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Abstract 

Lithium-ion batteries are seen as a key technology for powering electric vehicles and energy storage. Still, 
their high cost and energy-intensive manufacturing process remain a significant barrier to wider adoption. 
Due to the high moisture sensitivity of certain processed materials, the operation of dry rooms is required, 
constituting a critical contributor to cost and energy consumption in lithium-ion battery production. As the 
operating costs for these dry rooms strongly depend on the volume and adjusted humidity of the air, it is 
vital to choose an appropriate operation strategy already in the planning and designing phase of the factories. 
In this regard, simulation tools can effectively support the planning process by providing predictive 
information on the production system. The simulation model presented in this paper offers an approach to 
optimize the material and energy consumption associated with the production of lithium-ion batteries while 
also considering current material-related production challenges regarding moisture. By calculating a time-
resolved material flow, the model enables to identify individual process times and storage durations 
depending on the chosen production layout. This allows for a material-specific dimensioning of the buffers 
and supports the dry room design. Hence, the data generated by the model can serve as a basis for planning 
more cost- and energy-efficient production environments. 
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1. Introduction

As the global drive towards mitigating climate change intensifies, the need for sustainable energy solutions 
has become more critical than ever. Lithium-ion batteries have emerged as a pivotal technology, powering 
a wide range of applications such as electric vehicles, grid energy storage, and portable electronic devices 
[1]. However, the increasing demand for these batteries requires cost-efficient production methods to ensure 
their widespread adoption and affordability [2]. In this context, the establishment of gigafactories – large-
scale production facilities for battery cells – has gained significant importance. These factories play a central 
role in meeting the soaring market demand, reducing production costs through economies of scale, and 
promoting the transition to clean energy alternatives [3,4]. A conventional lithium-ion battery cell, 
comprising a cathode, an anode, a separator, and a liquid electrolyte within a protective housing, is produced 
in multiple successive process steps (cf. Figure 3) [2]. In this regard, a major challenge is the requirement 
for moisture control within the production environment, as the production involves processing moisture-
sensitive materials like nickel (Ni)-rich cathode active materials or electrolyte materials [2]. Excessive 
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humidity can entail safety hazards during production and harm the battery quality, leading to losses in 
capacity, lifetime, and overall performance [5,6]. To mitigate these risks, controlled atmospheres in the form 
of dry rooms are commonly employed to maintain optimal humidity levels during various production stages 
[7,8]. With regard to the energy consumption in lithium-ion battery production, it can be stated that dry 
rooms account for about 30 to 50 % of the overall energy consumption [1,9,10]. When looking at the energy 
consumption of an exemplary dry room, it becomes apparent that it strongly depends on the adjusted 
humidity level and the number of persons in the room [11]. These relations are depicted in Figure 1 and 
underline the dry rooms’ significant impact on operational costs. Therefore, the design and implementation 
of such dry rooms must be carefully planned to ensure energy- and cost-efficiency while also considering 
material-based requirements. To address these challenges, a comprehensive and systematic approach for 
designing the production layout and dry room facilities is essential. In this endeavor, material flow simulation 
models like digital factory twins emerge as valuable tools, enabling the calculation of throughput-specific 
data like lead and storage times for various production layout alternatives. The model presented in the 
following allows for considering both material- and production-related requirements and serves as a basis 
for an optimization approach for dry room design and operation in gigafactories. 

Figure 1: (a) Distribution of energy consumption between process steps in lithium-ion battery production according to 
[10] and (b) qualitative relation of energy consumption in dependence of humidity level and number of persons in the

room for an exemplary dry room [11] 

2. Background & Approach

With regard to the current material trends for lithium-ion batteries, Ni-rich cathode active materials play a 
major role. By increasing the Ni share in the cathode active material, higher energy contents can be achieved. 
Besides that, social aspects can be addressed when substituting the critical and expensive raw material cobalt, 
which is currently widely used [12]. The progression in state-of-the-art cathodes went from Ni shares of 
around 30 % to over 80 % today, with further increasing Ni contents [13,14]. However, the increased Ni 
shares impose higher requirements on the production atmosphere as Ni-rich active materials are susceptible 
to moisture (H2O) and carbon dioxide (CO2). When in contact with the ambient atmosphere, the particle 
surface can form impurities by reacting with H2O and CO2, leading to lithium-ion consumption. 
Consequently, losses in capacity, rate capability, and lifetime occur, which are influenced by the moisture 
content and exposure time [8,15–17]. For that reason, high-quality Ni-rich cathodes require production under 
low humidity levels, which can be realized in dry rooms with controlled environments [12]. Figure 1 (b) 
indicates that for a cost- and energy-efficient production, the humidity level of the dry room should be kept 
as low as possible. However, due to uncertainty regarding the required dryness levels, drying units tend to 
be oversized to ensure that the cell quality is not negatively affected, resulting in significantly increased 
energy consumption and operational costs during cell production [18]. Consequently, this work aims to 
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establish an approach that supports practitioners to identify an efficient individual moisture management 
strategy, which is detailed in the following. 

In this regard, Figure 2 shows an overview of the methodological approach and highlights the role of the 
digital factory twin. 

Figure 2: Overview of the methodological approach for optimizing dry room design and operation and the integration 
of the digital twin 

The concept consists of three stages and starts by setting the framework conditions. Here, the cell 
configuration, including cell format and chemistry, must be determined to select an appropriate process 
chain. This step also requires the specification of factory-related variables like production capacity, operation 
days, machine availabilities, and buffer sizes. In the next stage, a suitable production layout can be identified 
based on material- and process-specific requirements using the digital factory twin. Based on the framework 
conditions, the latter enables the calculation of individual storage and lead times, which is essential for 
considering material-specific requirements. Knowing the exposure times of the intermediate products along 
the production process chain, targeted material-based experiments can then be conducted to evaluate the 
sensitivity toward a specific environment. In that way, the impacts on the material can be identified so that 
the production layout can be adjusted accordingly using the digital factory twin. By changing critical 
parameters like buffer sizes, number of machines, and dry room design, the model enables to quickly adapt 
to an appropriate production layout in terms of moisture management. To evaluate the adjusted production 
layout from both an energy consumption and cost perspective, a combined calculation model can be used. 
This model, which is part of the last stage, comprises a battery cell production cost model and a dry room 
model that is able to represent the framework conditions of the dry room design and operation.  

3. Material Flow Simulation Model

3.1 Digital Factory Twin 

Digital twin technology has emerged as a significant enabler for the production sector, offering substantial 
benefits [19]. In this context, a digital twin refers to a virtual depiction of a physical production system, 
though no single definition exists here [20]. In lithium-ion battery production, rapid development and 
uncertainty during factory planning can increase costs. Employing a digital twin in early design stages 
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enables accurate production estimation and concurrent development between product design and factory 
planning, addressing these challenges. For the herein-presented digital factory twin, discrete event 
simulation (DES) is chosen as a suitable tool to model the complex battery cell production system. In this 
regard, the platform Tecnomatix Plant Simulation (PlantSim), established by the company Siemens, is 
selected since it supports flexible large-scale simulations, enabling users to quickly simulate complex 
scenarios [21]. 

A central aspect of factory planning involves determining the optimal size of material buffers situated 
between the individual process steps. These buffers impact the factory design and space requirements, 
substantially influencing operational expenditures (OPEX). This is primarily because most processes must 
be conducted within environmentally controlled dry rooms with heightened energy consumption demands, 
as stated above. At the same time, the buffer sizes also have an impact on the exposure times of the individual 
materials to the specific environment. This circumstance allows to adapt to material-specific requirements 
by adjusting the production system. So, the purpose of the digital factory twin is to facilitate the evaluation 
of material buffers between individual processes to enable appropriate dimensioning as well as an accurate 
prediction of the space requirements. 

3.2 Modularization & Simulation Logic 

The production of lithium-ion battery cells comprises a high number of sequential and interdependent 
process steps, leading to increased complexity [22]. Hence, for expedient modeling, it is crucial to capture 
the characteristics of the process steps in terms of their interaction with the buffer. This requires a thorough 
depiction of the processes and their material throughput, whereby the general calculation principle is based 
on previous publications [23,24]. Table 1 shows the considered processes for the calculation classified as 
modules, including the general and throughput-specific input parameters. The splicing and slitting factor 
accounts for optional foil separation that might be implemented in continuous process steps. Regarding the 
modules, it needs to be mentioned that the cell assembly consists of several individual process steps. 
However, as the focus is on electrode production, cell assembly is modeled as a single process without any 
internal buffers. Additionally, to expedite simulation time, the cell assembly is modeled batch-wise, 
described by the parameter batch size. Besides the direct material-throughput parameters, also general 
machine parameters are considered that indirectly influence the throughput. Here, the yield defines the 
variable scrap rate, whereas the performance indicates the machine’s processing speed relative to the 
maximum possible speed. This factor can be used to synchronize anode and cathode processes for balanced 
buffer stocks and is particularly used for the coating process. The availability considers machine downtimes 
due to defects or maintenance work and specifies the available processing time of the machine. In this regard, 
the mean time to repair the machine and the auxiliary process time, which indicates set-up times, is also 
considered to enable more realistic modeling. Therefore, by additional consideration of blocked and idle 
machine times during production in combination with the machine-based parameters defining the overall 
equipment effectiveness, the individual process efficiencies can be determined. The process efficiency 
indicates the utilization and output yield of all machines in the respective process step. 

For a rapid and efficient parametrization, the digital factory twin incorporates functions that automatically 
update all module parameters, including equipment and buffer settings, based on input tables. These input 
tables enable a centralized adjustment and examination of different production layouts and designs. By that, 
it is possible to adapt to material and production effects seamlessly. The required data tables comprise 
product-related information like the electrode design and dimensions, process-related data like process and 
machine parameters, and production-related settings like the buffer and machine counts. The latter are used 
in a line balancing function, which autonomously places and connects the machines based on the input table. 
Line balancing aims to efficiently operate the machines while reducing the product’s lead time. For an 
efficient component routing between the modules, individual process plans for cathode, anode, and jelly roll 
(cell body consisting of anode, cathode, and separator) handling need to be defined. This allows to consider 
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the unique properties of the components and enables their appropriate handling by independent material 
flow. For smooth inter-module movement, the modules provide feedback on production availability and 
buffer space for component transfer. This feedback is crucial in ensuring efficient component flow through 
the production process. In the simulation, a function is implemented that controls the transport of the 
components after successful processing, whereby the process plan specifies the target module but not the 
specific station. To ensure even distribution and minimize bottlenecks, individual stations request 
components as soon as they have the capacity, guaranteeing movement to unoccupied stations. 

Table 1: Modules and required input parameters of the PlantSim model 

Module 
Input parameters 

Throughput-specific parameter General parameter 
Slurry mixing (Cathode/Anode) Mixing time / lBatch min⁄  

Yield / % 

Performance / %  

Availability / % 

Auxiliary process time / s 

Mean time to repair 
(MTTR) / min 

Minimum/Maximum of 
MTTR / min 

Coating (Cathode/Anode) Coating speed / m min⁄  
Slurry usage / kg m⁄  
Splicing/Slitting factor / − 

Slitting (Cathode/Anode) Slitting speed / m min⁄  
Splicing/Slitting factor / − 

Calendering (Cathode/Anode) Calendering speed / m min⁄  
Splicing/Slitting factor / − 

Post-drying (Cathode/Anode) Drying time / h 
Number of coils per chamber / − 

Cell building – Winding/Stacking Cells per minute / parts min⁄  
Anode/Cathode/Separator foil length / m 
Number of anode/cathode sheets / − 

Cell assembly Assembly speed / parts min⁄  
Batch size / − 

4. Case Study – Impact of buffer sizes

A short case study is presented in the following to demonstrate the possible applications of the digital twin 
model. For that, two scenarios are compared, which should show the applicability of the model for evaluating 
storage durations of specific cathode materials. The simulation duration was set to 17 days, with the initial 
three days designated as a tuning phase to fill the buffers and machines and to ensure a smooth process start 
[25]. Data capture and recording started after the completion of this tuning phase, considering the required 
ramp-up times of the machines to stabilize. Hence, the results represent a production run of 14 days.  

4.1 Scenario 

For the modeling of the material flow, first, the battery cell has to be defined. A state-of-the-art lithium-ion 
battery cell, currently deployed in the automotive industry, with LiNi0.8Co0.1Mn0.1O2 (NMC811) cathode and 
graphite anode, is chosen for the case study. The areal cathode capacity is set to 5 mAh cm-2, considering 
specific capacities of 200 mAh g-1 for the cathode active material and 360 mAh g-1 for the anode graphite 
material [12,13,26]. As cell format, a tabless cylindrical cell type “4680” is assumed so that a winding 
process is considered. The cell housing dimensions are chosen so that an overall energy content of about 
84 Wh is reached, aligning with current benchmark studies [27].  

The assumed process chain, depicted in Figure 3, considers coating and drying as one integrated process 
step. For the cathode, the slitting is conducted before the calendering due to the risk of wrinkles, which 
affects the tabless cell design quality [28]. The modeling ends with the cell assembly as the last module since 
the focus here is on electrode production and its intermediate products. Overall, the factory is designed with 
a production capacity of 16 GWh per year, based on the maximal output of the considered coating process 

216



and assuming an operation over 24 hours per day and 365 days per year for a simplified plan machine 
occupancy of 100 %. The related machine, process, and production parameters are summarized in Table 2 
in the Appendix. The individual material buffers are located between the process steps so that, in total, five 
buffers are integrated for the electrode production, comprising slurry, coated coils, slitted coils, calendered 
coils, and post-dried coils. To showcase the effect of different buffer sizes on the storage durations, two 
scenarios are compared. For that, the buffer sizes are dimensioned based on the individual inventory 
coverage (IC) and the potential material throughput of the coating process (TC). Hence, the buffer sizes (BS) 
correspond to the same cell amount and are calculated as follows [29]: 

𝐵𝑆 = 𝐼𝐶 ∙ 𝑇𝐶 (1) 

As inventory coverage, 8 hours (representing one shift) and 24 hours (representing one working day) are 
chosen. This means that when the buffers are entirely filled, production could continue at least for this 
amount of time in case of, e.g., material shortages or delivery delays. This ensures the desired cell output 
since the production capacity and required cycle time are based on the material output of the coating and 
drying process due to the high investment costs and area footprint associated with this process step [3]. 

Figure 3: Process chain and individual process steps used as a basis for the simulation model 

4.2 Results & Discussion 

Figure 4 shows the average storage times of the products in the specific buffers along the cathode 
manufacturing process chain for the two scenarios.  

Figure 4: Average buffer storage times of the individual cathode components along the electrode process chain for the 
two simulation scenarios with 8 hours and 24 hours of inventory coverage (IC) 

Noticeably, the variation of buffer sizes leads to a shift in the storage durations with different effects on the 
individual buffers. Whereas for the IC of 8 hours, rather long slurry and coated coil storage times can be 
detected, these durations are considerably shorter for the IC variant of 24 hours. Also, significant differences 
between the two scenarios can be seen for the calendered and post-dried coil storage times. These occurring 
imbalances can be explained by the output-based dimensioning of the buffers, leading to material quantities 
that correspond to the coating throughput and, hence, differ from other process steps. This consequently 
causes blocked machines and full buffers at certain points of the process chain. Therefore, an individual 
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dimensioning of specific buffers in combination with machine-based adaptions would enable a more efficient 
buffering and material flow. This would also allow the adaptation toward material-specific aspects, 
considering moisture sensitivities and storage durations. These numbers demonstrate that changing the 
buffer size can significantly impact the production system, necessitating the adaption of production 
parameters along the entire process chain. Hence, it is evident that finding an appropriate production layout 
is a complex interaction between many parameters, suggesting to proceed iteratively.  

The results also indicate that larger buffer sizes can positively influence the process efficiencies shown in 
Figure 5 for the two scenarios. These numbers suggest that increased buffer capacity can contribute to 
improved operational efficiency, as it allows for smoother material flow and reduces the likelihood of 
equipment downtime due to material shortages or blocked conditions. The rather low numbers for the slitting 
process can be attributed to the high scrap rate and relatively low availability factor assumed for this process 
step. For efficient production and material flow, it should be ensured that the machines are available for 
processing while not standing idle for longer periods. Here, available capacity in the subsequent buffer is 
essential to avoid blocked machines in the upstream process step. A potential approach for controlling the 
material flow and buffer functionality could be to adjust the coating performance, as the line balancing is 
carried out based on the coating process. Alternatively, adding extra machines at bottleneck positions could 
help to optimize the material flow efficiency. However, additional equipment entails increased investment 
costs and requires additional production space, also impacting OPEX. 

Figure 5: Process efficiencies of the cathode production line for the two simulation scenarios with 8 hours and 
24 hours of inventory coverage (IC) 

Furthermore, it should be noted that the model is generally very susceptible to changes in input parameters, 
particularly concerning the number and availability of the machines. Altering the number of parallel 
machines can significantly impact the calculated buffer storage times and subsequent material flow. More 
machines can reduce the material storage times but increase the risk of machine downtimes in case of buffer 
shortages. Therefore, when using the model, it is crucial to carefully assess and validate any modifications 
made to the machine and production layout, as they can have substantial consequences on the overall material 
flow and efficiency of the production system. Hence, the model is particularly effective when examining 
specific scenarios in real production systems, thereby supporting the decision-making process.  

5. Conclusion & Outlook

The trend towards Ni-rich cathode active materials in lithium-ion battery production imposes high 
requirements for the production atmospheres regarding H2O and CO2. Therefore, cost- and energy-intensive 
dry rooms are used to ensure the production of high-quality battery cells. As the energy consumption of these 
dry rooms significantly depends on the size and desired dryness level, it is vital to identify an appropriate 
moisture management strategy throughout production. This work presents a methodological approach to this 
challenge by introducing a digital twin of a large-scale lithium-ion battery cell production to evaluate the 
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production layout regarding material- and area-specific requirements. This model serves as a basis for 
electrochemical investigations of the material as it enables the prediction of exposure times for the materials 
and intermediate products based on a defined production layout. Hence, the model supports the planning and 
designing process of the factory by quickly evaluating the effects of critical production-related parameters. 

As a next step, the impact of buffer sizes and the overall production layout on the required dry room space 
can be examined in detail, allowing to determine the effects on operational costs. Thus, it is possible to 
optimize the dry room area by appropriately designing the production parameters. For further development 
of the digital factory twin, considering the transport conditions between processes and buffers would be an 
interesting aspect, as this impacts the exposure time and atmosphere of the material. Concerning the overall 
approach, it is essential to find appropriate experimental set-ups and measurement methods for evaluating 
the required production atmospheres for specific cathode active materials. In this respect, it is necessary to 
further identify and understand the atmosphere’s effects on the cell quality, as some studies indicate that 
under certain conditions, ambient atmosphere could be sufficient for producing high-quality Ni-rich cathodes 
[8,30]. Furthermore, for a detailed examination of the production layout from an energy consumption and 
cost perspective, a dry room model should be implemented in a battery cell production cost model. This 
would allow for considering the whole factory, enabling to point out the impact of the dry room operation 
on the total energy demand and production cost. 
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Appendix 

Table 2: Assumed machine, process, and production parameters for the simulation (A: Anode; C: Cathode), including 
the related reference (expert values and assumptions without reference) 
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C Slurry Mixing 7 5:00 h/batch - 1 1 100 98,5 90 7200 - 6000 

C Coating 2 1,3 m/s [24] 18000 x 96 3 1 100 96,5 85 7200 300 60 

C Slitting 3 1 m/s [32] 5900 x 96 3 6 100 92 [24] 75 1200 - 60 

C Calendering 10 1,6 m/s [24] 1898 x 16 1 2 100 99,45 70 1200 - 60 

C Vacuum Drying 4 12000 m2/shift [24] 1746 x 8 1 1 100 99,9 95 1200 - 600 

A Slurry Mixing 7 5:00 h/batch - 1 1 100 98,5 90 7200 - 6000 

A Coating 2 1,3 m/s [24] 12300 x 96 3 2 100 96,5 85 7200 300 60 

A Calendering 4 1,6 m/s [24] 3933 x 48 1 1 100 99,45 70 1200 - 60 

A Slitting 6 1 m/s [32] 3796 x 48 2 6 100 92 [24] 75 1200 - 60 

A Vacuum Drying 3 20000 m2/shift [24] 1887 x 8 1 1 100 99,9 95 1200 - 600 

Winding 20 1,1 m/s [33] 3.3 x 8 - - 100 95 85 180 20 [23] 1 [33] 

Cell Assembly 13 36 cells/min [24] - - - 100 98 85 180 -
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