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Abstract: Many concrete structures, such as bridges and wind turbine towers, fail mostly due to
the fatigue rapture and bending, where the cracks are initiated and propagate under cyclic loading.
Modeling the fracture process zone (FPZ) is essential to understanding the cracking behavior of
heterogeneous, quasi-brittle materials such as concrete under monotonic and cyclic actions. The paper
aims to present a numerical modeling approach for simulating crack growth using a scaled boundary
finite element model (SBFEM). The cohesive traction law is explored to model the stress field under
monotonic and cyclic loading conditions. In doing so, a new constitutive law is applied within the
cohesive response. The cyclic damage accumulation during loading and unloading is formulated
within the thermodynamic framework of the constitutive concrete model. We consider two common
problems of three-point bending of a single-edge-notched concrete beam subjected to different
loading conditions to validate the developed method. The simulation results show good agreement
with experimental test measurements from the literature. The presented analysis can provide a
further understanding of crack growth and damage accumulation within the cohesive response,
and the SBFEM makes it possible to identify the fracture behavior of cyclic crack propagation in
concrete members.

Keywords: crack propagation; cohesive zone method; constitutive modelling; cyclic loading; scaled
boundary finite element

1. Introduction

Concrete structural elements very often fail due to fatigue fractures, in which re-
peated loading can lead to the growth of existing cracks [1–4]. To better understand
the fatigue fracturing under cyclic loading, a detailed analysis of the fatigue behavior
and the associated crack propagation is required for economical and reliable design of
concrete structures.

The advanced studies on cyclic crack propagation are mostly empirical, wherein large
number of data samples from experiments are used for fitting the relationship. The most
commonly used approach to predict fatigue life and crack growth rate is the well-known
Paris law [5,6]. This phenomenological law relates the amplitude of the stress state (defined
by stress intensity factor K) and the crack growth rate da/dN, which can be considered a
valuable tool for engineering fatigue analysis. However, it has been shown that Paris law
loses much of its prediction ability when conditions are not ideal, such as with non-constant
amplitude loading and short cracks [7,8]. Nevertheless, advanced numerical models have
been developed widely to capture the phenomena behind the cyclic crack propagation
under subcritical loading levels. Numerical simulations are more flexible in the sense
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that they can predict fatigue life and crack growth under general loading conditions and
geometries. They can be applied to study design variations in early design stages.

Several modeling approaches for crack propagation under cyclic and fatigue loading
are well documented in the literature [9,10]. The cohesive zone model (CZM) has been
implemented in classical fracture mechanics by [11,12] to reduce the mesh quality required
for crack simulation. The CZM is based on elastic damage material for both monotonic
and fatigue crack growth [13,14]. For concrete material, the softening damage, whose
localization is governed numerically by finite element simulation, is aimed at simulating
the propagation of the fatigue fracture in the cohesive process zone [15,16]. However, these
types of models are used to accumulate damage only along the damaged locations of the
loading/unloading paths.

The second type of crack simulation model is the phase field model (PFM). The concept
of the PFM approach is to regularize free energy of degradation, which effectively reduces
material fracture resistance under fatigue loading [17]. It was developed to predict quasi-
static and dynamic fracturing in brittle and ductile regimes considering isotropic and
anisotropic toughness [18]. This method introduces the degradation of the fracture energy
as a function of a local energy-accumulation variable. As a result of repeated loading, the
structural loading history is taken into consideration [19]. Similar approaches have been
published recently in [20], which simulated fatigue crack growth. A nonlinear kinematic
and isotropic hardening were considered. Differently, simulations of molecular dynamics
can be used to evaluate the interfacial strength [21].

Additionally, discrete lattice models have many features of the discrete element
method (DEM) to simulate the heterogeneous microstructure and crack propagation [22].
The formulation combines the damage mechanics and plasticity theory with a cyclic dam-
age evolution law. The model characterizes the critical response of concrete material
undergoing cyclic loading. The behavior obtained by the DEM simulations is a collective
response constituted from all contacts and particles in the domain.

Many models in the literature [23–31] are dedicated to simulating the quasi-brittle
behavior, including a set of constitutive equations for the monotonic, fatigue, and hysterical
material responses. Furthermore, several calculation schemes also exist to predict tensile,
flexural monotonic, and fatigue behavior [32,33]. The established damage law allows
a damage accumulation process for random cycles. The damage model concludes the
primary dissipative phenomenon, which is activated during unloading and reloading.

The scaled boundary finite element method (SBFEM) is a very attractive approach
to modeling crack nucleation and propagation under general loading conditions [34–37].
The cohesive fracture and stress field can be determined using interface elements with
zero thickness, which are inserted directly into the SBFEM [38–40]. The cohesive traction
forces and the stress field close to the crack tip are accurately computed as they are defined
analytically. This enables the onset of crack propagation to obtain the correct load-deflection
response. Yang [41] developed the SBFEM to solve linear crack propagation in brittle
materials under monotonic loading. He benefited from the salient feature of the high
accuracy of the stress intensity factor (SIF) in SBFEM computed directly from singular stress
solutions and flexible substructuring of each domain. The crack simulation of concrete
slabs based on a cohesive zone model in an explicit SBFEM-FEM frame for seismic cyclic
loading was reported in [42] to facilitate dynamic analysis. However, the calculation of
coupled SBFEM-FEM analysis can be very computationally intensive. For cyclic loading,
the crack evolution can also be simulated using quasi-static analysis. The accuracy of the
method was validated by a cyclic damage test with a concrete beam. A fully automatic
modeling methodology characterized by a simple remeshing algorithm was developed, and
the mixed-mode crack propagation problem was efficiently solved. Yang and Deeks [43]
further coupled the procedure of SBFEM with the FEM for quasi-brittle materials. An
extended polygon scaled boundary finite element method [44] was developed to simulate
nonlinear dynamic analysis. A direct remeshing algorithm for crack propagation was
obtained for quasi-brittle materials. The study of dynamic fracture modeling by SBFEM
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was developed in [45] to model the crack propagation of impact-test specimens. The stress
intensity factor, displacement, and stresses were extracted from the dynamic solution.

In the present paper, we further extend the SBFEM for modeling cyclic-damage-
induced cracks’ behavior within the SBFEM framework. The model considers the cumula-
tive crack opening/sliding measure to dominate the damage mechanism at the subcritical
loading levels. Similar approaches have been proposed in [40] for the numerical simula-
tion of concrete under monotonic loading. The novelty of our approach is to establish a
link between the cyclic damage rate and the efficiency of the SBFEM in modeling crack
propagation. By comparing the thermodynamic softening law of the constitutive model for
fracture, several aspects have been provided, which include the loading–unloading path,
the damage evolution during the load cycle, and the crack-opening traction behavior.

The paper is organized as follows. The theoretical formulation of the cohesive crack
model inside SBFEM is represented in Section 2. The behavior of the constitutive material
model is studied at the level of material point (Gauss point) in Section 3. The performance
of the cohesive cyclic crack model within the thermodynamic framework is then reported,
which was applied in [46]. In Section 4, we present the calibration and validation of the
model based on the results of the cyclic flexural bending test of plain concrete published
in the literature. We present numerical investigations focused on the effect of the loading
sequence on the material behavior.

2. Scaled Boundary Finite Element (SBFEM)
2.1. Fundamentals

Figure 1 shows the basic concept of the cohesive crack model in the scaled boundary
method for a typical bounded domain. The mesh is represented by a discretized collection
of arbitrary-sided polygons, or (as in Figure 1a) quadtrees elements. Each element is
maintained by a curve relative to a scaling center (x0,y0). This condition is satisfied by
dividing the domain into many sub-domains, which can be made visible for each boundary.
The boundary is discretized by one-dimensional finite elements with a local coordinate η
in an interval of −1 ≤ η ≤ 1; see Figure 1b. Let (x0,y0) be the scaling center, and ξ is the
radial coordinate with ξ = 0 at the center and ξ = 1 at the boundary. The coordinates on
the boundary are interpolated by xb = [N(η)]{xbn}, and yb = [N(η)]{ybn}, where [N(η)]
is the vector of nodal shape functions, and {xbn}, {ybn} are the nodal coordinates. The
displacement field, u(ξ, η), can be defined semi-analytically as

{u(ξ, η)} = [Nu(η)]{u(ξ)} (1)

We calculate the nodal displacement functions u(ξ) at the radial lines, ξ. Meanwhile,
they are interpolated by the linear shape functions [Nu(η)] in the direction of η, which are
obtained by multiplying a suitable identity matrix with each element in [N]. Thus, the
strain and the stress fields are formulated as:

{ε(ξ, η)} = [B1(η)]{u(ξ)},ξ + (1/ξ)[B2(η)]{u(ξ)} (2)

{σ(ξ, η)} = [D]{ε(ξ, η)} = [D][B1(η)]{u(ξ)},ξ + (1/ξ)[B2(η)]{u(ξ)} (3)

where B1(η) and B2(η) are the strain matrices, and D is the constitutive matrix [39]. The
weak form of the elastic equilibrium of forces is obtained according to the principle of
virtual work [47], or from the weighted residual technique; see ref. [34]. The governing
equations can be written as follows:

[E0]ξ
2{u(ξ)},ξξ + ([E0] + [E1] + [ET

1 ])ξ{u(ξ)},ξ − [E2]{u(ξ)} = 0 (4)

{P(ξ)} = [E0]ξ{u(ξ)},ξ + [E1]
T{u(ξ)} (5)

with {P} being the load vector. Equation (4) includes second-order Cauchy–Euler equa-
tions, called the scaled boundary finite element equation in the displacement with the
coefficient matrices [E0], [E1], [E2]. Furthermore, Equation (4) is a homogeneous second-
order differential Equation (in case there is no side face or body loads) with n unknowns.
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By introducing a new variable [χ(ξ)] with Hamiltonian matrix Z, the system becomes a
first-order ordinary differential equation [48] as

ξ[χ(ξ)],ξ = −[Z][χ(ξ)] (6)

and
[χ(ξ)] = [{u(ξ)}{q(ξ)}]T (7)

where q(ξ) are analytical functions that represent the internal nodal forces vector:

{q(ξ)} = [E0]ξ{u(ξ)},ξ + [E1]
T{u(ξ)} (8)

and the Hamitonian matrix is calculated as a function of [E0], [E1], [E2]:

[Z] =
[

[E0]
−1[E0]

T −[E0]
−1

−[E2] + [E1][E0]
−1[E1]

T −[E1][E0]
−1

]
(9)

An eigenvalue decomposition of [Z] follows [49]:

[Z]

[
[φ

(n)
u ] [φ

(p)
u ]

[φ
(n)
q ] [φ

(p)
q ]

]
=

[
[φ

(n)
u ] [φ

(p)
u ]

[φ
(n)
q ] [φ

(p)
q ]

]
×
[
[λ(n)] 0

0 [λ(p)]

]
(10)

where [λ] is the diagonal matrix of λ(p) and λ(n). The superscripts p and n refer to positive
and negative. [φ

(p)
q ], [φ(p)

u ], and [φ
(n)
u ] are the eigenvectors corresponding to λ(p), [φ(n)

q ],
and [λ(n)], respectively. The solution of Equation (6) yields:

{q(ξ)} = [φ
(n)
q ]ξ−[λ

(n) ]{c(n)}+ [φ
(p)
q ]ξ−[λ

(p) ]{c(p)} (11)

{u(ξ)} = [φ
(n)
u ]ξ−[λ

(n) ]{c(n)}+ [φ
(p)
u ]ξ−[λ

(p) ]{c(p)} (12)

{c(p)} and {c(n)} are the integration constants. For a bounded domain, the boundary
condition at {ξ = 0} produces {c(p)} = 0. In this case, the modes of non-positive real
components of eigenvalue [λ] contribute to the solution of finite displacement at the
scaling center.

The equivalent nodal forces on the boundary and the stiffness matrix of the domain
are formulated, respectively, as

{P} = [φ
(n)
q ]{c(n)} = [φ

(n)
q ][φ

(n)
u ]−1{ub} (13)

[K] = [φ
(n)
q ][φ

(n)
u ]−1 (14)

At the boundaries, the nodal displacements {ub} can be calculated from the global
stiffness matrix K and load vector P.

Meanwhile, substituting Equation (11) into Equation (1) yields the displacement field
in the bulk domain as

{u(ξ, η)} = [Nu(η)]
n

∑
i=1

ξ−λ(n)i ci{φi} (15)

Hence, the stress field is formulated by

{σ(ξ, η)} = [D]
n

∑
i=1

ξ−λ(n)i ([−λ(n)][B1(η)] + [B2(η)]){φi} (16)
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Figure 1. The concept of a cohesive crack model using the scaled boundary finite element method.

2.2. Stress Field at Crack Tip with Cohesive Tractions

The fracture process zone in a quasi-brittle material can transfer the cohesive forces
between the crack faces. This is attributed to the interlocking of the aggregate, in addition
to the surface friction. The cohesive traction representing the crack faces is applied as
side-face forces. The equilibrium condition (Equation (4)) in a polygon containing a crack
tip is augmented to include the load vector containing the side-face tractions, as in [43].

[E0]ξ
2{u(ξ)},ξξ + ([E0] + [E1] + [ET

1 ])ξ{u(ξ)},ξ − [E2]{u(ξ)} − {Ft(ξ)} = 0 (17)

In this work, the cohesive force on the crack faces {Ft(ξ)} will be computed based on
the shadow domain procedure, which has been introduced by [40].

The concept of the cohesive cyclic crack model, as depicted in Figure 1, is shown in
the following steps:

1. The mesh generation of the domain in Figure 1a and the cohesive zone in the sur-
roundings of the crack polygon is defined. In this method, the generic mesh contains
an arbitrarily many sided polygon in boundary regions, master cells far away from
the boundaries, and the crack cells.

2. The crack cell is divided into two SBFEM cells to discretize the crack faces and to
insert the interface elements into the SBFEM system. The local coordinates ξ, η of the
SBFEM system are illustrated in Figure 1b.

3. The shadow domain is generated as shown in Figure 1c. It is implemented in order
to calculate the cohesive tractions (side-face forces) and the nodal displacements
throughout the crack subdomain. This method inserts a node at the crack tip with
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three corresponding edges (two edges, L1 and L2, for each crack face, and one edge,
L3, to split the crack cell into two). Knowing the crack angle, θ, the orientation of L3 is
projected in a way that a straight line is extended from the crack tip with an angle θ.
Then, the node closest to the intersection point at edge of the cracked cell is employed
to split the polygon.

4. The SBFEM is directly coupled with zero-thickness, four node-interface elements
along the crack path (Figure 1d) which are inserted along the lines of the mesh. The
cohesive edges (N1, N2, N3, N4) divide the subdomains into two divisions. The
pair (N1,u N3,u) and (N2,u N4,u) form contact pairs with a set of crack opening (w).
Additionally, the pair (N1,v N3,v) and (N2,v N4,v) form contact pairs with a set of crack
sliding (s). As the crack propagates, the interface element domain is inserted into the
mesh. This can satisfy the compatibility condition in the displacement between the
SBFEM polygons and the interface elements.

5. Along the crack paths, the fracture process zone is characterized using softening laws
of the thermodynamics; see Figure 1e. For concrete, the softening behavior for crack
opening and sliding proposed model is based on [46] and defined in the next section.
The model uses the cumulative measure of slip as a fundamental damage driving
mechanism at the subcritical levels of loading.

In the fracture process zone, cohesive tractions tn, ts are expressed as a function of
relative opening and sliding displacements d. In the local coordinate system, the stiffness
matrix reads:

[kint] =
A
2

ng

∑
i=1

wi Mi
T [k]Mi (18)

where k is the stiffness of the softening laws, A is the crack surface area, wi is the one-
dimensional Gaussian weight, ng is the number of integration points, and Mi is the linear
shape function matrix [40]. The stiffness matrices of the interface element kint can be
assembled attractively. In this case, the local coordinates (ξp, ηp) in the shadow domain are
defined first to obtain the coordinates (x, y) for a new node in the new crack cell. For this
purpose, we use a search algorithm to determine the element in the shadow domain that
includes the point (x, y). In doing so, the nodal displacements and the cohesive tractions
are calculated along the crack. These are then mapped back to the crack cell to calculate the
stress intensity factors required to determine if the crack propagates. The SIF considering
the cohesive forces on the crack face is calculated by representing the cohesive forces as a
power function in ξ following from the form of the side face traction vector Ft(ξ), as in [43].

Linearly varying or constant distributed loads are approaches to representing a force
over a particular distance. According to [47], when the side-face loads are distributed by a
power function, then the modal displacement loads are

{ut(ξ)} = ξt+1{φt} (19)

Substitution of Equation (19) into Equation (17) yields

[(t + 1)2[E0] + (t + 1)([E1
T ]− [E1])− [E2]]

−1{φt}+ {Ft} = {0} (20)

Rearranging will give the nodal displacements for the side-face load mode {φt} as

{φt} = −[(t + 1)2[E0] + (t + 1)([E1
T ]− [E1])− [E2]]

−1{Ft} = [B1(t)]{Ft} (21)

In order to express the cohesive tractions as a power of function, the normal traction
distribution σ(ξ) is assumed to be the summation of M raised to the power of function ξ:

σ(ξ) = ft

M

∑
i=1

eiξ
ti (22)

where ei is coefficient to be calculated. Considering a parameter µ, the exponents ti are
determined as ti = (i− 1 + µ) .
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The tractions at the crack tip, the Gaussian points, and the crack mouth σj(j = 1, M)
are used to generate M number of equations as

σj = σ(ξ j) = ft

M

∑
i=1

eiξ
ti
j (23)

where ξ j = lj/L is the distance from the jth point on the crack to the crack tip lj and the
length of the crack L. The coefficients {e} = {e1 e2 ... eM}T are then calculated as

{e} = [S]T ft
−1{σ} (24)

where {σ} = {σ1 σ2 ... σM}T , and the matrix [S] is

[S] =


ξt1

1 ξt2
1 · · · ξ

tM
1

ξt1
2 ξt2

2 · · · ξ
tM
2

...
...

. . .
...

ξt1
M ξt2

M · · · ξ
tM
M

 (25)

The nodal side-face load vector becomes

{Ft(ξ)} =
M

∑
i=1

ξti{Fti} (26)

with
{Ft(ξ)} = A ftei{R1} (27)

and
{R1} = {−sinδ cosδ 0 · · · 0 sinδ − cosδ}T (28)

where A = is the area of crack surface.
The displacement solution is thus expressed by two components: the modes of normal

displacement due to external loading and the modes of side-face displacement due to
cohesive tractions as

{u(ξ, η)} = [N(η)][
N

∑
i=1

ciξ
λi{φi}+

M

∑
i=1

eiξ
ti+1 A ft[B1(ti)]{R1}] (29)

On the subdomain boundary, the nodal displacement ubs is calculated as

{ubs} = [φ]{c}+ [φt]{e} (30)

where [φ] and [φi] are given in Equation (10), and the matrix [φt] is transformed as:

{φt} = A ft[B1(t1) B1(t2) · · · B1(tM)]{R1} (31)

The nodal displacements ubs in Figure 2 are gained by mapping the mesh from the
shadow domain, as shown in Figure 2b. The constants {c} are given by

{c} = [φ]−1({ubs} − [φt]{e}) (32)

Subsequently, Equation (29) is read as:

{u(ξ, η)} = [N(η)]
N+M

∑
i=1

ciξ
(λi−1){φi} (33)

where {
φi = φi, λi = λi for i = 1, · · · , N

φi = φt, λi = ti + 1 for i = N + 1 · · · , N + M
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The stress field can be calculated similarly to Equation (16) as

{σ(ξ, η)} =
N+M

∑
i=1

ciξ
(λi−1){ψi(η)} (34)

where each term in Equation (34) can be interpreted as a stress mode and

{ψi(η)} = [D](λi[B1(η)] + [B2(η)]){φi} (35)

Comparing Equation (15) and Equation (33), and Equation (16) and Equation (34)
shows that when the cohesive traction is evaluated, an extra number (M) of displace-
ment nodes and the same of stress modes are added to the displacement field and stress
field, respectively.

The direction of crack propagation is then determined based on [43]. In order to
consider a perfect crack path prediction, the SIFs of the semi-analytical SBFEM stress
solutions are calculated.

2.3. Stress Intensity Factor (SIF) for Scaling Center at Crack Tip

The SBFEM has the advantage of accurately representing the crack zone’s stress field
without needing a more discretized mesh [38,50]. This tool enables the SIFs to be directly
calculated from the semi-analytical solutions of the stresses. In this work, two SIFs are
determined. The first is obtained from the linear elastic fracture mechanics solution at a
generic load step and is used to determine the crack propagation direction. The side-face
tractions are not considered in this case. The second concerns the crack cell considering
the effect of the cohesive tractions obtained from the shadow domain. In both cases, the
procedure to calculate the SIFs is the same. The only difference is the equation used to
represent the stress field, i.e., Equation (16) in case 1 and Equation (34) in case 2. The
procedure is outlined as follows:

Figure 1c shows the cracked domain modeled by the SBFEM. The location of the scaling
center should be at the crack tip. There is no need to discretize the side faces connected
to the scaling center. The SIF could be accurately computed from the semi-analytical
solutions of the stresses [51]. The stress intensity factors solutions can be extracted from
their definitions as follows. {

KI
KI I

}
= lim

r→0

{√
2πrσyy|θ=0√
2πrσxy|θ=0

}
(36)

where r and θ represent the polar coordinates. As illustrated in Figure 1, r and θ originate
at the crack tip and are correlated by

r = ξL(θ) (37)

where L(θ) is the distance between any point A at the cracked domain and the crack tip
(L(θ) = L3 in Figure 1c). Substituting Equation (37) in Equation (36) leads to{

KI
KI I

}
= lim

r→0

{√
2πL(θ)∑n

i=0 ciξ
−λi−1σyy|θ=0√

2πL(θ)∑n
i=0 ciξ

−λi−1σxy|θ=0

}
(38)

From Equation (38), when ξ → 0, all the corresponding stress modes that have λi ≥ 1
will disappear. When λi = 0.5, singular stresses are obtained in mode I and mode II. An
analytical solution of the limits in Equation (38) yields{

KI
KI I

}
=
√

2πL0 ∑
i=I,I I

(
ci

{
ξ−λi−1σyy|θ=0
ξ−λi−1σxy|θ=0

}
i

)
(39)
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2.4. Crack Growth Criterion

The zero-K condition based on [52] is used to determine crack propagation in the crack
domain. Therefore, when the stress at the crack tip is finite, a cohesive crack propagates,
and accordingly, no stress singularity exists. The crack will propagate in the condition

KI(θ) ≥ 0 (40)

CIEs
CCM

(a) (b)

Scaling Center

Nodes1

δft

ft

ξ

σ (ξ )

n

A

1n

1

1

2

Θ

r
Δa

Figure 2. Calculation of kI using shadow domain method: (a) cohesive crack model (CCM) in SBFEM;
(b) subdomain discretization.

The crack length ∆a and its angle θ are used to define the new location of the crack tip.
Figure 2a displays the discretised SBFEM polygon and cracked subdomains of the cohesive
crack model (CCM) after the first round of growth. In this shadow domain concept, the
crack surfaces is discretized first, and then crack cell elements (CIEs) are inserted into the
mesh. This will partition the crack subdomain S1 into two (S1 and S2 in Figure 2b). The
CIEs are then used to calculate side-face traction along the crack, upon which the SIFs
KI(θ) can be defined to calculate the crack growth criterion. We apply the mesh mapping
technique to calculate the nodal displacements of the cracked subdomain S1. The remeshing
procedure during crack propagation is performed based on [40].

3. Cumulative Damage-Plasticity Based Constitutive Law

The constitutive behavior describing cyclic damage in the process zone is embedded
in the definition of the interface elements. It has been defined using the thermodynamics-
based uniaxial interface model proposed in [46,53,54]. The model assumes that the develop-
ment of cyclic load is dominated by a cumulative level of the inelastic relative displacement
within the interface. The uniaxial model can be applied for the normal behavior (σN − w)
and for the shear behavior (τ − s) of the interface as a unified constitutive model.

3.1. Brief Summary of the Model’s Formulation

The regular formulation of the thermodynamically interface model is described briefly
in this section. The Helmholtz free energy is defined as

ρψ(u, uP, ω, α, z) =
1
2
(1−ω)E(u− uP)2 +

1
2

γα2 +
1
2

Kz2 (41)

where ρ is the density; E is the elastic stiffness; u represents the relative displacement at the
interface (i.e., opening displacement u = w in the normal direction and slip u = s in the
tangential/shear direction); K and γ represent the isotropic and kinematic hardening mod-
uli, respectively. The state variables of the interface model are the inelastic displacement
uP, the damage variable ω, and the hardening variables z, α.

The thermodynamic forces, X and Z, and the related energy release rate, Y, can be
calculated by differentiating Equation (41) with respect to each state variable as follows.

σP = σ = −∂ρψ

∂uP = (1−ω)E(u− uP) (42)
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X =
∂ρψ

∂α
= γα, Z =

∂ρψ

∂z
= Kz (43)

Y = −∂ρψ

∂ω
=

1
2

E(u− uP)2 (44)

where σ represents the stress components (i.e., normal stress σN in the case of opening
displacement w, and shear stress τ in the case of slip displacement s). A yield function
similar to plasticity theory, which defines the boundary between elastic and inelastic
domains, is introduced into the effective stress space as follows.

f (σ̃, X, Z) = |σ̃− X| − Z− σ0 (45)

with σ̃ being the effective stress given as σ̃ = σ/(1−ω) and σ0 being the elastic stress limit.
The flow potential determining the damage evolution augments the threshold function
(Equation (45)) with an extra term as

φ = f (σ̃, X, Z) +
S(1−ω)c

(r + 1)

(
Y
S

)r+1
(46)

where S is the damage strength parameter, and c and r are exponential rate parameters.
The evolution equations can be obtained by differentiating (Equation (46))

u̇P = λ̇
∂φ

∂σP =
λ̇

1−ω
sign(σ̃− X) (47)

α̇ = −λ̇
∂φ

∂X
= λ̇ sign(σ̃− X), ż = −λ̇

∂φ

∂Z
= λ̇ (48)

ω̇ = λ̇
∂φ

∂Y
= λ̇ (1−ω)c

(
Y
S

)r
(49)

This model can be implemented as a time-stepping algorithm, as described in [46].
The damage accumulation under both monotonic and cyclic loading is described through
the modified flow potential by [46,54].

3.2. Elementary Studies of the Cohesive Model

To illustrate the phenomenological behavior of the used constitutive model and its
applicability for modeling cyclic and fatigue behavior, a material model of crack behavior
at the point level (Gauss point) under opening and shear displacement is presented in
this section.

The described parameters of monotonic and cyclic response material behavior are
plotted in Figure 3. The exponential parameter c was used to control the dropped-down part
of the crack opening (COD) and sliding (CSD) curve. The parameters c and r were applied
for tuning the accumulation of the damage due to cyclic loading. The damage strength
parameter S, however, could control the brittleness in the response. The model parameters
for a common combination of concrete matrix C30/37 were identified using the parametric
study reported in [46]. The setup of the study is provided in Figure 3 for monotonic loading
and for cyclic loading, as the cohesive model parameters are summarized. The cohesive
model stiffness (E) was set equal to Young‘s modulus of concrete. The parameters σ, K, γ,
S, r, and c were identified using a black line for the monotonic response and a blue line for
the monotonic response.
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Figure 3. Characterization of the crack behavior under cyclic loading (blue lines) and monotonic
loading (black lines) at the material-point level: (a) crack opening, (b) crack sliding.

The cyclic loading curves of the crack opening versus cyclic loading can be compared
with the corresponding curves obtained numerically for monotonic loading. The described
model was implemented using zero-thickness interface elements inside the SBFEM frame-
work in Equation (18)). For the monotonic and the cyclic loading, the damage evolution for
the loaded and unloaded responses is depicted in Figure 3 for crack opening and crack slid-
ing. The accumulation of the damage parameter is nonlinear. The traction opening/sliding
cohesive models for two loading scenarios are studied.

4. Numerical Validation
4.1. Test Setup

Three-point bending (TPB) tests were studied to validate the numerical method in this
study. The contributions of both traction modes, kn and ks, in the cohesive zone model,
were investigated. The investigations performed by [8] have shown that the inclusion of
the normal energy dissipation dominated the response of post-peak crack mouth sliding
displacement (CMOD). The nonlinear equilibrium equations were solved using Newton–
Raphson iteration [55], which is characterized by strain softening in the process zone.
The benchmark examples are TPB tests with a single-edge notch (Figure 4). Two sizes
of the beam were considered in the tests: small beams with a cross-section height of
h = 200 mm, and large beams with h = 400 mm. The beam width was b = 100 mm.
The lengths of small and large beams were 600 and 1200 mm, respectively. For the notch
depth, h0 = h/6, whereas the maximum grain size (d0) was 8 mm. The experimental
measurements for the concrete beams were provided by Baktheer and Becks [8], and the
material properties were adopted from [8], as listed in Table 1.

Table 1. Parameters of concrete [8].

Parameter Denomination Value Unit

fc Compressive strength 63.61 [MPa]
fct Tensile strength 4.28 [MPa]
Ec Young’s Modulus 34.468 [GPa]
ν Poisson ratio 0.2 [-]
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h

b

L = 3 h

L0 = 2.5 h

h0 = h / 6

CMOD

F(a)

(b)

Figure 4. A single-notched concrete beam subjected to a three-point load. (a) Geometry, (b) initial mesh.

4.2. Loading Scenarios

Experimentally, the crack opening displacements and the mid span deflection of the
tested beam were recorded, along with the applied force F. The TPB supported beam
was tested symmetrically by displacement-controlled loading at the top edge. The typical
two different loading scenarios are shown in Figure 5. In the SBFEM simulation, an
incrementally increased monotonic load (Figure 5a) was applied with an increment size
of 0.0005; there were 200 load steps. The load was controlled by the crack tip opening
displacement (CMOD) until failure. In the second loading scenario, Figure 5b, a sequence
of loading and unloading cycles was applied to define the CMOD. In this way, detailed
characteristics of the post-peak loading and unloading of the load–CMOD curve were
obtained. This can help to analyze the damage mechanism involved in the cyclic flexural
behavior of concrete.

(a) (b)

CMOD

Time

CMOD

Time

Figure 5. Typical loading scenarios of the studied tested beams: (a) monotonic behavior, (b) cyclic behavior.

4.3. Monotonic Loading

The softening curve parameters to model the fracture process zone are presented, and
a range of values were applied based on the parametric study in Section 3. The material
parameters were calibrated for two examples under monotonic loading. Then, the material
model was validated using the size-effect calculations. The obtained numerical results for
cyclic loading were obtained in additional to validating the method. For this investigation,
the properties of the concrete and cohesive interface element are listed in Table 2.
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Table 2. Model parameters for concrete cohesive interface element.

Parameter Denomination Value Unit

E Elastic cohesive modulus 2800.0 [MPa]
σ Reversibility limit 1.0 [MPa]
K Isotropic hardening modulus 300.0 [MPa]
γ Kinematic hardening modulus 200.0 [MPa]
S Damage strength 2.5 × 10−4 [MPa]
r Damage accumulation parameter 1.0 [-]
c Damage accumulation parameter 0.8 [-]

The tracked points for the notched pattern and the initial mesh were defined as shown
in Figure 4b. For the small beam of cross-section height of h = 200 mm, the mesh consisted
of 481 polygons and 584 nodes. Meanwhile, for the large beam (h = 400 mm), the initial
mesh comprised 1483 polygons and 1628 nodes. Plane stress conditions were assumed.

Figure 6 compares the predicted load-crack mouth opening displacement (CMOD) of
the TBP small beam with the experimental results reported by [8] under monotonic loading.
The corresponding curve of the numerical predictions by SBFEM is depicted in Figure 6,
plotted as a blue dashed line. The numerical results of the load–CMOD curve are in a
good agreement with the experimental measurements. A maximum load of 18.75 kN was
obtained at a CMOD of 0.017 mm. Interestingly, the load–CMOD curve of the numerical
was not influenced by the length of crack propagation.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

CMOD [mm]

0

5

10

15

20

25

Fo
rc

e 
[k

N
]

                Experiment 
                SBFEM

Figure 6. Numerical predictions of load–CMOD curves and the corresponding experimental curves
for the single-notched three-point bending test under monotonic loading.

The crack propagation due to increasing load with initial ∆a = 3.0 mm is shown in
Figure 7. Our results show a straight crack path in the direction of the point of external
load (F). Th fracture process zone extends up in the middle of the beam Figure 7b at
peak load before cracking. At a load of 5.763 kN, the crack propagates in the post-peak
region (Figure 7c). For this load level, the cohesive force vanishes. Finally, as the actual
crack’s length is increased, the fracture zone is shortened, as expected, by increasing the
load level; see Figure 7d. The influence of the size of stiffness degradation is depicted for
both small and large tests in Figure 8, which shows the numerical predictions, along with
experimental measurements of monotonic tests based on [8]. The nominal strength (σN)
of SBFEM numerical results were determined in the same way in [8] under monotonic
behavior. It is calculated by [1,52]:

σN =
cnFu

bh
, (50)
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where Fu is the ultimate force and cn = 3L0/(2h− h0) is determined by the bending theory
for notched beams. Figure 8 depicts a log–log plot of the the relative size of the beam
(horizontal axis) and the nominal strength (vertical axis). The numerical results and the
experiments of [8] indicate that the nominal strength is increased by decreasing beam
size. The numerical results of nominal strength and the experimental data have a ratio of
1.01–1.04 for small beams, and a ratio of 0.98–1.02 for large beams. In addition, less scatter
in the predictions of the large beams was obtained.

(a) (b)

(c) (d)
Figure 7. Crack propagation in SBEM subjected to three-point bending tests. (a) Load = 8.347 kN
(pre-peak), (b) load = 18.75 kN (peak load), (c) load = 5.763 kN (post-peak), (d) load = 2.514 kN
(post-peak).
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Figure 8. The effect of the size of the beam on the nominal strength under monotonic behavior.

4.4. Cyclic Loading

Figure 5 shows the numerical predictions and the experimental measurements for
cyclically increasing loading. The loading was controlled by the CMOD for three unloading
cycles and applied until failure. Good agreement of the numerical predictions (Figure 9b)
with respect to the experiment tests (Figure 9a) is obvious.
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Figure 9. Comparison of numerical predictions (a) and experimental measurements (b) of Cyclic-
CMOD curves for the single-notched three-point bending test.

Furthermore, in our analysis we explore the main dissipative mechanisms. For this
purpose, the TPB beams were subjected to a few loading cycles with an incremental increase
in the CMOD values. The obtained cyclic responses for both small and large beams are
plotted in Figure 10a,b, respectively. One of the principal noticeable effects during the cyclic
loading in the post-peak regime is the degradation of the unloading stiffness, which defines
the value of the damage. From the damage evolution, it was observed that the damage
parameter had a value larger than 0.5 at the first post-peak cyclic load for a small beam;
the damage started to progress in the pre-peak subcritical load levels. Furthermore, the
damage parameter ω has a value larger than 0.65 for a large beam.
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Figure 10. Post-peak cyclic behavior of SBFEM analysis and corresponding damage evolution for
(a) a small beam and (b) a large beam.

This is explained by knowing that the developed crack showed a rough surface that is
not fully closed during the unloading of the specimen. This was confirmed for the cyclic
behavior in the simulation of SBFEM and experiment tests. Additionally, the stiffness
degradation and the growth of unclosed crack openings were characterized for both sizes.

Plots of KI-CMOD are shown in Figure 11 for monotonic and cyclic applied loads.
In Figure 11a, the points that represent the initial mesh of Figure 4 were calculated once
KI ≥ 0. Then, the crack opened gradually based on a crack-propagation criterion. The
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numerical calculation of KI by SBFEM with a fewer degrees of freedom (DOFs) manifested
good crack trajectory predictions.
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Figure 11. KI − CMOD and loading-point curves for mode-I bending beam for: monotonic loading
(a) and cyclic loading (b).

Since the goal of the present study was to apply the constitutive law with a cumulative
damage feature within SBFEM, we considered only mode-I cyclic crack propagation in
our analysis. Further studies with applications to mixed modes loading are planned for
future publications, where more advanced constitutive cohesive zone models could be
used, e.g., [14,56].

5. Conclusions

Cracks in concrete can occur when the tensile stresses imposed by actions exceed the
tensile strength of the material. Furthermore, the cracks can also be initiated under repeated
loads with stress levels below the tensile strength. In this work, the cyclic cohesive crack
procedure-based SBFEM was implemented to study the crack propagation in concrete. The
proposed model showed the ability to simulate the monotonic and cyclic behavior of a
cohesive crack interface element, e.g., a concrete interface. It provided a realistic prediction
of cyclic damage behavior for up to several load cycles. The output for the numerical
simulation of monotonic loading analysis showed full agreement with experimental data
from the literature. The results differed 5% for the maximum peak force. Regarding
the nominal strength, the ratio of the numerical results to the experimental data under
monotonic loading varied between 1.01 and 1.04 for small beams. The ratio was 0.98–1.02
for large beams.

Additionally, the proposed procedure has been proved to be an efficient tool for
estimating the damage level. The level of damage accumulation (ω) and material plasticity
variables were calculated based on thermodynamics. The described damage model has been
successfully implemented to describe the cyclic behavior of cohesive interface elements
using SBFEM. The damage parameter ω has a value larger than 0.5 at the first post-peak
cyclic load for a small beam, and has a value larger than 0.65 for a large beam. The cyclic
responses obtained by SBFEM for both small and large beams presented good agreement
with the experimental data.

The predicted load–CMOD responses in the validation examples were within the
range measured in the cyclic and monotonic loading experiments. Testing results demon-
strated that the most important factors for the overall simulation were the thermodynamic
hardening modulus γ and the damage strength parameter S. The simulations executed to
study the effect of the loading sequence offered successful results and demonstrated the
effect of damage accumulation for realistic predictions for concrete structures.



Materials 2023, 16, 863 17 of 20

Author Contributions: Methodology, O.A., C.K., E.T.O. and K.M.H.; Validation, O.A., C.K., E.T.O.
and K.M.H.; Writing—original draft, Omar Alrayes, Carsten Könke, E.T.O. and K.M.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)- Projektnummer 492535144.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Khader M. Hamdia thanks the support by Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation)—Projektnummer 492535144.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

η, ξ Local coordinate system of SBFEM
{t} Traction cohesive force vector
r, θ Polar coordinate
∆a Crack propagation length
L Crack length
Kint Stiffens matrix of interface element
[J] Jacobian matrix on boundary
t Crack thickness
N(η) Nodal shape function
k Stiffens matrix of the domain
u Displacement field
d, w, s Displacements on the crack faces
ε Strain field
A Crack surface area
D Material constitutive matrix
wi Gaussian weight function
P Equivalent nodal load vector
n Number of integration points
[E0], [E1], [E2] Coefficient matrices of SBFEM system
Fn, Fs Normal and shear cohesive traction forces
Z Hamiltonian matrix
Ft Nodal side face load
q Internal nodal force vector
KI , KI I Crack mode I & mode II stress intensity factors
λ Eigenvalue matrices
φt Nodal displacement mode
ei Coefficent
φ Eigenvector matrices
c Integration constants of the SBFEM
[B1], [B2] Strain-displacement matrices of SBFEM system
M Number of displacement modes
σ Stress field
{.} Vector
[.] Matrix
[.]T Transpose of Matrix
[.]−1 Inverse of matrix
||.|| Norm of function, vector of matrix
δ Crack angle
ubs Boundary nodal displacement
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Thermodynamic Parameters
ρ Material density
E, ν Elastic stiffness matrix, Possion’s ratio
Y Energy release rate
γ, K Isotropic and kinematic hardening moduli
X, Z Thermodynamic hardening forces
ω Damage variable
α, z Hardening material variables
c, r Exponential damage parameters
S Damage strength parameter
τ Reversibility limit parameter
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