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Abstract
This work addresses the thermodynamically consistent formulation of bone remodeling as a fully implicit finite element
material model. To this end, bone remodeling is described in the framework of thermodynamics for open systems resulting in
a thermodynamically consistent constitutive law. In close analogy to elastoplasticmaterialmodeling, the constitutive equations
are implicitly integrated in time and incorporated into a finite elementweak form.A consistent linearization scheme is provided
for the subsequent incremental non-linear boundary value problem, resulting in a computationally efficient description of bone
remodeling. The presented model is suitable for implementation in any standard finite element framework with quadratic or
higher-order element types. Two numerical examples in three dimensions are shown as proof of the efficiency of the proposed
method.

Keywords Bone remodeling · Finite elements · Biomechanics · Thermodynamics with internal state variables

1 Introduction

Bone adapts to the loads under which it is placed. This
phrase was stated in 1892 by Julius Wolff and is today
referred to as Wolff’s law [41]. In the following, many
more researchers contributed to the theory and experimen-
tal validation of bone remodeling, among them [16,34], for
examples. Based on these insights, connecting mechanical
influences and biochemical reactions,many improvements in
orthopedic treatment could be introduced into clinical prac-
tice.

Cowin and Hegedus [11] should be stated here as the first
work to provide a closed mathematical description of bone
remodeling. This was the starting point for bone remodel-
ing simulations using finite elements, which has continued
to be an active field of research in computational biome-
chanics throughout the last four decades. Despite promising
results of even very early models [2,9,40], numerical insta-
bilities, like the occurrence of checkerboard-patterns, were a
recurring problem. Without stabilisation, those formulations
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were strongly mesh-dependent; refinement results in finer
structures with subsequently smaller areas either adopting a
prescribedminimum ormaximum value for the bonemineral
density.Many different approaches have been tried to achieve
stability. In [22], for example, a node-based method was
introduced, which successfully suppressed the checkerboard
modes for linear elements with the density held constant per
volume by averaging, which is related to the superconvergent
patch recovery method [44]. Finally, Harrigan and Hamil-
ton [19] showed under which conditions bone remodeling
with E-�-relations (cf. [10]) of the form

E

E0
=

(
�

�0

)n

, E0, �0, n ∈ R , (1)

have a stable and unique solution. By this time, three princi-
ple approaches for the remodeling stimulus were available in
the literature: (1) the stress approach, (2) the fatigue damage
approach, and (3) the strain energy density approach. Gener-
alizing these ideas, [8] (cf. [38]) defined a daily remodeling
stimulus

Ψd = K

[
N∑

i=1

niΨ
m
i

]
, K , m ∈ R , (2)
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with N different daily loading cases i , eachwithni repetitions
and associated stimulusΨi , and constants K andm. Choosing
an appropriate stimulus Ψi the approaches (1), (2), and (3)
can be recovered. Furthermore, it was shown that if Ψ is
uniform in the bone, the three approaches lead to the same
basic result. For more information, the reader is referred to
the excellent review article [38].

From the more recent past, two different approaches
should be mentioned here as examples: [24] and [17]. The
former models bone adaption with a strain energy density
stimulus built upon a profound theory for thermodynam-
ically open systems, cf. [14,25], and the latter describes
bone remodeling in analogy to damage mechanics. It is
remarkable that even in the most recent contributions, the
most prominent approach for time integration of the consti-
tutive equations is the so-called “staggered”-approach (cf.
[21,26,31,35,37]). This approach can be roughly defined by
the following three steps: (1) solve a purely linear finite ele-
ment model of the bone to obtain the mechanical stimulus at
the nodes, (2) update the bone mineral densities at each node
according to the discretized constitutive function and (3)
update Young’s modulus of each integration point according
to the E-�-relation. This procedure is repeated until conver-
gence is achieved. The advantage of this approach is that no
modifications of any finite element routines are necessary.
The major disadvantage is the poor computational efficiency
since explicit time-integration of the constitutive equations
has to be performed.

It should be noted that there exists a variety of different
approaches to achieve stability in computational bone remod-
eling, for example, [7,15], or [13]. However, all of the latter
require some smoothing, averaging, or projection, making
them difficult or impossible to implement as a standard finite
element material model at the integration point level.

In this contribution, the integration point approach pre-
sented in [24] is adopted, but all steps are derived in close
analogy to [12], which results in a thermodynamically con-
sistent description of bone remodeling as an infinitesimal
strain finite element material model with superior computa-
tional efficiency due to the fully implicit formulation. As a
novel result, the inner local Newton iteration present in the
integration point-based approach in [24] can be omitted.

2 Constitutive theory

The following briefly summarizes some essential relations
between thermodynamically open systems and constitutive
modeling. For a complete review of the theory of thermo-
dynamically open systems, the reader is referred to [25] or
[23]. In addition, it should be noted here that there exist a
set of fundamental principles of material theory, which has
to be fulfilled by any constitutive model, for example, the

principle of determinism or the principle of objectivity. The
reader is referred to [12] or [33] for a complete description
of constitutive modeling.

2.1 Balance of mass

The local version of the balance of mass for open systems
can be stated

Dt� = R (3)

as the equality of the rate of chance of the spatial mass den-
sity � and a mass source R, which is left to be defined in
Sect. 4. Many other bone tissue models with a balance of
mass of type (3) can be found in the literature by, amongst
others, [3,19,40]. The incorporation of a mass flux into the
latter equation, as shown in [25], is omitted here. In doing
so, the resulting set of governing equations would require a
numerical discretization scheme, the solution ofwhichwould
be much more costly. To the authors, this additional expendi-
ture does not seem to be justified since for bone remodeling,
both approaches lead to the same basic results, as shown in
[24].

2.2 Dissipation inequality

Respecting the non-constant mass in an open system results
in an additional entropy source S, as shown in [29,36], or
[14], for example. Against this background, [25] provided
a free-energy density-based version of the Clausius–Duhem
inequality for open systems of the form

σ : Dtε − �Dtψ − �(S + Dθψ)Dtθ − Sθ

− Q · ∇X ln θ ≥ 0 , (4)

where ε is the linearized strain tensor, � the mass den-
sity, ψ the specific Helmholtz free energy function, S the
entropy, θ the absolute temperature, and Q the heat flux. The
Clausius–Duhem inequality can be decomposed into a local
termd loc, typically referred to asClausius–Planck inequality,
and a conductive term dcond, typically referred to as Fourier
inequality. Both terms are required to hold separately:

{
d loc = σ : Dtε − �Dtψ − �(S + Dθψ)Dtθ − Sθ ≥ 0

dcon = −Q · ∇X ln θ ≥ 0
.

(5)

Here, the assumption is made that all processes are mod-
eled as isothermal processes. Due to that assumption the
Clausius–Duhem inequality reduces itself to the local part
d loc, since dcon ≥ 0 holds if ∇X ln θ = 0 .
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2.3 A thermodynamical consistent constitutive law
for bone remodeling

Following [12], it will be assumed that the set of state vari-
ables

{�, ε} (6)

determines the thermodynamical state for any time t at a
point X ∈ B0, where ε is the linearized strain tensor and �

is reinterpreted as the bone mass density. Consequently, the
specific Helmholtz free energyψ = ψ(�, ε) is dependent on
the state variables. Using the relation (3), the material time
derivative of the free-energy follows as

Dtψ(�, ε) = ∂�ψ Dt� + ∂εψ : Dtε

= ∂�ψ R + ∂εψ : Dtε . (7)

Inserting the above into the Clausius–Planck inequality
(5)1 yields

d loc = (σ − � ∂εψ) : Dt ε − � ∂�ψ R

− �(S + Dθψ)Dtθ − Sθ ≥ 0 , (8)

from which the constitutive equations

σ = � ∂ε ψ , S = −Dθ ψ = 0, and

S = −�
1

θ
∂�ψ R (9)

are implied.By that procedure the fulfillment of theClausius–
Duhem inequality is guaranteed a priori. Concluding the
above, the thermodynamically consistent constitutive law for
isothermal bone remodeling can be stated as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ = ψ(�, ε)

σ = �∂ε ψ

Dt � = R

S = −� 1
θ

∂�ψR

. (10)

Since the constitutive model described above is only
dependent on the history of the linearized strain and bone
mineral density, it is possible to define the constitutive ini-
tial value problem: presuming the history of linearized strain
ε(t), t ∈ [t0, T ], and the initial value of the bone mineral
density �(t0) are known, find the history of σ (t) and �(t)
such that the constitutive equations

{
σ (t) = �(t) ∂ε ψ(�(t), ε(t))

Dt �(t) = R(�(t), ε(t))
(11)

hold for every t ∈ [t(0), T ] (c.f. [12]).

2.4 Density-weighted generalized Hooke’s law

For isothermal processes the strain energy density function

Ψ (�, ε) = � ψ(�, ε) (12)

is defined by the product of the bone mineral density �

and the specific Helmholtz free energy ψ (see e.g. [42]).
In bone remodeling, a quite common choice for the specific
Helmholtz free energy

ψ =
[

�

�0

]n

ψLE =
[

�

�0

]n 1

�

[
λ

2
(tr(ε))2 + μtr(ε2)

]
,

(13)

is based on a classical linear-elastic-type free energy func-
tion ψLE weighted by a relative density (�/�0)

n , where the
exponent n is typically varied between 1 ≤ n ≤ 3.5, and λ

and μ being Lamé constants, as shown in [10,18] or [25], for
examples. This provides a redefinition of the Cauchy stress
tensor as the density-weighted Cauchy stress tensor

σ = ∂εΨ = � ∂εψ =
[

�

�0

]n

σLE

=
[

�

�0

]n

(λtr(ε)I + 2με) . (14)

The density-weighted material tensor can then be derived
as

C = ∂εσ =
[

�

�0

]n

C
LE =

[
�

�0

]n

(λI ⊗ I + 2μI) . (15)

Finally, analogous to the generalizedHooke’s law for con-
tinuousmedia, its density-weighted counterpart can be stated
as

σ (�) = C(�) : ε . (16)

2.5 Relation of bone density tomechanical
properties

In numerous works, a relation between the bonemineral den-
sity and Young’s modulus of bone, with the general form of
equation (1), has been established (see, e.g. [10,18,30,32]).
Here, E0, �0, and n are left to be identified by experimen-
tal investigations and physical reasoning, an ongoing issue
in the scientific community. In [27] following basic material
properties for the E-�-relation have been proposed:

E0 = 6500
N

mm2 , �0 = 1
g

cm3 , n = 2 , and

� ∈ [0, 2]
[ g

cm3

]
. (17)
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It has been shown that this model fits experimental obser-
vations sufficiently and is therefore used here.

3 Finite element modeling

This section provides a finite element modeling approach
for bone remodeling. Herein, great care was taken on the
linearization of the weak form and the constitutive relations
and their incorporation into a Newton-Raphson scheme.

3.1 Weak form

A strong form of the governing equations describing bone
remodeling in the frame of small deformations and with
respect to an initial configuration of a continuum body B0

can be stated as

⎧⎪⎨
⎪⎩
Div(σ ) = 0 ,

ε = 1
2

(
Grad(u) + Grad(u)T

)
,

σ = C(�) : ε .

(18)

Furthermore, the existence and uniqueness of a solution
(cf. [39]) to the strong form (18) is only guaranteed with
a suitable set of boundary conditions prescribed on ∂B0,
namely Dirichlet boundary conditions on Γu ⊆ ∂B0 and
Neumann boundary conditions on Γσ = ∂B0\Γu :

u(X, t) = ū(X) ∀ X ∈ Γu and

t(X, t) = t̄(X) ∀ X ∈ Γσ . (19)

Equation (19) is equivalent to demanding u to be a
kinematically admissible displacement field and σ to be a
statically admissible stress field (cf. [39]).

Applying the principle of virtual work and some math-
ematical manipulations results in a standard weak form for
small strain elasticity

δΠ = δU − δW =
∫
B0

δε : σ dV −
∫
Γσ

δu · t dA = 0 . (20)

3.2 Material non-linearities

Presuming a constant material tensor C, the weak form (20)
is a linear boundary value problem that in a finite element
framework ultimately results in a linear system of algebraic
equations. Obviously, the latter does not hold here since in
bone remodeling C = C(�) is a density-weighted material
tensor (see Sect. 2.4). The evolution of bone mineral density
is described by the constitutive initial value problem given in
equation (11), a constraint that has to be fulfilled in addition

to the weak form. Therefore, the problem becomes a non-
linear initial boundary value problem:

{
δΠ(�(t), u(t)) = 0

Φ(�(t), u(t)) = Dt �(t) − R(�(t), ε(t)) = 0
, (21)

with the prescribed history of Dirichlet boundary conditions

u(X, t) = ū(X, t) ∀X ∈ Γu , ∀t ∈ [t0, T ] , (22)

the prescribed history of Neumann boundary conditions

t(X, t) = t̄(X, t) ∀X ∈ Γσ , ∀t ∈ [t0, T ] , (23)

and the initial internal bone mineral density field

�(X, t0) = �0(X) ∀X ∈ B0 . (24)

In general, the constitutive model is path-dependent, and
for problem (21), a closed-form solution is not available.
Choosing a backward Euler numerical integration scheme
for the constitutive initial value problem (11) results in the
definition of an incremental constitutive function for the bone
mineral density

�(n+1) = �(n) + Δ� = �(n) + ΔtR̂(�(n), ε(n+1)) , (25)

where R̂ is the algorithmic counterpart of the mass source
R and Δt = t(n+1) − t(n), and an incremental constitutive
function for the stress tensor

σ (n+1) = σ̂ (�(n), ε(n+1)) = C(�(n) + Δ�) : ε(n+1) . (26)

As a next step, the above is reintroduced into the weak
form (20), resulting in an incremental boundary value prob-
lem. Because within one time-step, the bone mineral density
is held constant, we can think of δΠ(n+1) = δΠ(u(n+1)) as a
function of the unknown displacements u(n+1) alone, which
makes the constitutive model path-independent within one
time-step:

δΠ(n+1) = δU(n+1) − δW(n+1)

=
∫
B0

δε : C(�(n) + Δ�) : ε(n+1) dV

−
∫
Γσ

δu · t(n+1) dA = 0 . (27)

The above is a non-linear equation and needs consistent
linearization in order to be solved via a Newton-Raphson
scheme.
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3.3 Linearization

Presuming the displacement field u(n) is known and δΠ is
sufficiently smooth in t , a expression for the unknown virtual
work

δΠ(n+1) = δΠ(u(n+1)) = δΠ(u(n) + Δu) , (28)

can be derived at time-step t(n+1) = t(n) + Δt and u(n+1) =
u(n) + Δu by truncating a Taylor series expansion:

δΠ(u(n) + Δu) ≈ δΠ(�(n), u(n))

+ Δ(δΠ(�(n), u(n), Δu)) . (29)

Albeit δΠ only exhibits a variation in u, δΠ was written
as a function of � and u to indicate the used time-step of
each quantity. The same Taylor expansion is applied to the
incremental constitutive function, which, by defining Δε =
Grad(Δu), can be stated as

σ̂ (�(n), ε(n+1)) ≈ σ̂ (�(n), ε(n)) + Δσ̂ (�(n), ε(n), Δε) .

(30)

The variation of the incremental constitutive function can
be found by defining the trial strain ε∗

(n+1) = ε(n) + Δε and
applying the chain rule:

Δσ̂ (�(n), ε(n), Δε)

=
[
C(�(n) + Δ�)

∂ε∗
(n+1)

∣∣∣∣
t
: ε∗

(n+1) + C(�(n) + Δ�)

]
: Δε

= C̄(n+1) : Δε , (31)

where C̄ is the consistent tangent modulus. We can then fur-
ther define the known principle of virtual work at time-step
t(n):

δΠ(�(n), u(n)) = δU(n) − δW(n) , (32)

and the increment of the virtual work:

Δ(δΠ(�(n), u(n), Δu)) = ΔδU(n) − ΔδW(n) , (33)

with the virtual work of internal forces at time-step t(n) being
defined as

δU(n) =
∫
B0

δε : σ (n) dV =
∫
B0

δε : σ̂ (�(n), ε(n)) dV , (34)

the virtual work of the external forces at time-step t(n) as

δW(n) =
∫
Γσ

δu · t(n) dA , (35)

and the increments of the internal virtual work and the exter-
nal virtual work as

ΔδU(n) =
∫
B0

δε : C̄(n+1) : Δε dV (36)

and

ΔδW(n) =
∫
Γσ

δu · Δt dA , (37)

respectively, with Δt = t(n+1) − t(n). Summarizing all of
the above, the resultant linearized weak form can be stated
as

∫
B0

δε : C̄(n+1) : Δε dV =
∫
Γσ

δu · t(n+1) dA

−
∫
B0

δε : σ (n) dV . (38)

3.4 Discretization in space

In the following, Voigt’s notation ã for symmetric tensors a
is used. Presuming a standard discretization strategy of B0

with Lagrangian finite elements, a discretized weak form for
a generic finite element e can be stated as

(δũe)
T

∫
Be

BT ¯̃
C(n+1) B dV

︸ ︷︷ ︸
Ke

(n+1)

Δ ˆ̃ue

= (δũe)
T
[ ∫

Γσe

HT ˆ̃te(n+1) dA

︸ ︷︷ ︸
f e,ext
(n+1)

−
∫
Be

BT σ̃ (n) dV

︸ ︷︷ ︸
f e,int
(n)

]
, (39)

where ˆ̃ue is the element displacement vector,H is the element
displacement field interpolation matrix and B is the element
strain interpolation matrix. ˆ̃ue, and B are chosen such that
multiplying results in Voigt notated strains:

ε̃ = B ˆ̃ue . (40)

Note, since Eq. (39) has to hold for arbitrary admissible
virtual displacement fields δu, the equivalent system of equa-
tions for an element e is written as

Ke
(n+1) Δ ˆ̃ue = f e,ext

(n+1) − f e,int
(n) . (41)
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Subsequently, the assembled systemsatisfying themechan-
ical equilibrium equations is written as

K(n+1) Δ ˆ̃u = f ext(n+1) − f int(n) , (42)

which can be solved for the unknown incremental displace-
ments Δ ˆ̃u, provided valid boundary conditions have been
incorporated into the system of equations. For more infor-
mation on finite element modeling and spatial discretization,
the reader is referred to [43] or [6].

3.5 Non-linear solution: the Newton-Raphson
scheme

In order to solve the non-linear equation (27), the itera-
tive Newton-Raphson method is employed. The Newton-
Raphson iteration counter will be denoted by a superscript
(k) in parentheses, with the first iteration starting at k = 1,
while global time increments will be denoted by a subscript
(t) in parentheses.

For the first global time-step, the global displacement vec-
tor and the bone mineral density have to be initialized:

ˆ̃u(0) = 0 and �(0) = �0 , (43)

where �0 is an initial bone mineral density field that can be
chosen arbitrarily as long as it does not contradict any of the
requirements made above. Note that the displacement field
is initialized at the nodal positions while the bone mineral
density is initialized at the integration points. Presuming, the
solution ˆ̃u(n) is known, the updated solution vector

ˆ̃u(n+1) ≈ ˆ̃u(m−1)
(n+1) + Δ ˆ̃u(m) = ˆ̃u(n) +

m−1∑
i=1

Δ ˆ̃u(i) + Δ ˆ̃u(m)

(44)

is computed from the increments Δ ˆ̃u(k) of a converged
Newton-Raphson procedure with (m) iterations. An incre-
mental version of theweak form (39) at t̄ = t(n)+∑k−1

i=1 Δt (i)

can be stated as

(δũe)
T

∫
Be

BT ¯̃
C

(k)
(n+1) B dV

︸ ︷︷ ︸
Ke(k)

(n+1)

Δ ˆ̃ue(k)

= (δũe)
T
[ ∫

Γσe

HT ˆ̃te(n+1) dA

︸ ︷︷ ︸
f e,ext
(n+1)

−
∫
Be

BT σ̃
(k)
(n+1) dV

︸ ︷︷ ︸
f e,int(k)
(n+1)

]
. (45)

In the above, the algorithmic consistent material tangent
can be derived as

¯̃
C

(k)
(n+1) = C̃(�(n) + Δ�(k))

∂ ε̃∗
(n+1)

∣∣∣∣
t̄
: ε̃

tr,(k)
(n+1) + C̃(�(n) + Δ�(k)) ,

(46)

where the iterative trial strains

ε̃
tr,(k)
(n+1) = ε̃(n) +

k−1∑
i=1

Δε̃(i) (47)

are defined at the integration points, and the stresses are given
by

σ̃
(k)
(n+1) = σ̃ (n) +

k−1∑
i=1

Δσ̃
(i)
(n+1) . (48)

Note that the increment of the bone mineral density

Δ�(k) = ΔtR̂(�(n), ε̃
tr,(k)
(n+1)) (49)

still only depends on the last converged bone mass density
�(n) and the trial strains ε̃

tr,(k)
(n+1). Assembling the elementweak

form (45) results in the system of equations

K(k)
(n+1) Δ ˆ̃u(k) = f ext(n+1) − f int(k)

(n+1) , (50)

which is solved for the unknown increment Δ ˆ̃u(k). The
Newton-Raphson iterations are repeated until, for some time-
step (m), the procedure is said to be converged, if the
following condition is fulfilled:

||Δ ˆ̃u(m) − Δ ˆ̃u(m−1)||
||Δ ˆ̃u(1)|| < εtol , (51)

where εtol is a user-defined parameter. Once convergence is
achieved, the bone mineral density is updated:

�(n+1) = �(n) + Δ�(m) . (52)
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Algorithm 1 Material subroutine

1: procedure response(ε̃(k)
(n+1), �(n))

2: Δ�(k) ← ΔtR(�(n), ε̃
(k)
(n+1))

3:
¯̃
C

(k)
(n+1) ← C̃(�(n)+Δ�(k))

∂ ε̃∗
(n+1)

∣∣∣∣
ε̃

(k)
(n+1)

: ε̃
(k)
(n+1) + C̃(�(n) + Δ�(k))

4: return (
¯̃
C

(k)
(n+1) , Δ�(k))

4 Strain energy density-driven bone
remodeling

In Sect. 2, a thermodynamic consistent constitutive law
describing bone remodeling has been proposed. The balance
of mass has been defined in Eq. (3), while the mass source
R was left to be defined. According to the principle of ther-
modynamic determinism R = R(�, ε) has to be a function
of the state variables {�, ε}. In this work, a strain energy
density-driven bone remodeling approach is adopted. In [3]
a strain energy density approach of the form

R = c
(
Ψ − Ψ ref

)
, (53)

has been introduced, where

Ψ = �ψ = �

(
�

�0

)n

ψLE (54)

is the density-weighted strain energy density for a linear elas-
tic material restricted to small deformations [see Eq. (13)],
Ψ ref is a physiological target value that should be adopted by
the density-weighted strain energy density, and c is an addi-
tional parameter with the unit time divided by area, which
governs the speed of the bone remodeling process. In [19] a
extension of this approach has been suggested

R = c

((
�

�0

)−m

Ψ − Ψ ref

)

= c

(
�

(
�

�0

)n−m

ψLE − Ψ ref

)
, (55)

by the introduction of an additional factor (�/�0)
−m . By set-

tingm = 0 the approach of [3] is recovered, while it has been
shown that by choosing m > n, uniqueness and stability of
the solution is guaranteed [19]. The necessity of the stability
criterionm > n for strain energy density-driven bone remod-
eling, as introduced in Eq. (55), can be demonstrated by the
following example: For an arbitrary point in the continuum
we choose �0 = 1 g/cm3, n = 2, Ψ LE = �ψLE = 0.1 g/cm3,
Ψ ref = 0.05 g/cm3, and Δt · c = 1 s2/m. Since Ψ ref is to be

adapted by Ψ LE, it is clear that the actual bone mass den-
sity � must increase. In Fig. 1, the change of density Δ� is
plotted for m = 0 and m = 3 over all possible actual mass
densities � ∈ [0.1, 2]. For m = 0, it becomes visible that,
contrary to the physiologically desired behavior, bone mass
density decreases for small actual values of bone mass den-
sity. As the actual density gets larger, the change in bonemass
density increases quadratically. In contrast, for m = 3, the
largest change in bone mass density occurs with small actual
values of bonemass density and decreases as the actual value
increases, which can be seen as a saturation effect. While the
former example promotes checkerboard patterns due to the
unphysiological behavior, the latter suppresses these patterns
successfully.

5 Material subroutine

During the integration of the local stiffness matrix

Ke
(n+1) =

∫
Be

BT ¯̃
C(n+1) B dV , (56)

0.5 1 1.5 2

0.2

0.4

0.6
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� [ g
cm3 ]

Δ
�
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cm
3
]

m = 3
m = 0

Fig. 1 Change of bone mass density depending on the current bone
mass density
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the algorithmic consistent tangent modulus (46) is evaluated
at the supporting points of the numerical integration scheme.
Consequently, state variables {�, ε} are discretized and stored
at the integration points. Thus, the nature of bone remodeling
only manifests itself in the material subroutine of the finite
element framework.

Consider a global time-step [t(n), t(n+1)] and a Newton-
Raphson iteration (k). At each integration point X I , the
material subroutine is executed with the trial strains

ε̃
(k)
(n+1) = ε̂

(
X I , ε̃(X I , t(n)),Δε̃

(
X I , t(n) +

k−1∑
i=1

Δt (i)
))

(57)

and the last converged state of the bone mineral den-
sity �(n) = �(X I , t(n)) as input arguments. By recalling
that within the Newton-Raphson iteration of a time-step
[t(n), t(n+1)], only the trial strains are allowed to be altered
(cf. [12]), it gets clear that for obtaining the iterative change
in bone mineral density

Δ�(k) = ΔtR(�(n), ε̃
(k)
(n+1)) (58)

only an evaluation of the function R is necessary since
the quantities �(n) and ε̃

(k)
(n+1) are known, and no internal

Newton-scheme is necessary. The material subroutine is
briefly summarized in Algorithm 1.

5.1 Principle of static-equivialent forces and related
biomechanical-equilibrated bone-mineral
density distribution

At this point, it shall be noted that bone remodeling is a
long-term process that takes place over a period of years.
This justifies the omission of dynamic forces if the quan-
tity of interest is a biomechanical-equilibrated bone-mineral
density distribution [11,20,28].

Now consider a quasi-static example for a linearized-
weak form of type (38) for a non-linear but time-independent
material: if the surface loads are held constant between
two time-steps t(n) and t(n+1), no Newton-Raphson iteration
would take place since the external forces f ext(n+1) are already

in balance with the internal force f int(n).
Contrary, in bone remodeling as described here, two

(pseudo)-time constants were introduced: (1) Δt for the
implicit Euler time integration and (2) c as a constant describ-
ing the process speed in equation (53). That results in a
possibly out-of-balance right-hand side, although forces are
held constant between two time-steps. By that, it is possible
to define a biomechanical-equilibrated bone-mineral density
distribution: assume t = t(X) and � = �(X) are given
surface loads and a given bone mineral density distribution,

y

x

q y

Fig. 2 Thin plate model: schematic representation (top) and sample
discretization (bottom)

respectively. �(X) is called biomechanical-equilibrated with
respect to t , if σ (n+1) = σ (n) for t(n+1) = t(n) = t .

It is noted here that, albeit being unconditionally stable
for many problems, the time discretization constantΔt in the
backward Euler method cannot be chosen arbitrarily large in
order for the Newton-Raphson procedure to converge.

What remains is a meaningful definition of t: in [28], sur-
face loadswere computed by solving the inverse optimization
problem

min
t

1

2

nelems∑
I=1

(�(X I , ε) − �ref(X I ))
2 , (59)

where �ref(X I ) has been obtained by projecting 3D-CT data
from a human femur to an associated finite element mesh.

6 Numerical examples

In this section, numerical examples demonstrate the correct
implementation of the bone remodeling algorithm. The entire
project was implemented independently in the language
[4]. Neither commercial nor open-source finite element soft-
ware has been used. MUMPS [1] has been used as a solver
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(a)m = 1 (b)m = 1

(c) m = 2 (d)m = 2

(e)m = 3 (f)m = 3

Fig. 3 Bone remodeling followed by X-ray simulation of thin plate model meshed by linear tetrahedral elements. The left-hand side pictures are
derived from the coarse mesh; the right-hand side pictures from the finer mesh
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Fig. 4 Convergence history of
bone remodeling material model
depicted by the number of
Newton iteration for 8 external
load steps. Depicted is the
l2-norm of the increment of the
displacement vector and the
l2-norm of the residuum

5 10 15 20 25 30 35

1p

100p

10n

1μ

100μ

0.01

1

100

10k
||dU||
||R_int-R_ext||

#Newton-iteration

||
er

ro
r|

| 
(l

og
-s

ca
le

)

for the linear system of equations. The first example is a thin
plate where the variation of the parameter m shall be inves-
tigated. The second example is the human femur, where the
influence of the reference strain energy Ψ ref is studied.

For both examples following assumptions are made: to
define the bone material, the parameters introduced in (17)
are used. The shear modulus is set to ν = 0.3, and a com-
bined parameter Δt · c = 50 s2/m is used for controlling
the speed of the adaption process. The force is constant and
the maximum number of global time-steps is (nmax) = 120.
The algorithm is said to be converged if, for some timestep
1 < k ≤ n: |�(k)(X I ) − �(k−1)(X I )| < εtol for all integra-
tion points X I . All results are transferred to X-ray images
according to [5] since the internal bone mineral distribution
is easier to infer from a reduced representation. As a result
no smoothing of the results from post-processing has taken
place. Note that no color scale is given as this is an arbitrary
result of the calibration of the X-ray simulation attenuation
law. For a rigorous calibration, one would need several X-ray
images of different specimens produced with a standardized
X-ray device. Since this was not done, the results are only a
demonstration of the performance of the presented method.

All simulation start with a homogenous bone mineral dis-
tribution with �(0)(X I ) = 1 g/cm3 for all integration points
X I . It shall be mentioned here that the simulation converges
to the same results, even if the bone mineral density is mod-
eled as an appropriate smoothGaussian randomfield. For this
case, the number of external load steps necessary increases
significantly. As a remark, it can be stated that in the con-
vergent case, the increment of the bone mineral density field
||Δ�|| = ||�(n) − �(n−1)|| decreases monotonically over the
load steps for a constant load vector t(n+1) = t(n) = t .

6.1 Model 1: thin plate

As afirst example, a thin three-dimensional platewith dimen-
sions of 20 cm×20 cm×1 cm is clamped on its left-hand side,
and a shear force qy(y) = 1 kN/mm at 9 cm ≤ y ≤ 11 cm
is applied at the right-hand side as displayed in Fig. 2. The
reference strain energy density is set to Ψ ref = 10−3 N/mm2.
The exponent m is varied in order to study the influence of
this parameter. The results of X-ray simulations of the thin
plate following the bone remodeling process are shown in
Fig. 3 for linear shape functions and in Fig. 5 for quadratic
shape functions.
Finite elements with linear shape functions. The thin plate
model is discretized by linear four-node tetrahedral elements,
resulting in a mesh with 709 elements and 816 degrees of
freedom by choosing a coarse discretization scheme or, for
a finer discretization scheme, in a mesh with 3081 elements
and 3267 degrees of freedom.

For the exponentm = 1, it can be seen that strong checker-
board patterns occur for both discretizations, the coarse one
shown in Fig. 3a and the finer one displayed in Fig. 3b. There-
fore, convergence of the global algorithm is not achieved,
while quadratic convergence of theNewton-Raphsonmethod
is preserved in almost every load step, as shown in Fig. 4. It
should be noted that the quadratic convergence rate is missed
when too large load steps are applied, which is probably the
case at the beginning of each simulation or when the resid-
ual becomes too small due to the numerical tangent modulus
used. As the exponent m increases, the bone mineral density
distribution gets smoother, as seen by comparing Fig. 3c,
e or Fig. 3d, f, respectively. Still, unphysical checkerboard-
like patterns are not entirely suppressed. As all the results
exhibit unphysical patterns, it can be concluded that linear
finite elements are unsuitable to perform bone remodeling
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(a)m = 2 (b)m = 2

(c) m = 3, (nconv) = 13 (d)m = 3, (nconv) = 16

(e)m = 4, (nconv) = 11 (f) m = 4, (nconv) = 11

Fig. 5 Bone remodeling followed by X-ray simulation of thin plate model meshed by quadratic tetrahedral elements. The left-hand side pictures
are derived from the coarse mesh; the right-hand side pictures from the finer mesh
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simulations, without further treatment of these effects, with
the methods described here.
Quadratic finite elements The thin plate model is discretized
by quadratic ten-node tetrahedral elements, resulting in a
mesh with 709 elements and 4566 degrees of freedom by
choosing a coarse discretization scheme or, if a finer dis-
cretization scheme is applied, in a mesh with 3081 elements
and 19,032 degrees of freedom. For simulations with m = 1
(not depicted), convergence of the global algorithm was not
achieved, and unphysical patterns could be seen. For m = 2,
the same unphysical patterns occur but are less pronounced,
as seen in Fig. 5a or b. The exponent being m = 3 is the
first case where no unphysical patterns are visible, and the
global algorithm converges in 13 steps for the coarse mesh
and 16 steps for the finer mesh. In Fig. 5c, disturbances can
be seen near the support and force application, but these phe-
nomena disappear if the mesh is refined, as seen in Fig. 5b.
It can be observed that while m increases, global conver-
gence is enhanced in general. The Newton-Raphson scheme
preserved quadratic convergence as discussed for linear ele-
ments in the previous example.

6.2 Example 2: human femur

A human femur serves as a second example. Boundary
and loading conditions were straightforwardly adopted from
[27], where loading conditions for the quasi-static case were
calculated by solving the inverse problem stated in (59). A
total net force of 382 N was applied to the femur. The dis-
tribution of the applied forces can be seen in Fig. 6. This
static load-equivalent leads to a biomechanical-equilibrated
bone-mineral density distribution (cf. Sect. 5.1), which
approximately corresponds to the psychological distribution.
Formore information on boundary and loading conditions for
the quasi-static case and the solution of the inverse problem,
the reader is referred to [27,28]. Since linear finite elements
did not perform sufficiently in the last example, the model
is meshed solely by ten-node quadratic tetrahedral elements,
resulting in 21,451 elements and 102,048 degrees of free-
dom. The exponent m is set to m = 4 since this setting
resulted in the fastest convergence rate in the last example. At
the same time, the reference strain energy density is altered
to study its influence. The results are transferred to X-ray
images and depicted in Fig. 7. In Fig. 7a, it can be seen that
Ψ ref = 0.00001 N/mm2 is too small as a reference strain
energy density and leads to a bone mineral density distribu-
tion that is nearly uniform and doesn’t develop visible zones
of compact and cancellous bone. Increasing Ψ ref leads to
bone mineral density distribution which can be considered
more realistic, as seen in Fig. 7b or, with even more promi-
nent developed zones with compact and cancellous bone, in
Fig. 7c. In Fig. 7d, it can be concluded that Ψ ref = 0.001
N/mm2 is too large as a reference strain energy with regard to

Fig. 6 Finite elementmodel of human femurwith boundary and loading
conditions

the force applied since, especially in the region of the femoral
head, the bone mineral density seems to be underdeveloped.
By that, it can be concluded that 0.0005 ≤ Ψ ref < 0.001
can be considered an optimal reference strain energy with
respect to the givenmodel, boundary, and loading conditions.
It should be noted that these are only preliminary evaluations.
For a proper evaluation, a comparison with medical studies
would be necessary, which was not done here. Finally, it can
be stated that for this example, the Newton-Raphson algo-
rithm preserved quadratic convergence as described for the
previous models, and the global algorithm has converged in
less than 15 time-steps. The computation time can be spec-
ified with less than 10 min on a desktop PC with Intel Core
i7 8700k with 32 GB DDR 4 RAM.

7 Conclusion

In this work, a fully implicit finite elementmaterial model for
bone remodeling was provided. The theory of open systems
was used to derive a thermodynamically consistent descrip-
tion of bone remodeling in analogy to [24]. In delimitation
thereof, incorporating the constitutive relations into the finite
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(a) Ψref = 0.00001 N/mm2 (b) Ψref = 0.0001 N/mm2 (c)Ψref = 0.0005 N/mm2 (d)Ψref = 0.001 N/mm2

Fig. 7 Bone remodeling followed by X-ray simulation of a human femur with different reference strain energy densities Ψ ref

element framework was done analogously to material mod-
eling, as described in [12]. This ultimately results in a novel
description of bone remodeling as a fully implicit and consis-
tent finite element material model. Due to the fully implicit
description, it is possible to implement bone remodeling very
efficiently into any standard finite element framework with
shape functions of quadratic or higher order. The additional
computational costs caused by the quadratic shape functions
can be easily outweighed by the ability of quadratic finite
elements to model rounded objects by many fewer elements.
The functionality of the described method was demonstrated
with two numerical examples.

The unsuitability of linear shape functions, with the meth-
ods used in this work, can be explained by the resulting
element-wise constant strains. This results in element-wise
constant strain energy densities, which are then adopted by
the bonemass density. It is noted that these and other unphys-
ical patterns, as depicted in Figs. 3e, f and 5c, d, would
not be readily visible from a standard finite element post-
processing. From that, it can be concluded that the results
shown in Fig. 7 are smooth on the integration point level
without any need for further numerical treatment.
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