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Abstract 

Due to the trend of electrification in the automotive industry, the economic production of electric drives with 
high acoustic quality requirements is a crucial factor to stay competitive in the global market. Low noise 
levels in the interior are an important criterion for the perceived quality of electric vehicles. Consequently, 
the noise generated by mounted gear components within integrated electric drive topologies must be 
minimized. Gears with unavoidable manufacturing deviations are usually randomly assembled, leading to 
random non-defined gear-related acoustic properties of the assembled electric drive. Furthermore, 
parameters of the gear manufacturing machines do not dynamically adapt to unknown changes in the 
production system leading to non-ideal quality output. To address these challenges, this paper presents a 
self-optimization concept in gear manufacturing and assembly in the production of electric drives by 
cognition enhanced control. A digital twin is developed which estimates the transmission error based on in-
line measurements. Through optimization, an optimal selection of gear pairs is achieved. Based on quality 
predictions, adaptive control of the gear manufacturing process can be implemented, leading towards a 
closed-loop self-optimization of the production system. The concept is developed and validated using an 
exemplary use case from the commercial vehicle industry. 
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1. Introduction

With the ongoing global focus on electromobility and the increasing demand and requirements, efficient and 
effective processes for manufacturing and assembling of components take on a decisive role in international 
competition. Due to the absence of the combustion engine’s sound in electric vehicles, the overall noise level 
decreases significantly, bringing previously unnoticed noise sources such as ancillaries or the electric drive 
train into focus [1]. Consequently, new product requirements arise in the production of drive train 
components, including gears. Today quality-related backward loops are used in electric drive production, 
enabling a detection of noise related cause-effect relationships and consequently an implementation of 
counter measures in gear manufacturing [2]. However, since this process is carried out reactively, it could 
lead to a considerable delay in the use of information and hence in a waste of energy and resources due to 
production of scrap parts or loss in quality. Additionally, the random assembly of gear components is leading 
to undefined acoustic properties of the individual gearbox, caused by typical manufacturing deviations. With 
the ongoing digitalization in the context of Industry 4.0, self-optimizing systems in manufacturing and 
assembly show high potential to overcome these issues by integrating control systems with real time quality 
predictions in the production system. This publication therefore presents a self-optimization concept for 
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model-based control by parameter optimization in gear manufacturing and selecting optimal gear pairs in 
the series production of electric drives, complementing the conventional quality backward loop. The paper 
is structured as follows: In section two, the state-of-the-art of self-optimizing production systems is 
described. Section three outlines the proposed concept to optimize the overall efficiency of the production 
system through self-optimization. Exemplary results are shown in chapter four followed by chapter five with 
a summary and outlook. 

2. State of the art

Self-optimizing systems are control systems, which autonomously adapt their objectives based on internal 
decisions to achieve a certain result and therefore extend the capabilities of classical adaptive control [3]. 
Due to the potential to learn autonomously, self-optimization is closely related to the term cognition [4]. By 
processing and utilizing information from the production process, cognitive systems can adapt to their 
environment, allowing them to serve as a central component in a self-optimizing production system [5]. The 
enhancement of production systems with cognitive and adaptive capabilities is considered as paradigm shift 
[6], [7]. On a conceptional basis cognition enhanced control systems can be integrated in multiple levels 
within the production process [8]. Nonetheless, use-cases mainly focus on the optimization of process steps 
in either manufacturing [9], [10], [11] or assembly [12], [13], [14], [15], primarily aiming to optimize a 
parameter of that process step or a functional key characteristic (FKC) of the product to improve overall 
efficiency. Although a combined integration of adaptive control loops in manufacturing and assembly show 
potential to reduce overall production costs [16], [17], a simultaneous integration of selective assembly and 
adaptive manufacturing in cognition enhanced control systems has not yet been considered. With new 
acoustic quality requirements in gear production for automotive electric drives, manufacturing processes 
reach a technological limit. In complex serial production unknown environmental influences can cause a 
high number of possible failure states of the finished drives. Cognition enhanced control systems are able to 
adjust the parameters of the production system autonomously to changing environmental influences and thus 
have the potential for a self-adaptive optimization of tolerance chains in the production process [18]. In the 
following chapter the proposed self-optimization concept for cognitive control in manufacturing and 
assembly is introduced. 

3. Self-optimization through cognitive control in manufacturing and assembly

Within this chapter a concept for a self-optimizing system based on a cognition enhanced quality control in 
manufacturing and assembly is introduced. The controller can adapt the objectives autonomously based on 
the current state of the production system and retrieve optimal gear manufacturing parameters as well as 
optimal gear pairings. The developed concept for a cognition enhanced quality control is shown in figure 2 
with focus on adaptive manufacturing and assembly pairing strategies. Manufacturing deviations are 
unavoidable and can cause quality deviation of the final product. Therefore, inspections assure that 
individual components are within defined specifications. After storage the individual components are 
assembled to the final product. Further quality tests at the end of line ensure the specified quality fulfilment 
of the final product. 
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Figure 2: Self-Optimization through cognitive control in manufacturing and assembly. 

In the bottom of Figure 2, the concept for a cognition enhanced quality controller is shown. The individual 
elements of the controller are related to the self-optimizing cognitive control according to [18]. The 
controller perceives the environment based on production data in near real time and monitors the current 
state of the production system. The controller retrieves measurement data from inspection in manufacturing 
as well as final quality data from end-of-line tests and traces the location of components and subassemblies 
in stock and upstream manufacturing processes. Considering external economic, environmental, as well as 
quality related boundary conditions, the cognition enhanced controller can take multi-criteria target values 
into account, which are used to autonomously find an optimum operating point for its production processes 
[10]. Based on the defined external objectives such as quality requirements, costs or throughput, internal 
objectives of the system can be derived [19]. Within the proposed concept internal objectives aim to optimize 
manufacturing by adaptive parameter adjustments and tool control, as well as selection strategies for the 
optimum component pairing for assembly. Based on function-oriented quality predictions and optimization 
ideal adaptive control parameters for manufacturing and assembly can be derived and fed back into the 
production system. Further information about function-oriented product models for quality predictions as 
well as the proposed control strategies for manufacturing and assembly are outlined in the following 
chapters. 

3.1  Function oriented modelling approaches for predictive quality 

To implement cognition enhanced control strategies, functional models need to be developed to enable the 
quality controller to predict the FKC of the final product based on the measured properties of the individual 
components. The objective is to model the relationship for each component of the assembly, described as a 
set of component related parameters x1,…,xn, to the FKC f(x1,…,xn) measured at the end-of-line testbench at 
a quality critical operating point. The development of a function-oriented product model can be achieved by 
using different approaches including simulation or data driven advanced statistical approaches depending on 
the availability of accurate simulation models or sufficient level of information in the available measurement 
data. Since quality predictions based on simulation can be time consuming and thus not suitable for real time 
quality predictions, functional surrogate models can be developed and integrated in the knowledge base of 
the cognition enhanced controller. For the development of those models a calculus of variations can be used, 
incorporating the parameter space of possible production related tolerance distributions φ(xi,j) for each 
parameter of a component as well as the simulation results of the FKC f(x1,…,xn). In order to validate the 
simulation results, an evaluation with experiments is necessary [10]. Based on the simulation results 
regression-based surrogate-models can be trained and used for quality predictions in the controller. Next to 
simulation-based approaches, data driven approaches can also enable a functional model building for near 
real time quality predictions using measurements from the process. The model building in this regard is 
based on in-process measurement data and FKC quality data. Machine-Learning based approaches such as 
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Neural Networks, Random-Forests, Support-Vector-Machines, or other regression techniques can be used. 
The selection of an appropriate simulation- or data-driven approach finally depends on the ability to 
accurately predict the quality critical FKC of the assembled product with given boundary conditions of the 
production process. The integration of predictive models into the cognitive controller enables cognitive 
control strategies in manufacturing and assembly which are described in the following chapter. 

3.2  Cognition enhanced quality control in manufacturing and assembly 

Based on developed functional models near real time predictions enable the control system to select optimum 
parameter settings in manufacturing as well as ideal gear pairing strategy in gear assembly. The controller is 
therefore able to select an optimal option based on a set of possible solutions in terms of selective assembly 
or optimize its parameters and tools in manufacturing, see Figure 3. 

Figure 3: Cognition enhanced control in manufacturing and assembly based on function-oriented product models. 

The focus of selective assembly is often on partitioning components in classes of certain width [20].The 
pairing of components without partitioning based on measurement values is called individual assembly [16], 
[21] or tolerance matching [12], [22]. The selective matching of parts with individual tolerance values based
on the external objectives of the cognitive controller is referred to as selective tolerance matching in the
following. One major element of selective tolerance matching is the ability of the controller to precisely
predict FKC of the product based on the model f(x1,…,xn), developed in chapter 3.2. The developed model
gets incorporated into the knowledge base of the cognition enhanced quality controller. Given a set of
component related in-line measurements for each part of an assembly x1,…,xn, and the developed meta-model,
the controller is able to virtually assemble possible part combinations and assess the corresponding FKC
f(x1,…,xn) through quality predictions. By using the optimization module of the controller, the best match for
a set of components is then selected regarding the defined strategies and external objectives.

With reference to [9] a model-based optimization of the manufacturing process can be achieved. Based on 
functional models the system compares the predicted and the targeted process result which eventually leads 
to a set of internal objectives such as parameter adaptions. A further example for the proposed cognition 
enhanced control in manufacturing is a dynamic process for tool selection. Since the characteristics of a 
certain tool are known, the system can predict the expected quality output of each tool and evaluate its 
accuracy regarding the actual quality output of the currently used tools. The decision to change a tool finally 
depends on the ability to optimize the overall efficiency production system defined by multiple external 
objectives, e.g., in a quality, yield and costs. In the following chapter the concept of cognition enhanced 
control is applied to an automotive gear manufacturing and assembly process for electric drive production. 
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4. Industry case study 

The presented concept is validated on an automotive gear manufacturing and assembly process for electric 
drive production focusing on the improvements of noise and vibration characteristics of the electric drive 
through cognition enhanced control strategies. 

4.1  Production process of highly integrated electric drives 

The considered electric drive is highly integrated containing the stator, rotor, inverter, gearbox, and bearings 
in a central housing unit, see Figure 4. The electric machine is classified as an electrically excited 
synchronous machine. The gearbox consists of a two-stage gear reducing the rotational speed of the electric 
drive to the desired speed of the tires. 

 
Figure 4: The considered automotive electric drive (left) and its schematic gearbox (right). 

Within this case study the first stage of the gearbox has been evaluated. The manufacturing process of these 
gear components consists of multiple steps including turning, hardening and a final hard finishing step, 
optimizing the profile quality of the teeth before assembly. Based on a tactile coordinate measurement 
machine the profile of the gears is measured. Gear components are randomly assembled. Afterwards, the 
gearbox is assembled along with other components to a finished drive. At the end of the assembly process, 
the drive is tested for functional characteristics including acoustics. In this measurement step, structure-born 
noise is measured at certain speed ramps and loads using accelerometers at the housing. The permissible 
noise-levels are restricted by tolerance limits derived from customer requirements and vehicle tests. 
Applying the concept presented in chapter 3, the process is controlled by a conceptional cognition enhanced 
quality controller, see Figure 5. 

 
Figure 5: Self-Optimization through cognitive control in gear manufacturing and assembly for automotive electric 

drive production. 

[Source: BMW]
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Due to manufacturing deviations caused e.g., by tool wear in gear finishing, systematic shifts in the final 
acoustic properties of a produced lot might occur. This can lead to critical noise at specific operation points 
of the engine and therefore to higher production costs due to rework, scrap parts, as well as waste of energy 
and material. Through a continuous analysis of the acoustic quality data, critical frequencies, speeds, and 
loads can be retrieved and optimization objectives can be adjusted. By means of cognitive control in gear 
manufacturing, parameters of the gear manufacturing process can be adjusted, or relevant tools can be 
changed. Based on the defined objectives and available measurement data, specific gear pairing strategies 
through quality predictions based on the individual topological properties become possible. Therefore, 
functional models need to be developed. The development of functional surrogate models is described in the 
following chapter. 

4.2  Function oriented modelling 

The objective of functional modelling in this case study is to model the relationship for each gear of an 
assembly, described as a set of gearbox related parameters x1,…,xn, to parameters f(x1,…,xn) which correlate 
to gearbox related frequencies measured at the end-of-line testbench at a quality critical operating point. 
Therefore, a functional surrogate model is developed. A Monte-Carlo-Simulation (MCS) has been run, 
varying the gear micro geometry of the gear pairs in a defined range with a uniform distribution. Based on 
the variation of the gear pairs micro geometry, the peak-to-peak transmission error (TE) has been simulated 
at the quality critical speed and load, using the commercial CAE software SMT MASTA, see Figure 6. 

Figure 6: Gear micro geometry (left) and simulated peak-to-peak TE (right) using MCS. 

Overall, 7500 variations have been calculated. The parameter range was chosen to cover typical 
manufacturing deviation in serial production. Since simulations are time consuming and thus are not suitable 
for in-process optimizations and quality predictions, the simulation results shown in Figure 6 have been used 
to develop a surrogate model. To find a surrogate with good precision for the simulation, different machine-
learning algorithms were tested. After pretesting the scikit-learn implementations of Histogram-based 
Gradient Boosting Regression Tree [23], Bagging Regressors [24] and a Random-Forrest [25] were chosen 
for further optimization. Hyperparameters of these algorithms were tuned using grid search cross validation 
with ten folds. Therefore, the simulation results were split into a random training set containing 80 % of the 
samples and a test set containing 20 % of the samples. The best algorithm in training was defined by having 
the highest coefficient of determination, R2, see Formular 1, The metric represents the proportion of variation 
in the dependent variable, which is predictable by the independent variables. To check the algorithms’ ability 
for generalization, these surrogate models were used to predict the peak-to-peak TE based on samples of the 
test set. The mean squared error (MSE) was also calculated for the test sets. The results of these predictions 
can be found in Table 1. 

Simulation Inputs: Gear Micro Geometry Simulation Output: Transmission Error 

Peak-to-Peak Transmission Error 

Simulation
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Table 1: Accuracy results of the surrogate model with highest R2 in randomized cross validation on train and test data 

Algorithm  Hist. Gradient Boosting Bagging Regressor Random-Forrest 

Data set Train Test Train Test Train Test 
R2 0.86 0.88 0.79 0.80 0.79 0.80 
MSE --- 0.0006 --- 0.001 --- 0.001 

A mathematical definition of the metrics R2 and mean squared error (MSE) can be found in Formula 1-2: 

𝑅2(𝑦, 𝑦̂) = 1 −  ∑ (𝑦𝑖 −  𝑦̂𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖 −  𝑦̅𝑖)2𝑛
𝑖=1

    (1) 

𝑀𝑆𝐸(𝑦, 𝑦̂) = 1
𝑛

 ∑ (𝑦𝑖 −  𝑦̂𝑖)2𝑛−1
𝑖=1     (2) 

With 𝑛 being the number of samples, 𝑦 the actual value of a sample, 𝑦̅ the mean of actual values in the 
dataset, 𝑦̂ the predicted value. Since the Gradient Boosting algorithm performs best on the training set and 
generalizes well on the test-set, the model with the identified hyperparameters was chosen and stored in the 
knowledge base of the controller for further quality predictions, see chapter 4.3. 

4.3  Cognition enhanced control through selective tolerance matching 

To obtain a realistic scenario, a discrete event simulation was modelled in python simulating the fine 
finishing manufacturing process of the input shaft and the wheel, a measurement step at gear inspection, the 
storage of the components, as well as the gear assembly process in a virtual environment. The cognitive 
controller has also been implemented in this virtual production environment. It extends the ideas of adaptive 
control loops in cyber-physical production systems [16] by means of cognition enhanced control, see Figure 
7. 

 
Figure 7: Schematic representation of the virtual implementation of cognitive control in a discrete event simulation. 

The measurement values of the virtual inspection were retrieved from a real-world inspection of the gear 
components. Afterwards the virtual components are stored in a virtual storage. At each time step the virtual 
controller monitors locations of the components within stock and corresponding measurement values. 
Therefore, the virtual controller can simulate optimization strategies for the real production in a virtual 
environment. By using selective tolerance matching based on the model developed in chapter 4.2, gear 
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pairings in current stock can be selected which minimizes the TE. The virtual assembly process has been run 
twice to compare the predicted results of random assembly with selective tolerance matching, see Figure 8. 

Figure 8: Comparison of the predicted TE with selective tolerance matching and random assembly. 

The results of the predicted peak-to-peak TE with selective tolerance matching show a reduced standard 
deviation and mean compared to the random assembly. Since the TE is considered as a primary source of 
gear noise and vibration [26], the concept has the potential to optimize acoustic properties of the produced 
drives, and therefore reduce costs and waste. Current limitations of the concept are discussed in the following 
chapter. 

4.4  Limitations 

The presented concept for cognitive enhance quality control has limitations, which have not been considered 
due to simplification and scope within the use-case. To obtain a more realistic scenario, the use-case can be 
extended by adding the full topology of the gears to the simulation, adding the second gear stage including 
both flanks and simulating multiple speeds and loads. Optical in-line measurements can be used to obtain 
higher information density in the measurements [27]. Also, functional models can further be optimized to 
obtain higher prediction accuracies. Currently only the gears micro geometry has been considered. In real-
world serial production however multiple other sources, e.g., misalignment of the shafts through tolerance 
deviations of the housing can also influence the acoustic properties of the drive, which have not been 
considered yet. Even if some studies show a correlation between the TE and noise [28] the direct relationship 
between TE and level of gear whine is considered as unrevealed [26]. Functional models should be integrated 
predicting the actual structure-born noise. This will enable the cognitive quality controller to realistically 
predict scrap parts and thus also estimate costs and sustainability indicators using actual tolerance limits in 
the virtual assembly. Finally, a combined validation of the concept in serial production incorporating both 
methods of model-based optimization strategies in manufacturing and selective tolerance matching is 
necessary. 

5. Summary and outlook

In this publication a self-optimization concept based on cognitive quality control in manufacturing and 
assembly processes has been presented and validated in the gear production of automotive electric drives. 
The proposed concept incorporates model based control in manufacturing as well as selective tolerance 
matching for an optimal selection of components in assembly using function-oriented quality predictions. 
Within an industrial use-case a discrete event simulation was developed incorporating the cognition 
enhanced controller. On a simulation basis it was shown that the proposed method lowered the predicted 
peak-to-peak TE for the first gear stage and thus has the potential to improve acoustic characteristics of the 
electric drive. However, to increase the potential of cognition enhanced control in gear manufacturing and 
assembly for electric drive production, further research is required to overcome the discussed limitations of 
the current concept leading towards the goal of self-optimized cognition enhanced production systems. 
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