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Abstract — The concept of soundscapes according to ISO 12913-1/-2/-3 proposes a descriptive framework
based on a triangulation between the entities acoustic environment, person and contert. While research on
the person-related dimensions is well established, there is not yet complete agreement on the relevant indicators
and dimensions for the pure description of acoustic environments. Therefore, this work attempts to identify
acoustic dimensions that actually vary between different acoustic environments and thus can be used to
characterize them. To this end, an exploratory, data-based approach was taken. A database of Ambisonics
soundscape recordings (approx. 12.5 h) was first analyzed using a variety of signal-based acoustic indicators
(V; = 326) within the categories loudness, quality, spaciousness and time. Multivariate statistical methods were
then applied to identify compound and interpretable acoustic dimensions. The interpretation of the results
reveals 8 independent dimensions “Loudness”, “Directivity”, “Timbre”, “High-Frequency Timbre”, “Dynamic
Range”, “High-Frequency Amplitude Modulation”, “Loudness Progression” and “Mid-High-Frequency
Amplitude Modulation” to be statistically relevant. These derived latent acoustic dimensions explain 48.76%
of the observed total variance and form a physical basis for the description of acoustic environments. Although
all baseline indicators were selected for perceptual reasons, validation must be done through appropriate
listening tests in future.
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1 Introduction

Soundscape, as defined in ISO 12913-1 [1], is understood
as a multidimensional framework whose evaluation is rec-
ommended by a triangulation between the aspects person,
context and acoustic environment (AE) [2]. With the
increase of information about each of these aspects, the
description and interpretability of a specific soundscape
gains validity. As soundscape itself is a multi-disciplinary
concept, research in this area follows diverse approaches
and paradigms. There is a considerable body of research
on the human-centered approach of soundscape, for exam-
ple the identification of fundamental emotional dimensions
[3-5]. The dimensions for affective quality defined in [6],
namely valence and arousal, were developed by means of
factor or principle component analysis of a multitude of
attribute scales [4, 7]. In contrast, there is only little agree-
ment on the mere acoustical parameters, indicators and
dimensions that describe the physical aspects of sound-
scapes in a discriminative way. Rather, the choice of param-
eters as indicators for individual hypotheses depends
strongly on the respective discipline. Research attempts to
model sound and noise quality and perception for example
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rely often on A- and C-weighted sound pressure levels or
conventional psychoacoustic measures such as loudness,
sharpness, roughness and fluctuation [8]. An extensive
review of models and underlying acoustic and psychoacous-
tic indicators can be found in [9]. At the same time,
researchers agree that these and other known parameters
are not sufficient to model emotional arousal and valence
[5], also due to the lack of contextual and other non-acoustic
indicators. A different application in computer science is the
training of algorithms for extracting information from
recordings of acoustic environments such as in acoustic
event detection (AED), acoustic event classification
(AEC), acoustic scene classification (ASC) or acoustic scene
analysis (ASA). Here, parameters like short-time spectro-
grams or Mel-frequency cepstral coefficients (MFCCs) are
widely used. An attempt to cluster acoustic events on the
basis of selected acoustic features for the mapping of urban
sounds can be found in [10]. However, the general question
of which parameters and parameter combinations actually
describe an acoustic environment adequately has not yet
been answered satisfactorily. An exemplary overview of
considered parameters for the respective research purposes
can be found in Table 1. In the case of annoyance or quality
modeling of soundscapes, an important question would be
whether the selected signal properties are indeed capable
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Table 1. Exemplary overview on research using different sets of signal parameters.

Author(s) Purpose

Parameters

ISO 2019 [6] Soundscape assessment

Lacqs Loeg, loudness (ISO 532-1/-2), sharpness, roughness,

fluctuation strength

Green and Murphy [24] ASC

Rey Gozalo et al. [29] Soundscape perception
modeling

Jeon and Hong [30] ASC, soundscape perception
modeling

Preis et al. [31] Soundscape perception
modeling

Park et al. [10] AED, AEC, SIR

20 MFCCs, FOA DirAC
Legs Lacq, loudness (ISO 532-1), sharpness

Leq, Leeq, spectral centroid
Lpeq, loudness (ISO 532-1), sharpness, fluctuation strength, roughness

RMS, 13 MFCCs, zero-crossing rate, spectral centroid, flatness,

flux, and spread

Cain et al. [4] Soundscape perception
modeling
Soundscape perception
modeling

Soundscape quality

Axelsson et al. [7]

Nilsson et al. [32]

Lacq, loudness (ISO 532-1), sharpness, roughness, fluctuation strength,
intelligibility
Lpcqs Loeq, loudness (ISO 532-1)

Lacqs Loeg, loudness (ISO 532-1), spectral center of gravity,

music-likeness, number of noise events

Persson Waye and Annoyance modeling

Ohrstrom [33]

Loudness (ISO 532-1), sharpness, tonality, roughness,
fluctuation strength, modulation

of sufficiently modeling the annoyance or whether, for
example, a particular combination of parameters has unex-
pected effects. This leads to manifold approaches to find
suitable parameters that can act as an appropriate indica-
tor for perceptual, cognitive or emotional reactions. This
work therefore aims to support this research direction by
collecting potential acoustic parameters on the basis of
which soundscapes with distinguishable human-related
properties can be evaluated. It follows the approach that
was conceptually presented previously by the authors in
[11]. To this end, this paper takes a step back and examines
which acoustic parameters occur at all with some variance
in soundscapes. This exploratory approach is motivated
by the development of the affective qualities, where a
multitude of attributes are aggregated to a small number
of emotional dimensions. In a similar way, a multitude of
acoustic indicators are taken into account to form underly-
ing, latent acoustic dimensions. With the aim that these
dimensions are seen as distinguishing characteristics of
acoustic environments, a variety of applications can be pur-
sued such as modeling of human-centered responses [12, 13],
the ecological validation of soundscape reproductions where
certain acoustic properties are to be preserved [14, 15] or the
training of algorithms for automatically deriving informa-
tion from soundscape recordings [16].

2 Indicators for acoustic assessment

For the description of an acoustic environment, distinct
quantifiable indicators must be identified and selected.
Since the description aims to assess human-centered percep-
tion, a-priori categories for acoustic indicators are derived
from semantic description: quality (in the following referred
to as Q), loudness (L), spaciousness (S) and time (T). The
category quality must not be confused with wvalence but

represents characteristics, that helps human beings to iden-
tify sound sources, such as information on timbre and spec-
tral composition as well as short time temporal succession.
Loudness distinguishes whether an acoustic environment is
perceived as loud or soft in volume, spaciousness represents
location, distribution and envelopment of both the sound
sources and indistinguishable background noise. The cate-
gory time describes how the acoustic scene changes over
time. Suitable indicators from literature sources (Tab. 1
and others) are assigned to these categories in the following
listing. A detailed description, scientific sources and
implementation of each indicator can be found in the
Supplementary Material A.

Quality: MFCC, Spectral Brightness, Spec. Centroid,
Spec. Crest Factor, Spec. Decrease, Spec. Entropy, Spec.
Flatness, Spec. Flux, Spec. Irregularity, Spec. Kurtosis,
Spec. Roll-Off, Spec. Skewness, Spec. Spread, Timbral
Booming, Roughness, Sharpness, Fluctuation Strength.

Loudness: SPL (A-/Z-weighting), Octave Band Energy,
Loudness (ISO 532-1/2), LUFS (EBU R 128).

Spaciousness: ILD, ITD, IACC, IC, Direction of Arrival
(hor., vert.), Diffuseness, Directivity Index (hor., vert.,
sph.), Ambisonics Energy Ratio.

Time: amplitude modulation (frequency and depth;
periodic and stochastic); time series of all above indicators.

For this work, each indicator is calculated as time series
for overlapping frames of 100 ms each and hop size of 50 ms
to respect both time-integrating behavior of the human
auditory model [17] and time-variance of acoustic scenes.
It is recognized here that there may be acoustic events
and psychoacoustic effects that are difficult to detect with
this temporal resolution. At the same time, averaging
through large analysis windows contributes to the increased
robustness of the results against statistical and measure-
ment noise. Furthermore, the majority of indicators is
calculated frequency-dependent. For that, the broadband
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Table 2. Frequency limits in Hz of analysis bands.

ID 0 1 2 3 4 5 6 7 8 9
fo 31 62 125 250 500 1000 2000 4000 8000 16,000

signals are filtered using 10 octave filters with center fre-
quencies given in Table 2 and indicators are calculated for
each octave band individually. Again, this spectral resolu-
tion is not sufficient to separate the filter bands of human
hearing or the spectral composition of individual sound
sources. However, it offers the possibility to detect a general
and interpretable frequency dependence of the acoustic
indicators. The indicators themselves are based on one of
three signal representations of the same acoustic environ-
ment: The quality and loudness indicators may be calcu-
lated either from a monophonic pressure representation or
from a binaural signal, while the spaciousness indicators
require binaural and spherical harmonic (Ambisonics) sig-
nal representation of the three-dimensional soundfield.
The latter two representations incorporate spatial informa-
tion of an acoustic environment such as the location of
sound sources or the envelopment of sound. In order to
maintain consistency and to reduce data complexity, all
three representations stem from the same recording of a
specific acoustic environment. For that, microphone array
recordings are necessary that can be transformed into the
spherical harmonic domain as it is established in Ambison-
ics encoding and rendering [18]. The order of the ambisonic
recordings generally determine the spatial confidence.
However, even first-order Ambisonics (FOA) recordings
are suitable for the analysis in this work. The binaural
representation is derived by convolution with appropriate
head-related transfer functions (HRTF) [19] as it is estab-
lished in [20, 21]. The monophonic sound pressure represen-
tation on the other hand side is proportional to the
Oth-order Ambisonics component [22].

3 Determining underlying dimensions

The idea pursued in this work is that the multitude of
indicators contain information describing the properties of
an acoustic environment that are relevant when a human
being perceives and contextualises the same environment.
Just as humans can classify their environment acoustically
on the basis of their two ear signals, a procedure is now to
be developed here that provides an abstract construct for
the description and identification of acoustic environments
on the basis of the indicators presented in the previous
section. In other words it is assumed that the observed indi-
cators above are realizations of certain underlying acoustic
dimensions that characterize an acoustic scene or environ-
ment. These assumptions allow the application of explora-
tory factor analysis (FA) as schematically depicted in
Figure 1. Similar to the related principle component analy-
sis (PCA), FA can be used here to aggregate data variances
(and thus information) by transforming the observed indi-
cator time series from an original space into an optimized

space of latent dimensions. The methodological differences
between PCA and FA concern the perspective: while
PCA assumes that the observed indicators constitute the
ground truth, which in turn can be described by principal
components, FA implies that the (hidden) latent factors
constitute the ground truth and the observed indicators
are more or less arbitrary realizations of it. For the sake
of comparability, some taxonomies, measures and results
of PCA are placed alongside those of FA in the following.
The operation itself to obtain the factor scores Y in the
optimized space is realized by matrix multiplication as
shown in equation (1)

Y=XL, (1)

where X is a [N, x N} matrix (N,: number of observa-
tions; N; number of indicators) of the original data and
L a specific loading matrix of dimension [N; x N
(N number of factors). The loading matrix comprises
the individual weights of each indicator into each factor.
The sum down the rows, i.e. among indicators yields the
sum of square loadings (in PCA: eigenvalues of covariance
matrix) or explained variance of a certain factor

Ni
5=30, @
i=1

This measure indicates the weight of a particular jth fac-
tor, which is important when deciding which factors to
retain. Dividing L by the respective explained variances
yields the relative Loading L, (in PCA: eigenvectors of
covariance) that includes the assignment of the indicators
to the respective factors and represents the direction of
the transformation:

Lia=L- diag{s}_l‘ (3)

In contrast to PCA, the factors in FA only express the
common part of variance of the observed indicators. That
means in practice that each indicator may inhibit portions
of specific variance ¢, as well as measurement noise &,
which both is not included in the factors as denoted in
Figure 1 with €; = €,; + €,;. Hence, we allow the indicators
to be imperfect realizations of the factors which relaxes
the necessary requirements of the indicators.

In order to apply FA to indicators of different scales and
units, preprocessing of the initial indicator vectors must be
applied. For that, an interval range of expected values was
defined for each indicator and scaling was applied accord-
ingly to derive relative values within this interval. Since
FA is only capable to identify linear relationships, non-
linear indicators must also be treated accordingly. Ratio-
scaled indicators with reference to frequency/Hz are
converted to frequency in octaves relative to 10 Hz to
regard the logarithmic behavior of auditory pitch percep-
tion. Conversions and expectation intervals for each indica-
tor can be taken from the Supplementary Material A.
Finally, a zstandardization was applied to each indicator,
that means removal of the mean and normalization to unit
variance.


https://acta-acustica.edpsciences.org/10.1051/aacus/2022042/olm

4 J. Bergner and J. Peissig: Acta Acustica 2022, 6, 46

Indicator2

Indicatorl

Indicator3

Figure 1. Concept of factor analysis with loadings /;; and unique variances ;.

Pure FA produces mutually independent (uncorrelated)
factors where the first factor includes maximum variance.
However this might result in a loading matrix that is diffi-
cult to interpret. In these cases, a further rotation of the
loading matrix L aims for a simple structure with few high
loadings and many low loadings. In this work the orthogo-
nal rotation method varimaz was chosen to preserve uncor-
related factors while increasing interpretability.

4 Application

The following section describes how the previously pre-
sented methodology is applied to real observational data of
acoustic environments. To make generalizable statements
about underlying dimensions, the sample draw of AE
recordings for developing the final loading matrix L must
be chosen with care. This work focuses on acoustic environ-
ments that can potentially be part of soundscape research
and consists of indoor and outdoor recordings of public
places with and without human impact. The selection con-
sists of publicly available recording data bases where
Ambisonics or microphone array recordings are utilised.
The listed databases in the following are used.

ARTE |23]: 13 mixed-order Ambisonics (4th/7th-order)
recordings between 01:21 and 02:30 min: library, office,
church, living room, café, dinner party, street, train station
and food court.

Eigenscape [24]: 8 x 8 4th-order Ambisonics recordings
of 10 min each: beach, street, park, pedestrian zone, shop-
ping centre, train station, woodland.

Soundfield by Rode Ambisonic Sound Library [25]: selec-
tion of 35 first-order Ambisonics recordings between 00:07
and 06:41 min: indoor crowd, playground, car, foyer,
library, mall, market, metro, street, steam train, traffic
and train station.

All in all N, = 903,735 observations of 100 ms were
analyzed for N; = 326 indicators. The multivariate methods
PCA and FA both with and without subsequent varimaz
rotation were applied and performance metrics were com-
pared. Figure 2 shows the cumulative explained variance
portions of the four methods. In order to identify the
most relevant factors or principle components respectively,

parallel analysis was applied as well as the Kaiser criterion.
The result of this relevance analysis can be found in Table 3.
We recall that the goal of the multivariate methods here is
to find latent dimensions that are manageable in number
and interpretable at the same time. Thus we not only eval-
uate the mere number of relevant components but also their
composition, i.e. what indicators contribute considerably to
a certain dimension. We find that the wvarimaz rotation
leads to a fewer number of indicators with higher loading
that contribute to the latent dimensions as intended, which
is why we choose this processing step to be beneficial. We
can also observe that the parallel analysis assumes a lower
number of components to be relevant which also aligns with
expectations as well as our aim. After all, the first 8 vari-
maz-rotated factors explain 49% of the total variance,
which is generally just a moderate result but a reasonable
starting point given a large input of N, = 903,735 observa-
tions with N; = 326 indicators. An investigation of the com-
position of these 8 factors reveals its interpretability in
terms of acoustical semantics. Table 4 lists the indicators
that contribute to a certain factor. The indicators are sorted
in descending order by their absolute relative loading in
parentheses. Only those indicators are listed whose cumula-
tive sum of squares describes at least half of the respective
factor’s variance and thus characterize it.

5 Results

The factors are sorted with decreasing amount of
explained variance. It has to be mentioned that the amount
of variance that can be explained with a certain factor dras-
tically depends on the initial choice of indicators. From that
follows that the explanatory power of the absolute amount
of explained variance within the factors should not be over-
estimated rather than the indicator composition itself.

Factor 1 obviously describes the level or loudness of the
soundscape recording. Indicators such as loudness
(Zwicker), A-weighted SPL and loudness (LUFS) domi-
nate this factor especially within the frequency bands
number 3-5 (corr. to f. = 250...1000 Hz).

Factor 3, which explains the second most portion of
variance, comprises the spherical directivity indices of the
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Figure 2. Explained variance ratio in % for PCA and FA both with and wihtout varimaz rotation.

Table 3. Number N;, of relevant factors (FA) or principle components (PCA) according to Kaiser criterion and parallel analysis.

Kaiser criterion Parallel analysis

N, Sos? N, Sos?
PCA 59 265.21 (81.35%) 8 174.10 (53.41%)
PCA varimaz 85 259.72 (79.69%) 8 158.35 (48.57%)
FA 28 216.06 (66.28%) 8 168.76 (51.77%)
FA varimaz 30 213.74 (66.56%) 8 158.97 (48.76%)

Table 4. Indicator composition of the 8 most relevant factors. Trailing index numbers denote the respective frequency band ID as
listed in Table 2. Factors in parentheses indicate respective loadings.

Factor j

2
ST

Indicators

1

86.10 (26.4%)

16.79 (5.2%)

11.95 (3.7%)

10.27 (3.2%)

9.17 (2.8%)
8.84 (2.7%)
8.28 (2.5%)

7.58 (2.3%)

loudnessZwicker .16, loudnessZwickerBands04 g 105, loudnessZwickerBands05q.105),
loudnessZwickerBands03(.105), LA (0.105), LAeq(o.105), LABands03.104), LAeqBands03.104),
LAeqBands05 104), LABands05g.104), lufsPeakBands03 g 104),LABands04 g 194,
LAeqBands04y.104),lufsPeakBands04g.104), lufsPeakBands05.104), 0ct060.104),
LApeakBandsO?)(o,m,n, OCtO4(0.10,1)7 LAmaxBandsOIﬂ(O,lm), OCtO5(0_10,1)7 LAmaxBandsOll(olmg),
LAmax.103), loudnessZwickerBands06o.192), LAmaxBands05.192), LApeakBands04.102),
mfcc00g.102), lufsPeak g 102), LApeakBands02(g.102), LAeqBands02(g.102), LABands02(g.102),
LApeakBands059.101), LAmaxBands02 g 101), loudnessZwickerBands02 g 101y, LApeako.101),
0ct07(0.101), LABands06.101), LAeqBands06(.101), lufsPeakBands06.190),
lufsPeakBandsOQ(o_ogg), lufSMOmBaHdSO3(0_Ugg), lufSMomBandSO4(0_098), OCtO3(0_098),
lufsMomBands05 g.g97), LAmaxBands06.g97), LApeakBands06q.o96),
loudnessZwickerBands07 .095), LApeakBands01 g g4y, lufsMomq gg4), lufsMomBands06 ¢.093)
SphDIOG(_0225), SphDIO?(_uggs), SphDIO5(_0'223), SphDIE]O?(_OQQQ), SphDIOS(_O_Qm),
SphDIElOE)(,O'Zlg), SphDIE108(704214), sphDIElO4(,0,208)7 SphDIO4(,0,207)7 SphDIE/lOG(()Jgg)7
SphDIAZ06(70_194)

spectralCentroid g 247), spectralRolloffPoint g 243, spectralEntropy .242), spectralCrest(_q.214),
spectralSkewness(_o.194), spectralSpread.1s3), spectralFlatness o173y, oct01(_o.170),
lufsPeakBands00(_g 16s), spectralKurtosis(_o.167), 0ct02(9162), LABands00(_.154),
lufsPeakBands01(_.153), LAeqBands00_¢.151)

mfcc0l(_g.244), Sharp(g.az0), lufsPeakBands09(q.189), LABands09(.1s7), LAmaxBands09g.1s5),
LAeqBands09.155), LAmaxBands08g.132), LABands08.150), LAeqBands08.17s),
lufsPeakBands08g.177), lufsMomBands09 174, lufsMomBands08.167),
LApeakBands08 g 163), LApeakBands09 g 162), 0ct090.162)

lufsRange(_¢.311), lufsRangeBands04(_ 303), lufsRangeBands03_g 299),
lufsRangeBands05(_¢ 293, lufsRangeBands02(_¢ 2s3), lufsRangeBands01(_q 274
modDepthSO9(o‘303)7 modDepthSOS(O'mg), HlOdDepthP109(0‘291)7 modDepthP209(0A287)7
mOdDepthP309(0_287), mOdDepthP?)OS(o_Qgg), modDepthPQOS(o_%l)

lufsShort(_.295), lufsShortBands09(_g 292, lufsShortBands07_g.29¢), lufsShortBands08_ 2ss),
lufsShortBands06(_.24), lufsShortBands01_g 2s4)

modDepthS06 g 276), modDepthP106 g 273), modDepthP105 g 261y, modDepthS05 g 255),
modDepthP306g.250), modDepthP206 g.247), modDepthP305(0.230), modDepthP205 g 207
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Table 5. Summarized semantic descriptors for the first eight relevant factors.

Factor j s? Semantic descriptor

1 86.10 (26.4%) “Loudness”

3 16.79 (5.2%) “Directivity”

2 11.95 (3.7%) “Timbre”

5 10.27 (3.2%) “High-Frequency Timbre”

7 9.17 (2.8%) “Dynamic Range”

6 8.84 (2.7%) “High-Frequency Amplitude Modulation”

4 8.28 (2.5%) “Loudness Progression”

8 7.58 (2.3%) “Mid-High-Frequency Amplitude Modulation”

incoming soundfield representing information whether the
sound energy arrives from a certain direction or region or
if it surrounds the respective receiver position. Again the
mid-high frequency bands are prominent in discriminating
the observations.

Factor 2 includes mainly spectral characteristics. To
have these indicators forming a prominent factor is some-
what surprising from a statistical point of view since these
indicators are not calculated in frequency bands and thus
contribute only once to the total explained variance. It is
also interesting that these indicators form a factor together
with SPL and loudness indicators in the low-frequency
bands 0 and 1.

Factor 5 includes high frequency content such as
SPL and loudness in the frequency bands 8 and 9
(f. = 8...16 kHz) but also sharpness which is measure for
high frequency spectral characteristic. Obviously this higher
frequency region is more or less independent of the general
spectral timbre as described in the previous factor 2.

Factor 7 comprises loudness range indicators following
the algorithms according to [26-28]. It has to mentioned
that the calculation of this loudness range is usually per-
formed as singular value for a specific audio content (e.g.
music or movie). The calculation as time series of sound-
scape recordings describes the loudness range of the respec-
tive previous time interval from start of the recording to the
current timestamp. This leads to the fact that the observa-
tions depend on previous time periods and thus violate the
requirements for FA. This behavior is also reflected statisti-
cally, as no other indicator (group) contributes to factor 7.
Therefore, it may be necessary to omit this factor altogether
from further analysis.

A different analysis of temporal behaviour of loudness or
level can be observed in factor 6 which includes especially
the modulation depth of the first three dominant periodic
modulations as (modDepthP) as well as the remaining
stochastic modulation (modDepthS) for the high frequency
range of bands 8 and 9 (f. = 8...16 kHz). This modulation
behaviour obviously differs from that in the mid-high range
(bands 5 and 6) that we can observe in factor 8.

Factor 4 mainly summarizes loudness indicators of
short-time averaged LUFS. Since these indicators inhibit
a moving time window of 3 s, the resulting factor can be
interpreted as loudness progression. It is noteworthy that
this specific temporal characteristic is statistically indepen-
dent from general loudness in factor 1.

Table 6. Sample draw of soundscape excerpts for exemplary
pairwise comparison.

1D Database Name Excerpt

1 ARTE 01 _Library 01:30-02:00
2 ARTE 02_ Office 00:35-01:05
3 ARTE 04_Living_Room 00:58-01:28
4 ARTE 07 Cafe 1 01:28-01:58
5 ARTE 09_Dinner Party 01:36-02:06
6 ARTE 11_Train_ Station 00:18-00:48
7 ARTE 12 _Food Court 1 00:36-01:06
8 Eigenscape Beach.7 05:38-06:08
9 Eigenscape Park.5 05:28-05:58
10 Eigenscape PedestrianZone.3 08:00-08:30
11 Eigenscape PedestrianZone.5 06:48-07:18
12 Eigenscape ShoppingCentre.8 05:24-05:54
13 Eigenscape TrainStation.6 03:24-03:54
14 Eigenscape Woodland.2 03:16-03:46
15 Soundfield Kids Playground 1 00:47-01:17
16 Soundfield Rural Market Busker 01:40-02:10
17 Soundfield Steamtrain Exterior 02:00-02:30
18 Soundfield St Kilda Road Traffic 02:56-03:26
19 Soundfield Southern Cross Station 00:30-01:00

In summary we observe that the first 8 relevant factors
can be interpreted quite well in terms of dominant indica-
tors that contribute to them. Table 5 lists the semantic
descriptors that are proposed from the findings above.

6 Plausibility considerations

In order to conduct steps for validation of the identified
acoustic dimensions, we show a comparative example at
this point. This includes a sample draw of 19 excerpts of
30 seconds each of the soundscape recording data base as
listed in Table 6. The sample includes examples from each
recording database for a range of acoustic environment
classes that potentially contain the three sound source
classes according to ISO 12913-2, namely sounds of technol-
ogy, sounds of nature and sounds of human beings. The
excerpts were selected subjectively by the authors aiming
for two criteria: (i) a homogeneous listening impression
throughout a sample, to allow semantic and statistic
description that is valid for the entire excerpt and (ii) sam-
ples that have potentially similarities and differences within
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Figure 3. Distribution of factor scores amongst the soundscape recordings for each relevant factor.

the identified acoustic features. The acoustic indicators
were calculated and extracted and the resulting factor
scores according to equation (1) were deduced. The distri-
butions of factor scores for these samples can be found in
Figure 3 as boxplots of median, 25% and 75% quantiles
where outliers are omitted for better visibility. For compar-
ison reasons, the distribution of all 109 analyzed soundscape
recordings are listed in the Supplementary Material B.
The samples’ factor score distribution were analyzed
with regards to normality and homoscedasticity which
could not be asserted for every case and which is why

non-parametric statistic methods have been applied. A
Kruskal-Wallis test on ranks proposes significant differ-
ences among the samples within all acoustic dimensions
(H > 9500, p < 0.01). Subsequently, pairwise Dunn’s
posthoc tests with Bonferroni adjustment were performed
comparing all 19 samples with each other for each dimen-
sion. The result whether each comparison pair differs signif-
icantly can be found in Figure 4. It is noteworthy that the
majority of these comparisons exhibit strong significant
differences with p < 0.01 (s, red tiles). This result might
be influenced by the relatively large number of observations
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Figure 4. Statistical differences between sample soundscapes. Red: strong significance (p < 0.01), blue: moderate significance

(p < 0.05), gray: no significance (p > 0.05).

(30 s x 20 observations/s) and should at this point only
describe the difference from a statistical point of view. An
exemplary comparison of those soundscape excerpts that
are specifically quiet in loudness, namely the library (ID:
1), park (ID: 9) and woodland (ID: 14) scenarios, shows
similar and different properties with respect to their acous-
tic dimensions. The distributions of the dimension Loudness
are relatively low (cf. Fig. 3, top left) and the differences
between the soundscape excerpts are not significant
(cf. Fig. 4, top left). The other acoustic dimensions of these
excerpts show similar but still significantly different distri-
butions. This underlines the expected discriminating char-
acteristics of the observed soundscapes: even though the
loudness dimension seems to be similar, other dimensions
show significant differences.

7 Discussion

With the presented application of multivariate methods
on a wide range of acoustic indicators of soundscape record-
ings, it is possible to extract statistically independent fac-
tors to serve as underlying acoustic dimensions. It could
also be shown that an interpretation of these factors based
on the indicator composition was feasible in terms of finding
appropriate semantic descriptors. These descriptors can
generally be assigned to the a-priori categories loudness,
quality, spatiousness and time and thus confirm the
assumption that acoustic environments can be described
with these terms. The fact that each of these categories is
represented by more than one factor (e.g. loudness: factor
1 and 4; quality/timbre: factor 2 and 5; time/modulation:
factor 6 and 8) can be interpreted such that the selection

of indicators is crucial when physical characteristics of
acoustic environment shall be described. With other words,
if different acoustic indicators are chosen for the multivari-
ate analysis, different factor compositions may be observed.
In order to validate the deduced underlying acoustic dimen-
sions, discriminative investigations must be rolled out in
future. These include both the statistical differentiation of
specific soundscape recordings as well as perceptual evalua-
tion if these dimensions are also taken into account when
human subjects characterize acoustic environments. There-
fore, this paper should serve as an invitation to evaluate
and refine the proposed acoustic dimensions.

8 Conclusion

The presented paper discusses the need of suitable
acoustic descriptors for characterizing the physical proper-
ties of soundscapes. For that, an approach was pursued that
is comparable to the identification of semantic dimensions
of perceptual assessment, namely the application of multi-
variate statistic methods to reveal underlying constructs
of observable variables. In this work these methods were
adapted to acoustic signal indicators. In total 903,735
short-term observations of 326 indicators within 109 record-
ings of soundscapes were fed into factor analysis (FA) and
relevant factors were deduced. With this set of eight under-
lying dimensions 49% of the overall observed variance could
be explained and interpretable semantic descriptors could
be found. The presented approach allows the description
of acoustic environment in an efficient and comprehensive
way. Various areas of application may benefit from this
descriptive set of acoustic dimensions, e.g. computer-based
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applications such as acoustic scene analysis and classifica-
tion or perception-based applications such as soundscape
quality estimation or annoyance modelling. Furthermore,
if this approach receives confirmation, it can contribute to
be used as a comparative benchmark method for sound-
scape description and analysis. The derived results are lim-
ited by certain implications and conditions. First, the initial
choice of indicators may influence the statistic outcome
especially within the amount of explained variance. Second,
a perceptional validation by means of appropriate listening
tests is still pending. Appropriate listening tests are cur-
rently conducted and results will be published in the near
future. Third, the influence of signal analysis parametriza-
tion, including time and frequency resolution, Ambisonics
decoding scheme, and binaural convolution, needs to be
quantified, especially when merging statistical and percep-
tual results.
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