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The Tiny-Tasks Granularity Trade-Off: Balancing
Overhead Versus Performance in Parallel Systems

Stefan Bora, Brenton Walker , and Markus Fidler , Senior Member, IEEE

Abstract—Models of parallel processing systems typically as-
sume that one has lworkers and jobs are split into an equal number
of k = l tasks. Splitting jobs into k > l smaller tasks, i.e. using
“tiny tasks”, can yield performance and stability improvements
because it reduces the variance in the amount of work assigned to
each worker, but ask increases, the overhead involved in scheduling
and managing the tasks begins to overtake the performance benefit.
We perform extensive experiments on the effects of task granularity
on an Apache Spark cluster, and based on these, develop a four-
parameter model for task and job overhead that, in simulation,
produces sojourn time distributions that match those of the real
system. We also present analytical results which illustrate how
using tiny tasks improves the stability region of split-merge systems,
and analytical bounds on the sojourn and waiting time distributions
of both split-merge and single-queue fork-join systems with tiny
tasks. Finally we combine the overhead model with the analytical
models to produce an analytical approximation to the sojourn and
waiting time distributions of systems with tiny tasks which include
overhead. We also perform analogous tiny-tasks experiments on a
hybrid multi-processor shared memory system based on MPI and
OpenMP which has no load-balancing between nodes. Though no
longer strict analytical bounds, our analytical approximations with
overhead match both the Spark and MPI/OpenMP experimental
results very well.

Index Terms—Network calculus, parallel processing,
performance bounds, processing overhead, Spark, synchronization
constraints, task granularity, tiny-tasks.

I. INTRODUCTION

PARALLEL processing systems improve performance by
dividing large jobs into smaller tasks, and distributing those

tasks to a cluster of many workers. To a first approximation, the
total amount of processing time does not change, but the amount
of time a user must wait for the result can be reduced by orders
of magnitude. Because of the distributed computation, the size
of the data set that can be operated on, and held in RAM, is
correspondingly increased.

The first impulse, both in modeling such systems and in
practice, is to divide each job into tasks so that it fits evenly
on the available workers. If k is the number of tasks, and l is

Manuscript received 28 February 2022; revised 28 September 2022; accepted
29 November 2022. Date of publication 4 January 2023; date of current version
10 March 2023. This work was supported in part by the German Research
Council (DFG) under Grant VaMoS FI 1236/7-1. Recommended for acceptance
by B. DiMartino. (Corresponding author: Brenton Walker.)

The authors are with the Institute of Communications Technology, Leibniz
Universität Hannover, 30167 Hannover, Germany (e-mail: stefan.bora@ikt.
uni-hannover.de; brenton.walker@ikt.uni-hannover.de; markus.fidler@ikt.uni-
hannover.de).

Digital Object Identifier 10.1109/TPDS.2022.3233712

Fig. 1. Five second sample of 4 jobs containing 400 tasks per job running
on an Apache Spark cluster with 50 executors. Execution times of successive
tasks are represented by alternating dark and light blue. Anything other than task
execution, i.e. overhead, is marked in red.

Fig. 2. Five second sample of 4 jobs, of the same mean size, containing 1500
tasks per job running on the same cluster.

the number of workers, this means taking k = l. Using a finer
granularity, taking k > l, so-called “tiny tasks”, actually can
have a great and positive impact on system performance. This
has been noted by practitioners [2], [3], [4], but so far only [1],
which this paper is an extension of, provides analytical results
relating task granularity to parallel system performance.

Figs. 1 and 2 show diagrams of the activity of 50 executors
(workers) in a standalone Apache Spark cluster servicing a
sequence of four jobs, divided into tasks with different levels
of granularity. In this case the jobs are processed as if they are
being submitted from a single-threaded driver program, so each
job does not begin until the previous one departs. In Fig. 1 the
jobs are divided into 400 tasks, and in Fig. 2 they are divided into
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1500 tasks. It is immediately apparent that more executors spend
much more time idling in the case with coarser task division.
Further, in the case with finer task division, the fourth job is
almost complete after 5000 ms, whereas in the coarser case, the
fourth job is just starting service.

The primary reason this happens is that when smaller tasks
are used, the variance in the amount of the work assigned to each
worker decreases. On the other hand, in real systems, there will
always be some trade-off limiting the performance gains. As
tasks are made smaller and smaller, at some point the overhead
of scheduling and gathering results from tasks will dominate the
operation.

This paper explores the issue of task granularity in three
domains. The first is experimental. We perform experiments
with a real Apache Spark system and a hybrid MPI/OpenMP
cluster to understand the sources of overhead, and the practical
limits of the performance gains that can be realized from refined
task granularity. Related measurements have been done before,
either to develop practical guidance for improving cluster per-
formance [2], [3], or in evaluating distributed schedulers that
could support larger degrees of parallelism [5]. In [6] the effects
of task granularity, and flat versus recursive task spawning, on
performance are investigated for several shared-memory task-
centric parallel systems. In our case we focus on statistically
principled experiments that use tasks with service times drawn
from controlled distributions. The results of these experiments
also serve to validate the other points.

Second we develop a model for system overhead based on
our measurements from the Apache Spark system, and use
simulation to study the effects of task tinyfication, and model
the effects of different types of scheduling overhead.

Finally we present queuing theoretic results. In analyzing the
split-merge system with tiny tasks, we will formulate the tiny
tasks model as a direct refinement of the “big tasks” model. We
will derive expressions for the stability region in both cases.
In the limit as k → ∞, the stability region approaches one.
We then derive statistical performance bounds for both the
split-merge and fork-join models with tiny tasks, and show how
their performance improves over the equivalent big tasks model.
As k → ∞, the performance approaches that of the ideal job
partition. This is achieved when the jobs are partitioned into
k = l equally sized tasks.

A. Systems, Models, and Stability Regions

Our experiments with real systems are focused on Apache
Spark, since it can be easily deployed on commodity hardware
and serves as a good representative of many models of parallel
processing with independent tasks. Spark is a popular parallel
processing engine that implements a map-reduce API [7], [8].
Other comparable map-reduce engines include Hadoop MapRe-
duce [9] and Flink [10]. Fig. 3 shows that, depending on the
constraints put on the system, a Spark program may exhibit
the scaling behavior of split-merge, fork-join, or single-queue
fork-join, three different models of parallel systems with quite
different scaling behavior. We will summarize those models and
some prior analytical work in this section.

Fig. 3. Scaling of sojourn time quantiles of the conventional (k = l) split-
merge, fork-join, and single-queue fork-join models for varying degrees of
parallelism. Exponential arrivals (λ = 0.2) and task service times (μ = 1.0).
We also include results for the ideal job partition, where a job is partitioned into
l equally sized tasks.

Fig. 4. Models of parallel systems.

Across all of the models we will discuss, there are some com-
mon random processes: the arrival, departure, and task service
process. LetA(n) forn ≥ 1denote the arrival time of jobn, and
D(n) the departure time. One key performance statistic we will
focus on is the job sojourn time (often called “response time”),
T (n) = D(n)−A(n). Given l parallel servers and k tasks per
job, let Qi(n) denote the task service time of task i ∈ [1, k]

of job n ≥ 1. The workload of job n, L(n) =
∑k

i=1 Qi(n),
is defined to be the total of the service required by all of its
tasks. The job service time Δ(n) is the total time a job spends
in service. That is, the time between when its first task begins
service and when all of its tasks finish service. This is often
referred to as the “makespan” in operations research. Note that
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for the parallel models,L(n) andΔ(n) are not necessarily equal.
The table below summarizes the most important variables and
symbols that we will use throughout this paper.

Fig. 4(a) shows a schematic of the fork-join model. Jobs enter
the system and are divided into k tasks (fork) that are assigned
one by one to l = k servers. Once all k tasks of a job are serviced,
the job leaves the system (join). The difficulty in analyzing
fork-join systems arises from the synchronization constraint of
the join operation, and an exact solution is only known for the
M | M|1 case with k = l = 2 [11], [12]. For broader classes
of systems, a variety of approximation techniques have been
used [13], [14], [15], [16], [17], [18]. More recently several
researchers have used stochastic network calculus to derive
performance bounds [1], [19], [20], [21], [22]. Many examples
of the fork-join pattern being used in practice are given in [23].

A schematic of the split-merge model is shown in Fig. 4(b).
The split-merge model, also referred to as “blocking fork-join”
in [20], has the additional synchronization constraint that the
system is blocked until the current job departs. Parallel systems
that behave like split-merge arise easily in practice. For example,
any Spark program with a single-threaded driver program, or
a single user submitting jobs from a data analysis notebook.
Related, but not exactly the same, many machine learning al-
gorithms require that all tasks in a job start and depart simulta-
neously to facilitate communication and data transfers between
the workers [24], [25], [26].

The analysis of the split-merge model turns out to be much
simpler because it behaves like a single-server system with
service times given by the service time of the largest task of each
job [13], [27], [28]. The problem with the conventional (k = l)
split-merge model is that it becomes unstable for utilizations
well below one, and it becomes unstable more quickly as the
degree of parallelism increases, as seen in Fig. 3. This has led
some researchers to discount the model as impractical [20].

A third model arises in practice. When jobs are submitted
by a multi-threaded driver program, MapReduce engines such
as Apache Spark and Hadoop MapReduce behave like a single-
queue fork-join system, where all tasks are held in a single FIFO
queue and assigned to servers as they become available [29].
Compared to the fork-join model, where tasks are bound to

particular servers and a large task can block tasks of subsequent
jobs, in the single-queue fork-join model small jobs can overtake
jobs with large straggler tasks. Mean sojourn times for such
systems are derived in [30], and bounds on the sojourn time are
derived using network calculus in [21].

Fig. 3 shows how job sojourn time scales with the number
of servers for these three models in the case with k = l and
exponential inter-arrival and task service times. The plot shows
performance bounds derived using network calculus in [20]
and [21], simulation results, and experimental results from an
Apache Spark cluster, and demonstrates that a Spark system
may behave like any of these three parallel models, depending
on how it is configured and how the driver program behaves.
For comparison, the plot includes the equivalent sojourn time
statistics for the ideal job partition. Both fork-join systems show
a logarithmic increase in sojourn time as the degree of paral-
lelism increases because of the synchronization constraint [20],
[31]. The performance of the split-merge system appears catas-
trophic by comparison.

Other popular platforms for parallel computation include task-
centric shared-memory systems such as Cilk [32], OpenMP [33],
and Threaded Building Blocks (TBB) [34]. These are especially
useful in applications that require coordination and data ex-
change between tasks, as all threads in the program can access
shared data structures, but their scaling is limited when used
on commodity hardware. Another popular tool is the Message
Passing Interface (MPI) [35] which can be used to coordinate
and exchange data between processes started across a cluster of
separate machines. These two types of platforms can be com-
bined to build hybrid parallel systems that offer the performance
benefit of the shared-memory system locally, but can scale to a
cluster of commodity machines [36], [37], [38], [39]. The nature
of the system overhead and load balancing mechanisms do not
quite conform to the conventional parallel models we presented
in this section. In Section VII we will discuss in more detail
how the systems differ and report on additional experiments on a
hybrid MPI/OpenMP cluster and apply our tiny-tasks analytical
results to it.

B. Introduction to Tiny Tasks

It is no surprise that parallel systems users have devised
methods to increase the performance of their systems, even in the
split-merge case. The simplest of these is to partition jobs into a
larger number of tasks than there are servers, k > l. A common
guideline for Spark systems is that the number of tasks should
be about three times the number of servers, i.e., k ≈ 3l [2],
or optimized through trial and error [3]. In shared-memory
systems task granularity is often discussed in terms of a target
task duration [4], [6]. Some researchers have proposed even
more extreme task granularity, k � l, coining the term “tiny
tasks” [40].

We would like to formalize our conception of the tiny tasks
regime. We assume a system with l servers and jobs partitioned
into k ≥ l tasks, where k may be orders of magnitude larger than
l. We define κ = k/l to be the factor of tinyfication (i.e., κ is
the average number of tasks from each job served by each of the
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Fig. 5. Split-merge model with tiny tasks.

servers). The least granular case, where κ = 1 and l = k, gives
us the conventional parallel models. We will refer to the tasks in
this case as “big tasks”. When κ > 1 we refer to them as “tiny
tasks”.

In the split-merge and fork-join cases, there may be some
ambiguity as to how the tiny tasks variants of these models work.
In both cases we model the tiny tasks system to behave in the
same way that Spark would behave when given k > l tasks per
job.

A schematic of the split-merge tiny tasks model is shown in
Fig. 5. Jobs are stored in a job queue, and if there is no job in
service, the head-of-line job is partitioned into k tasks (split)
which are then stored in the task queue. Since all servers are idle
at the start of a job, the first l tasks start service immediately.
Whenever a server finishes a task, it fetches the head-of-line task
from the task queue. When all k tasks have finished service,
the job leaves the system (merge) and the next job, if any, is
partitioned and starts service.

In the case of fork-join, using tiny tasks only makes sense
in the context of a single-queue model. In the standard fork-
join model, where tasks are bound to specific servers on arrival,
tiny tasks would make no difference. Therefore, throughout this
paper, when we refer to fork-join with tiny tasks, it should be
understood that we are referring to the single-queue fork-join
model.

II. TINY TASKS ON APACHE SPARK

Apache Spark is a popular parallelized data analytic platform
implementing the map-reduce paradigm, and therefore well
suited to evaluate the performance of tiny tasks on a real cluster
system. Some papers find that, on real systems, the scheduling
and bookkeeping overhead required by tiny tasks outweighs the
advantages [5] or makes it impracticable to run on platforms with
a centralized scheduler like Apache Spark [41]. In this section
we will report on our extensive measurements using varying
number of tasks per job, investigate the sources and behavior
of overhead, and present an overhead model suitable for use in
simulation and analytical models, that produces sojourn time
distributions matching real experiments.

A. Execution Model of Apache Spark

We experiment with Spark in stand-alone mode with the
default scheduler [42]. Fig. 6 shows a schematic of the Apache
Spark components. A cluster consists of numerous worker nodes
which offer their resources to the cluster manager. The cluster
manager allocates the resources to an application running a
driver program. Depending on the requested resources, each

Fig. 6. Schematic of the Spark model [42].

worker node can host one or more executors which connect to
the SparkContext in the driver program.

The SparkContext in the application maintains a queue of
jobs waiting to be scheduled. Every Spark job operates on a
Resilient Distributed Dataset (RDD). An RDD is a memory
representation abstraction [43] consisting of multiple partitions
which can be distributed throughout the cluster. There are two
types of operations that can be executed on an RDD. Transfor-
mations like map are used to create new RDDs from existing
ones in a lazy operation. Actions execute the calculations on
the cluster and block the thread until the result is returned.
Spark internally divides jobs into one or more stages consisting
of tasks which can run independently from each other. The
resulting execution plan is represented as a Directed Acyclic
Graph (DAG). A stage can include multiple transformations
and ends with an action. The most common reason for multiple
stages are operations that cause a shuffle, such as reduce-
ByKey, which lead to repartitioning of the RDD. The DAG
ensures that when there is a sequential dependency, tasks of
the next stage can only be executed after the previous stage
has finished.

B. Overhead

In any cluster with a central scheduler, like Apache Spark,
there is overhead which cannot be avoided. For example a task
must be scheduled for execution, and its code and data need to be
serialized and sent to an executor. Depending on the number of
tasks and executors handled by the scheduler, this can result
in substantial overhead relative to the actual task execution
time, especially with extremely small tasks with millisecond
run times.

Some of the scheduling delays depend on the speed of the
worker nodes and the network. The serialization technique used
is also of crucial importance because of the associated processing
and transmission time [44]. After receiving a task, the executor
must deserialize it before the actual workload can run. Depend-
ing on the workload, additional data may have to be fetched over
the network or loaded from disk. After the executor services the
task, the result has to be serialized and sent to the driver, and
written out to a disk or kept in memory. After a job finishes, the
scheduler has to collect the results of its tasks and return a result
that depends on the executed action.

There are two classes of overhead we will need to consider.
Task-service overhead is attributable to individual tasks and
blocks an executor core from servicing the next task. This type
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Fig. 7. Example of the Spark task duration with 1500 tasks/job with the
remaining parameters as in Fig. 13. The left bar shows a sample of the first
task of a job which ran on an executor whereas the right bar shows an example
of a task which is not the first task. The measurement of these examples will be
discussed in Section II.C.

of overhead is fairly well measured and represented in the Spark
UI and logs. Pre-departure overhead is the additional delay
after all tasks of a job complete, but before a job can depart.
It does not necessarily block the tasks of subsequent jobs from
being serviced. Since it is not attributable to individual tasks
during their run time, it is not well represented in the Spark
UI and task metrics. We deduce its statistical properties based
on the overhead model required to fit the experimental sojourn
time distributions on real Spark systems. This will be discussed
in more detail in Section II.F.

Fig. 7 shows a breakdown of the execution and overhead times
of two successive tasks running on a Spark cluster. They can be
categorized as follows:

Transmission time: The time used to send the task information
to the executor and to notify the driver about a finished task.
When the task result size is below a hard-coded threshold, it is
included in this transmission as well. If the result is larger, a
reference is included and the result is fetched asynchronously
later.

Task processing time on driver: Time between fetching the
task out of the queue and sending it to an executor, and the time
after receiving the message of a finished task and marking it as
finished on the driver.

Starting and finishing processing time on executor: Time
required for housekeeping on the executors. Includes parsing
the task message from the driver, decoding the task description
and putting the task in the execution queue before running the
task. After the task execution is done the executor marks the task
as finished, removes it from the list of running tasks and sends
the task status including the task result, depending on it’s size
and the configuration, directly or using the block manager, to
the driver.

Driver serialization time: The serialization time of a task
on the driver. In Spark this is done in two parts. First the task
itself is serialized. The main content is the task binary, which
is a broadcast variable, the RDD (in serialized form only the
identifiers), and the accompanying metadata such as stage and
task ID. In a second step the task description is serialized.
This object includes some redundant data such as the task and

partition IDs, but also additional data such as the executor ID
where the task will run, files and jars which needed to be added,
some resources, and the serialized task.

Executor deserialization time: The time needed to deserialize
the task on the executor. The standard Spark metrics include
in this the time to fetch the task binary, even if this happens
remotely. In our statistics we separate this into the item below.

Task binary fetching time: Time required to fetch the serialized
task function and RDD stored in a broadcast variable. Each
executor only has to fetch this remotely once. After that, the
local copy is used.

Task execution time: The time the executor spends actually
executing the task.

The task duration is the sum of the components above. As
a sanity check, this sum should equal the time between the
scheduling of the task until the driver receives its result. We
consider everything in the list above, except task execution time,
to be overhead.

Next to the listed overhead there are additional types of
overhead not considered in our experiments. The time to load
RDD data from the disk or over the network is beyond the scope
of our investigations. Also the time to fetch additional jar files
is not considered because it appears only once per application.

For clarity in the subsequent discussion, we need to introduce
some terminology and notation for overhead and how it relates
to the task service time process. Recall that the task service time,
Qi(n), is the time between when the scheduler takes up task i
of job n and when the worker becomes available to service the
next task. In real systems we consider these service times as
comprising two components.

Qi(n) = Ei(n) +Oi(n) (1)

where Ei(n) is the task execution time of task i of job n, and
Oi(n) is the task overhead. When doing experiments on a Spark
cluster, we can control the execution times of the tasks and draw
them from known distributions, but the tasks’ overhead is simply
a property of the system and we need to measure and model it.

C. Experiment Environment

For our Spark experiments we allocated 13 nodes from our
institute’s Emulab testbed [45], connected via a 1Gbit/s network.
To run experiments with more executors than physical nodes,
we ran several single-core executors inside Docker containers
on each worker node. This way the executors cannot share JVM
memory and behave independently. We used 12 nodes as worker
nodes, and 1 node as the master and driver node. The worker
nodes also hosted a Hadoop Distributed File System (HDFS) to
store the experiment logs.

We used Apache Spark version 3.0.0 preview2, modified
slightly to log more details about the processing of tasks and
jobs [46]. Specifically we added a Spark listener which stores
more detailed task metrics than what is available by default.
To run the experiments we extended SparkBench [47], a tool
created to benchmark Spark clusters. We implemented classes
which make it possible to run workloads in the manner of a
split-merge or single-queue fork-join system. We also added
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Fig. 8. Comparison of the sojourn time bounds of the single-queue fork-join and split-merge models with l = 50 servers and k tiny tasks. Jobs have exponential
inter-arrival times with parameter λ = 0.5s−1 and are composed of k tasks with exponential service times with parameter μ = k

l s−1. The analytical bound and
analytical approximation with overhead will be explained in Sections IV, V, and VI.

workloads to create jobs composed of tasks with service times
sampled from known distributions, in the experiments here an
exponential service time distribution. The workloads used in
our experiments simply take a sample from the service time
distribution, sit in a loop until its time expires, and finally returns
some internal task data.

Our environment makes it possible to perform experiments on
a Spark cluster that match as closely as possible the statistical
assumptions about task service time distributions made later in
developing an analytical model for tiny tasks. This is essential
when validating our analytical results through experiments and
simulation.

D. Simulation

We ran additional experiments using forkulator, an
event-driven simulator for parallel systems [48]. Because it is not
constrained to running in real time, using a simulator allows us
to generate orders of magnitude more data points than the Spark
experiments. It also lets us run idealized experiments both with
and without the scheduling and processing overhead inherent to
real experiments, and allows us to experiment with the effects
of different types of overhead and overhead distributions to see
which most accurately matches the behavior of real systems.

E. Evaluation

We configured the Spark experiments with l = 50 workers,
independent and identically distributed (iid) exponential inter-
arrival times with parameter λ = 0.5 s−1. Initially we create
jobs with no tinyfication, k = l = 50 tasks with iid exponential
task service times with mean 1000 ms. With tinyfication we
take k > l tasks per job with iid task service times drawn from
an exponential distribution with parameter μ = k

l sec−1. This
means that as the number of tasks per job, k, increases, the

mean service time of the tasks will correspondingly decrease,
keeping the expected job workload, E[L(n)] = k/μ = l s, con-
stant. For each configuration we submitted at least 30,000 jobs.
The jobs were run in batches of 1000 to ensure the accumulated
measurements of each batch could be stored without interfering
with the experiment.

The performance benefit of using tiny tasks in both split-
merge and single-queue fork-join systems can be seen in Fig. 8
which plots the ε = 0.99 quantile of job sojourn time. For the
fork-join system in Fig. 8(b), a 12-fold tinyfication (going from
k = 50 to k = 600 tasks per job), decreases the sojourn time
quantile by 46.7%. The benefit is most dramatic at smaller
tinyfication factors. Going from κ = 1 to κ = 2 alone (from
k = 50 to k = 100), reduces the sojourn time quantile by 30.4%.

The results for the split-merge system are shown in Fig. 8(a).
For the arrival and service parameters we used, the split-merge
system is unstable in the big tasks case (κ = 1). This is expected
based on [20, Eq. 21] and the stability analysis that we will
present in Section IV.B. A four-fold tinyfication, splitting the
jobs into k = 200 tiny tasks, stabilizes the system. More extreme
tinyfication reduces the sojourn times further.

The limits of tiny tasks start to become apparent at higher tiny-
fication factors, κ. In this experiment, beyond about k = 1000
tasks per job (κ = 20), the gains start to level off. With an
increasing number of smaller and smaller tasks the sojourn time
quantiles begin to increase.

To investigate this in more detail we look at the fraction of
the total task service time that is due to overhead at different
tinyfication factors. Fig. 9(a) shows a box plot of Oi(n)/Qi(n)
versus k for the split-merge execution mode. Both the median
and mean of the overhead fraction grow nearly linearly with
increasing k. We see that there are outlier tasks which exhibit
close to 0% and others close to 100% overhead. This is mainly
due to the random task service time distribution which can
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Fig. 9. Overhead on the example of the fork-join experiments with the con-
figuration of Fig. 8.

produce large or very small service times. Fig. 9(b) shows a
boxplot of the total overhead per job,O(n) =

∑k
i=1 Oi(n), for a

range ofk values. The median shows a nearly linear increase with
k. This growth in total overhead partially explains the growth
in sojourn times observed in Fig. 8. The form and rate of this
increase will depend on understanding the distribution of the
overhead, and its effect on job waiting times, which we will
explore throughout the rest of this paper.

F. Overhead Distribution

We observe that the task overhead has one or more ran-
dom components, and we would like to characterize its dis-
tribution so it can be modeled and replicated in simulation.
We will evaluate the accuracy of our overhead model using
probability-probability plots (P-P plots) of the resulting job
sojourn time distributions from simulation against those from
Spark experiments.

Fig. 10 shows the P-P plot of the job sojourn times of a
simulated single-queue fork-join system with exponential task
execution times and k = 2500 tasks per job, both with and
without simulated overhead, against those of the equivalent
Spark experiments. The blue line is the P-P plot when no over-
head is included in the simulation. It shows that the cumulative
distribution function (CDF) of Spark sojourn times remains at or
close to zero while at least half of the simulated jobs depart. After
that the Spark CDF catches up gradually. A step-like pattern in

Fig. 10. Comparison of the single-queue fork-join sojourn time from Spark
experiments and simulations. The configuration is like in Fig. 8 for the fork-join
model with k = 2500 tasks per job. The task time overhead is added during
the simulation and affects the service time. The job overhead is added after the
simulation and can be interpreted as an asynchronous overhead of the Spark
scheduler while the next job can already run.

a P-P plot means that the support of one of the distributions is
offset by some amount. Based on this, and the linear growth
of the job overhead in Fig. 9(b), we added a constant amount
of overhead, ctstask, to every task in the simulation. We also
observe a scattering of extreme outliers in the overhead. We
model them by adding an additional exponential component to
the task overhead with mean 0.5 ms (μts

task = 2000 s−1). This
gives us a two-parameter model for task-service overhead.

Oi(n) ∼ ctstask + Exp
(
μts
task

)
(2)

The resulting P-P is plotted with a dashed green line in Fig. 10.
The two distributions fit each other much better starting at
around 50% of the samples. This can be interpreted to mean that
the minimal sojourn times in the Spark experiment are higher
compared to the simulation. We hypothesize that this is because
of the processing time on the driver application, and simulated
it by adding some amount, cpdjob, of pre-departure overhead to
every job. The amount of pre-departure overhead needed turns
out to grow linearly with the number of tasks, with rate cpdtask. We
model this overhead with a deterministic linear function added
to the simulated departure time.

Do(n) = D(n) + cpdjob + k · cpdtask. (3)

In the fork-join case, this did not require modifying the
simulation, since the pre-departure overhead is simply added to
the simulated sojourn times. It does not affect the processing of
subsequent jobs or tasks. In the split-merge case, delaying the
departure of the job does block the tasks of subsequent jobs,
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Fig. 11. The stability regions of split-merge and fork-join simulated with and
without task and job overhead, with l = 50 parallel workers.

and therefore did require modifications to the corresponding
scheduler class in the simulator.

The parameter values determined in these experiments are
listed in the table above. The magenta dotted line in Fig. 10
shows the P-P plot of the simulation with both constant and
exponential task overhead and linear pre-departure overhead
against the Spark result. In comparison to the black reference
line, simulation with these four overhead components, matches
the distribution of the real Spark experiment acceptably well.
Simulating an overhead distribution for the first task of each job
on each executor, as might be expected based on Fig. 7, turns
out not to be necessary to make these distributions match.

The dashed lines in Fig. 8 show the corresponding sojourn
time quantiles from simulations with this overhead model. For
both the fork-join and split-merge models, the simulations with
overhead match the Spark experiments very reasonably.

Fig. 11 shows the simulated stability regions as a function of
tasks-per-job, k, for both split-merge and fork-join systems. The
solid lines are for simulation without overhead and the dashed
lines with the simulated overhead model discussed above. The
maximum stable utilization in the split-merge system is dra-
matically increased by using tiny tasks, but begins dropping
again around 2000 tasks per job (κ ≈ 36) due to overhead. The
fork-join system is stable up to a utilization of 1.0 in general,
so no stability improvement is possible. In fact, the overhead
reduces the stability region gradually as the tinyfication factor
increases.

III. NETWORK CALCULUS FOR PARALLEL

COMPUTING SYSTEMS

We start by presenting the analytical tools and notation needed
to derive and understand our analytical models of tiny tasks. We

build on the approach of [20], [21], making use of a max-plus
version of the stochastic network calculus.

A. Notation and Background

We use the same naming and notation for the random pro-
cesses that were discussed in Section I-A, and introduce some
additional items. As beforeA(n) andD(n) for n ≥ 1 denote the
arrival time and departure time of job n, and Qi(n) denotes
the task service time of task i ∈ [1, k] of job n. By con-
vention we take A(0) = 0. A(m,n) = A(n)−A(m) is the
inter-arrival time between jobs n ≥ m. L(n) =

∑k
i=1 Qi(n)

denotes the (total) workload of the job. The job service time
Δ(n) is the total time a job spends in service. Note that for the
parallel models, L(n) and Δ(n) are generally not equal.

Servers are modeled using a definition of max-plus server
with service process S(m,n), adapted from [49, Def. 6.3.1].

Definition 1 (Max-plus server): A system with arrivals A(n)
and departures D(n) is an S(m,n) server under the max-plus
algebra if it holds for all n ≥ 1 that

D(n) ≤ max
m∈[1,n]

{A(m) + S(m,n)}.

Applying this definition to the sojourn time,T (n) = D(n)−
A(n) for n ≥ 1, we obtain:

T (n) ≤ max
m∈[1,n]

{S(m,n)−A(m,n)}. (4)

In the case of first-come first-served service, an expression for
the waiting timeW (n) = [D(n− 1)−A(n)]+, where [X]+ =
max{0, X}, can be derived in the same way.

In the case of single-server systems, the service process cor-
responds to the cumulative service time of jobs m to n and we
have the relationshipS(m,n) =

∑n
ν=m Δ(ν)whereΔ(ν) is the

service time of job ν. When we move to the multi-server setting,
the definition of S(m,n) becomes more subtle. For example
S(m,n) may not generally be defined in increments of Δ(n).

Just as in [20], [21] we will make use of moment generating
functions (MGFs) of the arrival and service processes. The
MGF of a random variable X is defined as MX(θ) = E[eθX ]
where θ is a free parameter. The MGF has the properties that
MX+Y (θ) = MX(θ)MY (θ) for X and Y independent, and
McX(θ) = MX(cθ) for any constant, c.

A common class of MGF models are (σ, ρ)-envelopes defined
in [49, Def. 7.2.1]. These are adapted to max-plus servers in [21,
Def. 2].

Definition 2 ((σ, ρ)-Arrival and Service Envelopes): An ar-
rival process, A(m,n), is (σA, ρA)-lower constrained if for all
n ≥ m ≥ 1 and θ > 0 it holds that

E
[
e−θA(m,n)

]
≤ e−θ(ρA(−θ)(n−m)−σA(−θ)).

A service process, S(m,n), is (σS , ρS)-upper constrained if
for all n ≥ m ≥ 1 and θ > 0 it holds that

E
[
eθS(m,n)

]
≤ eθ(ρS(θ)(n−m+1)+σS(θ)).

Max-plus servers with (σ, ρ)-envelopes are models of G |
G|1 queues, and a variety of stochastic processes satisfy the
definition including Markov and periodic processes [49], [50],
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[51]. In this work we restrict ourselves to GI | GI|1 queues. In
the iid case we have σA(−θ) = σS(θ) = 0.

As an example, consider the classical M | M|1 queue. The
arrival process has iid inter-arrival timesA(n, n+ 1) ∼ Exp(λ),
and MGF E[e−θA(n,n+1)] = λ/(λ + θ) for n ≥ 1 and θ > 0. It
follows that

ρA(−θ) = −1

θ
ln

(
λ

λ + θ

)
, (5)

for θ > 0. Similarly, for iid service times Δ(n) ∼ Exp(μ) we
have E[eθΔ(n)] = μ/(μ− θ) for n ≥ 1 and θ ∈ (0, μ) so that

ρS(θ) =
1

θ
ln

(
μ

μ− θ

)
, (6)

for θ ∈ (0, μ). In this example, parameter ρA(−θ) decreases
with θ > 0 from the mean inter-arrival time to the minimal inter-
arrival time (possibly zero), andρS(θ) increases with θ > 0 from
the mean service time to the maximal service time (possibly
infinity).

Performance bounds are obtained using a basic theorem of
the stochastic network calculus, e.g., [21, Th. 1].

Theorem 1 (Statistical sojourn time bound): Given an
S(m,n) server with iid inter-arrival times with envelope rate
ρA(−θ) and iid service times with envelope rate ρS(θ). For any
θ > 0 that satisfies ρS(θ) ≤ ρA(−θ), the waiting time for all
n ≥ 1 is bounded by

P[W (n) > τ ] ≤ e−θτ ,

and the sojourn time by

P[T (n) > τ ] ≤ eθρS(θ)e−θτ .

B. State of the Art in Parallel Systems

Here we will summarize prior results for split-merge, fork-
join, single-queue fork-join, and ideal partitioning parallel sys-
tems for the “big-tasks” case, where the number of tasks per job,
k, equals the number of servers, l [20].

1) Split-Merge: In the big-tasks split-merge model all tasks
in a job start simultaneously. Therefore the system can be
modeled like a single-server system where each job’s ser-
vice time is determined by that of its maximal task Δ(n) =
maxi∈[1,l]{Qi(n)}. Hence, for n ≥ m ≥ 1 the model can be
expressed as a max-plus server with service process [20], [21]

S(m,n) =
n∑

ν=m

max
i∈[1,l]

{Qi(ν)}. (7)

For iid Qi(n) ∼ Exp(μ) it also follows that the service pro-
cess of the split-merge model (7) has service envelope

ρS(θ) =
1

θ

l∑
i=1

ln

(
iμ

iμ− θ

)
, (8)

for θ ∈ (0, μ) [20]. The sojourn time bound depicted in Fig. 3 is
obtained by substitution of (8) into Theorem 1 and optimizing
subject to 0 < θ < μ.

2) Fork-Join: The service process of the fork-join model is

S(m,n) = max
i∈[1,l]

{
n∑

ν=m

Qi(ν)

}
, (9)

for n ≥ m ≥ 1 [20]. This says that S(m,n) is determined by
the maximal sequence of tasks that are assigned to a server.
Clearly, for a given set of task service times Qi(n), the service
process S(m,n) of the fork-join model (9) will be less than or
equal to that of the split-merge model (7). The sojourn time
can be obtained from (4) by substitution of (9), substitution
of Qi(m,n) =

∑n
ν=m Qi(ν), and reordering of the maxima to

give

T (n) ≤ max
i∈[1,l]

{
max

m∈[1,n]
{Qi(m,n)−A(m,n)}

}
.

Then Ti(n) = maxm∈[1,n]{Qi(m,n)−A(m,n)} are the indi-
vidual task sojourn times at server i ∈ [1, l]. For each server
i ∈ [1, l] Theorem 1 can be used to derive P[Ti(n) > τ ] and
applying the union bound, [20], [21] gives us P[T (n) > τ ] ≤∑l

i=1 P[Ti(n) > τ ]. The same steps can be used to derive a
waiting time bound. For the homogeneous case it follows from
Theorem 1 that

P[T (n) > τ ] ≤ leθρQ(θ)e−θτ ,

for any θ > 0 satisfying ρQ(θ) ≤ ρA(−θ). For the case of iid
exponential inter-arrival and task service times, we can use
ρA(−θ) from (5) and substitute ρS(θ) from (6) for ρQ(θ) to
obtain the fork-join sojourn time bound plotted in Fig. 3.

Since in this case ρQ(θ) and ρA(−θ) converge towards the
mean task service time and the mean inter-arrival time, respec-
tively, as θ → 0, the condition ρQ(θ) ≤ ρA(−θ) implies that the
fork-join model is stable up to a utilization of one.

3) Single-Queue Fork-Join: The service process of the
single-queue fork-join model is more involved. The correspond-
ing results in Fig. 3 are obtained from [21, Th. 4]. The single-
queue fork-join model is also a special case (for k = l) of
Theorem 2 in this paper.

4) Ideal Partition: If jobs are composed of k iid exponen-
tial tasks with parameter μ, then the jobs’ total workload has
distribution L(n) ∼ Erlang(k, μ). If jobs with this workload
distribution were instead divided into l equally-sized tasks, then
the tasks would have an Erlang(k, lμ) distribution, so that

ρQ(θ) =
k

θ
ln

(
lμ

lμ− θ

)
(10)

for θ ∈ (0, lμ). Since the tasks of each job are equisized, all
tasks of each job start and finish in unison. Hence, the system
functions identically to a single server. The sojourn time bound
depicted in Fig. 3 follows by substitution of (10) into Theorem 1.

IV. SPLIT-MERGE SYSTEMS WITH TINY TASKS

In this section, we extend the split-merge model to cases with
finer task granularity, to understand how using tiny tasks extends
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its stability region and improves its sojourn time. As before we
assume l workers and k ≥ l tasks per job.

Lemma 1 (Tiny tasks split-merge model): The split-merge
model with l workers and k ≥ l tasks per job is a max-plus
server. Given iid exponential task service times with parameter
μ, its service process has envelope rate ρS(θ) = ρX(θ) + (k −
l)ρZ(θ), where

ρX(θ) =
1

θ

l∑
i=1

ln

(
iμ

iμ− θ

)
,

for θ ∈ (0, μ), and

ρZ(θ) =
1

θ
ln

(
lμ

lμ− θ

)
,

for θ ∈ (0, lμ). The expected job service time is

E[Δ(n)] =
1

μ

(
k

l
+

l∑
i=2

1

i

)
.

We note that for the special case k = l, Lem.1 recovers the
envelope rate (8) and stability condition of the conventional split-
merge model. Sojourn time and waiting time bounds follow by
substitution of Lemma 1 into Theorem 1.

Proof: First, we show that the tiny tasks split-merge model
is a max-plus server. Let Vi(n) be the time task i ∈ [1, k] of job
n ≥ 1 starts service. Since the first l tasks of a job start at the
same time, we have for i ∈ [1, l] that

Vi(n) = max{A(n), D(n− 1)}. (11)

For i ∈ [l + 1, k] we have

Vi(n) = Vi−1(n) + Zi−1(n), (12)

where Zi−1(n) is the time from the start of task i− 1 of job n
until the next server becomes available.

We can express the departure time D(n) of job n relative to
the start time of its last task,

D(n) = Vk(n) +X(n), (13)

where

X(n) = max
i∈[1,l]

{Yi(n)} (14)

and Yi(n) for i ∈ [1, l] are the residual service times of the tasks,
including task k, that are in service when task k starts service at
Vk(n). By repeated substitution of (12) into (13), it follows that

D(n) = Vl(n) +

[
k−1∑
i=l

Zi(n)

]
+X(n).

With (11) this becomes

D(n) = max{A(n), D(n− 1)}+Δ(n), (15)

where we write the service time of job n as

Δ(n) =

[
k−1∑
i=l

Zi(n)

]
+X(n). (16)

By recursive insertion of (15) we obtain

D(n) = max
m∈[1,n]

{
A(m) +

n∑
ν=m

Δ(ν)

}
,

i.e., the tiny tasks split-merge model is a max-plus server with
service process S(m,n) =

∑n
ν=m Δ(ν).

Next, we consider the distribution of X(n) and Zi(n). Due
to the memorylessness of the iid exponential task service times,
the residual service times Yi(n) are also iid exponential with the
same parameter μ. RegardingZi(n), note that when any task i ∈
[l, k] of job n starts service all servers are busy, so that the time
until the next server becomes idle is the minimum of the residual
service times of the l tasks that are in service. ThusZi(n) for i ∈
[l, k − 1] is the minimum of l iid exponential random variables
with parameter μ, and therefore the Zi(n) are iid exponential
with parameter lμ.

To derive the MGF of (16), we apply the identity (used by the
authors of [20] to compute the stability region of the split-merge
model) maxi∈[1,l]{Yi(n)} =d

∑l
i=1 Yi(n)/i to (14), obtaining

M[X(n)](θ) =

l∏
i=1

M

[
Yi(n)

i

]
(θ) =

l∏
i=1

iμ

iμ− θ
, (17)

for θ ∈ (0, μ). Also, we have

M

[
k−1∑
i=l

Zi(n)

]
(θ) = M[Zi(n)]

k−l =

(
lμ

lμ− θ

)k−l

, (18)

for θ ∈ (0, lμ). The MGF of (16) follows as the product of (17)
and (18). Taking the logarithm and dividing by θ gives ρS(θ).

Finally, the expected value E[Δ(n)] can then be derived by
substituting (14) into (16) and using the identity (19). With
E[Zi(n)] = 1/(lμ), and E[Yi(n)/i] = 1/(iμ) this gives us

E[Δ(n)] =
k − l

lμ
+

1

μ

l∑
i=1

1

i
.

Some reordering of the terms completes the proof. �
Note that the step deducing that the Yi(n) are iid expo-

nential, and thereby equation (17), required the assumption of
iid exponential task service times. This is one reason that we
cannot directly use a task service time that includes arbitrary
non-exponential overhead in the tiny tasks model.

A. Direct Refinement Into Tiny Tasks

For most of the comparisons in this paper we fix the number of
servers, l, and increase the number of tasks per job, k, making
the tasks smaller to compensate; for example in Figs. 8, 11,
and 13. Another view is to fix the factor of tinyfication κ = k/l.
Then both k and l must increase proportionately. Because of the
relative simplicity of the k = l case of the split-merge model,
in this way we can make an especially direct comparison of
the effects of tiny tasks, wherein the distribution of the jobs’
workloads, L(n), does not change. The following will not be
possible with fork-join systems, and will only be used in this
section.
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Fig. 12. Direct refinement of big tasks into tiny tasks for the split-merge model with Exp(λ) arrivals. Big-tasks jobs have k = l Erlang(κ, μ) tasks. Tiny-tasks
jobs have k = κl Exp(μ) tasks, and are therefore a direct refinement of the corresponding big-tasks jobs. In all plots μ = κ = 20 so the utilization is determined
by the arrival rate � = κλ/μ = λ.

Fig. 13. Comparison of the sojourn time bounds of the single-queue fork-join
and split-merge models with l = 50 servers and k tiny tasks. As a reference, the
sojourn time bounds of a system with ideal partition, where a job is partitioned
into l equisized tasks, is shown. Jobs have exponential inter-arrival times with
parameter λ = 0.5s−1 and are composed of k exponential tiny tasks with
parameter μ = k

l . The bounds are exceeded with probability at most ε = 10−6.

Fix some integer tinyfication factor,κ. In the tiny tasks model
we assume k = κl tasks per job, with Exp(μ) service times.
In the equivalent big tasks split-merge model , we have k = l
tasks per job with Qi(n) ∼ Erlang(κ, μ) service times. In this
way, the tiny tasks model is a direct refinement of the equivalent
big tasks model, and importantly, the distribution of the total
workload of each job stays the same. The key property here is
that the uniformly random partitioning of Erlang(κ, μ) samples
intoκ sub-intervals, produces iid Exp(μ) samples [52], whereas

random partitioning of most random variables results in non-
independent sub-intervals.

B. Stability of Split-Merge With Tiny Tasks

To deduce the stability region of the big tasks split-merge
model with iid exponential task service times, the authors of [20]
use the identity

max
i∈[1,l]

{Qi(n)} =d

l∑
i=1

Qi(n)

i
, (19)

where =d denotes equality in distribution. It follows that for iid
task service times Qi(n) ∼ Exp(μ), the mean job service time
is E[Δ(n)] =

∑l
i=1 1/(iμ). For iid inter-arrival times A(n, n+

1) ∼ Exp(λ), i.e., with mean inter-arrival time 1/λ, the split-
merge system is stable if and only if [20, Eq. 21]

1

λ
>

1

μ

l∑
i=1

1

i
.

Recall that � = λ/μ is the utilization. The term
∑l

i=1
1
i is the

lth harmonic number. These have the logarithmic asymptotic
limit γ + ln l, where γ ≈ 0.577 is the Euler constant. Hence,
the maximum stable utilization decays proportionally to 1/ ln l.

The tiny tasks split-merge model is stable as long as the
expected inter-arrival time E[A(n, n+ 1)] is larger than the
expected job service time E[Δ(n)]. For iid inter-arrival times
A(n, n+ 1) ∼ Exp(λ), the condition λE[Δ(n)] < 1 implies
stability. Since the expected total workload of a job isE[L(n)] =∑k

i=1 E[Qi(n)] = kE[Qi(n)], the mean service provided to
each job by each of the l servers will be κE[Qi(n)]. The
utilization of each server is then � = λκE[Qi(n)]. Since λ <
1/E[Δ(n)] for stability, the stability region, i.e., the maximum
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stable utilization for the tiny tasks model, is

� <
κE[Qi(n)]

E[Δ(n)]
=

1

1 + 1
κ

∑l
i=2

1
i

, (tiny tasks) (20)

where we insertedE[Δ(n)] from Lemma 1 andE[Qi(n)] = 1/μ.
For comparison, consider the equivalent big task split-merge

model where the number of tasks k equals the number of servers
l and Qi(n) ∼ Erlang(κ, μ). From (7) the service process of
the big task model is determined by the maximal task, Δ(n) =
maxi∈[1,l]{Qi(n)}. Since Δ(n) is non-negative, we can derive
the expected value by integration of the complementary cumu-
lative distribution function (CCDF) as

E[Δ(n)] =

∫ ∞

0

1− P[Δ(n) ≤ x]dx

=

∫ ∞

0

1− (P[Qi(n) ≤ x])ldx, (21)

where we used that P[maxi∈[1,l]{Qi(n)} ≤ x] = P[Q1(n) ≤
x ∩Q2(n) ≤ x ∩ · · · ∩Ql(n) ≤ x] = (P[Qi(n) ≤ x])l for iid
random variables Qi(n). Finally, we insert the Erlang-κ CDF

P[Qi(n) ≤ x] = 1− e−μx
κ−1∑
i=0

(μx)i/i! (22)

and solve (21) numerically. Again, λE[Δ(n)] < 1 implies sta-
bility, and with � = λE[Qi(n)], where E[Qi(n)] = κ/μ is the
expected service time of the big tasks, the stability region for
the big-tasks model follows as

� <
E[Qi(n)]

E[Δ(n)]
=

κ

μE[Δ(n)]
(big tasks) (23)

where E[Δ(n)] is given by (21).
The stability region of the split-merge model with both big

tasks and tiny tasks forκ = 20 is shown in Fig. 12(a). The model
with tiny tasks shows a clear improvement of the stability region.

C. Sojourn Time Bounds

Fig. 12(b) compares sojourn time bounds of the big tasks
and tiny tasks models for equivalent parameters. In the case of
tiny tasks, the sojourn time bound is derived by substitution
of parameter ρS(θ) from Lemma 1 into Theorem 1. In the case
of big tasks, we first have to derive the envelope rate ρS(θ) of the
service processS(m,n) defined in (7) for iid tasks withQi(n) ∼
Erlang(κ, μ). We derive the MGF of S(n) by integration of the
CCDF as

E[eθS(n)] =

∫ ∞

0

1− P[eθS(n) ≤ x]dx.

Since for θ > 0 it holds that eθS(n) ≥ 1 we have

E[eθS(n)] = 1 +

∫ ∞

1

1− P

[
S(n) ≤ ln(x)

θ

]
dx.

By definition of S(n) = maxi∈[1,l]{Qi(n)} it follows that
P[S(n) ≤ x] = (P[Qi(n) ≤ x])l so that

E[eθS(n)] = 1 +

∫ ∞

1

1−
(
P

[
Qi(n) ≤ ln(x)

θ

])l

dx.

We insert the Erlang-κ CDF (22) and solve the integral numeri-
cally. The envelope rate follows as ρS(θ) = ln(E[eθS(n)])/θ and
the sojourn time bound is derived by use of Theorem 1.

The sojourn time bounds in Fig. 12(b) are shown for iid inter-
arrival times A(n, n+ 1) ∼ Exp(λ). Three different λ are used,
corresponding to utilizations of 0.5, 0.6, and 0.7. The use of
tiny tasks improves the sojourn time bounds significantly. The
improvement is larger under higher utilizations, where the big
tasks split-merge model becomes unstable for even relatively
small numbers of servers l.

A more in-depth examination of the relationship between
stability, performance, and idle times in the big tasks versus
tiny tasks cases is given in [1].

V. SINGLE-QUEUE FORK-JOIN WITH TINY TASKS

We consider a single-queue fork-join model with tiny tasks.
The model is similar to the split-merge model with tiny tasks de-
picted in Fig. 5, with one difference: there is no synchronization
constraint at the start of a job. I.e. a new job can start service as
soon as a worker becomes idle and there are no unserviced tasks
from the previous job. As a consequence, workers will not idle at
the end of a job if there are other jobs waiting. Furthermore, jobs
can overtake each other and finish service out of sequence. For
analytical tractability we study a model where the jobs depart
in sequence, D(n) ≤ D(n+ 1). That is, jobs that finish service
must wait in a queue until their predecessors have departed. This
added constraint does not affect the waiting time, W (n), and
means that the sojourn time bounds produced for this model will
be strictly larger than those of the plain single-queue fork-join
with tiny tasks model.

Theorem 2 (Tiny tasks fork-join model): Given a fork-join
model with l servers and k ≥ l iid exponential tiny tasks with pa-
rameter μ and iid inter-arrival times with envelope rate ρA(−θ).
For any θ ∈ (0, μ) that satisfies kρZ(θ) ≤ ρA(−θ), the waiting
time of task i ∈ [1, k] of job n ≥ 1 is bounded by

P [Wi(n) ≥ τ ] ≤ eθ(i−1)ρZ(θ)e−θτ ,

and the sojourn time of job n ≥ 1 by

P [T (n) ≥ τ ] ≤ eθ((k−1)ρZ(θ)+ρX)e−θτ .

The parameters ρX(θ) and ρZ(θ) are given in Lemma 1.
As a special case for k = l = 1, Theorem 2 recovers the

single server case Theorem 1 for exponential jobs with enve-
lope rate (6). Also, for k = l, Theorem 2 recovers the waiting
time bound for the single-queue fork-join model (without tiny
tasks) [21, Th. 4]. For the sojourn time bound [21] uses a slightly
different derivation technique that can provide tighter bounds
mostly at low utilizations.

The proof of Theorem 2 is more involved, and can be found
in [1]. It is important to note that the random variables, X and
Z, represent the same things as in Lemma 1 and have the same
MGFs. This will be important when we incorporate overhead
into the model in Section VI.

Fig. 13 compares sojourn time bounds obtained for the single-
queue fork-join and split-merge models with l = 50 servers and
a varying number k of tiny tasks per job to the equivalent system
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with the ideal partition of jobs into l equisized tasks. The bounds
in the figure are evaluated with violation probability ε = 10−6.
As in Fig. 8 we increase the number of tasks per job, k, and
decrease the task service time proportionally, so that the mean
job workload E[L(n)] remains constant. In case of the ideal
partition, we substitute μ = k

l into (10) to get the corresponding
envelope rate, ρQ(θ) that can be inserted into Theorem 1.

As k increases, the sojourn time bound of the fork-join model
with tiny tasks quickly approaches that of the ideal partition.
For the tiny tasks split-merge model, for small k, the divergence
between the models is quite large, a consequence of the restricted
stability region of the split-merge model. For large k, both
models approach the ideal partition.

A more detailed look at the sojourn time bounds relative to
the optimal, and how the utilization level affects the rate of
convergence, is given in [1].

VI. INCORPORATING OVERHEAD INTO THE TINY-TASKS

ANALYTICAL MODELS

Both Lemma 1 and Theorem 2 define two random variables:
X(n) is the time from the start of task k of job n until the job
departs, and Zi(n) is the time from the start of task i > l of job
n until the next server becomes available. As long as the task
service time distributions are exponential, the memorylessness
of the exponential distribution makes it possible to derive expres-
sions and MGFs forX(n) andZi(n). Without the assumption of
memorylessness, the time remaining for each task-in-progress
would depend on how long it had already been running, and
these random variables would become extremely complicated if
not impossible to solve for.

We have, however, created and simulated a detailed model of
the overhead in a Spark system based on experimental measure-
ments. It is worth considering how this model can be incorpo-
rated into the analytical models to provide some approximation
of system performance with overhead. This is important for
approximating the optimal range of k and l under differing
overhead conditions.

Section II.F identified two main classes of overhead: task-
service overhead which effectively increases the service times
of the tasks (it blocks subsequent tasks from starting), and pre-
departure overhead that delays the departure of the job, but does
not affect the processing of subsequent tasks within a job. In the
simulations we modeled the task overhead as having a constant
and an exponential component (2). In the analytical model, a
problem arises when we take the MGF of (2), because the very
small exponential limits us to θ < μts

task. For our purpose here,
we model the entire task-service overhead using its mean

E (Oi(n)) = ctstask +
1

μts
task

. (24)

This means that we neglect the outlier task overhead values noted
in Section II.F.

The pre-departure overhead was modeled in Section II.F using
both a per-task and per-job constant (3). In the fork-join case
this is simple to model, since it just adds to each job’s sojourn
time, and does not affect the waiting time. In the split-merge

case, however, pre-departure overhead does not block subse-
quent tasks within a job, bit it does block subsequent jobs from
starting. It therefore does affect waiting times and needs to be
incorporated into the analytical model.

A. Overhead in the Fork-Join Model

We need to calculate how constant task overhead affectsX(n)
and Zi(n) and their MGFs. We refer to these modified random
variables as Xo(n) and Zo

i (n). In the fork-join case, since the
pre-departure overhead is non-blocking, Xo(n) must be taken
to be the time from the start of task k of job n until the job is
ready to depart, absent the pre-departure overhead. Therefore
we have

Xo(n) = X(n) + ctstask +
1

μts
task

(25)

A constant, c, has MGF ecθ, θ > 0. Because the MGF of a
sum of independent random variables is the product of their
MGFs, we can easily compute the MGF of Xo(n), and then
with Lemma 1

ρXo(θ) = ctstask +
1

μts
task

+
1

θ

l∑
i=1

ln

(
iμ

iμ− θ

)
. (26)

We incorporate task overhead into Zi(n) similarly, but with
a key difference. Zi(n) is the time from the start of task i of
job n until the next worker becomes available, and therefore
has the distribution of the minimum of l exponentials, which is
Exp(lμ). We can add the constant overhead to Zi(n), but this
has the effect of adding the full task overhead to each active task
each time a new task is scheduled. On average, each task would
pay the task overhead l times during its execution. We make the
more reasonable approximation that each active task pays a 1/l
fraction of the task overhead each time a new task is scheduled.
That is, we make the approximation

Zo
i (n) = Zi(n) +

(
ctstask +

1

μts
task

)
/l. (27)

which gives

ρZo(θ) =
ctstask + 1

μts
task

l
+

1

θ
ln

(
lμ

lμ− θ

)
. (28)

This allows us to evaluate an approximate waiting time distri-
bution with overhead using Theorem 2. In order to approximate
the distribution of sojourn time with overhead, we still need
to add in the pre-departure overhead. If τε is the sojourn time
quantile approximation obtained using Theorem 2, then we add

τoε = τε + cpdjob + k · cpdtask. (29)

The resulting approximate 0.99 sojourn time quantiles for
l = 50, λ = 0.5, andμ = k, and varying number of tasks per job
(k) are plotted in Fig. 8(b) along with corresponding simulation
and Spark experimental data. The increase in the sojourn time
due to task overhead matches very well with the simulation and
experimental data.
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B. Overhead in the Split-Merge Model

Approximating the waiting and sojourn time distributions
with overhead using Lemma 1 is handled in much the same
way, except that now the pre-departure overhead is blocking.
This does not change the approximation for Zo

i (n), but now we
have

Xo(n) = X(n) + ctstask +
1

μts
task

+ cpdjob + k · cpdtask (30)

and we no longer add the pre-departure overhead directly to the
sojourn time as in equation (29). This gives

ρXo(θ)=ctstask+
1

μts
task

+cpdjob+k · cpdtask+
1

θ

l∑
i=1

ln

(
iμ

iμ−θ

)
(31)

which, along with (28) can be used directly with Lemma 1.
The resulting approximated sojourn time quantiles are plotted in
Fig. 8(a), and again, fit the simulation and experimental results
very well. Importantly, in both the split-merge and fork-join
cases, the analytical approximations provide good estimates for
the optimal number of tasks-per-job, balancing the benefits of
task tinyfication with the cost of scheduling and processing
overhead.

VII. TINY TASKS IN SHARED MEMORY CLUSTERS

We have focused on a model of parallel computing that
matches well with the “embarrassingly parallel” design of mod-
ern map-reduce engines such as Spark and Hadoop, where the
tasks are completely independent until the synchronization point
at the job’s departure. Another popular class of platforms and
APIs for parallelization are task-centric shared-memory sys-
tems, such as Cilk [32], OpenMP [33], and TBB [34]. Typically
these systems maintain a thread pool on a single computer, and
break jobs up into tasks which are serviced by the threads in the
pool. Parallel programs for these systems are typically written
in C or C++, and the programmer has tremendous control over
how the division of work and dependencies between tasks will
be handled. Unlike in map-reduce systems, the division of work
can be recursive, with tasks being further subdivided into smaller
tasks, and instead of a centralized scheduler assigning tasks
to workers as they become available, these systems typically
achieve load balancing through work stealing within the thread
pool, rather than a centralized scheduler as with Spark’s stan-
dalone scheduler.

A benchmarking study of several versions of the three shared
memory systems mentioned above, which includes an investi-
gation of task granularity, is presented in [6]. The authors find
that some parallel systems handle finer granularity tasks better
or worse than others, and that this also depends on the type of
workload being benchmarked.

Unless one has access to massively parallel SMP or NUMA
equipment, the degree of parallelism achievable by shared-
memory systems on a commodity-grade cluster is limited by
the number of cores in a single machine. Intel briefly released
a “cluster” version of their OpenMP compiler and runtime

which allowed programmers to write programs in the shared-
memory style of OpenMP and have it execute across a clus-
ter of separate machines. The complexity of emulating shared
memory behavior over a network appears to have suffered
from poor performance at scale [38], [53], and since at least
2011 the project was unsupported. Thus, deploying shared
memory parallelism on a commodity-grade cluster requires
another solution.

A popular tool for implementing parallel computations, that
naturally scales to clusters of many independent machines, is
the Message Passing Interface (MPI) [35]. MPI implementa-
tions provide a standardized API to launch processes across a
cluster of machines, create barriers within those processes, and
exchange data between them. Notably, however, current MPI
implementations do not inherently support work stealing (or
other load balancing) between these distributed processes. Load
balancing can be implemented by the developer however, for
example [54], [55].

A hybrid approach to building parallel programs on com-
modity clusters has therefore become popular. For example,
in a hybrid MPI/OpenMP program, MPI is used to start many
processes across a cluster, and within each of these processes,
OpenMP maintains a thread pool and performs its normal load
balancing. The tasks executing in the OpenMP threads or the
parent processes can use the MPI API to synchronize their state
and exchange or collect results. This type of hybrid approach
encompasses a range of different configuration possibilities, and
performance comparisons between some of these have been
carried out [37], [38], [39]. We use this hybrid approach in
our experiments, with MPI spawning a single multi-threaded
OpenMP process on each machine, and OpenMP managing
access to the threads locally. Each process uses the MPI API
to get information about its execution environment, and at its
completion, each process calls MPI_Gather(), which acts as
a departure barrier and also collects the task execution data at
the master node.

The third component needed is a job scheduler to which users
submit programs, and which schedules them on the available
CPUs. Slurm (Simple Linux Utility for Resource Manage-
ment) [56], [57] seems to be by far the most popular tool of its
type, and is what we use. Slurm has many advanced scheduling
features, and can integrate with several popular MPI implemen-
tations to monitor processes and core availability. We use Slurm
in a relatively basic mode, as a FIFO scheduler that starts one
MPI process on each of p servers, and waits for the previous
job to depart before starting the next one (the split-merge mode
of operation). Each process runs a pool of r OpenMP threads.
Thus, there are l = p · r workers in total. Each job contains k
tasks, and in these experiments we require that k be a multiple of
p, so that each MPI process receives the same number of tasks.

We will refer to a system of this type as a (p, r, l)(p, r, l)(p, r, l) hybrid split-
merge system. A schematic of the hybrid Slurm/MPI/OpenMP
system we use is shown in Fig. 14. Note that since there is no
load balancing between the r MPI processes, this system does
not exactly conform to the split-merge model we have studied so
far. It is similar, however, and stands to benefit from the improved
load balancing of tiny-tasks within each MPI process.
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Fig. 14. The (p, r, l) hybrid split-merge model with MPI/OpenMP. Each job
uses MPI to spawn p processes, one on each of p multi-core machines. Jobs are
divided into k tasks, and each process is assigned a batch of k/p tasks. Inside
each process OpenMP executes r threads which service the processes’ batch of
tasks.

There has been some research on analytically modeling the
performance of shared memory systems. These tend to focus on
analyzing the properties of the Directed Acyclic Graph (DAG)
that represents the temporal dependencies in a chain of parallel
operations. These sorts of analyses are important, as in shared
memory systems the programmer has extensive control over
the nature of the parallelism, even more so than in modern
map-reduce engines. In order to make the problems tractable,
these have focused on a restricted class of DAGs [32], [58].
Even so, the analytical models produced are not amenable to
queueing theoretic analysis, in the sense that we cannot use them
to answer questions about parallel systems that have jobs arriving
from a random process, and whose task service times are drawn
from a probability distribution. They are focused on computing
deterministic Worst-Case Response Time bounds, or estimates
of mean behavior; not the probability distribution of waiting and
sojourn times that we obtain using stochastic network calculus.

We carried out simple benchmarking experiments on the
hybrid Slurm/MPI/OpenMP cluster, comparable to those done
on the Spark cluster. Fig. 15 plots sojourn time quantiles from
experiments with p = 5 MPI processes (each on a different
server), r = 10 OpenMP threads per process, for a total of
l = 50 workers, for a range of task granularities. The jobs
have exponential arrivals with rate λ = 0.5 s−1, and the tasks
have exponential service times, with rate μ = k/l, scaled to
maintain a constant expected per-job workload. Just as in the
Spark experiments, the workload is a dummy workload where
each task chooses its service time from the desired distribution,
and generates random numbers until that time expires. The task
service data is gathered in a shared-memory data structure in
each MPI process, and then collected at the master node with an
MPI_Gather(), where it is logged to a file. Comparing this
to Fig. 8 for conventional split-merge and fork-join systems,
we notice that the sojourn times in the MPI/OpenMP system
increase much more slowly with k, allowing us to use task
granularities more than double what was possible with Spark.

Fig. 15. Sojourn time 10−2 quantiles for a range of task granularities on a
hybrid Slurm/MPI/OpenMP parallel system with p = 5 MPI processes (each on
a different server), r = 10 OpenMP threads per process, for a total of w = 50
workers. The tasks have exponential service times, and the task service rate is
scaled to maintain a constant expected per-job workload.

Based on our measurements, the task service overhead in this
OpenMP system is almost negligible, and was only possible to
measure with millisecond resolution when at least 1000 tasks
are serviced serially by a single thread. On the other hand, the
job and task pre-departure overhead has a much greater impact.
This is due partly to the heavier burden of starting and disposing
of new processes for each job, and also because of the logging
done by Slurm and the job itself. Because the job submission
is handled through Slurm and executed by MPI, each job is a
separate invocation of the executable, and it is not possible to
gather the job and task data in RAM to be logged later.

Fig. 15 also includes data from simulations of a (p, r, l) =
(5, 10, 50) hybrid system with and without simulated overhead.
The parameters used in the four-parameter overhead model for
the simulations in Fig. 15 are given in the table below. Comparing
to the corresponding table for our Spark system in Section II.F,
we observe that the task service overhead is indeed much smaller,
but the job pre-departure overhead is correspondingly larger.

Fig. 15 also contains sojourn time quantiles estimated by our
analytical approximation, both with and without overhead. We
see that the analytical approximation with overhead matches real
system results and the simulated (p, r, l) hybrid system fairly
well, and, importantly, accurately predicts the region of optimal
task granularity. Note that even in the case with no overhead,
for the hybrid shared-memory system the analytical model is
no longer a bound, but only an approximation. It will tend to
underestimate the sojourn time distribution because the hybrid
system has no load balancing between MPI processes. This
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discrepancy will increase as the number of threads per process
approaches one, but will be reduced as the task granularity
becomes finer, since the variance in the workload assigned to
each process decreases. Extending the analytical model to one
that can provide strict performance bounds for (p, r, l) hybrid
systems is an area for future work.

VIII. CONCLUSION

Using “tiny tasks” in parallel processing systems refers to the
practice of splitting jobs into k tasks, where k is larger than
the number of workers, l. Using moderately tiny tasks in task-
centric parallel systems has long been a practical performance
enhancement employed by practitioners, but at some point the
performance benefit of dividing jobs into more smaller tasks is
outweighed by the various types of system overhead.

We performed extensive experiments on an Apache Spark sys-
tem using carefully controlled task size distributions to quantify
the performance benefits of using tiny tasks, and measure and
model the types of overhead that interfere. We developed a model
for how this overhead scales with job size, and implemented it
in a simulator. We presented analytical models looking at the
improved stability region of split-merge systems using tiny tasks,
and derived analytical bounds on the waiting and sojourn times
of both split-merge and fork-join systems with tiny tasks. We
used these analytical bounds, along with our model of scheduler
overhead, to produce an analytical approximation for the sojourn
time quantiles of both split-merge and fork-join systems with
tiny tasks with overhead. Finally we performed experiments
with a hybrid Slurm/MPI/OpenMP cluster, simulated the cor-
responding (p, r, l) hybrid split-merge system, and compared
our performance approximations to the experimental results.

In all cases these approximations fit very well to our ex-
perimental and simulation results. Besides illuminating the
fundamental properties of parallel systems and how they are
affected by task granularity, our analytical approximation model
which incorporates system overhead should be a useful tool for
optimizing task granularity on real systems. The reliability of
the approximation, even for hybrid shared-memory systems,
demonstrates the power and flexibility of the analytical model.
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