other organs.

MATERIALS AND METHODS
Study design
The purpose of this study was to identify novel antifibrotic drug 
candidates that inhibit ECM deposition of IPF-derived myofibroblasts. 
This objective was pursued through (i) the development and valida-
tion of a high-throughput/-content ECM deposition assay suitable 
for drug screening, (ii) the identification and confirmation of ECM 
deposition inhibitors, (iii) development of highly potent derivatives 
of hit compounds by SAR studies, (iv) target network identification, 
and (v) validation of SAR-optimized compounds in an human 
ex vivo injury and early fibrosis model. Research material included 
phLFs isolated from IPF patient lung explants, as well as normal 
healthy phLFs and ex  vivo tissue culture derived from healthy 
tumor-free peritumoral tissue resections of patients with lung can-
cer undergoing lobectomy. High-throughput/-content screening of 
FDA libraries was performed with primary lung fibroblasts derived 
from one patient with IPF. For all in  vitro validation and dose-
response experiments, three to five independent biological replicates, 
which are different patients, were used. All experiments used up to 
four technical replicates. No outlier exclusion strategy was applied. 
Investigators were not blinded during data analysis. In experiments 
involving pharmacological treatments, vehicle controls were used at 
all times. For comparison of pharmacological effects, same concen-
trations of vehicle controls were used, but never higher that 1% (v/v) 
in the final culture medium. Specific pharmacological effects were 
only stated if (i) a significant effect compared to vehicle control and (ii) 
a dose-response relationship were observed, and (iii) a closely related 
analog, presumed to be inactive, could serve as negative control.

Human tissue and ethics statement
Human tissue has been obtained from the Comprehensive 
Pneumology Center cohort of the BioArchive CPC-M at the Uni-
versity Hospital Grosshadern of the Ludwig Maximilian University 
(Munich, Germany) and by the Asklepios Biobank of Lung Diseases 
(Gauting, Germany). Participants provided written informed 
consent to participate in this study, in accordance with approval 
by the local ethics committee of the LMU, Germany (Project 
333-10, 454-12).

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 28, 2023



Gerckens et al., Sci. Adv. 7, eabb3673 (2021)     22 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

14 of 19

Primary cell culture
phLFs were isolated by outgrowth from human lung tissue derived 
from lung explants or tumor-free areas of lung resections as previ-
ously described (61, 62). Cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) F-12 with 20% (v/v) special processed 
fetal bovine serum (FBS; PAN-Biotech) and penicillin (100 IU/ml) 
and streptomycin (100 g/ml). Medium was changed every 2 to 
3 days, and cells were passaged at 80 to 90% confluency in a ratio of 
1:5 or 1:6. Cells were used for experiments until passage 7. For ECM 
deposition drug screening, 0.5 to 1 × 106 cells were expanded 
from passages 1 to 5, each time in a ratio of 1:6. More than 100 × 106 
cells were trypsinized at passage 5 and cryopreserved in 90% (v/v) 
FBS and 10% (v/v) dimethyl sulfoxide (DMSO). Cells were frozen 
slowly using Mr. Frosty (Thermo Fisher Scientific) freezing con-
tainers. For reseeding, phLFs were thawed in a water bath at 37°C, 
and the cells were washed with culture medium, before plating. 
After reaching confluency in passage 6, cells were used for the 
ECM deposition assays. Primary human dermal fibroblast (cat-
alog no. DF-F) were purchased from ZenBio Inc. and cultured ac-
cording to the manufacturer’s instructions.

ECM deposition assay
phLFs were cultured in DMEM F-12 medium with 20% FBS and 
antibiotic supplement as mentioned above. Cells were seeded with 
6000 cells per well in 384-well CellCarrier plates (PerkinElmer, 
catalog no. 6007550). Following overnight incubation, cells were starved 
in serum-reduced medium [1% FBS with 0.1 mM 2-phosphoascorbate 
(Sigma-Aldrich, catalog no. 49752)] for 24 hours. Afterward, cells 
were treated with TGF1 (1 ng/ml) or vehicle, and, additionally, 
small molecules or appropriate vehicle controls were added. After 
72 hours of incubation, medium was changed for starving medium 
with Alexa Fluor 488 fluorophore–conjugated anti–collagen type 5 
antibodies (1 g/ml; Santa Cruz Biotechnology, Clone C-5, catalog 
no. sc-166155 AF488), Alexa Fluor 555 fluorophore–conjugated 
anti–collagen type 1 antibodies (0.66 g/ml; Rockland, catalog no. 
600-401-103-0.1), Alexa Fluor 637 fluorophore–conjugated anti–
fibulin 1 antibodies (1 g/ml; Santa Cruz Biotechnology, Clone C-5, 
catalog no. sc-25281 AF647), and Hoechst H33342 (1 g/ml; Sigma-
Aldrich). Fluorescence-conjugation of the collagen type 1 antibody 
(Ab) was performed using the Alexa Fluor 555 Protein Labeling Kit 
(Invitrogen, catalog no. A20174) according to the manufacturer’s 
instructions. Labeling efficacy was controlled by photometrical means. 
Following 4 hours of incubation, cells were washed three times with 
phosphate-buffered saline (PBS) and fixed with paraformaldehyde. 
For automated liquid handling in 384-well plates, an INTEGRA Assist 
Plus (INTEGRA, Zizers, Switzerland) equipped with an INTEGRA 
Viaflo II pipette (INTEGRA, Zizers, Switzerland, catalog no. 4642), 
125-l GripTips pipette tips (INTEGRA, Zizers, Switzerland, catalog 
no. 6464), and sterile reagent reservoirs (INTEGRA, catalog no. 4311) 
were applied. All automated pipetting steps with the INTEGRA Assist 
Plus were performed at 9.5 l/s to ensure proper integrity and at-
tachment of the deposited ECM to the culturing surface within the 
wells of the 384-well plates. During cell seeding, the automated liq-
uid handling was performed at 89.3 l/s. Removal of liquids from 
the well plates was performed by manually inverting the plates. Fol-
lowing fixation, the automated imaging was achieved using a con-
focal laser scanning microscope (LSM 710, Zeiss) with automated 
focus detection for 3D image acquisition (1024 pixel by 1024 pixel 
by 9 pixel that equals a dimension of 1417 m by 1417 m by 16 m). 

For postacquisition analysis, images were imported into IMARIS soft-
ware (Bitplane) and volume detection or alternatively quantification of 
the mean fluorescence intensity (MFI), and Hoechst-stained cell nuclei 
were automatically counted using Imaris’ spot detection algorithm.

hPCLS and FC treatment
PCLS were prepared as described before (40, 46). Briefly, PCLS 
were prepared from tumor-free peritumor tissue. The lung tissue 
was inflated with 3% agarose solution and solidified at 4°C. Tissue 
blocks were cut in 500-m-thick PCLS using a vibration microtome 
Hyrax V50 (Zeiss). PCLS were cultured in DMEM F-12 medium 
and treated with a pro-FC, as described before (40), or vehicle, as 
well as with small molecules or vehicles for 7 days. After culturing 
and treatments, supernatants were harvested. PCLS were washed in 
PBS, and protein was extracted as previously described (63). Briefly, 
PCLS were pooled in an Eppendorf tube and lysed in 500 l of ice-cold 
radioimmunoprecipitation assay (RIPA) buffer [50 mM tris-Cl 
(pH 7.4), 150 mM NaCl, 1% NP-40, and 0.25% Na-deoxycholate] 
containing 1× Roche complete mini protease inhibitor cocktail 
(Roche, catalog no. 11697498001). After an incubation of 2 hours 
rotating at 4°C, the lung slices were removed from the lysates, and 
the protein content was measured.

Cytotoxicity assays
Viability/Cytotoxicity Assay Kit for Animal Live and Dead Cells 
was obtained from Biotium (catalog no. 3002). CellEvent Caspase 
3/7 Green Detection Reagent was acquired from Invitrogen (cata-
log no. C10423). For MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] assays, Thiazolyl Blue Tetrazolium 
was bought from Sigma-Aldrich (M5655-1G). All these kits and as-
says were used according to the manufacturer’s instructions.

Antibodies for immunofluorescence and dyes
For immunofluorescence microscopy, the following antibodies were 
used: monoclonal mouse anti-collagen type 5 (1 mg/ml) from 
Sigma-Aldrich (catalog no. sc-166155), monoclonal mouse anti-
collagen type 5 Alexa Fluor 488 conjugate from Sigma-Aldrich 
(catalog no. sc-166-155 AF488), polyclonal rabbit anti–collagen 
type 1 from Rockland (catalog no. 600-401-103-0.5), monoclonal 
mouse anti–fibulin 1 from Santa Cruz Biotechnology (catalog no. 
sc-25281), monoclonal mouse anti–fibulin 1 Alexa Fluor 647 conjugate 
(1 mg/ml) from Santa Cruz Biotechnology (catalog no. sc-25281 AF647), 
and polyclonal rabbit antifibronectin (1 mg/ml) from Santa Cruz 
Biotechnology (catalog no. sc-9068). Hoechst-33342 was obtained from 
Sigma-Aldrich (catalog no. B2261). The following secondary antibodies 
were used: Alexa Fluor 488 donkey anti-mouse Ab (Invitrogen, 
catalog no. A21202), Alexa Fluor 568 donkey anti-mouse Ab (Invitrogen, 
catalog no. A11004), and Alexa Fluor 568 donkey anti-mouse Ab 
(Invitrogen, catalog no. A11011). For immunofluorescence stainings 
of actin stress fibers, Alexa Fluor 568 Phalloidin (Invitrogen, A12380) 
was used. 4′,6-Diamidino-2-phenylindole (DAPI) was acquired 
from Sigma-Aldrich (catalog no. D9564).

Immunocytochemistry
For standard immunofluorescence staining, 5000 phLFs were seeded 
into 96-well imaging plates with a flat bottom (BD Biosciences, 
catalog no. 353376). After incubation, cells were fixed with either 
4% paraformaldehyde for 30 min at 37°C or 100% methanol for 
2  min at −20°C. If needed, then phLFs were permeabilized with 
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0.25% (v/v) Triton X-100  in PBS for 15  min. After washing with 
100 l of PBS, blocking was performed by incubation with 5% (w/v) 
bovine serum albumin (BSA) in PBS for 1 hour. Primary antibodies 
were diluted in 1% BSA (Sigma-Aldrich) in PBS, incubated for 
16 hours at 4°C, and subsequently washed three times with PBS 
for 20 min each. Secondary antibodies were diluted in 1% BSA 
(Sigma-Aldrich) in PBS, incubated for 1 hour at room temperature, 
and subsequently washed three times with PBS for 20 min each. 
Paraformaldehyde (4%) in PBS (w/v) was prepared from parafor-
maldehyde from Sigma-Aldrich (catalog no. 15,812-7). BSA was 
obtained from Sigma-Aldrich (catalog no. A3059). Triton X-100 
was obtained from AppliChem (catalog no. A1388).

Confocal 3D and 4D imaging
Confocal time-lapse microscopy was implemented on an LSM 710 
system (Carl Zeiss) containing an inverted AxioObserver.Z1 stand 
equipped with phase-contrast and epi-illumination optics and 
operated by ZEN2009 software (Carl Zeiss). The following objectives 
were used for imaging: EC Plan-Neofluar 20×/0.8 NA (numerical 
aperture) (Carl Zeiss), LD C-Apochromat 40×/1.1 NA water objective 
lens (Carl Zeiss), and LCI PLN-NEOF DICIII 63×/1.30 NA water 
objective lens (Carl Zeiss). For 4D imaging, the cells were kept in an 
incubation chamber (Carl Zeiss) under standard cultivation condi-
tions (37°C and 5% CO2). Thickness of single confocal layers 
within the z-stacks was set according to optimized values suggested 
by the ZEN2009 software. The confocal datasets were either maxi-
mum intensity projected in the ZEN2009 software (Carl Zeiss) 
and/or imported into Imaris 9.0.0-9.3.1 software (Bitplane) for analysis.

Protein isolation, SDS–polyacrylamide gel electrophoresis, 
Western blotting, and ELISA
Cells were scraped off the plastic dish directly into 200 l of ice-cold 
RIPA buffer containing 1× Roche complete mini protease inhibitor 
cocktail. After incubating the samples for 30 min on ice, insoluble 
material was removed by centrifugation at 14,000g for 15 min at 
4°C, and the supernatant was further processed. Samples were 
mixed with 50 mM tris-HCl (pH 6.8), 100 mM dithiothreitol (DTT), 
2% SDS, 1% bromophenol blue, and 10% glycerol, and proteins 
were separated using standard SDS–10% polyacrylamide gel 
electrophoresis. For immunoblotting, proteins were transferred to 
polyvinylidene difluoride (0.45 or 0.2 m; Millipore, Billerica, MA, 
USA) membranes, which were blocked with 5% milk in 0.1% Tween 
20 in tris-buffered saline and incubated with primary, followed by 
horseradish peroxidase (HRP)–conjugated secondary antibodies 
over night at 4°C and at room temperature for 1 hour, respectively. 
For immunoblotting, the following primary antibodies were used: 
monoclonal mouse anti–collagen type 5 (1 mg/ml) from Sigma-
Aldrich (catalog no. sc-166155), polyclonal rabbit anti–collagen 
type 3 (1 mg/ml) from Rockland (catalog no. 600-401-105), polyclonal 
rabbit anti–collagen type 1 (1 mg/ml) from Rockland (catalog no. 
600-401-103-0.5), monoclonal mouse anti–fibulin 1 (1 mg/ml) 
from Santa Cruz Biotechnology (catalog no. sc-25281), polyclonal 
rabbit anti-fibronectin (1 mg/ml) from Santa Cruz Biotechnology 
(catalog no. sc-9068), and monoclonal mouse anti–-actin–peroxidase 
(1:10,000; Sigma-Aldrich, AC-15). Goat anti-rabbit and goat anti-
mouse immunoglobulin G conjugated to HRP (1:10,000; Cell 
Signaling Technology) were applied as secondary antibodies. CXCL/
IL-8 concentrations were determined using Human IL-8/CXCL8 
DuoSet ELISA (DY208-05) according to the manufacturer’s protocol.

mRNA isolation, cDNA synthesis, and quantitative reverse 
transcription polymerase chain reaction
RNA extraction from cultured phLFs was performed using the 
PeqGold RNA Kit (Peqlab) according to the manufacturer’s in-
struction. The concentration of the isolated RNA was assessed 
spectrophotometrically at a wavelength of 260 nm (NanoDrop 1000). 
cDNA was synthesized with the GeneAMP Polymerase Chain Reac-
tion (PCR) Kit (Applied Biosystems, Foster City, CA, USA) using 
random hexamers using 1 g of isolated RNA for one 301 reaction. 
Denaturation was performed in an Eppendorf Mastercycler with 
the following settings: 302 303 lid = 45°C, 70°C for 10 min and 4°C 
for 5 min. Reverse transcription was performed in an Eppendorf 
Mastercycler with the following settings: lid  =  105°C, 20°C for 
10 min, 42°C for 60 min, and 99°C for 5 min. Quantitative reverse 
transcription PCR (qRT-PCR) reactions were performed in tripli-
cates with SYBR Green I Master in a LightCycler 480II (Roche, 
Risch, Switzerland) with standard conditions: 95°C for 5 min followed 
by 45 cycles of 95°C for 5 s (denaturation), 59°C for 5 s (annealing), 
and 72°C for 20 s (elongation). Target genes were normalized to 
hypoxanthine-guanine phosphoribosyltransferase expression. All 
human primer sequences are documented in table S1.

Microarray and UMAP-RPC
Total RNA was isolated PEQGold Total RNA Kit (Peqlab) accord-
ing to the manufacturer’s instructions including genomic DNA 
elimination. The Agilent 2100 Bioanalyzer was used to assess RNA 
quality and RNA with an RIN (RNA integrity number) of >7 was used 
for microarray analysis. Total RNA (150 ng) was amplified using the 
WT PLUS Reagent Kit (Thermo Fisher Scientific Inc., Waltham, 
USA). Amplified cDNA was hybridized on Human ClariomS arrays 
(Thermo Fisher Scientific). Staining and scanning (GeneChip Scanner 
3000 7G) was performed according to the manufacturer’s instructions. 
Transcriptome Analysis Console (version 4.0.0.25, Thermo Fisher Sci-
entific) was used for quality control and to obtain annotated normal-
ized SST-RMA (Signal Space Transformation in conjunction with 
the regular robust multiple-array average normalization method)  
gene-level data. Statistical analyses were performed using the sta-
tistical programming environment R (R Development Core Team 
Ref1). Gene-wise testing for differential expression was performed 
using the paired limma t test and Benjamini-Hochberg multiple 
testing correction (FDR < 10%). To reduce background, gene sets were 
filtered using DABG (detection above background) P < 0.05 in at least 
one sample per pair and in at least two of three pairs per analysis. 
Heatmaps were generated using GraphPad Prism v7. The RPC was 
based on UMAP (64). Code is provided in code sections S3 and S4. 
mRNA abundancies from the microarray data were normalized (as 
seen as an example in fig. S11B), and abundancies of all four differ-
ent conditions were summarized in a linear vector (fig. S11A) that 
was projected into a bidimensional space using UMAP (fig. S11C). 
Then, clusters of genes were extracted. Gene/protein interactions were 
visualized using the String Database (www.string-db.org).

SAR—Drug library and medicinal chemistry
The FDA-approved Drug Library (1509 compounds) was obtained from 
MedChemExpress (catalog no. HY-L022). Screening of the drug library 
was performed at 100 M. Compounds 1 to 22 for the SAR studies were 
acquired from the following suppliers compiled in table S2. Synthesis of 
(E)-3-(3,4-dimethoxyphenyl)-N-(4-fluoro-2-propoxyphenyl)acrylamide 
(= compound 29): (E)-3,4-Dimethoxycinnamic acid (100 mg, 
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0.48 mmol, and 1.0 eq.) were dissolved in dichloromethane (1.5 ml). 
Oxyma (137 mg, 0.96 mmol, and 2.0 eq.), EDC (3-Dimethylamino-
propyl)-ethyl-carbodiimide)-HCl (184 mg, 0.96 mmol, and 2.0 eq.), and 
sodium bicarbonate (40 mg, 0.48 mmol, and 1.0 eq.) were sub-
sequently added under inert atmosphere. Stirring was continued for 
10 min at 0°C. 2-Butoxy-4-fluoro aniline (81.3 mg, 0.48 mmol, and 
1.0 eq.) was added, and the reaction was allowed to warm to room 
temperature and stirred overnight. The reaction mixture was 
poured on 5 ml of 1 M HCl and extracted with dichloromethane 
(3×). The combined organic layer was extracted with 1 M NaOH 
and brine and dried over sodium sulfate, and the solvent was re-
moved in vacuo. After silica gel chromatography (petrol ether/ethyl 
acetate), the product was obtained as a solid (68.9 mg, 0.187 mmol, 
39%). Rf = 0.3 PE/EE (petrol ether/ethyl acetate) = 3:1. 1H nuclear 
magnetic resonance (NMR): (400 MHz, CDCl3)  = 8.52 to 8.42 parts 
per million (ppm) (m, 1H), 7.76 ppm (s, 1H), 7.66 ppm (d, J = 15.4 Hz, 
1H), 7.14 ppm (dd, J = 8.3, 1.9 Hz, 1H), 7.06 ppm (d, J = 1.9 Hz, 1H), 
6.87 ppm (dd, J = 8.2, 4.1 Hz, 1H), 6.70 to 6.60 ppm (m, 2H), 6.41 ppm 
(d, J = 15.4 Hz, 1H), 3.99 ppm (t, J = 6.7 Hz, 2H), 3.92 ppm (d, 
J = 7.1 Hz, 7H), 1.95 to 1.82 ppm (m, 2H), 1.08 ppm (t, J = 7.4 Hz, 3H). 
13C NMR: (100 MHz, CDCl3)  = 163.94, 150.93, 149.28, 142.06, 
127.76, 124.30, 122.29, 118.98, 111.21, 110.07, 106.93, 106.72, 99.77, 
99.50, 70.64, 56.08, 22.48, and 10.62 ppm. LC-MS: mass/charge ratio 
(m/z) calculated (C20H22FNO4): 359.15, found 359.94 ([M + H]+), 
tR = 1.32 min. All noncommercial compounds were synthesized 
following the procedure given above. Analytical data for compounds 
24 to 35 can be found in table S3. All chemicals were diluted in 
DMSO and added to the cell culture medium (v/v) in final concentra-
tions up to 1% DMSO. Vehicle controls contained DMSO only. 
DMSO was obtained from Sigma-Aldrich (catalog no. D4540).

FANTAIL—Inferential classification and detection model 
for the inhibition of ECM deposition
The KERAS high-level API (https://github.com/fchollet/keras/) 
with TensorFlow implementation was used to train CNN on a 
complex image detection and classification task. The CNN design 
(Fig. 3A) followed the most accepted guidelines, as in (65). The best 
convolutional process was reached with three convolutional layers 
convoluting the images with 24 filters per layer and pooling out data 
with a 2 by 2 pooling matrix in the convolutional layers. The specific 
image classification and detection task was based on the detection 
of interspersed fibrotic and cellular patterns with frequent image 
edge pattern interruptions. The dimensional orientation of the 
fibrotic patterns appeared randomly oriented with various shape, 
size, and clustering on images of large dimension (1024 by 1024 by 
RGB). Hence, the Rectified Linear Unit activation was used as the 
activation mode to detect pattern edges and the adadelta optimizer 
was chosen for an efficient CNN learning process. A dataset of 
image controls was used to train the classifier. This dataset consisted 
of 295 immunofluorescence images annotated as “toxic” (treated 
with 5% ethanol), 390 images annotated as fibrotic (treated with 
TGF1), and 390 images annotated as “normal” (untreated). Images 
with the annotation normal were labeled as “hits,” while those with 
the annotations toxic and fibrotic were combined under the label 
“others.” Images were randomly assigned to the training dataset 
(75%) and the validation dataset (25%). As 1024 by 1024–sized 
images would be an unusually large input for a CNN, we aimed to 
test the CNN efficiency of np × np large subsets of each image with 
np ∈ 128,256,512 pixels. Aggressive data augmentation was performed 

by fragmenting each m × m dimensional image (m = 1024) in 
​​​(​​​(​​ ​ m _ np​ − 1​)​​ × 4 + 1​)​​​​ 

2
​​ tiles with a three-fourths tile overlap (fig. S3A) 

to increase redundancy and pattern fragmentation. For each image 
M with the dimensions m × m, the np × np–sized tiles T were pro-
duced as follows

	​ T  =  M [ ​o​ x​​, ​o​ x​​ + 1, ​o​ x​​ + 2, … , ​o​ x​​ + np; ​o​ y​​, ​o​ y​​ + 1, ​o​ y​​ + 2, … , ​o​ y​​ + np]​	

	​​ o​ x​​, ​o​ y​​  ∈ ​   ⋂ 
k∈​[​​0,1,…,​(​​​(​​​ m ─ np ​−1​)​​×4​)​​

​​​ k × ​ n ─ 4 ​​	

Each data tile T was rotated by  ∈ {0 ° ,90 ° ,180 ° ,270 ° }, repre-
senting different spatial orientations of the ECM (fig. S3A). Hence, 
​4 × ​​(​​​(​​ ​ m _ np​ − 1​)​​ × 4 + 1​)​​​​ 

2
​​ tiles were saved from each original image 

leading to a significant augmentation of data (100-fold for np = 512, 
676-fold for np = 256, and 3364-fold for np = 128). The CNN as 
shown in Fig. 3A was trained on all fragments of the training set 
with fragment size np ∈ 128,256,512 and n = 3. Code is provided in 
code sections S1 and S2. Learning curves are shown in fig. S3 (C and D). 
Quickest and stable convergence was observed with 512 by 512 
pixels imaging, expectedly considering the larger amount of infor-
mation per fragment. Then, trained models were evaluated to 
predict the annotation of an original image of the validation set. 
Therefore, each original image was fragmented into ​​​(​​ ​ m _ np​​)​​​​ 

2
​​ not over-

lapping np × np–sized tiles (fig. S3B), and the share of tiles classified 
as hits was calculated. To determine the accuracy of prediction for 
original images independent of a cutoff value for the share of tiles 
classified as hits, we used receiver-operating characteristic analysis 
(GraphPad Prism v7) and calculated the area under the curve 
(AUC) for each deep learning model. Different numbers of learning 
iterations (epochs) and different tile sizes of np × np were tested. In 
general, accuracy (given as AUC) increased with the number of 
epochs. After, 10,000 epochs models with np = 256 and np = 128 
yielded a similarly high AUC = 0.999 (fig. S3E). Therefore, we chose 
model 7 with np = 128, n = 3 for further experiments.

UMAP for image clustering
The image clustering chosen was performed using the UMAP, a 
widely used manifold learning technique for dimension reduction. 
UMAP is constructed from a theoretical framework based in 
Riemannian geometry and algebraic topology (64). Each m × m–
dimensional image pixel matrix (m = 1024) is flattened as a linear 
vector (fig. S3G) and projected using UMAP on a 2D space (Fig. 3C). It 
was found in this study that the UMAP approach generated 2D data 
maps that logically respected the AI images classification performed 
in the present study putting images into a bidimensional graph that 
helped to graphically understand the concept of true positives hits 
and identify images with artifacts not recognized by the AI.

Quantification of SMA content in phLFs
Six thousand cells per well phLFs were seeded in 384-well CellCarrier 
plates. Following overnight incubation, cells were starved in serum-
reduced medium (1% FBS) for 24 hours. Afterward, cells were treated 
with TGF1 (1 ng/ml) and different compounds. After 48  hours, 
cells were fixed with 100% ice-cold methanol. Cells were stained for 
DAPI and SMA Ab conjugated to Cy3 (Sigma-Aldrich, catalog no. 
C6198-2ML). For automated liquid handling in 384-well plates, an 
INTEGRA Assist Plus was used. Following fixation, the automated 
imaging was achieved using a confocal laser scanning microscope 
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(Zeiss, LSM 710) with automated focus detection for 3D image 
acquisition (ECM Deposition Assay). Images were analyzed by 
measuring the MFI of the SMA signal in Zen Blue v2.5 (Zeiss).

Contractility assay of phLFs
In a 96-well imaging plate, 50 l of 3D collagen gels were casted per 
well as described before (62), and 20,000 phLFs per well were seeded 
on top. Cells were treated with TGF1 (1 ng/ml) and/or cmp4. After 
72 hours, cells were fixed with 4% paraformaldehyde. Collagen gels 
were imaged using an AxioImager2 (Zeiss), and the gel diameter 
was determined using Zen Blue v2.5 (Zeiss).

LC-MS/MS of PCLS
Each 10 g of protein extract was digested using a modified FASP 
(filter aided sample preparation) protocol (66, 67). Briefly, proteins 
were reduced and alkylated using DTT and iodoacetamide and di-
luted to 4 M urea before centrifugation on a 30-kDa filter device 
(Sartorius). After several washing steps using 8 M urea and 50 mM 
ammonium bicarbonate, proteins were digested on the filter by 
Lys-C and trypsin overnight. Generated peptides were eluted by cen-
trifugation, acidified with trifluoroacetic acid and stored at −20°C.  
Samples were measured on a QExactive HF-X MS (Thermo Fisher 
Scientific) online coupled to an Ultimate 3000 nano-RSLC (Dionex). 
Tryptic peptides were automatically loaded on a trap column (300-m 
inner diameter × 5 mm, Acclaim PepMap100 C18, 5 m, 100 Å, LC 
Packings) before C18 reversed-phase chromatography on the ana-
lytical column (nanoEase MZ HSS T3 Column, 100 Å, 1.8 m, 75 m 
by 250 mm, Waters) at flow rate (250 nl/min) in a 95-min nonlinear 
acetonitrile gradient from 3 to 40% in 0.1% formic acid. Profile 
precursor spectra from 300 to 1500  m/z were recorded at 60,000 
resolution with an automatic gain control (AGC) target of 3 × 106 
and a maximum injection time of 30 ms. Subsequently, TOP15 
fragment spectra of charges 2 to 7 were recorded at 15,000 resolu-
tion with an AGC target of 1 × 105, a maximum injection time of 
50 ms, an isolation window of 1.6 m/z, a normalized collision ener-
gy of 28, and a dynamic exclusion of 30 s. Generated raw files were 
analyzed using Progenesis QI for proteomics (version 4.1, Nonlin-
ear Dynamics, part of Waters) for label-free quantification as de-
scribed (68, 69). Features of charges 2 to 7 were used and all MS/
MS spectra were exported as mgf file. Peptide search was performed 
using Mascot search engine (version 2.6.2) against the Swiss-Prot 
human protein database (20,237 sequences and 11,451,954 resi-
dues). Search settings were 10 ppm of precursor tolerance, 0.02-Da 
fragment tolerance, one missed cleavage allowed, carbamidometh-
yl on cysteine as fixed modification, deamidation of glutamine 
and asparagine allowed as variable modification, and oxidation of 
methionine. Applying the percolator algorithm (70) resulted in a 
peptide FDR of 0.46%. Search results were reimported in the Pro-
genesis QI software. Proteins were quantified by summing up the 
abundances of all unique peptides per protein after normalization 
to identified glyceraldehyde-3-phosphate dehydrogenase and ACTB 
peptides. Resulting protein abundances were used for calculation of 
fold changes between conditions and repeated-measures analyses 
of variance (ANOVAs) within the Progenesis QI software. Pro-
teomics expression data are provided as table S4.

Smurf2 siRNA-mediated silencing
phLFs were reverse transfected with 2 or 10 nM Silencer Pre-
designed Smurf2 siRNA (Ambion, catalog no. AM16708, Thermo 

Fisher Scientific, Carlsbad, USA) or 10 nM scrambled Silencer 
Negative control No. 1 siRNA (Ambion, AM4611, Thermo Fisher 
Scientific, Carlsbad, USA) in Lipofectamine RNAiMax transfection 
reagent (Thermo Fisher Scientific, Carlsbad, USA, 13778-150) as 
indicated followed by TGF1 treatment (1 ng/ml) for 48 hours if 
not indicated differently.

Statistical analysis
Analyses of interferential statistics were performed in GraphPad 
Prism v5 and v7. Unless otherwise indicated results indicate means 
± SEM of minimum three biological replicates. Student’s t test was 
used for formally distributed samples. P < 0.05 was considered as 
significant. One-way ANOVA with Bonferroni correction for 
multiple testing was used to compare multiple experimental groups 
or conditions. Data are represented as arithmetic means ± SEM. For 
quantitative SAR studies, dose-response curve modeling and IC50 
determination GraphPad Prism v7 was used. MFI measurement 
data series from live imaging and learning curve data series for the 
deep learning models were smoothened as described in code section 
S5 with a degree of smoothening of 95 and 99%, respectively.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abb3673

View/request a protocol for this paper from Bio-protocol.
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