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Abstract 
This paper presents an array pattern synthesis algorithm for arbitrary arrays based on coordinate 
descent method (CDM). With this algorithm, the complex element weights are found to minimize a 
weighted L2 norm of the difference between desired and achieved pattern. Compared with tradi-
tional optimization techniques, CDM is easy to implement and efficient to reach the optimum solu-
tions. Main advantage is the flexibility. CDM is suitable for linear and planar array with arbitrary 
array elements on arbitrary positions. With this method, we can configure arbitrary beam pattern, 
which gives it the ability to solve variety of beam forming problem, e.g. focused beam, shaped 
beam, nulls at arbitrary direction and with arbitrary beam width. CDM is applicable for phase-only 
and amplitude-only arrays as well, and furthermore, it is a suitable method to treat the problem of 
array with element failures. 
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1. Introduction 
Comparing conventional antenna, antenna array provides advantages in flexibility and versatility. By changing 
the complex weights (including amplitude and phase) on each array element, the radiation pattern can be con-
trolled and reconfigured. The antenna array pattern synthesis problem consists of finding weights that satisfy a 
set of specifications on the beam pattern [1]. Several most famous approaches can solve certain array pattern 
synthesis problems analytically, such as Schelkunoff method [2], the Dolph-Chebyshev synthesis [3], and the 
Taylor method [4]. Over the last several decades, many numerical techniques have been proposed. There are a 
few methods often used e.g. Convex Optimization, Genetic Algorithms (GA) [5], Differential Evolution Algo-
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rithm (DE) [6], Particle Swarm Optimization (PSO) [7] and Taguchi’s Method [8] [9]. 
As an advantage of convex optimization, once an array pattern synthesis problem is convex, the global opti-

mum must exist [1]. The most difficult part is reforming of a nonconvex array pattern synthesis problem into a 
convex problem. So far many array pattern synthesis problems have already been solved with convex optimiza-
tion. Focused beam pattern with fix nulls and upper bound constraints over all side lobes can be solved with 
convex optimization [1]. In [10], a shaped beam array pattern synthesis problem was solved with sequential 
convex optimizations. If the amplitude-response error is linearly approximatable, it can be solved with convex 
optimization as well [11]. Some array pattern synthesis problems e.g. radiation pattern with lower bound con-
straints or synthesis with phase-only array cannot be solved with convex optimization method [1]. 

While the usage of convex optimization is restricted to the class of problems that can be transformed to be 
convex, the metaheuristic algorithms, e.g. GA, DE and PSO, can provide much more flexibility. They are not 
restricted in terms of types of array pattern synthesis problem. Furthermore, these evolutionary algorithms are 
able to deal with a huge parameter set without getting trapped in the local minima [12]; thus such a stochastic 
process is better suitable for large size arrays. In [13] GA was used to optimize the large thinned arrays in order 
to obtain low SLL (Side Lobe Level). The GA has no need to calculate derivatives and search from many points 
instead of a single point [5]. Further articles [14]-[17] present GA used for array pattern synthesis with different 
fitness functions and different requirements of the pattern. Differential Evolution Algorithm (DE) belongs to 
evolutionary algorithm as well. Comparing with the GA, the DE has no need for coding of the parameters and 
used different cross-over strategies. DE uses very few control parameters, and is easy to implement with any sort 
of program language. Many modified versions of the standard DE have been published in [12] [18]-[20]. PSO is 
similar in some ways to GA and DE, but requires less calculation and generally fewer lines of code. An over-
view about PSO in electromagnetics has been offered in [21]. In [22] the results of GA and PSO solving array 
pattern synthesis problems are compared. Many variants of the PSO specialized for difference array pattern 
synthesis problems have been discussed in [23]-[25]. 

In this article, an array pattern synthesis algorithm for arbitrary arrays based on coordinate descent method 
(CDM) is presented. CDM has been first mentioned in [26] for solving smooth unconstrained minimization 
problems. As an efficient optimization algorism, CDM is already used for many areas e.g. the autofocus system 
of SAR-Radar [27] [28], tomography [29] and digital image processing [30]. CDM minimizes a function with 
respect to a single parameter while holding the remaining parameters constant. Comparing with other direct 
search methods, the descent direction of CDM is predefined once the coordinate system is given. This property 
is meaningful for array pattern synthesis problems, because every complex amplitude of array element can be 
seen as a predefined search direction (or one dimension) of a N-dimension space, which describes the domain of 
a array pattern function. 

This paper is an illustration of the utility of CDM for array pattern synthesis problems. In Section 2, a briefly 
analytical description of CDM is presented, along with the formulation of the array pattern synthesis problems 
and corresponded fitness function. It is shown in Section 2.4, how the applications of adaptive weights function 
accelerate the optimization process and help achieving better results. Example of the applications of the CDM in 
different array pattern synthesis problems with comparisons to known algorithms is shown in Section 3. Then 
there is the conclusion in Section 4. 

2. Problem Formulation and Resolution 
2.1. Coordinate Descent Method 
Coordinate descent methods were among the first optimization schemes suggested for solving smooth uncon-
strained minimization problems. The main advantage of these methods is the simplicity of each iteration, both in 
generating the search direction and in performing the update of variables [31]. A coordinate descent method can 
be described as follow: 

We have ( )1 2, , , N
Na a a= ∈a    and : Nf →  . 

The optimization problem for ( )f a  is 

( )ˆ arg min .f
∈

=
a

a a


                                       (1) 

As the optimization in (1) has no closed-form solution, we resort to an iterative method based on coordinate 
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descent. In coordinate descent optimization, each parameter is optimized in turn, while holding all other para-
meters fixed. Because the parameters are interrelated, optimization over the entire set of parameters must be  
performed a number iterations. We start with arbitrary ( ) ( ) ( )( )0 0 0

1 , , domNa a f= ∈a   as initial value. Let ( )ˆ i
na   

denote the optimum value of nth coordinate (the nth element) of the ith iteration; then, the coordinate descent 
estimate at the next iteration 1i +  is defined as 

[ ) ( ) ( ) ( ) ( ) ( )( )1 1 1
1 1 1ˆ ˆ ˆ ˆ ˆ1, : arg min , , , , , , .i i i i i

n n n n Ni a f a a a a a+ + +
− +∈

∀ ∈ ∞ ⊂ =
a

 


                   (2) 

Now compute the ( ) ( ) ( )( )1 1 1
1̂ ˆ, ,i i i

Nf f a a+ + +=   and compare it with ( ) ( ) ( )( )1̂ ˆ, ,i i i
Nf f a a=  . While 

( ) ( )

( )

1

1

i i

i

f f
f

+

+

−
>  , which is a predefined value as quality criterion, repeat the procedure until 

( ) ( )

( )

1

1

i i

i

f f
f

+

+

−
≤  . 

2.2. The Linear Array Pattern 
For the sake of clarity, our array pattern synthesis problem is described for a linear array. Consider an antenna 
array composed of N isotropic elements placed at arbitrary and known locations 1, , Nx x R∈ . The power pat-
tern in far field is given by 

( ) ( )
2

j cos

1
, e ,n

N
kx

n
n

G a θθ
=

= ∑a                                    (3) 

where na ∈  is the complex amplitude at the nth element with e nj
n na w φ= , where nw  is the real amplitude  

and nφ  is the phase at nth element. 2k
λ
π

=  is the wave number for a wavelength λ  and θ  denotes the  

polar angle. 

2.3. The Fitness Function 
The goal of array pattern synthesis problem is to find optimal parameters including array weights so that the de-
signed beam pattern satisfies a set of specifications [1]. In this paper we reach the desired beam pattern via mi-
nimization of a fitness function f, whose similar form has been introduced in [32]. 

For a power pattern we define [ ): 0,Nf → ∞ ⊂   

( )( ) ( )( ) ( )( )2

0

: , d .i if G Sθ θ θ
π

= −∫a a                                 (4) 

( )( ),iG θa  converges to ( )S θ  in the senses of 0f ≅  by i passes the entire given interval. Now we rewrite 

na  into its complex form je n
n na w φ= . According to (3) the fitness function (4) can be reformed to 

( ) ( )( ) ( )
22

j

=10

, e dn n
N

C
n

n
f w Sθ φ θ θ

π
+ 

= −  
 
∑∫w φ                            (5) 

( ) ( )with cos , , .N N
n nC kxθ θ= ∈ ∈w  φ                               

For the n-th element the fitness function is given by 

( ) ( )( ) ( ) ( ) ( )
22 2j

0 0

, e d dn nC
n n nf w w R Sθ φφ θ θ θ ξ θ

π π
+ = + − = 

 ∫ ∫                   (6) 

with 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )* *j j2 e en n n nC C
n n nw w R w R R R Sθ φ θ φξ θ θ θ θ θ− + += + + + −                   (7) 
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where ( )R θ  denotes sum of the remaining terms in ( )( )
1 e n nN j C

nn w θ φ+
=∑ , which are not depending on nw  and 

nφ  and ( )*  denotes complex conjugate. 
Due to following important characters of ( ), ,n nG w φ θ  

( ) ( )
, ,n n n nw w

G G
φ φ

θ θ
− ±π

=                                        (8) 

( ) ( )
, , 2n n n nw w

G G
φ φ

θ θ
± π

=                                        (9) 

it is easy to prove 

( ) ( ), ,n n n nf w f wφ φ= − ± π                                     (10) 

( ) ( ), , 2n n n nf w f wφ φ= ± π                                     (11) 

as shown in Figure 1. That means we can use a surjection 
:p A B→                                           (12) 

with 

( ){ }: , ,n n n nA w wφ φ= ∈                                     (13) 

( ) [ ) [ ){ }: , 0, , 0, 2 ,n n n nB w wφ φ= ∈ +∞ ∈ π                            (14) 

which do not change ( )G θ  and ( ),n nf w φ , to cover the entire ( ),n nf w φ . Thus the new domain of 

( ),n nf w φ  is [ ) [ ){ }: 0, , 0, 2n nf w φ= ∈ +∞ ∈ πdom . Because ( )nf w  and ( )nf φ  are independent of each 

other and f is a quadratic function, there is only one ( )min ,n nf w φ  in the new fdom  and ( )ˆ argmin ,n nf w φ=a  
can be solved numerically. 

2.4. The Weight of Fitness Function 
A crucial advantage of CDM is that a weight function ( )P θ  can be used, or more precisely, multiplied to the 
fitness function (4), in order to save the needed time and steps of the optimization process or achieve better re-
sults: 
 

 
(a)                                                      (b) 

Figure 1. ( ),n nf w φ  by arbitrary iteration for a linear array (a) ,n nw φ -view (horizontal); (b) ( ), ,n n nf wφ φ -view (vertical).              
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( ) ( ) ( )( ) ( )2

0

: , d .f G S Pθ θ θ θ
π

= − ⋅∫a a                          (15) 

Because of the mathematical property of CDM, an arbitrary function ( ) 0P θ >  can be multiplied to the fit-
ness function, functioning as a weight function, without the need of changing any other part of the algorithm. 
Hence, an algorithm can be implemented to modify the fitness function during the optimization process by 
means of varying the weight function ( )P θ . With the application of different types of weight function ( )P θ  
(or the algorithm to calculate the weight function ( )P θ ), this array pattern synthesis algorithm can be exclu-
sively used for different optimization problems, in order to acquire maximal speed and best results. 

It should be emphasized that the effect of the usage of the weight function will be different according to the 
type of optimization problems. For problems which can obtain a perfect matching, e.g. Dolph-Chebyshev pat-
tern (Figure 4(a)), the application of the weight function will only alter the speed of the optimization process, 
without changing the result, as the fitness function will always converge to zero. But when dealing with optimi-
zation problems which does not have a perfect matching, e.g. the problem of array with element failures (Figure 
8), using the weight function can both change the speed of the process and the resulted beam pattern. This cha-
racter of weight function can be quite useful when a improved result is required, but it also means that the 
weight function should be determined carefully when not expecting a huge change in the result. 

A simple example is given here: when synthesizing the Dolph-Chebyshev pattern with CDM (shown in Fig-
ure 4(a)), the convergence is quite slow after the SLL started to descend. The reason can be considered as that at 
the side lobe area, the ( ),G θa  and ( )S θ  are both considerable small and thus their difference gives less  

feedback to the fitness function. Here weight functions like ( ) ( )
1
,

P
G

θ
θ

=
a

 or ( )
( ) ( )

( )
,

,
G S

P
G
θ θ

θ
θ
−

=
a

a
 can  

be employed, in order to enlarge the weights of the SLL in the fitness function. Thus the convergence is observ-
ably accelerated, which can be seen in Figure 2(a), that the SLL descend much faster when using the weight 
function. It is shown in Figure 2(b), how the SLL descend when matching a shaped beam using the same weight 
functions. In this example the optimization problem is from [33], which is a perfect matching optimization 
problem. The beam pattern of this example is shown in Figure 6(a). 

Another example for the optimization problems without perfect matching is given here with the desired func-
tion being a rectangular function (Figure 7(a)). The ripple of the shaped main beam should not exceed 0.1 dB , 
while the SLL less than 28 dB− . The algorithm to calculate the adaptive weight function is described with a 
flow diagram in Figure 3. 

3. Numerical Results 
Examples of the array pattern synthesis problem using CDM are presented and compared with PSO, GA and DE. 
All simulations are carried out on Intel® Xeon® CPU E5-2687W v2 @ 3.40 GHz with 256 GB RAM computer. 
All simulations use the fitness function (4) with different weights. In the following we use 
 

 
(a)                                                      (b) 

Figure 2. Investigations of relationships between SLL and weights. (a) Dolph-Chebyshev beam pattern; (b) 
Shaped beam pattern.                                                                                    
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Figure 3. Flow process chart for a non-perfect matching (shaped beam pattern in Figure 7(a)). 

  

( ) ( )
1,

1 ,
F

f
=

+
w

w
φ

φ
 as quality criterion, because ( ) [ ], 0,1F ∈w φ  is more suited for representation in dia-

gram as ( ) [ ), 0,f ∈ ∞w φ . 

3.1. Dolph-Chebyshev Synthesis 
In this example the desired pattern is a Dolph-Chebyshev pattern with 32 elements and SLL by 35 dB− . Equal 
distance d between two elements is half wavelength. In Figure 4(a) original Dolph-Chebyshev pattern and three 
other patterns from CDM, PSO and DE are shown. The desired function ( )S θ  is an original Dolph-Chebyshev, 
thus it provides a perfect matching. The main lobs from all methods do not much differ from the original one. 
The pattern from CDM shows the best match of the SLL (perfect matching). This can be explained with the am-
plitude and phase distribution which is shown in Figure 5. Figure 4(b) represents the convergence of the fitness 
function over the time. ( ),F w φ  by using CDM converges to 0.9999 in 5.8 seconds, while by using DE 1500 
seconds are needed to achieve the same results. The optimization by using PSO, which converges to 0.9999 in 
76 seconds, is neither get best results nor a short calculation time. 

3.2. Shaped Beam Synthesis 
The synthesis of shaped beams is a classical problem since it has many applications ranging from radar and re-
mote sensing to communication systems [34]. Two examples are shown, one is a perfect matching, the other one 
is a non-perfect matching. The first example is shown in Figure 6(a). This pattern has been represented in [33]. 
All three algorithms can synthesize a very similar beam pattern as the desired pattern. However, only the CDM 
succeed a perfect matching. The time of optimization by using CDM is 4.5 seconds for a ( ), 0.9F ≥w φ , while 
the PSO 35 seconds and DE 1200 seconds needed for the same result. 

The second example (Figure 7(a)) is a non-perfect matching, because the desired function ( )S θ  is a rec-
tangular function, which means that it is not possible to achieve a perfect matching with finite elements. For this 
synthesis the weighting algorithm in Figure 3 has been used to achieve the requirements which is described in 
subsection 3. The progress of convergence ( ),F w φ  is shown in Figure 7(b). It converges at first at high speed 
and then become stable after 50 seconds. Since the optimization is non-perfect matching, the ( ),F w φ  is not 
possible to reach one. 

3.3. The Array with Element Failures 
Beam pattern reconfiguration of an antenna array with faulty elements has practical importance for antennas 
which cannot be repaired immediately. The possibility of reconfiguration of the antenna array with faulty ele-
ments has been considered by several authors over the years [35]-[39]. In this example we take the results from 
[36] as a reference. In this case the elements with Nr. 2, Nr. 5 and Nr. 6 of 32 elements Dolph-Chebyshev array  
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(a)                                                      (b) 

Figure 4. Synthesize a Dolph-Chebyshev beam pattern with three different optimization algorithms.                     
 

 
(a)                                                      (b) 

Figure 5. Comparison the results of optimizations of the Dolph-Chebyshev beam pattern (perfect matching).              
 

 
(a)                                                      (b) 

Figure 6. Synthesize a shaped beam pattern with three different optimization algorithms (perfect matching).               
 
are failed, while the faulty elements do not radiate at all (“on-off” fault [40]). The result is shown in Figure 8. 
The half-power beam width of the results from CDM is 4.79 , which is 5.36  with GA. The SLL from CDM 
is 35.3 dB− , which satisfies the original Dolph-Chebyshev condition as well. 

3.4. The Planar Array 
In this example the minimization of the SLL of a 8 8×  array with uniform element distance half wavelength is 
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presented. In this case the half power beam width should keep 30 , while the SLL as low as possible. The re-
sult is shown in Figure 9(b). The SLL has sunk from 12.5 dB−  to 21 dB− . 

4. Conclusion 
An iterative method, which is based on the coordinate descent method to synthesize most of the current beam 
 

 
(a)                                                      (b) 

Figure 7. Synthesize a shaped beam pattern with CDM (non-perfect matching).                                   
 

 
Figure 8. Dolph-Chebyshev array with 3rd, 5th und 6th elements failed.                                           

 

 
(a)                                                      (b) 

Figure 9. Beam pattern synthesis for planar array with CDM.                                                     
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patterns from linear to planar array, is presented above. CDM allows changing the fitness function with a mul-
tiplication of a weight function ( )P θ . The function ( )P θ  can be changed any time during the optimization 
procedure depending on the requirement of the desired beam pattern. Therefore, we believe that it is worth in-
vesting more research in this area, in order to find more efficient and effective weight functions, and specialize 
the method for more array pattern synthesis problems. Due to the 2L  norm, the fitness function converges by 
every iteration, so the algorithm is very efficient to reach the optimum solution. Compared with other methods 
like PSO, GA and DE, CDM is accurater and faster, also easier to implement. 
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