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1. Introduction

Scientific progress, according to Arrow (1969), is in the first instance the reduction in uncer-
tainty: “The product of a research and development effort is an observation on the world which 
reduces its possible range of variation”. In fact, he argued that the information gain from an 
experiment might be more important than its concrete output. Challenging earlier models of re-
search and development, Arrow calls for a more general formulation of knowledge production, 
encompassing situations where the probabilities of potential research outcomes are not known 
with certainty. Although uncertainty about outcomes is ubiquitous in science, very few formula-
tions of this type have since been proposed in the literature (for an exception, see, e.g., Halac et 
al., 2017).

In this paper, we offer a model that combines uncertainty about the probabilities of research 
outcomes, as suggested by Arrow, with another typical feature of research activity: the com-
petition to be first. Scientists seek to establish priority by being first to publish an advance in 
knowledge and are often concerned at being preempted in this by other scientists. Indeed, “Since 
the earliest days of science, bragging rights to a discovery have gone to the person who first 
reports it” (Fang and Casadevall, 2012).1

The main objective is to understand how the combination of learning about the distribution 
of research outcomes and preemption affects scientific progress and welfare. Our analysis also 
allows us to address a recent critique of the current science system: According to Lawrence 
(2016), the practice of university administrators to rank scientists against each other based on 
publications numbers, and allocate funds and jobs respectively, is impeding scientific progress 
by enhancing the importance attached to being first: “All of us (...) focus our research to produce 
enough papers to compete and survive. Thus, projects are published as soon as possible and 
many therefore resemble lab reports rather than fully rounded and completed stories. (...) I think 
this emphasis on article numbers has helped make papers poorer in quality.” For biology and 
medicine, Broad (1981) observes that teams often settle for the “least publishable unit” - a prac-
tice that has come under fire for leading to research outcomes of lower quality overall. Adding to 
the criticism, the editors of Nature urged scientists conducting laboratory studies to take greater 
care in their work, citing several types of “avoidable errors”, in terms of both methodology and 
presentation, that diminish the quality of the published output (Nature Publishing Group, 2012). 
In response to the critique, Fang and Casadevall (2012) and, more recently, Stein and Hill (2021)
have advocated a new science system that offers greater collegiality, freer sharing of information, 
and cooperation.

To set the stage, we study the extent of experimentation in a two-player stopping game and 
compare it to its counterpart in a setting without competition, which corresponds to the cooper-
ative problem. As we show in our benchmark result, cooperation indeed always leads to more 
experimentation and value. However, competition is almost always an inherent feature of scien-
tific inquiry. This raises the important question of whether transparency and sharing of research 
progress leads to more or less experimentation and value in a competitive setting with uncer-
tain research outcomes. The answer is not immediate since there are competing forces. On the 
one hand, keeping research progress private might soften the competitive preemption threat (cf. 
Hopenhayn and Squintani, 2011), but on the other hand, public information may reduce the un-
certainty about the likelihood of eventual success.

1 For empirical evidence of the winner-takes-all rewards structure in science, see Hagstrom (1974), Newman (2009), 
and Sabatier and Chollet (2017).
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To better understand this trade-off, we compare experimentation when the outcomes of the 
experiments are publicly versus privately observable. We show that, under certain conditions, 
public learning generates more experimentation and higher welfare. More precisely, we find that 
public learning tends to counteract the threat of preemption when uncertainty about the feasibility 
of a breakthrough is large, breakthroughs are rare even when they are feasible, and experiments 
frequently fail to produce results. In scientific research, we can approximate the probability of a 
breakthrough with the frequency of publishing a landmark paper, which appears to be quite low.2

Hence, our result supports the views of Fang and Casadevall (2012) and Stein and Hill (2021), 
who are in favor of freer information sharing. Our findings may be surprising, particularly in the 
light of Hopenhayn and Squintani (2011), who show that secrecy may result in longer durations 
of experimentation by reducing the researcher’s fear of being preempted. While there are several 
conflicting effects, we trace our results to the stronger ability to coordinate on the information 
obtained through experimentation when it is shared. This is one of the central insights of this 
paper.

Formally, we study a model in which two researchers running successive experiments decide 
at any point in time whether to stop and go forward with their best research finding thus far. Each 
experiment, with some probability, is successful, and the player receives a draw from some un-
known distribution interpreted as the result of the experiment. With complementary probability, 
the experiment is unsuccessful and fails to produce any results. As we show later, the possibility 
of failed experiments distinguishes public and private learning.3 The unknown distribution of 
draws remains fixed throughout the game, either producing low-value draws with certainty or 
randomizing between low- and high-value draws. We interpret a low-value draw as a mundane 
result and a high-value one as a breakthrough result from the project. To capture the uncertainty 
about the potential of the project, we assume the researchers do not know which is the true dis-
tribution, and they only share a prior belief about the feasibility of a high-value outcome. The 
competition is winner-takes-all, so, researchers have an incentive to stop preemptively and “pub-
lish their partial findings quickly, rather than dropping the bombshell of a completely solved 
problem on their surprised colleagues” (Hagstrom, 1974).4

We construct perfect Bayesian equilibria in symmetric threshold strategies. When the exper-
imental outcomes are public, we establish the existence of equilibria in which the two players 
share common beliefs about the potential of the project and remain in the game until either a draw 
of high value occurs or their beliefs about the possibility of such a draw become too pessimistic. 
The latter event occurs when the total number of low-value draws exceeds a certain threshold, 
with the consequence that the players decide to stop simultaneously in equilibrium.

Our analysis in the case of private learning is complicated because of the complexity of the 
belief structure. Each player has to form beliefs regarding the draws his opponent has received. 
These beliefs and the player’s own results determine in turn the player’s belief about both the 
feasibility of a high-value outcome and the threat of preemption. In general, since the play-
ers’ beliefs are private, it is difficult to track their evolution and, thus, to establish the existence 
of an equilibrium. The use of time as a public variable allows only for a partial simplification 

2 See, e.g., Bornmann et al. (2018).
3 In fact, in natural science and many branches of social science, failure abounds (see, e.g., Mohs and Greig, 2017; 

Barwich, 2019 for empirical evidence). As Parkes (2019) notes: “If we want to make new discoveries, that means taking 
a leap in the dark - a leap we might not take if we’re too afraid to fail.”.

4 We present the related literature in Section 7 where we classify existing models according to whether they deal with 
preemption, or uncertainty and learning about the distribution of research outcomes, or both.
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of the belief structure because each player’s beliefs about the number of low-value draws the 
other player has obtained depends on the number of low-value draws the player has himself ob-
tained, as well as the other player’s equilibrium strategy. Despite this complication, we are able to 
construct symmetric equilibria in strategies involving nonmonotone time-dependent thresholds: 
Each player experiments until he receives a high-value draw or accumulates too many low-value 
draws, although the threshold for the number of low value draws may vary non-monotonically 
over time.

Finally, we compare the length of experimentation and the players’ total welfare under public 
versus private learning. Without the possibility of failed experiments, public and private learning 
are identical but otherwise they generate different outcomes. We find that public learning gen-
erates more experimentation than private learning, despite the higher threat of preemption, for 
a range of model parameters for arbitrary time horizons. Specifically, we find that if there is a 
lot of uncertainty about the feasibility of a breakthrough or if breakthroughs are rare even when 
feasible, then public learning generates more experimentation and higher welfare than private 
learning. These results provide testable implications of our model.

The paper is organized as follows. In Section 2, we present the model. In Section 3,we analyze 
the single-player case and cooperative benchmark. In Section 4, we analyze the two-player case 
under the assumption of public learning. In Section 5, we consider the case in which the two 
players cannot observe one another’s draws. We provide a comparison between the two informa-
tion settings in Section 6. In Section 7, we discuss how our results relate to the existing literature. 
We conclude in Section 8.

2. Model

Two players, 1 and 2, engage in a stopping game of successive experiments, taking place 
in discrete time periods t = 1, . . . , T . At the beginning of each period t , as long as the game 
continues, each player i ∈ {1, 2} runs a new experiment. With probability 1 − r , where r ∈ (0, 1), 
player i’s experiment is unsuccessful and fails to produce any valuable result. With probability 
r , the experiment is successful and provides new information about the common natural world. 
This is expressed by a draw xi

t ∈ {L, H } for player i in period t , where 0 < L < H . That is, a 
successful experiment either provides some partial finding (of value L) or yields an important 
discovery (of value H). Incremental improvements over time are neglected in our formulation 
in order to sharpen the focus on the players’ incentives to keep going, even though experiments 
may fail, in the hope of making a significant discovery.

An inherent feature of experimentation is the uncertainty regarding the potential outcomes 
of an experiment, which in our model is expressed by an uncertain distribution of the draws. 
Specifically, the values xi

t are distributed according to either

xi
t =

{
H, with probability q;
L, with probability 1 − q,

where q ∈ (0, 1), or

xi
t ≡ L.

The distribution is chosen randomly (by nature) at the beginning of the game, with probabilities p
and 1 −p respectively, in a manner unobservable to the players, and remains the same throughout 
4
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the game.5 Conditional on the choice of distribution, the values xi
t are independent across players 

and across periods. Thus, unless a draw of value H is obtained in an experiment, whether such 
an outcome is at all possible is unknown to the players.

We will consider two opposite cases regarding the observability of the players’ experimenta-
tion outcomes: one in which each player can observe the draws of his opponent and the other in 
which each player can observe only his own draws.

At the end of each period t , each player i has to decide, after observing his own draw, xi
t , and 

possibly his opponent’s draw, xj
t , whether to stop in that period or continue to period t +1. These 

actions are denoted by s or c, respectively. The two players make their decisions simultaneously 
and the game continues until at least one player decides to stop.

We assume that the experiments of the two players are directly competitive: the player who 
stops first receives a payoff equal to the value of his best past draw, while his opponent receives 
nothing. This winner-takes-all assumption seems particularly suited for a model of rivalry among 
scientists.6 If both players decide to stop at the same time, with the same value, then we assume 
that only one of them – each with probability 1/2 – actually succeeds and becomes the first 
mover.7 However, if the two players stop simultaneously with different values, then the player 
with the higher value receives his value in full whereas the other player gets zero. The two players 
discount time by a common rate δ ∈ (0, 1) and suffer no other cost for remaining active in the 
game.8 Thus, to avoid trivial outcomes, we assume that each player can stop only after he has 
obtained at least one draw.

For each player i, a (private) history hi
t ∈ Hi

t at the time of his decision in period t consists of 
the following elements, depending on our observability assumption:

a. Player i’s own past draws xi
τ ∈ {∅, L, H }, for τ = 1, . . . , t , where ∅ denotes the occurrence 

of no draw;
b. Player j ’s past draws xj

τ ∈ {∅, L, H }, for τ = 1, . . . , t , when draws are publicly observable;
c. Trivially, the two players’ past decisions to continue, (c, c), for τ = 1, . . . , t − 1.

A strategy of player i in period t < T indicates whether the player stops or continues at the 
end of period t , for any possible time-t history. Hence, player i’s strategy in period t is a function

σ i
t : Hi

t → { s, c },
under the restriction that σ i

t (h
i
t ) = c, if hi

t ∈ Hi
t is such that xi

τ = ∅ for all τ ≤ t ; while player i’s 
strategy for the entire game is a finite sequence of time-t strategies,

σ i = {σ i
t }T −1

t=1 .

5 Note that players are sampling from the same distribution. This assumption is met, for example, when scientists seek 
to identify facts about the common natural world rather than to invent potentially different new technologies.

6 See, for instance, Gaston (1973 [p.107]), Hagstrom (1974), Lawrence (2016) for empirical evidence. The assumption 
that preemption destroys all value to the second player simplifies the exposition, but is not crucial to our results. Our 
analysis would apply as long as the claim of L by one player destroys some nontrivial part of the value that the other 
player can claim.

7 See Hoppe and Lehmann-Grube (2005) for a discussion of this tie-breaking rule in timing games.
8 Our analysis extends with only slight modifications to the case in which there is a constant cost for each period a 

player is active. Since the presence of a discount factor suffices to make experimentation costly and to provide incentives 
to a player to stop experimenting even if he faces no preemption threat, we have chosen not to include such costs in our 
model.
5
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We focus on pure strategies. Thus, each player i’s strategy at time t partitions the set of the 
player’s histories Hi

t into stopping and continuation regions, H̄ i
t and Hi

t \ H̄ i
t .

Finally, our solution concept is that of perfect Bayesian equilibrium.

3. The cooperative benchmark

We start our analysis by examining the case in which experimentation is carried out by a single 
player, who performs one experiment in each period. We then modify this setting, by allowing 
two experiments to be performed in parallel within each period, so as to obtain the solution for 
the benchmark cooperative problem.

Clearly, the player will not stop before obtaining at least one draw and will not continue after 
obtaining a draw of H . Hence, the problem reduces to choosing whether to stop experimenting, 
claiming a value of L, or to continue at a cost of (1 −δ)L for each additional period to potentially 
increase this value by δ(H − L).

The expected payoff from continuing to the next period depends on the player’s belief about 
the distribution from which he draws. The player becomes more pessimistic that a draw of value 
H is feasible each time he receives a new draw of L. In particular, if the player has received n ≥ 1
draws of L, then the player believes that he draws from the first distribution with probability

p (n) = (1 − q) p (n − 1)

1 − q p (n − 1)
, (1)

defined recursively, with p (0) = p. The sequence {p (n)}∞n=0 is decreasing, since we have 
p (n) /p (n − 1) < 1, for all n ∈ N . Therefore, the expected value of staying in the game one 
more period weakly decreases as the game progresses.

Hence, for each period t < T , after having received nt ≥ 1 draws of L, the player will continue 
to period t + 1 if and only if his expected one-step continuation payoff, discounted by δ, is larger 
than his stopping payoff, that is,

δ [r p(nt ) q H + (1 − r p(nt ) q)L] ≥ L.

Thus, the optimal rule is to stop experimentation when nt ≥ N̂ or t = T and to continue other-
wise, where

N̂ = min {n ∈ N : δ p(n) rq (H − L) < (1 − δ)L}. (2)

Finally, to obtain a proper cooperative benchmark for our analysis with two players, we mod-
ify the single-player case and allow the player to receive up to 2 draws in each period. This 
modification is necessary to account for the mere duplication of experiments with two players. 
In this case, given the player’s beliefs p(nt) at the end of period t , the probability that the player 
obtains at least one draw of H in the period t + 1 is

pH (nt ) = p(nt ) [1 − (1 − rq)2 ]. (3)

Our previous analysis implies that two players who cooperate under an agreement to share 
information and, eventually, any value obtained will continue experimentation in periods t =
1, . . . , T − 1, until either at least one of them receives a draw of H or if they jointly obtain 
nt ≥ N∗ draws of L, where

N∗ = min {n ∈ N : δ pH (n) (H − L) < (1 − δ)L}. (4)
6
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Since pH (n) ≥ p(n) rq , it follows that N∗ ≥ N̂ , reflecting the fact that two cooperating players 
experimenting in parallel are more likely to find H in the next period than one player experi-
menting alone, at the same cost (due to value depreciation).

In the sequel, we examine the impact of competition upon experimentation when outcomes 
are observed publicly or privately and compare these cases with each other as well as with the 
above cooperative benchmark.

4. Public learning

We now examine the two players’ interaction. In this section, we assume that each player 
is fully informed of the experimental results of his rival. Players may have this information for 
various reasons. For example, they may be able to observe each other’s experiments or there may 
be truthful communication between the players.

In this environment, in every period t ≥ 1, the two players share common beliefs about the 
feasibility of an H outcome. If no draw of H has been obtained, these beliefs are expressed by 
the probability p(nt ), where nt is the total number of L draws obtained by the two players up to 
period t , determined recursively, according to equation (1) in the single-player problem. Hence, 
the probability that at least one draw of H is obtained by either player in the next period, if both 
players continue to it, is pH (nt ), defined by equation (3).

In the following, we construct a symmetric perfect Bayesian equilibrium in which experimen-
tation terminates prior to the final period T if one or both players receive an H draw or if the total 
number of L draws reaches a certain threshold. In this equilibrium, like in the single player case, 
each player’s expected gain from experimentation decreases as the number of L draws obtained 
(and jointly observed) by the two players increases.

First, suppose that by the time of the continuation or stopping decision in period t , each player 
has received at least one draw of L, that is, ni

t , n
j
t ≥ 1. In this case, the minimal number of L

draws obtained by the two players such that a player will prefer to stop in period t rather than 
to continue to period t + 1 and then surely stop if he knows that his opponent will also stop in 
period t + 1 is

N1 = min
{

n ≥ 2 : (1/2) δ [pH (n)(H − L) + L ] < L
}

. (5)

Second, suppose that a single player has received all draws obtained by the end of period t . 
Then the minimal number of L draws such that this player will prefer to stop in period t rather 
than to continue to period t + 1 and then surely stop if he knows that player j will stop as soon 
as he obtains a draw of L is9

N2 = min
{
n ≥ 1 : (1/2) δ [pH (n)(H − L) + [1 + (1 − r)(1 − p(n)rq)]L ] < L

}
. (6)

By comparing the inequalities in the definition of N1 and N2, it can be shown that N1 ≤ N2.
Furthermore, consider the threshold strategy σ ∗ = {σ ∗

t }T −1
t=1 , prescribing to player i the fol-

lowing behavior in each period t :

- Player i stops in period t if he has obtained at least one draw and
a. Player i has drawn H in some period t ′ ≤ t ; or

9 The extra term in the left-hand-side of the inequality in the definition (6) of the threshold N2 expresses the additional 
payoff that player i will receive in period t + 1 in case player j does not obtain a draw in that period.
7
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b. Player j has received a draw in some period t ′ ≤ t , and ni
t + n

j
t ≥ N1; or

c. Player j has received no draw in periods t ′ ≤ t , and ni
t ≥ N2.

- Otherwise, player i continues.

Clearly, the strategy σ ∗ is fully characterized by the thresholds N1 and N2, which remain 
constant over time.

Proposition 1. The strategy profile (σ ∗, σ ∗) constitutes a perfect Bayesian equilibrium.10

The equilibrium has a simple structure. The players remain in the game prior to the final 
period T until either a draw of high value occurs or their beliefs about the possibility of such 
a draw become too pessimistic. Since the players share common beliefs about the potential of 
the project, the latter event occurs when the total number of low-value draws exceeds a certain 
threshold. Consequently, in equilibrium, unless a draw of H is obtained, the players decide to 
stop simultaneously.

The game admits other equilibria in which the players stop experimenting after obtaining a 
total of N

′
< N1 draws of L or after reaching a certain time T

′
, where N

′
and T

′
are exogenously 

set. To see this, note that in such equilibria, because of the possibility of preemption, each player’s 
decision to stop experimentation earlier forces his rival also to stop. However, experimentation 
resulting in more than N1 or N2 draws of L turns out to be impossible.

Proposition 2. There exists no perfect Bayesian equilibrium involving experimentation that can 
generate more draws than the strategy σ ∗.

The following result compares public learning to the cooperative benchmark:

Proposition 3. The maximal experimentation duration is longer in the case of two cooperating 
players than in any perfect Bayesian equilibrium under public learning.

The proposition states that two players experimenting under an agreement to share informa-
tion and value will search longer for H , in terms of the maximal number of experiments failing 
to find it, than two players sharing only information; that is, N∗ ≥ N2 ≥ N1. Thus, the threat of 
preemption leads to a decrease in the total amount of experimentation, for a welfare loss.

5. Private learning

We now turn our attention to the case in which the two players cannot observe one another’s 
experimental outcomes. Instead, in each period, each player has to form beliefs about the draws of 
his opponent, depending on the duration of experimentation, the stopping strategy his opponent 
has been using, and significantly, the draws he has received himself. Naturally, these beliefs affect 
the two players’ continuation or stopping incentives, via their calculations about the likelihood 
of an H outcome as well as about the possibility that the other player stops in the current or next 
period.

In general, the beliefs of player i at time t take the form of a probability distribution over 
the feasible histories of the game, in particular, over the history components that are privately 

10 All proofs are in Appendix A.
8
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observed by player j . In analyzing the stopping decision of player i in period t , when he has 
received no draw of H , we can assume that player j has received no draw of H either. Conse-
quently, the beliefs of player i reduce to a probability distribution over the number of L draws, 
n

j
t , that player j has received up to period t .11

Since the probability of drawing L depends on the distribution from which the two players 
draw, player i’s beliefs about nj

t need to take into account his own private information, that is, the 
number ni

t of L draws he has received.12 In addition, player i needs to condition his beliefs upon 
any information he can infer from player j ’s decisions not to stop in any earlier period, given the 
strategy sj .13 The following result shows that the players’ beliefs are positively correlated, that 
is, each player’s beliefs about the draws of his opponent stochastically increase in the number of 
his own draws.

Lemma 1. Suppose that player j follows the strategy sj and that player i has obtained ni
t = ni

draws of L by period t . Then, at the end of period t , conditional on player j having received no 
draw of H , player i believes that nj

t = nj with probability

pt (n
j , ni, sj ) = ht (n

j , sj ) rnj
(1 − r)t−nj [p(1 − q)n

i+nj + (1 − p)]∑t
n=0 ht (n, sj ) rn (1 − r)t−n [p(1 − q)n

i+n + (1 − p)] ,

where ht (n
j , sj ) ≤ (

t
nj

)
is the number of histories of player j consistent with nj

t = nj , the stop-
ping constraints of strategy sj , and the hypothesis that no draw of H has occurred.

In addition, for any ñi > ni , the distribution pt( ·, ñi , sj ) first-order stochastically dominates 
the distribution pt( ·, ni, sj ).

Given the symmetry of the game, we henceforth focus on equilibria in symmetric threshold 
strategies, that is, in which each player stops in period t if either he obtains a draw of H or the 
number of L draws he has received exceeds a certain threshold Nt , depending on that period. 
For such strategies, we can show that each player’s beliefs are stochastically increasing in each 
threshold of his opponent:

Lemma 2. Let sj and ŝj be two threshold strategies for player j such that Nj
τ ≤ N̂

j
τ for all 

τ < t . Then, for all ni
t , the distribution pt( ·, ni

t , ̂s
j ) describing player i’s beliefs about nj

t at time 
t , conditional on player j having received no draw of H , first-order stochastically dominates the 
distribution pt( ·, ni

t , s
j ).

Lemma 2 implies that, under private learning, in any period t + 1, a player’s belief that H is 
feasible, conditional on the game reaching that period, is monotonically decreasing in his rival’s 
threshold in period t . Thus, under private learning, unlike the case of public learning, a player’s 

11 As Lemma 3 below will show, the timing of the players’ draw arrivals is irrelevant in equilibrium.
12 For example, with a parameter q ≈ 1, at the end of period t = 1, player i believes that H is feasible with probability 
approximately equal to p or 0, if, respectively, ni

t = 0 or ni
t = 1. Consequently, he believes that nj

t = 1 with probability 
approximately equal to (1 − p) r or r , depending on whether ni

t = 0 or ni
t = 1.

13 In particular, if player j follows a strategy sj characterized by stopping thresholds {Nj
t }T −1

t=1 , then player i will 
condition his beliefs at period t upon nj

′ < N
j
′ for all t ′ < t .
t t

9



H. Hoppe-Wewetzer, G. Katsenos and E. Ozdenoren Journal of Economic Theory 212 (2023) 105702
belief regarding the feasibility of H may update optimistically.14 In addition, a change in the 
rival’s threshold in period t affects a player’s incentive to continue to period t + 1 in both a 
positive and a negative manner, for an unclear overall effect. In fact, as Example 1 demonstrates 
below, a player may be more willing to continue if his rival adopts a lower threshold in the current 
period.

Our main result asserts the existence of a symmetric equilibrium in threshold strategies under 
a condition on the parameters of the model, ensuring that each player’s expected payoff function 
from continuing or stopping at the end of each period t < T satisfies a single crossing property.

Condition SC. The parameters δ, r, p, q, H, L and T are such that

pt(N,1, s)

[
p(2N) [1 − (1 − rq)2] − 1 − δ

δ

L

H − L

]
≥

∑
n<N

pt (n,1, s) p(n + 1)
[
(1 − rq)2 − (1 − rq)2(T −t)

]

for all N ≤ t and t < T , where s is the strategy with thresholds Nτ = 1 for τ < t − N and 
Nτ = τ − (t − N) + 1 for τ ≥ t − N .

Using the expression for pt(n, ni
t , s

j ) in Lemma 1, with ni
t = 1 and sj = s, the inequality in 

Condition SC becomes

rN [p(1 − q)N+1 + (1 − p)]
[
p(2N) [1 − (1 − rq)2] − 1 − δ

δ

L

H − L

]
+

∑
n<N

(
N
n

)
rn (1 − r)N−n [p(1 − q)n+1 + (1 − p)]p(n + 1)

×
[
(1 − rq)2(T −t) − (1 − rq)2

]
≥ 0

for all N ≤ t and t < T , which is easier to check.
The strategy s in Condition SC is “minimal” among the threshold strategies for which nj

t ≥ N

with positive probability; that is, if sj is a threshold strategy such that pt(N, 1, sj ) > 0, then 
N

j
τ ≥ Nτ for all τ < t . Therefore, by Lemma 2, the inequality in Condition SC extends to all 

such thresholds strategies sj .15

Condition SC implies that player i’s best-response in any period t < T takes the form of a 
threshold Ni

t which is monotonically increasing in player j ’s threshold Nj
t .16

14 For a simple example, suppose that at t = 1, player j always continues; and that at t = 2, player j continues only 
if he has received no draw. Then, if ni

1 = ni
2, player i will be more optimistic about the feasibility of H in period t = 2

than in period t = 1.
15 Notice that the right-hand-side in Condition SC is positive; so, in the left-hand-side, it follows that p(2N) [1 − (1 −
rq)2] − 1−δ

δ
L

H−L
≥ 0. Thus, after a rearrangement of its terms, Condition SC requires that the expectation of an 

increasing function with respect to the distribution pt (·, 1, s) is positive, allowing Lemma 2 to apply.
16 In particular, Condition SC is used in the proofs of Lemma 3 and Proposition 4 to show that each player’s expected 
gain from continuing rather than stopping at the end of period t is decreasing in the number of L draws the player 
has observed. This property of monotone differences implies single crossing, which Milgrom and Shannon (1994) have 
shown to be necessary and sufficient for each player’s best response in period t to be monotone (and thus, in our two-
action setting, to be a threshold strategy).
10



H. Hoppe-Wewetzer, G. Katsenos and E. Ozdenoren Journal of Economic Theory 212 (2023) 105702
For t = T − 1, the condition simplifies further to

δ [p(2T ) [1 − (1 − rq)2] (H − L) + L ] ≥ L.

To describe how the condition is used in the argument, suppose that player j switches from a 
strategy sT −1(n

j
T −1) of stopping in period T −1 to a strategy ŝT −1(n

j
T −1) of continuing in period 

T − 1, for some nj
T −1, with all other elements of his strategy remaining the same. Consequently, 

player i’s payoff calculations involve a lower probability of player j stopping in period T −1 but 
also a lower expected payoff from experimentation, conditional on the game reaching period T , 
because of more pessimistic beliefs. Condition SC implies that player i’s benefit from the switch 
in player j ’s strategy is greater when he continues to period T than when he stops in period 
T − 1, for any number ni

T −1 of L draws that player i may have.

More generally, in any period t < T , suppose that player j has nj
t draws of L and changes 

his strategy at time t from stopping to continuing and his continuation strategy from {sj
τ }T −1

τ=t+1

to {ŝj
τ }T −1

τ=t+1.17 Then player i’s calculations about the benefits of further experimentation should 
involve not only more pessimistic beliefs, if the game reaches period t + 1, but also a potential 
loss from the change in player j ’s continuation strategy. Condition SC requires that even under 
the worst-case scenario about the switch {sj

τ }τ>t to {ŝj
τ }τ>t , player i will benefit more from the 

change in player j ’s strategy in period t , if player i continues at time t rather than if he stops.
Although the condition is stronger than necessary, when it fails, a non-trivial symmetric equi-

librium may not exist even for short time horizons. To see this, consider the following example:

Example 1. Let δ = 0.9, p = 0.8, q = 0.9, H = 8, L = 1, and T = 2 (two periods). Then each 
player’s strategy reduces to deciding whether to stop or to continue with one draw of L at the end 
of period t = 1. If r ∈ (0.237, 0.242), then each player is better off stopping against an opponent 
who continues and continuing against an opponent who stops; therefore, there is no symmetric 
equilibrium.

In this example, q takes a relatively high value so that player j ’s decision to continue with 
one draw of L has a relatively large negative effect upon player i’s beliefs about the feasibility 
of H , conditional on the game reaching period T .

The next lemma establishes the mutual optimality of the threshold strategies under Condition
SC.

Lemma 3. For any T ∈ Z+, if Condition SC holds, then each player i’s best response to any 
threshold strategy {Nj

t }T −1
t=1 of player j is also a threshold strategy {Ni

t }T −1
t=1 .

The result of Lemma 3 is rather intuitive. With a higher number of L draws, player i becomes 
less willing to continue experimentation, for three reasons. First, independently of his opponent’s 
presence, the extra draws of L have a negative effect upon player i’s beliefs regarding the feasi-
bility of H . Second, with another player experimenting in parallel, player i’s pessimism about H
is reinforced by the knowledge that the other player has not succeeded either. In particular, when 
player j will not stop unless he obtains H , player i’s pessimism increases at a higher rate when 

17 In period T − 1, a change in player j ’s continuation strategy is not possible.
11
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he has received a higher number of L draws, independently of any preemption threat.18 Third, 
considering also the opponent’s stopping strategy, player i’s fear of being preempted by the other 
player increases with each additional draw of L that he receives. In total, since the draws of L
have only negative effects upon a player’s expectations and payoffs, if player i is better off stop-
ping with a certain number of L draws, then he will be better off stopping also with any higher 
number of such draws.

Suppose now that player j follows a strategy σj characterized by thresholds {Nj
t }T −1

t=1 . Then, 
at the end of each period t , player i’s expected gain from continuing to period t + 1 (and sub-
sequently using his optimal continuation strategy) rather than stopping at period t , when he has 
obtained ni

t draws of L, is

�Vt = �Vt(n
i
t |σ j ),

defined recursively by equations (A.1)–(A.6) in the proof of Lemma 3 (see Appendix A), with 
player i’s beliefs about player j ’s draws being the ones induced from strategy σ j via Lemma 1.

For any T ∈ Z+, a strategy σ with thresholds {Nt }T −1
t=1 will be part of a symmetric equilibrium 

if, in each period t < T , we have

�Vt(n
i
t |σ)

{
> 0 if ni

t < Nt ,

≤ 0 if ni
t ≥ Nt .

The following proposition asserts that such a symmetric equilibrium exists.

Proposition 4. For any T ∈ Z+, if Condition SC holds, then there exists a symmetric perfect 
Bayesian equilibrium in threshold strategies {Nt}T −1

t=1 .

The equilibrium strategies identified in Proposition 4 involve time-variant thresholds that may 
decrease and increase over time. While a player’s best response within an examined period (i.e., 
the threshold to adopt in that period) is monotonic in the opponent’s threshold, this does not 
imply that the player’s entire continuation strategy (all thresholds in and after the period we 
consider) is monotonic in the opponent’s threshold. To describe the way the thresholds Nt are 
determined, consider a player who has received ni

t = N draws of L by period t and who knows 
that his opponent will stop in that period if and only if he has also obtained nj

t ≥ N
j
t = N draws 

of L. An increase in the number N has two effects upon the continuation incentives of that player: 
a positive one, stemming from the increase in Nj

t and the higher probability that his opponent 
will continue to the next period; and a negative one, stemming from the increase in ni

t and the 
lower probability that H is feasible. As N increases, the second effect becomes more important. 
Eventually, either it comes to dominate the first effect, for a threshold Nt ≤ t + 1, or the two 
players choose always to continue experimenting for at least one more period.

6. Comparison of public and private learning

In this section, we compare the duration of experimentation and the players’ total welfare 
under public and private learning. As we show, the players’ total welfare is typically but not 

18 It is straightforward to calculate the probability that H is feasible, conditionally on ni
t draws of L for player i and no 

draw of H for player j , and to show that the rate at which this probability decreases in the experimentation duration t is 
increasing in ni

t .
12
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always higher with longer experimentation. Our results indicate that public learning generates 
more experimentation when q is either low or high, r is low, and p is low. Private learning, on 
the other hand, generates more experimentation when q is intermediate, and r and p are high. In 
scientific research, there is often a great deal of uncertainty about the feasibility of a breakthrough 
(low p); breakthroughs are rare even when they are feasible (low q); and experiments frequently 
fail to produce results (low r). Hence, our findings suggest that public learning would generate 
more experimentation than private learning in scientific research. Throughout this section, when 
there are multiple equilibria, we focus on the equilibrium with the highest welfare.

As we noted before, the optimal experimentation duration and welfare are equal under both 
regimes when failed experiments are not possible. This is because when r = 1, under private 
learning, in each period, each player knows with certainty the number of L draws his opponent 
has received. However, when the arrival of draws is uncertain, i.e., for r < 1, public and private 
learning are no longer equivalent.

We first analyze the two-period case, in which equilibrium behavior can be completely char-
acterized. In Proposition 7, we partially extend the two-period result to an arbitrary horizon by 
showing that public learning results in higher welfare relative to private learning under the pa-
rameter values for which the corresponding two-period result holds.

In the two-period case, Condition SC simplifies to the following inequality:

p(2) [1 − (1 − rq)2] H − L

L
≥ 1 − δ

δ
(7)

In addition, consider the following conditions upon a player’s payoffs from continuing or 
stopping at the end of the first period, against an opponent who continues, depending on what 
the player can observe about his opponent’s draw:

p(2) [1 − (1 − rq)2] H − L

L
≥ 2 − δ

δ
(8)

p(1) [1 − (1 − rq)2] H − L

L
+ (1 − r)[1 − p(1) rq] <

2 − δ

δ
(9)

[p1(0,1)p(1) + (1 − p1(0,1))p(2)] [1 − (1 − rq)2] H − L

L

+ p1(0,1) (1 − r) [1 − p(1) rq] <
2 − δ

δ
(10)

In these conditions, the probabilities p(·) and p1(0, 1), expressing the players’ beliefs, are 
defined, respectively, by equation (1) and Lemma 1.19

Proposition 5. In the case of two periods, i.e., when T = 2, suppose condition (7) holds. Then 
the comparison of the most efficient equilibria under public and private learning depends on 
conditions (8)-(10):

a. If condition (8) holds, then public and private learning result in the same outcomes and 
payoffs, with each player continuing to period T = 2 unless he receives H .

19 Since p(1) > p(2), the LHS in condition (8) is smaller than the LHS in condition (9), so that the two inequalities 
cannot hold simultaneously. In addition, the LHS in condition (10) is a convex combination of the LHS in conditions 
(8) and (9), weighted according to the players’ beliefs p1(0, 1) and p1(1, 1); therefore, condition (10) must fail / hold 
respectively when condition (8) / (9) holds.
13
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Fig. 1. For parameters δ = 0.9, H = 8, L = 1, p = 0.6, condition (7) holds in the white area. Conditions (8) - (10) hold 
respectively inside the blue line (area A), outside the orange line (area B), outside the green line (areas B and C).

b. If condition (9) holds, then public and private learning result in the same outcomes and 
payoffs, with each player stopping as soon as he receives a draw.

c. Otherwise, if conditions (8) and (9) do not hold, under public learning, the two players stop 
in period t = 1 if they both receive a draw of L; else, they continue to period T = 2. In 
this case, public learning generates more experimentation than private learning if and only 
if condition (10) holds. In addition, under condition (10), public learning results in higher 
expected payoffs.

Fig. 1 illustrates the comparison of public and private learning when T = 2, for fixed pa-
rameters δ = 0.9, H = 8, L = 1, p = 0.6 and variable probabilities r , q . To describe the graph, 
notice that the analysis of the players’ incentives and strategies can be reduced to their decisions 
at t = 1 after obtaining a draw of L, depending under public learning on the information they 
observe about their opponent’s draw. For each strategy profile, we indicate the combinations of r , 
q for which this profile constitutes an equilibrium. Under public learning there are three possible 
equilibria:

(i) Players always continue (r , q in area A).
(ii) Players stop if they both receive draws of L; otherwise, they continue (r , q in areas C and 

D).
(iii) Each player stops if he receives a draw of L regardless of the other player’s draw (r , q in 

area B).

Under private learning, there are two possible equilibria:
14
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(i) Players always continue (r , q in areas A and D).
(ii) Each player stops if he receives a draw of L (r , q in areas B and C).

Hence, in areas A or B, the length of experimentation is the same under public and private 
learning. In area D, private learning generates more experimentation than public learning. Finally, 
in area C, public learning generates more experimentation than private learning.20

To explain the intuition, note that private learning softens the threat of preemption, inducing 
players to stop later. Using Fig. 1, we see that private learning generates more experimentation 
than public learning when q has intermediate values and r is high enough. However, despite the 
possibility of preemption, we find that public learning generates more experimentation than pri-
vate learning when q is either low or high enough. To see why this is the case, note that when q is 
low, i.e., breakthroughs are rare even when they are feasible, under private learning players stop 
with a single L because they believe that obtaining H with the next draw is very unlikely, so, the 
preemption motives dominate those of experimentation. On the other hand, when q is high, i.e., 
breakthroughs are rather frequent, obtaining an L leads players to update their beliefs drastically 
and believe that a breakthrough is not feasible (because if it were, they would have received an 
H with high probability given that q is high). This leads them to stop immediately. Under public 
learning, however, there is a range for the parameter q in which players would continue with a 
single L and stop only if they observe two Ls. Hence, when q is in this range, public learning 
generates more experimentation than private learning. Put differently, independent learning leads 
to coordination failures when players stop with a single L under private learning, but continue 
with a single L and stop if they both receive Ls under public learning. In addition, such coor-
dination failures become more likely when r is low, i.e., experiments frequently fail to produce 
results. Indeed, for low values of r , public learning dominates private learning for all values of 
q .

Our analysis of the two-period case also reveals that the effect of softening preemption be-
comes stronger for a wider set of parameters when p gets higher, i.e., when it is more likely that 
a breakthrough is feasible. Graphically, in Fig. 1, as p increases, areas B+C contract, while areas 
A+D expand. We state this formally in the next proposition.

Proposition 6. For T = 2, if public learning generates more experimentation and higher payoffs 
than private learning for some probability p, then it will generate weakly more experimentation 
and weakly higher payoffs for all probabilities p′ < p.

When public learning generates more experimentation, it necessarily results in higher wel-
fare, as it is closer to the single-player optimum. It is interesting to notice, though, that public 
learning can result in higher welfare even in cases in which it generates less experimentation, if 
conditions (8)-(10) do not hold, where the solution to the cooperative problem is to experiment 
until obtaining N∗ = 2 draws of L. For such parameters, the failure to aggregate the two play-
ers’ information under private learning may result in excessive experimentation. The following 
example illustrates this possibility of excessive experimentation under private learning.

20 As shown in the proof of Proposition 5, when condition (10) fails, in the areas A+D in Fig. 1, under private learning, 
an equilibrium exists even if condition (7) fails, with each player continuing to T = 2 unless he receives H in period 
t = 1. It is only for parameters for which (10) holds, in the areas B+C, that an equilibrium may not exist without condition 
(7) being satisfied.
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Example 2. Let δ = 0.9, H = 8, L = 1, p = 0.9, q = 0.9, r = 0.1, and T = 2. The cooperative 
solution is to keep experimenting until obtaining 2 draws of L. Under public learning, the two 
players stop at t = 1 if and only if they both obtain L draws; thus, the equilibrium achieves the 
optimal cooperative experimentation outcome. Under private learning, in equilibrium, players 
always continue to period T = 2 even if they each obtain an L draw. Hence, due to lack of 
coordination, it is possible that they continue experimenting beyond the cooperative stopping 
threshold. Thus, the expected duration/payoff of experimentation in the cooperative solution (and 
for public learning) is lower/higher than the expected duration/payoff under private learning.

For more than two periods, the comparison between public and private learning turns out to 
be complicated because of the large number of cases that need to be considered. However, as the 
following result shows, for parameters corresponding to area C in Fig. 1, public learning results 
in higher welfare relative to private learning, independently of the experimentation horizon T .

Proposition 7. For T ≥ 2, suppose that conditions (7) and (10) hold while condition (9) does 
not hold. Then public learning results in more experimentation and higher expected payoffs than 
private learning.

In fact, for public learning to result in at least as efficient experimentation outcomes as private 
learning, it suffices that conditions (7) and (10) hold, that is, the parameters are in areas B and C 
in Fig. 1. Under these conditions, under private learning, there is a unique equilibrium, in which 
each player stops as soon as he receives one draw. The additional requirement that condition (9)
does not hold restricts the set of parameters defined by conditions (7) and (10) to those in area 
C in Fig. 1, so that the players’ thresholds under public learning are N2 ≥ N1 ≥ 2, for public 
learning to result in strictly better experimentation outcomes.

In Appendix B, we extend the analysis of the two-period problem under private learning by 
computing also non-efficient pure-strategy equilibria as well as mixed-strategy equilibria. In the 
latter, each player mixes between continuing and stopping if he has a draw of L at the end of the 
first period.

7. Related literature

Our paper is related to two bodies of work on experimentation, which are distinguished by the 
possibility of preemption and the presence of uncertainty regarding the distribution of potential 
outcomes. In preemption games, players decide when to terminate the game, given a first-mover 
advantage in the payoffs. They can seek to obtain a larger prize by moving late but also have the 
opportunity to accept a smaller prize, and by doing so, they prevent all others from obtaining any 
prize at all. In games of experimentation and learning, the players decide in each period whether 
to continue allocating resources to a risky project or to stop and exit for a safe option, according 
to what they can infer from the outcomes they have observed that far.

The first body of work features preemption in the sense that we just described, but does 
not deal with uncertainty and learning about the probability distribution of research outcomes. 
Hopenhayn and Squintani (2011) consider a preemption game in which two players randomly 
receive new information over time, interpreted as innovation increments. Players accumulate out-
comes from a known distribution in their model. They find that private information about each 
player’s state tends to soften the fear of being preempted, resulting in longer expected durations 
in equilibrium. This is in contrast to our findings. The reason is that, in our model, researchers 
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not only learn about the threat of being preempted, but also about the probability distribution of 
research outcomes. We find that there are gains from making this information public that have 
no counterpart in their setup.

Bobtcheff et al. (2017) consider preemption in a model where two researchers privately have 
a breakthrough idea and decide how long to let the idea mature before disclosing it. However, the 
distribution of research outcomes is common knowledge. By contrast, our paper considers pre-
emptive situations in which the feasibility of a high-value breakthrough is uncertain and focuses 
on learning about the distribution of outcomes and the effects of information exchange. Other 
preemption games in the context of research activity are investigated, for instance, by Lippman 
and Mamer (1993), Hoppe and Lehmann-Grube (2005). However, these studies consider pre-
emption under deterministic payoffs.21

The other body of work deals with experimentation and learning in stopping games without 
the threat of preemption, as in the multi-armed bandit models (see, for instance, Keller et al., 
2005). In these models, players must allocate resources to a risky project and a safe option. 
The risky project is characterized by uncertainty about the arrival rate of rewards, and players 
learn about this arrival rate over time by observing each other’s actions and rewards. Private 
information in multi-armed bandit problems has been investigated by several authors, however, 
in these models there is no advantage from disclosing an experimentation result ahead of the 
opponent.22

Moscarini and Squintani (2010) consider a two-player experimentation model with learning 
about the arrival rate of an invention. In their setting, a player earns nothing when he stops before 
the invention arrives. Hence, preemption is not possible. By contrast, in our model, each player’s 
beliefs regarding the position of his opponent are used to estimate not only the likelihood of 
achieving a high-value outcome but also the probability of being preempted with a low-value 
result.

Akcigit and Liu (2015) consider a model where two players begin experimenting with a risky 
arm that results in either a good outcome or a dead end. At any point, a player can privately and 
irreversibly switch to a safe arm. A good outcome from the risky arm is public, but a dead end 
is observed in private. Assuming that only a single player can obtain a reward from a given arm, 
the authors identify channels for inefficient experimentation. Aside from the different focus, the 
key difference between our paper and Akcigit and Liu (2015) stems from the lack of preemption 
in their framework. Without the threat of preemption, public experimentation is always superior 
to private experimentation.23

Heidhues et al. (2015) consider the possibility of communication via cheap talk in a multi-
armed bandit model without preemption. Rosenberg et al. (2013), Dong (2021) and Wagner and 
Klein (2022) study the impact of private information about outcomes on welfare in two-armed 
bandit models without preemption. Margaria (2020) studies a two-player investment game with 
a second-mover advantage.

21 Boyarchenko and Levendorskii (2014) examine preemption games with a single risky investment opportunity, but 
where learning about an uncertain distribution of outcomes is not an issue. Unlike us, they study the effects of players’ 
asymmetry under jump-diffusion uncertainty.
22 In our setting, the stopping and continuation decisions correspond, respectively, to settling for a sure arm and trying 
a stochastic arm. Note that in our model, a player’s stopping decision affects the value of both arms for the other player.
23 A second more technical difference concerns the evolution of beliefs in their setting where, for any strategies, players 
can only become pessimistic over time, unlike in our problem.
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Building on the multi-armed bandit framework, Halac et al. (2017) study innovation contests 
when there is uncertainty about the feasibility of a successful innovation. There is a principal who 
designs a contest to maximize the probability of obtaining a successful innovation and several 
researchers who engage in costly experimentation for a fixed number of periods. The principal 
allocates a fixed prize among the researchers and chooses a prize-sharing scheme and a disclosure 
policy. Unlike in our model, preemption is not possible in their setting. This is because players 
cannot stop with anything less than a success, and even then, experimentation can continue after 
one of the players obtains success either because the contest is private or because there is equal 
sharing. By contrast, in our model, both private or public experimentation stop as soon as one of 
the players reveals either a low- or a high-value success which introduces fundamentally different 
learning and belief dynamics.

One paper that falls within the intersection of the two bodies of literature, dealing with pre-
emption and learning about uncertain research outcomes, is Spatt and Sterbenz (1985). The 
authors show that preemption shortens experimentation. There are two crucial differences from 
our paper. First, in every period, there is a single public draw, and second, there are no failed 
experiments. Thus, there is no possibility of private learning in their setting, whereas our paper 
compares private and public learning. More recently, Bobtcheff et al. (2021) consider a preemp-
tion game with risky investment opportunity where players randomly receive a single perfectly 
informative private signal over time when the project is not profitable. In their model, learning 
is about bad news, and when learning is private, players delay investment to avoid the winner’s 
curse. Thus a planner who would like to avoid unprofitable investment prefers private over pub-
lic learning. By contrast, in our paper, learning is about the possibility of a breakthrough and we 
show that public learning can lead to longer experimentation and higher welfare. Hence, we view 
the papers as complementary.

8. Conclusion

We have examined the effects of rivalry upon experimentation and learning in a stopping game 
in which the players acquire information over time about the distribution of their potential pay-
offs. A key innovation in our setting is that experiments are not always successful and sometimes 
do not return any useful results.

Under the assumption of public observation of the players’ experimentation results, we have 
constructed a perfect Bayesian equilibrium in threshold strategies. In this equilibrium, the two 
players continue experimenting, trying to obtain a high-value outcome, until their beliefs about 
its feasibility become too pessimistic. Because of the threat of preemption, the length of experi-
mentation is shorter than socially optimal.

We have checked whether earlier results, showing that the threat of preemption is softened 
when information is kept private, carry over to preemption games with uncertainty and learning 
about research outcomes.24 If players cannot observe one another’s results, i.e., under private 
learning, they need to form beliefs about the experimentation outcomes of their rival and even-
tually about the feasibility of a high-value outcome. These beliefs turn out to be quite complex 
because they depend not only on the length of time the players have been experimenting but also 
on the number of successful experiments. Despite this complexity, we provide conditions for the 
existence of equilibria in strategies involving nonmonotone time-variant thresholds. Our anal-

24 See Hopenhayn and Squintani (2011).
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ysis reveals that private learning generates even shorter experimentation durations than public 
learning for a wide range of parameters.

We trace our findings to the players’ inability to coordinate on their information under private 
learning: A player who does not observe his rival’s experimentation results and, due to unsuc-
cessful experimentation, does not himself have many results might still believe that his opponent 
has run many successful experiments and obtained more results. This situation would push the 
player to stop experimenting even earlier than under public observation of his rival’s experi-
mentation results. Overall, our paper sheds light on whether public or private experimentation 
generates longer experimentation horizons and greater value for scientists.
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Appendix A. Proofs of results

Proof of Proposition 1. Consider the strategy σ ∗ = {σ ∗
t }T −1

t=1 , described in Proposition 1. Argu-
ing along the lines of the one-shot deviation principle, for (σ ∗, σ ∗) to constitute an equilibrium, 
we need to show that there is no continuation game such that player i can deviate profitably from 
the continuation strategy induced by σ ∗. Suppose contrary and let t and ht be the last period 
(within a finite time horizon) and one of the histories in that period in which player i can deviate 
profitably from the strategy σ ∗. Thus, according to the contradiction hypothesis, σ ∗ is optimal 
for player i in all periods t ′ > t , against player j also following σ ∗.

We split cases, depending on the history ht .
Player i can clearly not gain from stopping after histories in which he has received no draw 

at all. In addition, player i cannot gain from continuing after histories in which he has already 
received a draw of H . Similarly, player i cannot deviate from σ ∗ profitably after histories in 
which his opponent has received a draw of H . So, it remains to check histories in which player i
has received ni

t ≥ 1 draws of L and neither player has received a draw of H .

If nj
t ≥ 1 and nt = ni

t + n
j
t < N1, then player i’s payoff from following σ ∗ (thus, from con-

tinuing to period t + 1 and then acting optimally, as implied by our contradiction hypothesis) 
weakly exceeds his payoff from continuing to period t + 1 and then surely stopping, which is 
greater or equal than

(1/2) δ [pH (nt )(H − L) + L ] ≥ L,

his payoff from stopping in period t .
On the other hand, if nj

t ≥ 1 and nt ≥ N1, then player j will stop in period t , so, player i
should also stop in that period.

If nj
t = 0 and nt < N2, then player i’s payoff from following σ ∗ (that is, from continuing 

to period t + 1 and then acting optimally) weakly exceeds his payoff from continuing to period 
t + 1 and then surely stopping, with player j also surely stopping if he receives a draw, which is
19
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(1/2) δ [pH (nt )(H − L) + [1 + (1 − r)(1 − p(nt )rq)]L ] ≥ L,

his payoff from stopping in period t .
If nj

t = 0 and nt ≥ N2, if player i continues to period t + 1, then player i will be best-off 
stopping in period t + 1 (that is, following σ ∗ after period t); and player j will also stop in 
period t + 1, if he receives a draw. Thus, player i’s optimal deviation payoff is

(1/2) δ [pH (nt )(H − L) + [1 + (1 − r)(1 − p(nt )rq)]L ] < L,

his payoff from stopping in period t .
Having exhausted the cases, we have that player i has no profitable deviation from the strategy 

σ ∗, contradicting our hypothesis. �
Proof of Proposition 2. We argue backwards, from period t = T − 1 to period t = 1, showing 
that at the end of each period t , the continuation game starting at that time cannot admit a pure-
strategy equilibrium in which the players continue if the total number of L draws exceeds the 
thresholds N1 and N2 in the definition of σ ∗.

In period t = T − 1, when nj
t ≥ 1 and ni

t + n
j
t ≥ N1, even if player j is willing to continue to 

period T , the inequality in the definition (5) of the threshold N1 implies that player i is better-off 
stopping in period T −1. Thus, there is no equilibrium in which a player might continue to period 
T when ni

t + n
j
t ≥ N1. In addition, when nj

t = 0 and ni
t ≥ N2, the inequality in the definition (6)

of the threshold N2 implies that player j is better-off stopping in period T − 1.
In period t = T − 2, when nj

t ≥ 1 and ni
t + n

j
t ≥ N1, even if player j is willing to continue 

to period T , player i knows that the game will surely end in the next period. Therefore, player 
i’s continuation and stopping payoff calculations in period T − 2 are identical to those in period 
T − 1, implying again that there is no equilibrium in which the players might continue to period 
T − 1 when ni

t + n
j
t ≥ N1. For the same reason, the knowledge that the game will not continue 

beyond T − 1, player i is better-off stopping in period T − 2, when nj
t = 0 and ni

t ≥ N2.

Reiterating the last argument for t = T − 3, . . . , 1, noticing that in each period t , when nj
t ≥ 1

and ni
t + n

j
t ≥ N1 or when nj

t = 0 and ni
t ≥ N2, player i is forced to treat the continuation game 

as a two-period game, it follows that there is no equilibrium in which the game continues after 
histories in which the strategy σ ∗ dictates stopping. �
Proof of Proposition 3. Comparing the inequalities in (4) and (6), defining the thresholds N∗
and N2 ≥ N1, we find that a player’s gain from continuing experimenting for exactly one more 
period is larger when he is alone, so that N∗ ≥ N2 ≥ N1. �
Proof of Lemma 1. At the end of period t , consider the joint event in which the two players 
have observed respectively histories hi

t and hj
t involving ni

t and nj
t draws of L and no draw of 

H . The probability of this event is

P(hi
t , h

j
t ) = rni

t+n
j
t (1 − r)2t−ni

t−n
j
t [p(1 − q)n

i
t+n

j
t + (1 − p) ]

Aggregating over all time-t histories hj
t involving nj

t draws of L, no draw of H , and satisfying 
the continuation constraints of the strategy sj for all periods up to time t − 1, we get

P(hi
t , n

j
t , s

j ) = ht (n
j
t , s

j
t ) rni

t+n
j
t (1 − r)2t−ni

t−n
j
t [p(1 − q)n

i
t+n

j
t + (1 − p) ],
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where ht (n
j
t , s

j
t ) ≤ ( t

n
j
t

)
is the total number of such histories.

Therefore, player i’s belief that nj
t = nj is given by the conditional probability

pt (n
j
t , n

i
t , s

j ) = P(n
j
t |hi

t , s
j ) = P(hi

t , n
j
t , s

j )∑t
n=0 P(hi

t , n, sj )

= ht (n
j
t , s

j ) rn
j
t (1 − r)t−n

j
t [p(1 − q)n

i
t+n

j
t + (1 − p)]∑t

n=0 ht (n, sj ) rn (1 − r)t−n [p(1 − q)n
i
t+n + (1 − p)] ,

with the second equality being obtained by canceling equal terms.
To explore the monotonicity of the beliefs pt(n

j
t , n

i
t , s

j ) with respect to the variable ni
t , notice 

that

dpt

dni
t ,

(n
j
t , n

i
t , s

j ) =

ln (1 − q) ht (n
j
t , s

j ) rn
j
t (1 − r)t−n

j
t

(
∑t

n=0 ht (n, sj ) rn (1 − r)t−n [p(1 − q)n
i
t+n + (1 − p)] )2

×
t∑

n=0

ht (n, sj ) rn (1 − r)t−n p (1 − p) (1 − q)n
i
t [(1 − q)n

j
t − (1 − q)n]

Therefore, since ln (1 − q) ≤ 0,

dpt

dni
t ,

(n
j
t , n

i
t , s

j ) � 0 ⇐⇒
t∑

n=0

ht (n, sj ) rn (1 − r)t−n [(1 − q)n
j
t − (1 − q)n] � 0,

The sum is independent of ni
t , decreasing in nj

t , positive for nj
t = 0, negative for nj

t = t . Hence, 
for every t and sj , there is a value n̄j

t such that

dpt

dni
t ,

(n
j
t , n

i
t , s

j ) � 0 ⇐⇒ n
j
t � n̄

j
t

Let ñi
t > ni

t . To show that

n∑
n

j
t =0

[pt(n
j
t , n

i
t , s

j ) − pt (n
j
t , ñ

i
t , s

j ) ] ≥ 0, for all n = 0,1, ...t,

as required for first-order stochastic dominance, notice that

pt (n
j
t , ñ

i
t , s

j ) � pt (n
j
t , n

i
t , s

j ) ⇐⇒ n
j
t � n̄

j
t .

Therefore, the sum is positive for values n ≤ n̄
j
t . For values n ≥ n̄

j
t , we have

n∑
n

j
t =0

[pt(n
j
t , n

i
t , s

j ) − pt (n
j
t , ñ

i
t , s

j ) ] = −
t∑

n
j
t =n+1

[pt (n
j
t , n

i
t , s

j ) − pt(n
j
t , ñ

i
t , s

j ) ]

so that again the sum is positive, as required. �
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Proof of Lemma 2. Since first-order stochastic dominance is a transitive relation, so that our 
argument can proceed from sj to ŝj in a threshold-by-threshold manner, it suffices to show the 
result for strategies sj and ŝj such that Nj

τ = N̂
j
τ , for τ �= t0, and Nj

τ < N̂
j
τ , for τ = t0, for some 

time t0 < t .
Given two threshold strategies sj and ŝj that differ only at time t0 < t , with Nj

t0
< N̂

j
t0

, by 
Lemma 1, for all M ≤ t , we have

P [nj
t ≤ M |ni

t , ŝ
j ] − P [nj

t ≤ M |ni
t , s

j ] =
M∑

m=0

[
ht (m, ŝj ) p̄(m,ni

t )∑t
n=0 ht (n, ŝj ) p̄(n,ni

t )
− ht (m, sj ) p̄(m,ni

t )∑t
n=0 ht (n, sj ) p̄(n,ni

t )

]
,

with the expression p̄(m, ni
t ) = rm (1 − r)t−m [p(1 − q)n

i
t+m + (1 − p)] being used to simplify 

the notation. Therefore, for all M ≤ t ,

P [nj
t ≤ M |ni

t , ŝ
j ] − P [nj

t ≤ M |ni
t , s

j ] ≤ 0

as required for the result, if and only if

M∑
m=0

t∑
n=0

p̄(m,ni
t ) p̄(n,ni

t )
[
ht (m, ŝj ) ht (n, sj ) − ht (m, sj )ht (n, ŝj )

]
≤ 0

or, after canceling equal terms, if and only if

M∑
m=0

t∑
n=M+1

p̄(m,ni
t ) p̄(n,ni

t )
[
ht (m, ŝj ) ht (n, sj ) − ht (m, sj )ht (n, ŝj )

]
≤ 0

Therefore, it suffices to show that

ht (m, ŝj ) ht (n, sj ) − ht (m, sj )ht (n, ŝj ) ≤ 0,

for all m, n ≤ t such that m ≤ M < n.
Notice that for all strategies s with thresholds {Nτ }t−1

τ=1 and any time t0 < t , we have

ht (k, s) =
k∑

l=0

h′
t0
[l, (Nτ )

t0
τ=1] ht−1−t0[k − l, (Nτ − l)t−1

τ=t0+1]

where h′
t0
[l, (Nτ )

t0
τ=1] is the number of player j ’s histories at the end of period t0 such that player 

j has received l draws of L and no draw of H and such that nj
τ < Nτ for all τ ≤ t0.

Therefore, it suffices to show that
m∑

k=0

h′
t0
[k, (N̂j

τ )
t0
τ=1] ht−1−t0 [m − k, (N̂j

τ − k)t−1
τ=t0+1]

×
n∑

l=0

h′
t0
[l, (Nj

τ )
t0
τ=1] ht−1−t0 [n − l, (Nj

τ − l)t−1
τ=t0+1] −

m∑
k=0

h′
t0
[k, (Nj

τ )
t0
τ=1]ht−1−t0 [m − k, (Nj

τ − k)t−1
τ=t0+1]

×
n∑

h′
t0
[l, (N̂j

τ )
t0
τ=1] ht−1−t0 [n − l, (N̂j

τ − l)t−1
τ=t0+1] ≤ 0
l=0
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Since N̂j
τ = N

j
τ , for all τ > t0, this reduces to showing (after again canceling equal terms) that

m∑
k=0

n∑
l=m+1

ht−1−t0 [m − k, (Nj
τ − k)t−1

τ=t0+1] ht−1−t0 [m − l, (Nj
τ − l)t−1

τ=t0+1]

×
[

h′
t0
[k, (N̂

j
τ )

t0
τ=1] h′

t0
[l, (Nj

τ )
t0
τ=1] −

h′
t0
[k, (N

j
τ )

t0
τ=1] h′

t0
[l, (N̂j

τ )
t0
τ=1]

]
≤ 0

for all m, n ≤ t such that m ≤ M < n.
For m < N

j
t0

, we have h′
t0
[k, (N̂j

τ )
t0
τ=1] = h′

t0
[k, (Nj

τ )
t0
τ=1], for all k ≤ m, so that the inequality 

follows from the fact that h′
t0
[l, (Nj

τ )
t0
τ=1] ≤ h′

t0
[l, (N̂j

τ )
t0
τ=1], for all l ≥ 0.

Finally, for m ≥ N
j
t0

, we have h′
t0
[l, (Nj

τ )
t0
τ=1] = 0, for all l ≥ m + 1, so that the expression on 

the left-hand-side of the inequality involves only non-positive terms. �
Proof of Lemma 3. We argue by means of backwards induction, in periods T −1, T −2, . . . , 1, 
showing in each period, first, that player i’s optimal strategy at the end of the period takes the 
form of a threshold rule; and second, that player i’s expected payoff from following his optimal 
strategy is decreasing in the number of L draws he has obtained that far, a result to be used in the 
next step of the induction.

Throughout our argument we condition on player j having obtained no draw of H by the time 
of player i’s decision; otherwise, player i’s decision is irrelevant for his payoff. For the sake of 
brevity, we drop this condition from our notation.

Given any T ∈ Z+, suppose that player j ’s strategy sj is such that he stops in periods t < T

if and only if nj
t ≥ N

j
t , for some sequence of thresholds {Nj

t }T −1
t=1 .

Moving backwards in the periods of the game, suppose that player i has obtained ni
T −1 > 0

draws of L by the end of period T − 1.25 Then player i’s expected payoff from continuing to 
the last period T , conditionally on player j having obtained nj

T −1 draws of L and on the game 
actually reaching period T , is

UT (ni
T −1|nj

T −1, s
j ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2δ [pH (ni

T −1 + n
j

T −1)(H − L) + L], n
j

T −1 > 0;
1
2δ [pH (ni

T −1)(H − L) + L] +
1
2δ [1 − r p(ni

T −1) q] (1 − r)L, n
j
T −1 = 0.

(A.1)

Therefore, conditionally on nj

T −1, player i’s expected gain from continuing to period T instead 
of stopping in period T − 1 is

�VT −1(n
i
T −1 |nj

T −1, s
j ) =

⎧⎨
⎩

−L/2, n
j
T −1 ≥ N

j
T −1;

UT (ni
T −1 |nj

T −1, s
j ) − L, n

j
T −1 < N

j
T −1.

Finally, player i’s (unconditional) expected gain from continuing instead of stopping is

�VT −1(n
i
T −1 | sj ) =

T −1∑
n

j
T −1=0

pT −1(n
j

T −1, n
i
T −1, s

j )�VT −1(n
i
T −1 |nj

T −1, s
j ). (A.2)

25 When ni = 0, player i must continue into period T independently of hj. .

T −1 T −1
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Under Condition SC, the function �VT −1( · | ·, sj ) is decreasing in nj

T −1.26 In addition,

�VT −1(n
i
T −1 |0, sj ) =

(1/2)δ p(ni
T −1) rq [(2 − rq)H − (3 − r − rq)L] − L + (1/2)δ (2 − r)L.

Therefore, for parameters H/L < (3 − r − rq)/(2 − rq), we have �VT −1(n
i
T −1 | 0, sj ) < 0, so 

that �VT −1(n
i
T −1 | nj

T −1, s
j ) < 0, for all ni

T −1 ≥ 1, nj

T −1 ≥ 0. In this case, player i’s expected 
gain from continuing is �VT −1(n

i
T −1 | sj ) < 0, for all ni

T −1 ≥ 1, implying that player i is best-off 
stopping if he has at least one draw of L. Otherwise, for parameters H/L ≥ (3 −r −rq)/(2 −rq), 
the function �VT −1( · | ·, sj ) is decreasing also in ni

T −1. In this case, for ñi
T −1 > ni

T −1, we have

�VT −1(ñ
i
T −1 | sj ) =

T −1∑
n

j
T −1=0

pT −1(n
j

T −1, ñ
i
T −1, s

j )�VT −1(ñ
i
T −1 |nj

T −1, s
j )

≤
T −1∑

n
j
T −1=0

pT −1(n
j
T −1, n

i
T −1, s

j )�VT −1(n
i
T −1 |nj

T −1, s
j )

= �VT −1(n
i
T −1 | sj ),

with the inequality being obtained from the fact that the probability distribution pT−1( ·, ñi
T −1, s

j )

first-order stochastically dominates the distribution pT −1( ·, ni
T −1, s

j ). Hence, player i’s incen-
tive to continue to period T is decreasing in the number ni

T −1 of L draws he has received, 
implying that his best response in period T − 1 takes the form of a threshold rule, Ni

T −1.
To complete the first step of the induction, notice that player i’s expected payoff from choosing 

to continue to period T ,

V c
T −1(n

i
T −1 | sj ) =

N
j
T −1−1∑

n
j
T −1=0

pT −1(n
j

T −1, n
i
T −1, s

j )UT (ni
T −1 |nj

T −1, s
j )

is decreasing in ni
T −1, since the distribution pT −1( ·, ni

T −1, s
j ) is first-order stochastically in-

creasing in ni
T −1 and the payoff UT ( ni

T −1 | nj

T −1, s
j ) is decreasing in ni

T −1 and nj

T −1. In 
addition, player i’s payoff from stopping in period T − 1,

V s
T −1(n

i
T −1 | sj ) = (L/2) +

N
j
T −1−1∑

n
j
T −1=0

pT −1(n
j

T −1, n
i
T −1, s

j ) (L/2),

is also decreasing in ni
T −1, because of stochastic dominance. Therefore, player i’s optimal payoff 

at the end of period T − 1,

V ∗
T −1(n

i
T −1 | sj ) = max{V c

T −1(n
i
T −1 | sj ), V s

T −1(n
i
T −1 | sj ) } (A.3)

26 For all ni
T −1, since the probability pH (ni

T −1 + n
j
T −1) is decreasing in nj

T −1, the payoff UT (ni
T −1 | nj

T −1, sj ) is 
also decreasing in nj

T −1. Condition SC ensures that UT (ni
T −1 | nj

T −1, sj ) − L > −L/2, for all nj
T −1 < N

j
T −1, for all 

N
j .

T −1
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is decreasing in ni
T −1.

Proceeding to periods t = T − 2, T − 3, . . . , 1, suppose that player i’s optimal continuation 
strategy in period t + 1 takes the form of a threshold rule {Ni

τ }T −1
τ=t+1, depending only on the 

strategy sj ; and that his optimal payoff at the end of period t + 1,

V ∗
t+1(n

i
t+1 | sj ) = Vt+1[ni

t+1 | sj , (Ni
τ )

T −1
τ=t+1]

is decreasing in ni
t+1 (induction hypothesis).

At the beginning of period t + 1, player i’s expected payoff from drawing in that period and 
then following the optimal continuation strategy {Ni

τ }T −1
τ=t+1 is

U∗
t+1(n

i
t | sj ) = Ut+1[ni

t | sj , (Ni
τ )

T −1
τ=t+1]

= p̂H (ni
t | sj ) (1/2)H + [1 − p̂H

t (ni
t | sj )] p̂L

t (ni
t | sj ) V ∗

t+1(n
i
t + 1 | sj ) (A.4)

+ [1 − p̂H
t (ni

t | sj )] [1 − p̂L
t (ni

t | sj )] V ∗
t+1(n

i
t | sj )

where

p̂H
t (ni

t | sj ) =
t∑

n
j
t =0

p′
t (n

j
t , n

i
t , s

j )pH (n
j
t + ni

t )

is player i’s belief at the beginning of period t + 1 that at least one draw of H will be obtained 
in that period,

pL
t (ni

t | sj ) =
t∑

n
j
t =0

p′
t (n

j
t , n

i
t , s

j )
[1 − p(n

j
t + ni

t ) + p(n
j
t + ni

t ) (1 − q) (1 − rq) ] r

1 − p(n
j
t + ni

t ) + p(n
j
t + ni

t ) (1 − rq)2

is player i’s belief at the beginning of period t + 1 that he will draw L in that period, conditional 
on neither player drawing H , with

p′
t (n

j
t , n

i
t , s

j ) = h′
t (n

j
t , s

j ) rn
j
t (1 − r)t−n

j
t [p(1 − q)n

i
t+n

j
t + (1 − p)]∑t

n=0 h′
t (n, sj ) rn (1 − r)t−n [p(1 − q)n

i
t+n + (1 − p)] ,

defined in a manner analogue to pt(n
j
t , n

i
t , s

j ), being the probability that player j has obtained 
n

j
t draws of L by the end of period t , conditional on ni

t and on the constraints of the stopping 
strategy sj , including the one at the end of period t .27

Arguing as in Lemma 1, it can be shown that the distribution p′
t ( ·, ni

t , s
j ) first-order stochas-

tically increases in ni
t . Therefore, the probabilities p̂H

t (ni
t | sj ) and p̂L

t (ni
t | sj ) are respectively 

decreasing and increasing in ni
t . In addition, V ∗

t+1( · | sj ) is decreasing (from the induction hy-
pothesis) and V ∗

t+1(n
i
t+1 | sj ) ≤ (1/2)H , for all ni

t+1 ≥ 0. Hence, the payoff U∗
t+1(n

i
t | sj ) =

Ut+1[ni
t | sj , (Ni

τ )
T −1
τ=t+1] is decreasing in ni

t .
At the end of period t , player i’s expected gain from choosing to continue rather than to stop 

is

27 In particular, h′
t (n

j
t , sj ) ≤ (t+1

n
j
t

)
is the number of histories of player j consistent with player j having obtained nj

t

draws of L and the constraints of the stopping strategy sj in periods 1, 2, . . . , t . Notice that these constraints include the 
hypothesis that no draw of H has occurred.
25



H. Hoppe-Wewetzer, G. Katsenos and E. Ozdenoren Journal of Economic Theory 212 (2023) 105702
�Vt(n
i
t | sj , (Ni

τ )
T −1
τ=t+1) (A.5)

= P [nj
t < N

j
t |ni

t , s
j ] [Ut+1[ni

t | sj , (Ni
τ )

T −1
τ=t+1] − L ]

+P [nj
t ≥ N

j
t |ni

t , s
j ] (−L/2)

= P [nj
t < N

j
t |ni

t , s
j ] [Ut+1[ni

t | sj , (Ni
τ )

T −1
τ=t+1] − L/2 ] − L/2

Using again the fact that an increase in ni
t results in a stochastic dominant distribution for the 

unknown variable nj
t , along with the fact that U∗

t+1( · | sj ) is decreasing, it follows that player 
i’s gain �Vt [ni

t | sj , (Ni
τ )

T −1
τ=t+1] is decreasing in ni

t , so that player i’s best-response strategy in 
period t takes the form of a threshold rule, Ni

t .

Finally, since the probability P [nj
t < N

j
t | ni

t , s
j ] and the expected payoff functions

Ut+1(n
i
t | sj , (Ni

τ )
T −1
τ=t+1) are decreasing in ni

t , it follows that the payoffs

V c
t [ni

t | sj , (Ni
τ )

T −1
τ=t+1] = P [nj

t < N
j
t |ni

t , s
j ] Ut+1[ni

t | sj , (Ni
τ )

T −1
τ=t+1],

V s
t [ni

t | sj , (Ni
τ )

T −1
τ=t+1] = (L/2) + P [nj

t < N
j
t |ni

t , s
j ] (L/2)

and

V ∗
t (ni

t | sj ) = Vt [ni
t | sj , (Ni

τ )
T −1
τ=t+1]

= max{V c
t [ni

t | sj , (Ni
τ )

T −1
τ=t+1], V s

t [ni
t | sj , (Ni

τ )
T −1
τ=t+1] } (A.6)

are decreasing in ni
t , completing the induction. �

Proof of Proposition 4. Similar to the proof of Lemma 3, we condition our continuation payoff 
calculations on player j having obtained no draw of H by the time of player i’s decision.

In the continuation game starting at the end of period T , it is clear that the strategy profile in 
which each player stops immediately constitutes an equilibrium, independently of the players’ 
strategies up to that period and associated beliefs.

In period T − 1, suppose that the two players have followed symmetric strategies s′ with 
stopping thresholds {Nt }T −2

t=1 prior to that period; and that player j follows a threshold Nj
T −1

in that period.28 If player i has obtained ni
T −1 > 0 draws of L, then his expected gain from 

continuing to period T instead of stopping in period T − 1 is given by equations (A.1) and (A.2)
in the proof of Lemma 3.29

For parameters H/L < (3 − r − rq)/(2 − rq), as argued in the proof of Lemma 3, we have 
�VT −1(n

i
T −1, | nj

T −1, s
′, Nj

T −1 ) < 0, for all ni
T −1 ≥ 1, nj

T −1 ≥ 0, so that player i’s continuation 

gain is �VT −1(n
i
T −1 | s′, Nj

T −1 ) < 0, for all ni
T −1 ≥ 1. In this case, there is a unique equilibrium 

for the continuation game, with threshold NT −1 = 1.

28 Notice that the players cannot observe one another’s deviations, in particular, the deviation to continuing when a 
player’s strategy prescribes stopping. Thus, in histories off the equilibrium path, a player’s continuation or stopping 
payoff is not affected by his past behavior, it depends only on the number of L draws he has and the strategy of his 
opponent.
29 Notice that player i’s beliefs regarding the number of draws of his opponent, nj

T −1, are independent of his opponent’s 
continuation strategy, in particular, of the threshold Nj .
T −1
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For parameters H/L ≥ (3 − r − rq)/(2 − rq), again as argued in the proof of Lemma 3, 
the payoff �VT −1(n

i
T −1 | s′, Nj

T −1 ) is decreasing in the number of draws ni
T −1. In ad-

dition, under Condition SC, the payoffs �VT −1(n
i
T −1, | nj

T −1, s
′, Nj

T −1 ) and, therefore, 

�VT −1(n
i
T −1 | s′, Nj

T −1 ) are increasing in player j ’s threshold Nj

T −1. Hence, the threshold 
characterizing player i’s best-response strategy in period T − 1, given by

BRi
T −1(N

j
T −1 | s′) = max{n = 1,2, . . . , T − 1 : �VT −1(n | s′, N

j
T −1 ) > 0 } + 1,

with BRi
T −1(s

j ) = 1 when the set is empty, is an increasing function of the threshold Nj
T −1 in 

the strategy sj .30

The set {1, 2, ..., T } is a lattice with respect to the order ≥, complete because of finiteness. 
Therefore, since the function BRi

T −1( · | s′) is increasing in the variable Nj
T −1, it has at least 

one fixed point. Hence, for each symmetric strategy s′ = {Nt }T −2
t=1 prior to period T − 1, we can 

define the players’ common threshold at time T − 1 as the maximal fixed point of BRi
T −1( · | s′).

Moving backwards to periods t = T − 2, T − 3, . . ., 1, suppose that for each symmetric strat-
egy profile with stopping thresholds {Nτ }tτ=1 up to the end of period t , there is a symmetric 
equilibrium s′′[(Nτ )

t
τ=1] for the continuation game starting in period t + 1, with thresholds that 

depend on {Nτ }tτ=1 (induction hypothesis).
Suppose that the two players have followed a symmetric threshold strategy s′ up to the end 

of period t − 1. We need to show that there is a threshold N in period t such that the continua-
tion strategy (N, s′′(s′, N)) forms a symmetric equilibrium for the continuation game starting in 
period t , where s′′(s′, N) is the symmetric equilibrium provided by the induction hypothesis for 
the continuation game starting in period t + 1, when the players have followed strategies (s′, N)

up to the end of period t .
We first show that each player’s best-response threshold in period t is increasing in the corre-

sponding threshold in his opponent’s strategy, for any symmetric threshold strategy s′ the players 
have followed up to the end of period t −1 and for a symmetric continuation strategy determined 
by the induction hypothesis.31 Subsequently, since the set of all thresholds in period t forms a fi-
nite lattice, we invoke a fixed-point theorem to conclude that the players’ best-response function 
has a fixed point N , determining a symmetric equilibrium for the continuation game at time t .

Consider a change, first, of the players’ symmetric threshold in period t from N to N + 1, and 
second, of the players’ symmetric equilibrium strategy for the continuation game starting at t +1
from s′′(s′, N) to s′′(s′, N + 1). We examine how this change affects a player’s best response.

If player i has ni
t draws of L, then his expected gain from continuing rather than stopping at 

the end of period t , against a strategy s(s′, M) = [s′, M, s′′(s′, M)] of player j , is

�Vt [(ni
t | s(s′,M)] = P(n

j
t ≥ M |ni

t , s
′)(−L/2)

30 If Ñj
T −1 > N

j
T −1, then we have �VT −1(n | s′, Ñj

T −1) > �VT −1(n | s′, Nj
T −1), for all n = 1, 2, . . . , T , implying 

that {n ∈ N : �VT −1(n | s′, Ñj
T −1) > 0} ⊇ {n ∈ N : �VT −1(n | s′, Nj

T −1) > 0} and, therefore, that the best response 
is BRi

T −1(Ñ
j
T −1 | s′) ≥ BRi

T −1(N
j
T −1 | s′), as required.

31 In this argument, notice that we do not find a best-response for the entire continuation game; we only find each player 
i’s best response in period t , in the game in which the player is restricted after period t to follow the strategy provided by 
the induction hypothesis, determined by player j ’s strategy. However, if this best responde is symmetric, as we eventually 
show, then it determines a best-response strategy (and because of symmetry, an equilibrium) for the entire continuation 
game.
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+ P(n
j
t < M |ni

t , s
′) [Ut+1[ni

t | s(s′,M)] − L ],
where Ut+1(n

i
t | s(s′, M)), defined recursively by equations (A.1)–(A.6) in the proof of Lemma 3, 

is player i’s optimal expected payoff in the continuation game starting in period t +1, conditional 
on period t + 1 being reached, with player j following a strategy s(s′, M). Since player j ’s 
continuation strategy s′′(s′, M) is part of a symmetric equilibrium for that game, given (s′, M), 
notice that the payoff Ut+1(n

i
t | s(s′, M)) is achieved with player i also following the continuation 

strategy s′′(s′, M).
When player i’s conjecture about player j ’s strategy changes from s(s′, N)) to s(s′, N + 1), 

we have

�Vt [ni
t | s(s′,N + 1)] − �Vt [ni

t | s(s′,N)] = pt (N,ni
t , s

′) (−L/2)

+ P(n
j
t ≤ N |ni

t , s
′) Ut+1[ni

t | s(s′,N + 1)]
− P(n

j
t ≤ N − 1 |ni

t , s
′) Ut+1[ni

t | s(s′,N)]
Since player i cannot gain from deviating from s′′(s′, N + 1) to the strategy of surely stopping 
in period t + 1, against s′′(s′, N + 1), in the continuation game following (s′, N + 1), we have

Ut+1[ni
t | s(s′,N + 1)] ≥

N∑
n

j
t =0

pt(n
j
t , n

i
t , s

′)
P (n

j
t ≤ N |ni

t , s
′)

(1/2) δ [p(ni
t + n

j
t ) (1 − (1 − rq)2) (H − L) + L ]

In addition, in the continuation game following (s′, N), we have

Ut+1[ni
t | s(s′,N)] ≤

N−1∑
n

j
t =0

pt (n
j
t , n

i
t , s

′)
P (n

j
t ≤ N − 1 |ni

t , s
′)

(1/2) δ [p(ni
t + n

j
t ) (1 − (1 − rq)2(T −t)) (H − L) + L ]

that is, player i’s optimal expected payoff cannot exceed what could be achieved if the two 
players shared L or H after performing maximal costless experimentation in the time remaining 
until final period T .

Therefore, after some rearrangement of the terms, we have

�Vt [ni
t | s(s′,N + 1)] − �Vt [ni

t | s(s′,N)] ≥
pt(N,ni

t , s
′) (1/2) [ δ p(ni

t + N)(1 − (1 − rq)2) (H − L) − (1 − δ)L ]

−
N−1∑
n

j
t =0

pt(n
j
t , n

i
t , s

′) (1/2) δ p(ni
t + n

j
t ) [ (1 − rq)2 − (1 − rq)2(T −t) ] (H − L)

In addition, since the function p(·) is decreasing, we have

�Vt [ni
t | s(s′,N + 1)] − �Vt [ni

t | s(s′,N)] ≥
pt(N,ni

t , s
′) (1/2) [ δ p(2N)(1 − (1 − rq)2) (H − L) − (1 − δ)L ]

−
N−1∑
j

pt (n
j
t , n

i
t , s

′) (1/2) δ p(n
j
t ) [ (1 − rq)2 − (1 − rq)2(T −t) ] (H − L)
nt =0

28



H. Hoppe-Wewetzer, G. Katsenos and E. Ozdenoren Journal of Economic Theory 212 (2023) 105702
Thus, for player i’s expected gain from continuing at the end of period t to be

�Vt [ni
t | s(s′,N + 1)] ≥ �Vt [ni

t | s(s′,N)]
it is sufficient that

pt(N,ni
t , s

′)
[
p(2N) [1 − (1 − rq)2] − 1−δ

δ
L

H−L

]

+
N−1∑
n

j
t =0

pt(n
j
t , n

i
t , s

′) p(n
j
t ) [(1 − rq)2(T −t) − (1 − rq)2] ≥ 0

The expression on the left-hand-side is the expectation of a function increasing in nj
t with respect 

to a distribution of nj
t that is stochastically increasing in ni

t , so it achieves its minimal value for 
ni

t = 1. Hence, the above inequality follows directly from Condition SC.
Hence, under Condition SC, for each strategy s′ prior to period t , for each ni

t , player i’s 
expected gain �Vt [ni

t | s(s′, Nj
t )] from continuing instead of stopping at the end of period t is 

increasing in the threshold Nj
t parameterizing player j ’s continuation strategy s′′(s′, Nj

t ). Thus, 
for each strategy s′ prior to period t , the threshold Ni

t parameterizing player i’s best-response 
continuation strategy s′′(s′, Ni

t )) in period t ,

BRi
t (N

j
t | s′) = max{n = 1,2, . . . , t : �Vt [n | s(s′,Nj

t )] > 0 } + 1,

with BRi
t (N

j
t | s′) = 1 when the set is empty, is an increasing function of the threshold Nj

t in 
player j ’ strategy [s′, Nj

t , s′′(s′, Nj
t )].

The set {1, 2, ..., t + 1} of possible thresholds in period t is a lattice with respect to the order 
≥, complete because of finiteness. Therefore, since the function BRi

t ( · | s′) is increasing in Nj
t , 

it has at least one fixed point.
For each symmetric threshold strategy s′ prior to period t , we define the players’ common 

threshold Nt at period t as the maximal fixed point of BRi
T −1( · | s′); and by construction, the 

continuation strategy (Nt , s′′(s′, Nt)) forms a symmetric equilibrium for the game starting at 
period t , when the two players have the beliefs induced by the strategy s′ that they have followed 
prior to that period.

The argument concludes when it defines a threshold N1 for the first period of the game, with 
the impled strategy [N1, s′′(N1)] forming a symmetric perfect Bayesian equilibrium for the entire 
game. �
Proof of Proposition 5. In the case of public learning, suppose that player i has obtained ni

1 = 1
draw of L in period t = 1 and faces an opponent who will continue to period T = 2, the last 
period of the game. If player j has obtained nj

1 = 1 draw of L in period t = 1, then player i’s 
expected payoff from continuing to period T = 2 is

v1(1,1) = δ [L/2 + pH (2) (H − L)/2 ]
If player j has obtained nj

1 = 0 draw of L in period t = 1, then player i’s expected payoff from 
continuing to period T = 1 is

v1(1,0) = δ [L/2 + pH (1)(H − L)/2 + (1 − r) [1 − p(1) rq] (L/2) ]
Since all terms are positive and pH(1) > pH (2), it follows that v1(1, 0) > v1(1, 1).
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Using some simple algebraic manipulations, it is easy to check that the inequalities v1(1, 1) ≥
L and v1(0, 1) < L are equivalent respectively to conditions (8) and (9).

Now, consider the strategy in which a player continues at the end of period t = 1, inde-
pendently of the number of draws he and his opponent have. For this strategy to be part of a 
symmetric equilibrium, it is necessary and sufficient that v1(1, 0) ≥ L and v1(1, 1) ≥ L, a condi-
tion that reduces to v1(1, 1) ≥ L, which is equivalent to condition (8).

Similarly, consider the strategy in which a player continues at the end of period t = 1 if 
and only if he has received no draw. For this strategy to be part of a symmetric equilibrium, 
it is necessary and sufficient that v1(1, 1) < L and v1(1, 0) < L, a condition that reduces to 
v1(0, 1) < L, which is equivalent to condition (9).

Finally, consider the strategy in which a player continues at the end of period t = 1 if and 
only if either he or his opponent has failed to obtain a draw. For this strategy to be part of a 
symmetric equilibrium, it is necessary and sufficient that v1(1, 1) < L and that v1(1, 0) ≥ L, i.e., 
that conditions (8) and (9) both fail.

Looking at the corresponding setting under private learning, when condition (7) holds, by 
Proposition 4, there must exist at least one Bayesian equilibrium.

Suppose that player i has obtained one draw of L in period t = 1 and faces an opponent 
who will continue to period T = 2 unless he obtains H . Then player i’s expected payoff from 
continuing (and stopping) at T = 2, conditional on his opponent having not obtained H , is

v1(1) = p1(0,1) v1(1,0) + [1 − p1(0,1)]v1(1,1)

Using the expressions for v1(1, 0) and v1(1, 1) and applying some simple algebraic manipula-
tions, it is easy to show that the inequality v1(1) < L is equivalent to condition (10).

When v1(1) ≥ L, the strategy profile in which each player continues to period T = 2 unless 
he obtains H forms a symmetric equilibrium under private learning.

When v1(1) < L, this strategy profile is no longer an equilibrium. In this case, player i’s 
expected payoff from continuing with one draw of L to period T = 2 against an opponent who 
will stop as soon as he receives one draw is

u1(1) = p1(0,1) v1(1,0)

Therefore, the strategy profile in which each player stops if he obtains a draw at t = 1 forms a 
symmetric equilibrium under private learning if and only if

u1(1) < p1(0,1)L + [1 − p1(0,1)] (L/2)

which is true when conditions (7) and (10) hold.
We conclude the proof by comparing the equilibria under public and private learning.
Under condition (8), we have that v1(1, 0) ≥ L and v1(1, 1) ≥ L, so that v1(1) ≥ L. Therefore, 

in both settings, the two players continue to period T = 2 unless they obtain H and then stop, 
for the same equilibrium outcomes.

Similarly, under condition (9), we have v1(1, 0) < L and v1(1, 1) < L, so that v1(1) < L. In 
both settings, each player stops either as soon as he obtains a draw, again for the same equilibrium 
outcomes.

Finally, if conditions (8) and (9) both fail, we have v1(1, 1) < L and v1(1, 0) ≥ L, so, under 
public learning the two players stop at t = 1 if and only if they both obtain draws. Under pri-
vate learning, when condition (10) holds, the game will stop in period t = 1 even with a single 
draw, for a shorter expected experimentation horizon. On the other hand, when condition (10)
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fails, the game will continue to period t = T = 2 unless H is obtained, for a longer expected 
experimentation horizon.

When condition (10) holds, less experimentation under private learning implies also lower 
expected payoffs, since the generated welfare is respectively increasing / decreasing in N , the 
total number of L draws that the players obtain by the time they stop experimenting. �
Proof of Proposition 6. For any probability parameters r, q ∈ [0, 1], we need to show that if 
condition (10) is satisfied for some probability p ∈ [0, 1], then it is also satisfied for all probabil-
ities p′ ≤ p. For this, we need that the LHS in inequality (10) is increasing in p. Equivalently, 
we show that the continuation payoff v1(1) = v1(1; p), defined in the proof of Proposition 5, is 
increasing in p.

Suppose first that H/L > 3/2. Then the continuation payoffs v1(1, 1; p) and v1(1, 0; p) are 
both increasing in p, with v1(1, 0; p) ≥ v1(1, 1; p), for all p ∈ [0, 1]. In addition, the beliefs 
p1(0, 1) = p1(0, 1; p) are increasing in p. Therefore,

∂
∂p

v1(1;p) = ∂
∂p

p1(0,1;p) [v1(1,0;p) − v1(1,1;p)]
+ p1(0,1;p) ∂

∂p
v1(1,0;p) + [1 − p1(0,1;p)] ∂

∂p
v1(1,1;p) > 0,

since all terms are positive, so that v1(1; p) is increasing in p.
Finally, when H/L < 3/2, then

p(1) [1 − (1 − rq)2] (H − L)/L + (1 − r)[1 − p(1) rq]
< p(1) [1 − (1 − rq)2] , (1/2) + (1 − r)[1 − p(1) rq]
= 1 − r [1 − p(1) rq (1 − q/2)] < 1 < (2 − δ)/δ,

so that condition (9) and therefore condition (10) are satisfied for all probabilities p ∈ [0, 1], for 
the result to hold trivially. �
Proof of Proposition 7. In the case of public learning, by Proposition 1, the equilibrium is char-
acterized by stopping thresholds N1 and N2 on the number of L draws that the two players 
obtain, respectively for the case in which both players or only a single player receives these 
draws. Since conditions (8) and (9) do not hold,32 it follows from arguments similar to those 
used in Proposition 5 that N1 = 2 while N2 ≥ 2.

In the case of private learning, we construct the unique equilibrium of the game by arguing 
backwards, looking at the continuation games in periods t = T −1, . . . , 1. As we will show, since 
condition (10) holds, in equilibrium, each player stops as soon as he receives a draw.

In period t = T −1, suppose that each player i has obtained ni
T −1 ≤ 1 draws of L and believes 

with certainty that nj
T −2 = 0. In this continuation game, the players’ problem is identical to that 

analyzed in Proposition 5. Thus, each player i’s decision to continue or to stop in period T − 1, 
when ni

T −1 = 1, depends on condition (10). Since this condition holds, as argued in the proof of 
Proposition 5, player i is better-off stopping with one draw, even if his opponent will not stop in 
the current period unless he obtains a draw of H . Therefore, in this continuation game, there is a 
unique equilibrium, with each player i stopping if he has a draw.

The above argument also applies to continuation games starting in period T − 1, in which 
either ni

T −1 > 1 or player i attaches positive probability to nj
T −2 > 0, or both. Again, since 

32 That condition (8) does not hold is implied by condition (10).
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condition (10) holds and since player i’ beliefs about the possibility of H are more pessimistic 
than those for ni

T −1 = 1, each player i will prefer to claim L in the current period, even if he 
knows that player j will stop only if he obtains H . Therefore, in all continuation games starting 
in period T − 1, for any beliefs of each player i regarding nj

T −2, there is a unique continuation 
equilibrium, characterized by a threshold NT −1 = 1.

Moving to t = T − 2, in any continuation game starting in that period, player i will trivially 
continue if ni

T −2 = 0. Furthermore, if ni
T −2 ≥ 1, player i knows that even if he continues, he will 

surely stop in period T −1. Thus, he faces a two-period problem identical to that the continuation 
game starting at T − 1. It follows that there is a unique continuation equilibrium, with threshold 
NT −2 = 1.

Moving backwards, replicating the above argument, we conclude that under private learning 
there is a unique equilibrium, characterized by thresholds Nt = 1, for all t = 1, . . . , T − 1.

Finally, the comparison of public and private learning in terms of expected experimentation 
length and payoffs is trivial. For any sequence of draws that the two players may receive, if the 
players stop under public learning, then they also stop under private learning. And for some se-
quences, for example, a sequence involving exactly one draw at t = 1, experimentation will stop 
under private learning but will continue for at least one more period under public learning.33 �
Appendix B. The two-period problem under private learning

In this appendix, we identify all symmetric equilibria in the two-period problem under private 
learning. In particular, we describe mixed-strategy equilibria.

Since a player is better-off stopping if he draws H and continuing if he receives no draw 
in period t = 1, the investigation of each player’s incentives reduces to determining his best 
response when he has received a draw of L in the first period.34

Suppose that a player’s opponent continues to period t = 2 if he has a draw of L. Then that 
player is better-off also continuing to t = 2 if and only if

p1(0,1) v1(1,0) + [1 − p1(0,1)]v1(1,1) ≥ L,

where the terms

v1(1,1) = δ [L/2 + pH (2) (H − L)/2 ],
v1(1,0) = δ [L/2 + pH (1)(H − L)/2 + (1 − r) [1 − p(1) rq],

defined in the proof of Proposition 5, express the player’s expected payoff when he continues to 
t = 2, conditional on his opponent continuing respectively with one and with no draw of L. A 
simple algebraic manipulation shows that this equivalent to

[p1(0,1)p(1) + (1 − p1(0,1))p(2)] [1 − (1 − rq)2] H − L

L

+ p1(0,1) (1 − r) [1 − p(1) rq] ≥ 2 − δ

δ
(B.1)

33 That more experimentation results in this case in higher expected payoff for the players follows from the fact that the 
cooperative optimal threshold is higher than that under public learning.
34 As in the rest of the paper, we ignore the trivial equilibrium in which each player stops at the end of the first period, 
independently of his draw in it.
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Suppose that a player’s opponent stops in period t = 1 if he has a draw of L. Then that player 
is better-off also stopping if and only if

p1(0,1) v1(1,0) ≤ p1(0,1)L + [1 − p1(0,1)] (L/2))

This is equivalent to the condition

p1(0,1) δ [L + p(1) (1 − (1 − rq)2) (H − L) + (1 − r)(1 − p(1)rq)L) ]
≤ [1 + p1(0,1)] L (B.2)

The two conditions describing a player’s incentives to continue or to stop at the end of period 
t = 1 against an opponent following the same strategy lead to the following result:

Proposition 8. In the two-period problem under private learning, depending on whether the pa-
rameters of the problem satisfy the conditions (B.1) and (B.2), the following symmetric equilibria 
occur:

a. When (B.1) holds and (B.2) fails, there is a single equilibrium, in pure strategies, with each 
player continuing to period t = 2 with a draw of L.

b. When (B.1) fails and (B.2) holds, there is a single equilibrium, in pure strategies, with each 
player stopping in period t = 1 with a draw of L.

c. When both (B.1) and (B.2) hold, there are two equilibria in pure strategies, described in (a) 
and (b). In addition, there is a mixed-strategy equilibrium.

d. When both (B.1) and (B.2) fail, there is a single equilibrium, in mixed strategies.

Proof. To prove the above result for the pure-strategy equilibria, it is straightforward to check 
that the conditions that hold or fail in each case respectively establish the best-response behavior 
required for the equilibria claimed in that case or violate the equilibrium requirements for the 
remaining symmetric strategy profiles.

So, it suffices to examine when a mixed-strategy equilibrium exists. For this, suppose that a 
player’s opponent follows a strategy such that if he has a draw of L in period t = 1, he continues 
to the next period with probability α ∈ [0, 1]. For the player to be indifferent between continuing 
and stopping at the end of period t = 1, when he has one draw of L, we must have

p1(0,1) v1(1,0) + [1 − p1(0,1)]α v1(1,1) = p1(0,1)L + [1 − p1(0,1)] (1 + α) (L/2)

Rearranging the terms gives the equation

p1(0,1) [v1(1,0)−L] + [1−p1(0,1)]α [v1(1,1)−L] − [1−p1(0,1)] (1−α) (L/2) = 0,

which can be also expressed as

[1 − p1(0,1)]α [v1(1,1) − (L/2)] + p1(0,1) [v1(1,0) − (L/2)] − (L/2) = 0,

so that

α∗ = (L/2) − p1(0,1) [v1(1,0) − (L/2)]
[1 − p1(0,1)] [v1(1,1) − (L/2)]

When conditions (B.1) and (B.2) both hold, by substituting (B.2) into (B.1), we can show that 
the sign of the denominator in the expression for α∗ is positive.35 Thus, condition (B.1) implies 

35 Notice that this means that condition (7) in section 6, i.e., the sufficient condition for existence of equilibrium in pure 
strategies, holds.
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that α∗ ≤ 1 while condition (B.2) implies that α∗ ≥ 0, for an equilibrium in mixed strategies to 
exist.36

Vice versa, when conditions (B.1) and (B.2) both fail, the same argument with reverse in-
equalities shows that the sign of the denominator in the expression for α∗ is negative. Therefore, 
the failure of condition (B.1) implies that α∗ ≤ 1 and similarly the failure of condition (B.2)
implies that α∗ ≥ 0.

Finally, when one of the conditions (B.1) and (B.2) holds while the other condition fails, for 
either a positive or negative denominator in the expression for α∗, it is easy to show that either 
α∗ > 1 or α∗ < 0, so that no mixed-strategy equilibrium exists. �
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