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Domain Adaptation for Head Pose Estimation
Using Relative Pose Consistency
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Abstract—Head pose estimation plays a vital role in biometric
systems related to facial and human behavior analysis. Typically,
neural networks are trained on head pose datasets. Unfortunately,
manual or sensor-based annotation of head pose is impractical.
A solution is synthetic training data generated from 3D face
models, which can provide an infinite number of perfect labels.
However, computer generated images only provide an approx-
imation of real-world images, leading to a performance gap
between training and application domain. Therefore, there is a
need for strategies that allow simultaneous learning on labeled
synthetic data and unlabeled real-world data to overcome the
domain gap. In this work we propose relative pose consistency, a
semi-supervised learning strategy for head pose estimation based
on consistency regularization. Consistency regularization enforces
consistent network predictions under random image augmenta-
tions, including pose-preserving and pose-altering augmentations.
We propose a strategy to exploit the relative pose introduced
by pose-altering augmentations between augmented image pairs,
to allow the network to benefit from relative pose labels dur-
ing training on unlabeled data. We evaluate our approach in
a domain-adaptation scenario and in a commonly used cross-
dataset scenario. Furthermore, we reproduce related works to
enforce consistent evaluation protocols and show that for both
scenarios we outperform SOTA.

Index Terms—Head pose estimation, domain adaptation, con-
sistency regularization, deep learning.

I. INTRODUCTION

HEAD pose estimation (HPE) describes the problem of
predicting the orientation (head pose) of the human head.

Head pose is a key factor in many biometric systems related
to facial analysis and human behavior analysis. Accurate
estimation of head pose can bring many benefits.

In driver assistance systems [1] HPE can be used for auto-
matic assessment of the focus of attention. Head pose is
used for visually assessing human-object and human-human
interaction [2]. Further, it is the starting point for many gaze
estimation methods [3]. In facial recognition systems head
pose is important for pre-processing [4] or during training
for data augmentation and to obtain pose-invariant recogni-
tion models [5]. Similar use cases apply for facial expression
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recognition [6] as pose-invariance is a desired property for
facial analysis systems.

Motivated by the many possible applications, there has been
a lot of progress in this field of research, most recently through
deep learning methods. Collecting the required training data is
still a challenging task for several reasons. Manual annotation
is a problem, because humans cannot accurately annotate a
3D head pose from a 2D image. This has led to the creation
of head pose datasets using devices like depth sensors and 3D
head scans [1], [7], or special tracking equipment attached to
the head [8], [9], [10]. However, with these recording setups, it
is cumbersome and costly to reach a high diversity in subjects,
environments and poses. Therefore it is still an open challenge
to acquire suitable training data.

A solution is to use synthetic (rendered, computer gen-
erated) face images to provide inexpensive and virtually
unlimited quantities of perfectly labeled data. Several methods
train on synthetic [11], [12], [13], [14], [15], [16] or syntheti-
cally extended (warped) images (e.g., [17], [18] on 300W-LP
dataset [19]). Unfortunately, learning-based approaches trained
only on synthetic data (source domain) tend to perform poorly
on real-world data (target domain) compared to methods
trained on real-world data. This can be explained by the dif-
ference between domains (domain gap). In [16] we addressed
this issue for HPE by introducing a method for domain adap-
tation (DA). DA methods typically use unlabeled data from a
target domain during training, to overcome the domain gap.
However, the performance of methods trained on synthetic
head pose data is still inferior to methods trained on real-world
head pose data.

In this work, an extended version of [20], our goal is to
improve the performance of HPE on real-world data using
only labels from a synthetic dataset in combination with an
unlabeled real-world dataset. In [16] an adversarial training
approach based on domain adversarial neural networks [21] is
used to force the extraction of domain-invariant features. In
contrast, we propose to tackle the problem using consistency
regularization and relative pose labels.

Consistency regularization is a semi-supervised learning
(SSL) technique. Semi-supervised learning utilizes labeled and
unlabeled data simultaneously during training. This property
was exploited successfully for domain adaptation using consis-
tency regularization in [22]. Consistency regularization forces
network outputs for the same input under different perturba-
tions to be consistent. For visual tasks, these perturbations
are typically implemented as various image augmentations,
e.g., spatial transforms. However, head poses are not invariant

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3003-6755
https://orcid.org/0000-0002-6743-3324


KUHNKE AND OSTERMANN: DOMAIN ADAPTATION FOR HPE 349

Fig. 1. From an image with unknown head pose (picture from [7]) two
different augmented versions A and B are created. Augmentations can be color
distortions, blurring, etc., but also pose-altering transforms like rotations (rA,
rB) and flipping. In addition to a supervised loss, our method allows to train
a network on unlabeled data with relative pose consistency between A and B.
Relative pose consistency provides an unsupervised loss to enforce consistent
predictions under different augmentations, and also to enforce predictions that
comply with a relative pose.

to spatial image transforms, like flipping and rotation. If the
ground truth pose is known, the pose label can be adjusted,
however, the ground truth pose is unknown for our target-
domain data. In [20] and this extended work, we therefore
propose to take advantage of relative pose.

The relative pose, which we store in a relative pose label,
is the pose difference between two realizations of the same
input (see Fig. 1 for an example). Recalling that training with
consistency regularization requires different realizations of the
same input, we implement relative pose label in a consis-
tency training framework (see Figure. 2 for an overview of
our method). This extends the consistency supervision from
static augmentations to relative pose labels. As a consequence,
the network is trained not only to make consistent predictions,
but also predictions that comply with the relative poses. Our
consistency-enforcing method does not require absolute pose
information and can therefore be used with unlabeled data
samples in semi-supervised or domain-adaption scenarios. We
show the effectiveness of our approach on the popular BIWI
Kinect Head Pose estimation benchmark [7].

Our main contributions are as follows:
• We show, for the first time that consistency regularization

can be used for pose regression problems.
• We propose relative pose consistency, a novel extension

to consistency regularization.
• We present an improved training framework compared

to [20]
• We uncover effects of preprocessing on performance

during reproduction of related work.
• We improve state-of-the-art results for two challenging

HPE scenarios (domain-adaptation and cross-dataset).

II. RELATED WORK

A. Head Pose Estimation

In recent years, traditional approaches based on facial land-
marks and 3D face models are mostly superseded by deep
learning methods. These methods estimate the pose directly

from an image. In addition to images, different modalities such
as depth images [7] or temporal information [14] can be used.
In this review we will focus only on deep-learning methods
for HPE from a single RGB image.

The first convolutional neural networks (CNN) to directly
regress head pose from an image are presented by
Anh et al. [23] and Patacchiola and Cangelosia [24]. Recent
work proposes variations of loss functions and network archi-
tectures. Ruiz et al. [17] combine a regression loss with binned
pose classification, by assigning continuous pose to discrete
pose categories (bins). Shao et al. [25] use a similar com-
bined loss but also evaluate the effect of adjusting the margin
around the face image that is fed into a CNN. Similarly,
Lathuilière et al. [26] evaluate various factors of deep regres-
sion like hyperparameter selection or image preprocessing in
the context of head pose estimation. Wang et al. [15] present
a coarse-to-fine approach, where head pose is coarsely classi-
fied in bins and later refined by regression. An attention based
network structure for HPE is proposed by Yang et al. [18].
Their goal is to extract a set of representative features by
learning a fine-grained structure mapping before a feature
aggregation step. Zhou and Gregson [27] extend the work
of [17] to full-range HPE by proposing a wrapped loss that
allows training with the full range of yaw angles (−180◦,
180◦]. They further show that a small model, EfficientNet-
B0 [28], can reach SOTA HPE performance. Hempel et al. [29]
propose a continuous 6D rotation representation for full-
range HPE and a geodesic distance-based loss. In contrast
Gu et al. [14] present an approach for temporal prediction of
facial features. They propose to use a recurrent neural network
(RNN) on top of a VGG16 network [30] for joint estimation
and tracking of head pose in videos. The above methods can be
seen as orthogonal to our approach, because we are not trying
to improve supervised performance with new losses or network
architectures for HPE. For simplicity and comparability we
focus on Mean Squared Error (MSE) loss and ResNet [31]
network architecture. Nevertheless, our method can be applied
to other loss functions or network architectures as well.

Another approach to HPE is multi-task learning [32], [33],
[34], [35], [36]. In this setting multiple tasks like HPE, land-
mark detection, age estimation, etc, are solved simultaneously.
A benefit of multiple tasks is that multiple data sources can be
used for training, which considerably increases the amount of
training data. In contrast, our method does not use additional
labeled tasks or datasets.

An interesting unsupervised approach is presented by
Mustikovela et al. [37]. In their work, a viewpoint estima-
tion network is trained purely via self-supervision with an
analysis-by-synthesis framework using a network similar to
HoloGAN [38]. Similar to our work, they enforce flip con-
sistency by applying a flip consistency loss. In contrast, their
loss forces images synthesized from a flipped latent code to
be consistent. Our loss forces the predicted labels from flipped
images to be consistent.

Lastly, it is a common approach to use synthetic face
datasets from 3D models for HPE [11], [12], [13], [14],
[15], [16], [20]. This has the advantage of learning from
a high amount of diverse images with perfect labels. To
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date, [14] and [13] are publicly available datasets. These
related works train on synthetic or mixed datasets and evaluate
on real-world datasets, however, most of them do not explore
any domain adaptation or semi-supervised techniques to over-
come the domain gap. This was only explored in our previous
works [16], [20].

In [16], we improve HPE for an unlabeled target dataset
by enforcing a network to extract domain-invariant features
using a domain discriminator and an adversarial training loss.
To account for an only partially-shared label space, we apply a
weighted resampling of the source domain to filter out samples
with poses that are outside the target domain. To find poses
outside the target domain, a distance between source and tar-
get domain samples is estimated by a network trained on the
source domain. The method has two drawbacks. First, in addi-
tion to the pose estimation network, a domain-discriminator
network needs to be trained simultaneously during training.
This leads to additional computations, hyperparameters and
complexity. Second, the resampling of training data assumes
the availability of a pose distance metric to find suitable train-
ing samples. It is not guaranteed that a network trained only
on the source domain provides an accurate distance metric to
select appropriate training samples.

In [20], we tackle the same problem but choose a completely
different approach to avoid the aforementioned drawbacks.
One goal of [20] is to find a method that does handle
partially-shared label spaces like [16] but does not need an
explicit filtering of training data. As a result, the approach
presented in [20] does not require to resample the source
data. Furthermore, the approach does not need an additional
discriminator network with adversarial training. These fac-
tors and improved performance compared to [16] make the
proposed solution an exciting new solution for HPE in domain-
adaptation scenarios. In this iteration of [20] we further refine
the solution and provide a more detailed evaluation of the
method. We introduce a modification to the training framework
that increases the performance relative to [20]. In addition,
we apply our method to a cross-dataset task to verify that our
method can be applied in different scenarios. In an attempt to
enable meaningful performance comparisons to related work,
we also investigate the reproducibility of head pose estimation
experiments in the context of face detection (see Section IV-E).

B. Consistency Regularization

Consistency-enforcing methods provide state-of-the-art
performance for semi-supervised learning. During training,
consistent network predictions for unlabeled data under input
and network perturbations are enforced. Although one can
find many terms and variants like self-ensembling, consistency
regularization, self-training, temporal ensembling, or pseudo-
labels, the core principle of enforcing consistent outputs is
similar. Consistency-enforcing methods have also been suc-
cessfully applied to domain-adaptation scenarios, where the
unlabeled data is from another domain. While first used as
semi-supervised methods, these principles are now popular
for unsupervised pre-training of neural networks and paved
the way for modern contrastive (self-supervised) methods like
SimCLR [39], MoCo [40] and BYOL [41].

Laine and Aila [42] proposed two self-ensembling methods,
�-Model and temporal ensembling. Both methods enforce
consistent network predictions for the same input under differ-
ent stochastic input augmentations and network perturbations.
In this case, dropout was used to provide network perturba-
tions. The �-Model randomly augments the same input twice
during an iteration and forces consistent predictions. In con-
trast to the �-Model, temporal ensembling forces network
predictions over multiple previous training epochs to be con-
sistent to the current prediction. Self-training and training
with pseudo-labels, e.g., [43], [44], can be seen as a vari-
ant of temporal-ensembling. The Mean Teacher method by
Tervainen and Valpola [45] adapted this idea but instead of
reusing previous predictions, they added a teacher network
that is an average of previous network weights. The teacher
network’s predictions and the current model’s (named stu-
dent) predictions are forced to be consistent. French et al. [22]
applies the Mean Teacher method to domain adaptation and
proposes modifications to improve DA performance. As we
are the first to introduce consistency regularization to head
pose estimation, we opt for simplicity and base our work on
the �-Model.

III. METHOD

Semi-supervised learning is typically used to learn from a
large dataset, which is only partially labeled. We take up this
idea for domain adaptation to learn from labeled synthetic
images (source domain) and unlabeled real-world images (tar-
get domain). On the one hand, synthetic data provides perfect
labels for a wide variety of poses. On the other, it only pro-
vides an approximation of real-world image features. Real data
provides real-world features but lacks annotation quantity and
quality. Combining them in a training scheme, where both
datasets can be used simultaneously, is a promising way to
improve performance on real-world images.

This concept is not limited to scenarios with synthetic and
real-world data. A domain gap can decrease performance if
the source data distribution is different from the target data
distribution. For image datasets, different recording settings
like lighting, camera, or subjects can already provide enough
differences to cause reduced performance across domains. Our
method can be applied in cross-dataset scenarios as well.

We will first introduce the required notations and baseline
supervised learning. Then, we will describe the consistency
regularization framework. Subsequently, we will describe the
concept of relative pose labels and how these are embedded
into the training framework. Finally, we discuss how we avoid
degenerate solutions with consistency regularization and the
effects of batch normalization while training with two dataset.

In a semi-supervised or domain-adaptation scenario, data is
available from the labeled source domain Ds = {(xs

i , ys
i )}ns

i=1,
where ns is the number of data samples xs

i ∈ Xs and associated
labels ys

i ∈ Ys. For head pose estimation, x is an image of a
head and y is a vector of the three corresponding Euler angles
of the head. We are interested in utilizing the unlabeled target
data Dt = {(xt

i)}nt
i=1, which includes only samples but no labels.

A network f can be trained using the source data (Xs and Ys)

and a supervised loss. For head pose estimation the supervised
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Fig. 2. Proposed framework for relative pose consistency regularized head pose estimation. Labeled data (in green) from the source domain and unlabeled
data (in blue) from the target domain can both be used in a semi-supervised fashion. Input images Xs and Xt are perturbed by stochastic augmentations. The
stochastic augmentation module can also change the pose of the input images by rotation and flipping. This information is stored in the relative pose label.
Source data follows the supervised path (green) to train the pose estimator f . Target data is copied before the stochastic augmentation module which creates
two different augmented versions of the target input. Note that even though the ground truth pose is unknown for Xt the relative pose between the augmented
versions Xt

′ and Xt
′′ can differ and is stored in a relative pose label. The relative pose label and predictions are fed into the consistency loss. The consistency

loss provides supervision from consistency and relative pose labels. f is trained jointly on both losses.

Fig. 3. Illustrations of the studied image augmentations. Each augmentation
transforms the input image with random transformation parameters. The left
images in each square show the inputs and the right images randomly trans-
formed outputs. For synthetic images, a random background is added. Top
row images from [7] and bottom row images from [14].

loss is a measure of how similar two poses are and typically
the Mean Squared Error is used as pose loss

�mse
(
ŷ, y

) = ‖ŷ − y‖2, (1)

with the predicted Euler angles ŷ = f (x), and the ground truth
angles y.

A. Consistency Regularization Framework

Stochastic input perturbations are a central aspect of
consistency-based models. In practice standard image augmen-
tations like blurring, translation and scaling (usually imple-
mented as random cropping), horizontal flipping, rotation, and
color distortions provide appropriate image perturbations (see
Fig. 3).

Given a sample x we create two randomly perturbed (aug-
mented) inputs x′ and x′′ which are fed into the network f to
produce predictions f (x′) and f (x′′).

A consistency loss Lcons enforces that both predictions are
similar. This consistency loss is typically the Mean Squared
Error or KL divergence [46]. We formulate our total loss

Ltotal =
∑

(x,y)∈Ds

�mse
(
f
(
x′), y

)

︸ ︷︷ ︸
Lsuper

+λ
∑

x∈Dt

�mse
(
f
(
x′), f

(
x′′))

︸ ︷︷ ︸
Lcons

, (2)

with λ controlling the relative effect of the consistency term
in the overall loss.

The same stochastic perturbations are applied to both source
and target images. Note that in SSL the consistency loss is typ-
ically applied to samples from both Ds and Dt [42], [45], [46].
Following [22], who use consistency regularization for domain
adaptation, we apply the consistency loss only to samples
from the target domain Dt. Our framework is shown in
Figure 2.

Unfortunately, flipping and rotation will change the ground
truth label of a source-domain sample and produce target-
domain inputs that break the consistency assumption that x′
and x′′ share the same label. We therefore need to distinguish
between pose-preserving and pose-altering augmentations and
need to redefine our loss functions for pose-altering augmen-
tations. As shown in Fig. 3, pose-preserving augmentations
are random color distortion, blurring, translation, and scaling
and pose-altering augmentations are flipping and rotation.
The required changes for pose-altering augmentations will be
described in the next section.

B. Relative Pose Consistency

Pose-altering augmentations change the head pose.
Knowing the spatial transformation and the true pose, an aug-
mented image can be relabeled. However, this is not possible
if the true pose is unknown. We create a new consistency
loss based on the relative pose between augmented samples
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to benefit from pose-altering augmentations on our real-world
unlabeled target data.

We will first give a short recap on pose representation and
then provide the interdependence of image rotation and flip-
ping to the orientation change of the head pose and required
adaptations to the loss functions. Both augmentations require1

that the pose is stored in Euler angles (Tait–Bryan angles) that
describe intrinsic rotations around Z-Y’-X”. These are known
as: roll, yaw, and pitch. This means that the rotation is per-
formed by three successive rotations around the Z, Y’ and X”
axis. Recall that for intrinsic rotations the first rotation around
Z will create a new coordinate system from which Y’ will be
used for the second rotation and so on. For this representation
a rotation around Z can be carried out independently from
Y’ and X” rotations. That means that any image rotation will
result in an additive rotation term to the roll label.

Augmenting an image with (unknown) rotation r with two
random rotations rA and rB would result in images A and B
with rotations r + rA and r + rB, respectively. One can easily
see that the difference in rotation between the two augmented
images is rB−rA, which is the relative pose difference between
the images. To account for this difference we can change the
consistency loss for the roll angle to:

�mse(f (A)roll + (rB − rA), f (B)roll), (3)

where f (A)roll and f (B)roll describe the predicted rotations. To
use rotation augmentations for the source domain, one can
simply replace rB with 0 and f (B) with the true rotation label r.

Flipping is performed by negating the yaw and roll angles
for a flipped image. In the consistency loss, if we encounter
an image with unknown pose, we can negate the predictions
of the yaw and roll angles. A full example, showing all the
angles, with A being flipped and random rotations would result
in

�mse

⎛

⎝

⎡

⎣
f (A)pitch
f (A)yaw
f (A)roll

⎤

⎦ �
⎡

⎣
1

−1
−1

⎤

⎦ +
⎡

⎣
0
0

rB − rA

⎤

⎦, f (B)

⎞

⎠, (4)

where � is the element-wise product. This complete example
is also illustrated in Figure 1. Cases where B, or A and B are
flipped are handled with negating B’s, or A’s and B’s yaw and
roll angles, respectively. Note that the information provided
by a relative pose only influences yaw and roll angles, as the
pitch angle is untouched by rotation and flipping.

C. Avoiding Degenerate Solutions

Several works report difficulties when training with consis-
tency regularization. In contrast to previous works, we apply
consistency regularization to a regression problem and there-
fore use a different loss combination. For this reason, instead
of class logits, we regularize the predicted pose angles. In the
following we will address these difficulties and how we dealt
with them.

The first difficulty is the selection of λ. Reference [42] found
that the network can get easily stuck in a degenerate solution

1For simplicity we describe our method for Z-Y’-X” rotations, but other
representations such as Z-X’-Y” will also work.

if the unsupervised loss component (Lcons) is too high in the
beginning of the training. As a solution, they ramp-up λ from
0 to 1 during training. The same procedure was also adopted
in [45]. In contrast, French et al. [22] replaced the ramp-up
with a confidence threshold. They utilized the predicted class
activations as probabilities and the loss of all samples with
activations below the threshold is set to 0.

In our case we found that high λ values usually yield degen-
erate solutions, regardless of ramp-up or not. Our explanation
is that in order to minimize the consistency loss the network
can learn to output only a constant. However, we found a
good indication on how to set λ comes from the supervised
loss. As a simple rule, the regularization feedback should not
be stronger than the supervised loss. Preliminary experiments
showed that consistency training is quite robust and λ values in
the range [0.1, 0.4] converge to similar performing networks.
For λ > 0.5 the consistency loss became larger than the super-
vised loss and the overall performance decreased for both,
source and target data.

Another issue with consistency regularization arises if the
labels of the source and target domain do not come from the
same underlying distribution [47]. This is ignored in many
works, because it is assumed that the unlabeled data contains
the same class distribution as the labeled data. As described
in [16], this assumption usually does not hold for regression
tasks like HPE. For classification, [22] introduced a class bal-
ance loss term that forces the network’s mean class predictions
to be uniform. This helped to avoid a degeneration to the most
dominant class.

Following this approach, we introduce a weighted relative
consistency regularization for HPE. To enforce a more evenly
distributed feedback of the consistency loss, we re-weight the
consistency loss based on the pose predictions. Poses that are
found often in a batch should be weighted down, whereas
rarely appearing poses should be weighted up. In most natural
image collections of faces, the poses are usually distributed
around the pose that is facing the camera. The same holds
true for most head pose datasets. Therefore, assuming a normal
distribution of poses in a batch, we formulate our weighting:

wp = 1 − e

(
p−μP

σP

)2

, (5)

where wp is the weight given to a pose angle p (pitch, yaw, roll)
and μP and σP are the mean and standard deviation of all p ∈ P
in a batch. In particular, we apply this weight to all angles
independently. To keep λ constant between experiments, we
rescale wp with

Batchsize
∑

wp
, (6)

so that the overall weight in a batch sums to one. We compare
the results for weighted and unweighted predictions in our
experiments in Section IV.

Both λ and re-weighting are associated with the same
underlying problem: an effective setting of the regularization
strength. Although we have made two proposals, we think that
uncertainty or curriculum approaches like [48] are paths worth
looking into for future improvements.
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D. Batch Normalization During Cross-Domain Training

Batch normalization (BN) [49], among other normaliza-
tion methods, is a popular technique for training deep neural
networks. BN normalizes activations in a network across the
mini batch. Each feature is normalized by mean and stan-
dard deviation of the feature in the mini batch during training.
For inference/evaluation typically a running estimate of the
features mean and standard deviation is used. When work-
ing with multiple datasets (possibly from different domains) it
is not realistic to assume that features in these datasets share
the same statistics. Adapting feature statistics using batch nor-
malization to adapt to different domains has been investigated,
e.g., [50], [51]. Regardless, here we will discuss the effects of
BN in our framework.

Using BN on the target domain implicitly affects train-
ing and evaluation performance. Similar to previous works
like [16], [20], [22], we process mini batches of source and
target data sequentially. The other possible method is to com-
bine the data in every batch, e.g., half and half. We found that
sequential processing provides stable training. With sequential
processing, BN uses domain-dependent statistics during train-
ing but mixed (running) statistics during evaluation. However,
this implicit mixing of domain feature statistics can have ben-
eficial or detrimental effects on the evaluation performance for
each domain. Assuming that domain statistics are very differ-
ent, the mean statistics of two domains, which are typically
used during evaluation, might not provide good results. Aside
from mixed statistics, it is possible to use only target-domain
statistics [51] during target evaluation. In our experiments, we
found that mixed or target-only statistics decrease performance
on the target dataset. The effect gets worse the more the distri-
bution of the label space, and thus the distribution of features,
differs between source and target.

We therefore propose to use BN in a way that does not use
target-domain statistics during training or evaluation at all. If
data from the target domain is fed trough the network, the
running statistics of the source domain are used. The same
applies for evaluation. This way, computation of BN statis-
tics is completely independent of target-domain data. The
advantage of this method is that we avoid any deteriorat-
ing effects from BN. The only drawback of this method is
decreased training stability. In our experiments this is allevi-
ated by using gradient clipping during training. We evaluate
the performance of using “no target BN” in our experiments in
Section IV-D.

IV. EXPERIMENTS

In the following, we will analyze the performance of our
method. First, we will give a description of the used datasets
and the implementation details. We then compare our results
with related work. In the following section, our ablation
study, we show the effects of different components of our
method. Finally, we conduct a series of experiments to repro-
duce related work. In doing so, we gain insight into some
factors that influence the reproducibility of results and also
obtain results with which we can compare our work more
fairly.

TABLE I
AUGMENTATION PARAMETERS. TRANSLATION PARAMETERS ARE GIVEN

RELATIVE TO THE IMAGE SIZE AND ARE APPLIED INDEPENDENTLY FOR

X AND Y TRANSLATION. VALUES IN RANGES ARE SAMPLED UNIFORMLY

A. Data

To validate our method we use revised datasets SynHead++
and Biwi+ proposed by [16]. These datasets are extensions
of the popular face pose datasets Biwi Kinect Head Pose
Database (Biwi) [7] and NVIDIA Synthetic Head Dataset
(SynHead) [14]. For both datasets, [16] provides labels
in Z-Y’-X”-angle representation and face bounding boxes.
SynHead was artificially extended to include more poses, so
that SynHead++ is a superset of Biwi+ in regard to pose
labels. Here, we give a brief overview of the datasets.

Biwi+ is used as real-world, target-domain dataset. It con-
tains 24 sequences of 20 different subjects recorded with
a kinect sensor. SynHead++ is used as synthetic, source-
domain dataset. It contains images of 10 different rendered
3D head models. The total number of images is 15678 for
Biwi+ and 653910 for SynHead++. All images are cropped
to the given bounding boxes and scaled to 224 x 224 pixels.
Exemplary images and illustrative augmentations are shown
in Figure 3.

To make our work more comparable with previous works,
we also perform experiments on the popular 300W-LP [19]
dataset. 300W-LP uses the images from 300W [52], a dataset
that combined multiple datasets containing faces in uncon-
strained, “in-the-wild” conditions. These images have been
re-annotated with facial landmarks. Landmarks and image fea-
tures are used by [19] to fit a 3D morphable model (3DMM)
to the face images. With the image and fitted 3DMM they syn-
thesize (render) face images with new head poses. 300W-LP
includes 5488 real images and 55737 synthesized images. In
addition all images are flipped to create a dataset with 122450
images. We processed the data the same way as Biwi+ in [16].

B. Implementation Details

For all our experiments, the pose estimator f is ResNet18 as
provided by PyTorch [24] with last linear layer being replaced
by a new linear layer with 512 inputs and 3 outputs for Euler
angle estimation. This is consistent to previous work [16], [20].

We use different combinations of augmentations throughout
the experiments with parameters provided in Table I. If an aug-
mentation would produce a roll angle > ±89◦, the rotation is
performed in the opposite direction. We used the code2 and
parameters from [40] for color distortions and Gaussian blur.
Similar to [22], we process mini batches of source and target

2https://github.com/facebookresearch/moco
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TABLE II
HEAD POSE ESTIMATION RESULTS FOR EXPERIMENTS TESTED ON VARIANTS OF THE BIWI DATASET [7]. VARIANTS: * RANDOM SPLIT (86%/14%1,

80%/20%2), † SEQUENCE SPLIT (16/81,21/32), × NO SPLIT, PROCESSED BY THE RESPECTIVE AUTHORS, + NO SPLIT, PROCESSED BY [16].
EXPERIMENTAL RESULTS ARE GROUPED IN BLOCKS DESCRIBING THE USE OF DATA DURING TRAINING AND TESTING. WE REPORT MEAN AND

STANDARD DEVIATION OF THE AVERAGE ABSOLUTE ANGULAR ERRORS IN DEGREE AND MEAN ABSOLUTE ERROR (MAE) OVER ALL ANGLES FOR

10 TRAINING RUNS. RCRw = WEIGHTED RELATIVE POSE CONSISTENCY REGULARIZATION

data sequentially. Depending on the experiment, batch normal-
ization is turned on or off during training on target domain
batches. If it is turned off, we apply the running statistics
that are computed during training on source domain batches
to the target domain batches and enable gradient clipping of
the complete network with maximum L2 norm of 5. For all
experiments trained on SynHead++, we use stochastic gradi-
ent descent with momentum 0.9, Nesterov, a batch size of 84,
and a learning rate set to 10−3. For all experiments trained
on 300W-LP, we use Adam [53], a batch size of 84, and a
learning rate set to 10−4.

For our “supervised only” baselines f is initialized with
the default PyTorch pretrained ResNet18. The learning rate
is ramped-up to warm start the optimization. During baseline
training λ is set to 0. The baselines are trained for 35000 iter-
ations which is equivalent to ≈5 epochs for SynHead++ or
≈24 epochs for 300W-LP.

For all consistency regularization experiments we fine
tune a baseline model. To make the comparisons fair for
all runs, we select one (supervised only) baseline model
that is trained with all augmentations (full). From the 10
runs, the baseline model that performs most similar to the
average performance is selected. For the consistency regu-
larization experiments, all models are fine-tuned for 16000
iterations. λ is ramped-up to 0.2, to avoid deterioration from
too strong regularization. For all experiments the performance
at the end of training is reported, i.e., no early stopping is
used. The performance for Biwi+ is reported without any
augmentations.

We timed the execution of our approach and found that
for one image it takes less than 3 ms on a consumer GPU
(NVIDIA GTX 1080 TI). For the methods we reproduced
(see Section IV-E) we found similar or slightly higher times

but all of them would be suitable for real-time processing at
30 fps.

C. Head Pose Estimation Results

In this section, we compare our results to groups of similar
experimental settings that we clustered from the related work.
In Table II we measure the mean absolute error for every angle
and the overall MAE (mean absolute error) of them. We report
the mean and standard deviation of these values over 10 runs
using different random seeds. Please note that this is not the
standard deviation of the pose errors, but the standard deviation
of the mean errors over all runs.

In the upper part of Table II we collected the results of related
work. The lower part shows the results of reproduced related
work (Section II-A) and our work, all using Biwi+ as a common
test set. Most work trains with real-world images and typically
focuses on improving head pose estimation by improved network
structures or supervised loss functions. In contrast, our main
goal is to learn from synthetic images and unlabeled real-world
images using a semi-supervised method. In addition to the
differences in models and learning strategies, it is not always
straightforward to compare head pose estimation results, even
if the results are reported for the same dataset. For example,
the evaluation protocol and processing of the Biwi dataset is
not universally the same for all works. A deeper analysis of a
factor that makes the comparability of results problematic is
given later in Section IV-E. However, even though not always
directly comparable, we think it can be valuable to discuss our
results in a broader context of related work.

Cross-Validation: This section of Table II shows the
performance for methods trained and evaluated on different
splits of the same dataset. Compared to our results and other
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experimental settings, higher performance is likely explained
by having no domain gap between training and test set. Both
sets are from the relatively homogeneous Biwi dataset, which
is recorded under lab conditions. The performance in this
section is also dependent on the training/test split. Non sur-
prisingly, a random split offers the best results, as splitting by
persons introduces a small domain gap.

Self-Supervised: shows that learning head pose can even be
accomplished self-supervised. No pose labels are used during
training. To gain pose predictions, a linear regressor is trained
on 100 random test set samples to map network outputs to
pose labels. While results are not on par with our or recent
work, it shows the potential of self-supervised pose estimation.
Training with our proposed relative pose labels can be seen as
a self-supervised approach.

Cross-Dataset: Sometimes called inter-domain or cross-
domain evaluation, these sections show results where the
training set and test set are taken from different datasets. Most
commonly, 300W-LP [19], a dataset created from real-world
images is used for training. As 300W-LP uses real-images, the
domain gap to Biwi should be small, compared to using fully
synthetic images from SynHead++. However, the distribution
of poses in 300W-LP does not match the one found in Biwi,
which makes it challenging to gain high performance when
training on 300W-LP only.

The section in the upper part of Table II shows results
from related work. Similar to us, [15] uses rendered synthetic
images but also a part of the Biwi dataset to train a HPE model,
which makes a fair comparison difficult. Only [27] (WHENet
and WHENet-V) publish better results than ours. WHENet-V,
uses additional data from the (real-world) Panoptic Studio
dataset [54] to better match the pose distribution of Biwi.

In an effort to create comparable results, we reproduced
related work on Biwi+ in the section provided in the lower part
of Table II. More details can be found in Section IV-E. Using
the proposed batch processing scheme, our method weighted
relative consistency regularization (RCRw) trained on 300W-LP
outperforms all reproduced work evaluated on Biwi+.

Domain Adaptation: shows results for synthetic-to-real
(SynHead++ to Biwi+) domain adaptation. Our proposed
method RCRw, outperforms the partial domain adaptation
method proposed in [16]. Although we get worse pitch
performance, we achieve better yaw, roll, and average
performance. For roll error, the improvement to [16] is nearly
one degree. We also report our results from [20]. In compari-
son to [20], improved handling of batch normalization boosted
our average and pitch performance but also slightly deterio-
rated pitch and roll accuracy. Nevertheless, the additional gain
is so significant that this deterioration can be accepted. A
detailed analysis of the effects of different components of our
method can be found in Section IV-D.

Looking at Table II, pitch error is higher than roll or yaw
for all reported results. We suspect that pitch estimation seems
to be a harder problem. For our experiments, pitch estima-
tion has gained the least from our method. Presumably, pitch
estimation can not benefit from the relative pose labels, as the
pitch angle is constant for all our augmentations. In contrast,
roll benefits the most from our relative pose labels. Probably

for this reason, we outperform almost all other work in terms
of roll error.

D. Ablation Studies

In this section we analyze the different components of our
framework in relation to head pose estimation performance.
Even though, we are mainly interested in the synthetic-to-
real scenario, we include experiments with 300W-LP, as this
database is highly used in the HPE community.

We first establish a number of baselines in the first sec-
tion, “Supervised Only”, of Table III. These experiments are
trained only with the supervised loss on a source dataset and
evaluated on the Biwi+ dataset. The experiments only dif-
fer in the use of different augmentation combinations and the
selected source dataset.

Experiments trained on SynHead++ reveal the effects of
augmentations during training on synthetic data. It is clearly
visible that augmentations help to improve target performance.
Interestingly, rotation and flipping augmentations only give
small or no performance boost. This can be explained by
the structure of the datasets. SynHead++ already covers all
poses found in the test set Biwi+. Any additional pose aug-
mentations to SynHead++ will likely make the training set
more different to the test set. Color, scale, translation and
blur augmentations create images that might look more simi-
lar to the real-world test set. However, augmentations are not
sufficient to reach the performance of related work on the
Biwi dataset, which suggests that additional methods might
increase performance. These findings demonstrate two of our
key assumptions. First, training on a synthetic image dataset
does not provide automatically good results for a real-world
image dataset. Secondly, the tested augmentations improve the
performance but are not sufficient to force the network to learn
features that generalize well to real-world images.

Experiments trained on 300W-LP show that augmentation
also increase the performance if an “in-the-wild” training set
such as 300W-LP is used. The performance gain from aug-
mentation is smaller than for SynHead++. We think this is
explained by a smaller domain gap between 300W-LP and
Biwi+, because both contain real-world images. Comparing
the absolute performance on Biwi+, training with 300W-LP
and full augmentations is inferior to training on SynHead++
with full augmentations. This again can be explained by the
structure of the datasets. 300W-LP does not include all poses
of Biwi+. So even if we have very similar (real-world) image
features, some poses can simply not be learned from 300W-LP
as they can only be found in Biwi+ or SynHead++.

Consistency regularization uses our proposed consis-
tency framework. Again different augmentations are evaluated.
Using only pose-preserving augmentations for consistency reg-
ularization (CR), already improves the results to baselines.
Adding rotation and flipping further increases the performance.
Best performance for yaw and roll is gained when using the
full augmentation scheme with relative pose (RCR). However,
best overall performance is gained when using all augmenta-
tions without flipping. In the RCR setting, using “no target
BN” boosts the overall performance and is beneficial for pitch
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TABLE III
ABLATION ON DIFFERENT BASELINE AND CONSISTENCY REGULARIZATION SETTINGS FOR OUR METHOD. HEAD POSE ESTIMATION RESULTS ARE

FOR EXPERIMENTS TESTED ON THE BIWI+ DATASET [16]. EXPERIMENTAL RESULTS ARE GROUPED IN BLOCKS DESCRIBING THE TRAINING METHOD.
WE REPORT MEAN AND STANDARD DEVIATION OF THE AVERAGE ABSOLUTE ANGULAR ERRORS IN DEGREE AND MEAN ABSOLUTE ERROR (MAE)

OVER ALL ANGLES FOR 10 TRAINING RUNS. BEST RESULTS IN BOLD. AUGMENTATIONS FOR EXPERIMENTS: ROTATION (R), FLIP (F), COLOR

DISTORTION (C), SCALING (S), TRANSLATION (T), GAUSSIAN BLUR (B). CR = CONSISTENCY REGULARIZATION, RCR = RELATIVE POSE

CONSISTENCY REGULARIZATION, w = WEIGHTED LOSS

estimation. Although a general increase in performance can
be observed, yaw and roll estimation is slightly deteriorated
by using “no target BN”. We theorize that this is caused by
the distribution differences between Biwi+ and SynHead++.
Compared to pitch, the yaw and roll distributions are more
similar between the datasets, and therefore the estimation
might even benefit from an implicit alignment by a shared
batch norm.

Weighted consistency regularization includes the
proposed weighting of angles during training.

Compared to CR and RCR, regardless of augmentation
scheme, weighting gives a slight performance boost. The
observations for applying “no target BN” are the same as for
RCR. Again, best overall performance is gained when using
all augmentations without flipping and “no target BN”.

We also applied the RCRw with full augmentations to
300W-LP. Interestingly, the gain for “no target BN” is very
high. We conjecture that this effect is created by a high differ-
ence in pose labels between 300W-LP and Biwi+. The differ-
ent poses also create very different feature distributions, which
causes detrimental effects if batch normalization statistics are
averaged from source and target dataset. Possibly for the same
reason, the overall gain of using consistency regularization is
lower compared to the SynHead++ experiments.

E. Influence of Face Detection on Performance

A phenomenon evident from the upper part of Table II
is that the community has not settled on a standardized
evaluation protocol for head pose estimation. Even though
all of these works report results on the same dataset, the
dataset preprocessing and splitting is often different. In an
attempt to improve comparability of results, we try to recreate

results on Biwi+ for related work. Luckily, code and mod-
els for the works of Ruiz et al. [17], Yang et al. [18] and
Zhou and Gregson [27] are available online. However, we can
not simply feed the Biwi+ data to the models, because every
method uses different image preprocessing. As suggested in
previous work [25], [26], how the face is cropped before pose
estimation is a crucial factor for performance. Furthermore, the
models are trained to recognize poses that come from crops
similar to those used during training, which might depend on
the used face detector. We therefore conduct a small study
on preprocessing and ask two questions. What role plays face
detection for HPE performance? How important is a predictor-
specific bounding box, i.e., is a bounding box of one detector
replaceable by another? While there are certainly more differ-
ences (see 3 for more), here we focus on face detection and
transferability of detections (bounding boxes), two steps that
have not been analyzed before.

In Figure 4 we visualize the bounding boxes that are used
for cropping in different methods. Note that our methods use
the crops from Biwi+ [16], which use a CNN based face
detector from Dlib [56] and manual labeling. Hopenet [17]
uses Dockerface [55] a Faster R-CNN based detector inspired
by [59]. FSA [18] uses MTCNN [57] and WHENet [27] uti-
lizes a YOLOv3 [58] model trained to detect faces. Using
the aforementioned detectors on the Biwi dataset, we found
that face detection provides three sources of errors: finding the
wrong person in the image; finding no person in the image;
finding a bad crop of the face, e.g., not all parts of the face are
visible. All of these cases happen on Biwi and the latter two
cases can be seen in Figure 4. To avoid detecting the wrong
person, detections are usually selected by size or by distance
to image center. We did this in our reproduction experi-
ments for all evaluated face detectors except for MTCNN,
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TABLE IV
REPRODUCTION OF HEAD POSE ESTIMATION RESULTS FOR METHODS TRAINED ON 300W-LP [19] EVALUATED ON DIFFERENTLY PROCESSED

VERSIONS OF BIWI [7]. THE DIFFERENCES ARE THE NUMBER OF USED IMAGES AND THE BOUNDING BOXES USED FOR CROPPING THE IMAGES. WE

REPORT THE AVERAGE ABSOLUTE ANGULAR ERRORS IN DEGREE AND MEAN ABSOLUTE ERROR (MAE). RESULTS SELECTED FOR COMPARISON IN

TABLE II ARE IN BOLD. CLEANED = IN CASE OF MULTIPLE DETECTIONS, CORRECT FACE IS SELECTED. TRANSFORMED = BOX SCALE AND

TRANSLATION IS CHANGED TO BE SIMILAR TO THE ASSOCIATED WORK. UNCHANGED = BOXES ARE USED DIRECTLY

Fig. 4. Visualization of different bounding boxes used for cropping images
of the Biwi dataset [7] before pose estimation. Depending on method and
image, no face crop is found (pictures in left column), possibly resulting in
skipping these images during evaluation.

where the selection procedure is provided by the authors
code [18].

In Table IV we show our results of recreating related work.
“Used Biwi Images” reports the number of images with face
detections for each face detector, which is also the number of
images used for our evaluation. One can see that this num-
ber ranges from 13219 (MTCNN) to 15678 (Dlib and manual
detections). From our experiments it seems likely that only
images with detected faces are used for evaluation in related
work. This makes reported results on Biwi variants highly
incomparable. Not only the number of compared images dif-
fer, e.g., ≈16% of images omitted for FSA, but especially
faces with large head rotations and therefore difficult sam-
ples are usually the ones not found by face detectors. Similar
results3 can be found for methods like [29] that utilize FSA’s
data processing code.

3https://github.com/kuhnkeF/headposeplus

As a consequence, we tried to use the boxes provided by
Biwi+ for all methods, to gain equally sized test sets. As
it would be unfair to use a crop that is dissimilar from the
one a network is trained on, we calculated a transforma-
tion from Biwi+ box to the box associated with the method
in question. The transformation minimizes the mean differ-
ence in box translation and box scale between the intersection
of detections found by two detectors. Although straight-
forward, this transformation works very well for FSA and
Hopenet, as performance is nearly identical to the original
boxes. This shows evidence that the predicted face posi-
tion from a face detector has only small influence on the
final performance. That is, we can interchange face detec-
tors and get similar results. Surprisingly, Biwi+ boxes work
even better than the ones created by MTCNN for FSA.
Unfortunately, we could not recreate the results reported for
WHENet. Another conclusion of Table IV is the fact that
changing the face detection method can change the evaluation
dataset and therefore the performance from state of the art to
irrelevant.

In summary, the role of face detector seems less important
as long as the same subset of images is used during evaluation.
Furthermore, this section showed that a much stricter evalua-
tion protocol should be used to compare head pose estimation
results. There are even additional differences to the Biwi+
evaluation protocol, which we neglected here, a full analysis
is available on 3. Even though, discussed in literature [16],
[25], [26] as an important factor, by using a non-standardized
preprocessing, many works indirectly assume preprocessing to
have negligible influence for performance comparison. On the
contrary, we believe the contribution of preprocessing might
even conceal the effects of novel methods on observed per-
formances. This calls for a more unified evaluation protocol.
We make the code to recreate the results of Table IV pub-
licly available3. There we also investigate additional factors,
such as different rotation representations, and their effects on
performance.
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V. CONCLUSION AND FUTURE WORK

We propose relative pose consistency, a new approach
to improve deep head pose estimation performance with
semi-supervised learning. Our method allows pose-altering
augmentations, like rotation, to be incorporated into a con-
sistency regularization framework. In addition, we introduce
two extensions, a weighting scheme and a batch processing
scheme, to improve performance. We evaluate our method in
two scenarios: domain-adaptation and cross-dataset evaluation.
For domain-adaptation, our method outperforms previous work
by 7%. To enable direct comparisons for the cross-dataset
evaluation, we reproduced results from related work. Thereby,
we uncover that inconsistent preprocessing seems to prevent
comparability of head pose estimation results and suspect that
the effects of data preprocessing can conceal methodologi-
cal contributions. This raises the question of whether stricter
evaluation protocols are needed. In this context, our method
improves the state of the art for the cross-dataset evalua-
tion by 6%. Furthermore, our approach trained only on labels
from synthetic data outperforms previous work trained on real-
world images (300W-LP) by 20%. We thereby demonstrate
that state-of-the-art performance on real-world images can be
achieved when using only labels from synthetic training data.
Ultimately, however, there is still a gap to methods trained with
real-world datasets that are very similar to the target domain.

In future work, our framework could also be combined with
other methods. Among the many consistency regularization
frameworks we based our work on the simple �-Model [42].
Therefore, another direction could be to extend our framework
to consistency frameworks like self-ensembling with teacher
student models [45]. Lastly, the concept of relative pose con-
sistency could be applied to other pose estimation tasks such as
hand or body pose estimation, or scale and translation estima-
tion methods like [60]. An example of another pose estimation
application has been proposed for gaze estimation in [61].
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