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Abstract 

Manufacturers install and rely on a large number of sensors to operate and control their processes. However, 
the collected sensor data is rarely used to analyse and improve the higher-level, aggregated business 
processes. Process mining (PM) appears to be a promising solution, with the ability to automatically generate 
and analyse business process models based on data. However, the atomic events of sensor measurements 
need to be refined, aggregated, and enriched to properly represent a business process. In this paper, we 
propose a novel framework to make manufacturing sensor data analysable with PM. The framework allows 
manufacturers with batch and continuous processes (BCP) to systematically enrich their sensor data to use 
it for optimization purposes. Following the action design research, we demonstrate the applicability of the 
framework in a use case study using sensor data from a BCP beverage production. 
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1. Introduction

Manufacturers need to constantly analyse and optimize their value generating processes, in order to save 
costs and stay competitive [1]. Traditionally, they deploy a variety of tools and methodologies to achieve 
this, such as lean management [1,2]. More recently, digitalization has proven to be a viable optimization 
possibility [3]. While this digitalization often had no effect on the sensor and actor IT-layer, recent trends 
like the industrial internet of things steadily increase the availability of data from this layer [4,5]. In the 
intersection between the need for optimization and the availability of data, process mining (PM) has emerged 
in recent years as a promising technology [6]. PM describes “[…] techniques, tool and methods to discover, 
monitor and improve real processes […].” [7]. Manufacturers can particularly profit from PM through 
increased transparency, measurement of process performance, or the creation of digital twins [8,9]. The 
minimum requirement for data in PM is a case ID (e.g. an order number), an activity name (e.g. drilling) and 
a timestamp [7]. Data with at least these three features is called an event log [7]. PM is typically applied to 
data generated from process aware IT-systems, such as Enterprise Resource Planning (ERP), where for 
example workflows easily provide the necessary data structure [6]. 

However, in many real-world scenarios, sensors and actors are not necessarily aware of the current case that 
is being processed [10]. This has to do with the prevalent, classical pyramid style IT-architecture in 
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manufacturing companies, where machine sensors and actors are often decoupled from higher hierarchy IT-
systems in order to ensure real-time capability [4,5]. Consequently, when working with sensor data in PM, 
problems like a lack of process notion (i.e., missing case IDs or activity names), the mapping of fine granular 
sensor data to (human) activities, and the aggregation of sensor data to process activities, arise [11,10,12]. 
Various authors call for further research on the utilization on sensor data for PM [13–15]. In this paper, we 
derive a framework to make manufacturing data from the sensor and actor layer usable in PM. The 
framework is designed through Action Design Research (ADR), meaning that we iteratively work on the 
manufacturing sensor data from a real-world organization [16]. Our main contribution is the framework 
consisting of six phases with an emphasis on applicability in industry, meaning that it draws from existing 
domain expertise. Additionally, we contribute an activity grouping scheme and case ID inheritance 
algorithm, which allows other organizations to apply PM on their manufacturing sensor data.  

The remainder is structured as follows. In section 2 we introduce the application scenario and existing 
solutions for sensor abstraction. Section 3 will explain our research methodology ADR. In section 4, the 
framework for will be introduced and applied to the application scenario. In section 5 we will discuss our 
results, before concluding the paper in section 6. 

2. Need for action on manufacturing sensor data utilization in process mining

In this section we will introduce the application scenario (section 2.1) and existing solutions to it in the state 
of the art (section 2.2). In section 2.3 these two will be compared to motivate the need for further research.  

2.1 Application scenario and objective of Big Beverage Inc. 

Big Beverage Inc. is a family owned and run manufacturer of drinks, with around 400 employees in 
Germany. Their production resolves around mixing raw fluids, which are then later combined, and finalized 
with water. Their machinery setup as well as the collected data are displayed in Figure 1. The machine layer 
displays how the organization utilizes different tanks and pipes to produce their drinks. 

Figure 1 The machinery and data at the Big Beverage Inc. 

Figure 1 shows that initially raw fluids run into a buffer tank, which then distributes the material into one or 
multiple working tanks (No. 4 to 7). The working tanks have different volumes. Before sending the final 
good to one of two bottling machines through a finishing pipe, the raw fluid might be re-distributed to other 
tanks or combined with other raw fluids. The raw fluid will always be finalized by adding water before they 
are bottled. From a production perspective, some elements of this process are a batch process (e.g. moving 
an entire tank filling), while others are a continuous process (e.g. the finishing pipe) [17]. From a data 
perspective, the filling levels of all tanks are measured. Additionally, it is registered if any of the tanks are 
connected to one another or to any of the two finishing pipes as a boolean value (i.e. True/False). For the 
finishing pipes and bottling machines, the status (e.g. production) is registered. Additionally, the current 
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volume flow for the pipes is measured. All sensor data is measured every 30 seconds. The manufacturer is 
faced with a rapid increase in orders, while keeping their production resources constant in the past years. 
Therefore, the objective of Big Beverage Inc. is to increase their resource availability, by identify if and how 
they are unnecessarily using tanks to produce final products. Their solution approach is to understand the 
frequency of shuffling between tanks to derive meaningful actions using evidence-based business processes 
discovered with PM. To achieve this, the existing sensor data needs to be aggregated to an event log.  

2.2 State of the art 

PM uses data to analyse processes [7]. Different techniques for this analysis exist. The first technique process 
discovery uses data to produce a process model, such as a petri net [6]. Different algorithms such as the alpha 
miner [18] or the inductive miner have been proposed for this [19]. The second type conformance checking 
compares data from as-is executions with (normative) process models, in order to identify deviations [6]. 
For this, tokens, rules or alignments are used [20]. The third type process enhancement adds additional 
information to process models, for example time information [6]. While these three are the traditional main 
techniques, recent years have added comparative, predictive and action-oriented PM [21]. The minimum 
data requirement for PM are a case ID, a timestamp and an activity name [22,7]. Additionally, a lifecycle 
information (e.g. start) helps to aggregate atomic events to a coherent activity [22]. 

Matching atomic events to higher hierarchy business processes is a general challenge in PM, not only limited 
to manufacturing sensor data. Van Zelst et al. [23] recently proposed a taxonomy for event abstraction 
techniques in PM. In their taxonomy, techniques are classified based on their supervision strategy, relation 
of case and activity, or used data. Only one of the 21 identified publications deals with continuous data (i.e. 
sensor data). The research of van Zelst et al. [23] focuses on very specific approaches, often on an algorithmic 
level. Consequently, the authors exclude higher-level procedures. 

However, in practice, abstracting sensor data to higher level event logs is not necessarily an algorithmic 
challenge but also a procedural because data and domain might vary. Hence, we identify five higher-level 
approaches in the literature that explicitly deal with the aggregation of sensor data for PM [24,10,25,26,12]. 
We exclude approaches like [8,27], because PM is solely used to analyze machine behavior (i.e. no 
aggregation to superordinate business processes is performed) or the approach is too generic, respectively. 
By comparing and correlating the objectives of the authors’ explicitly mentioned steps, we derive nine 
general phases that are described in literature. These nine general phases are shown on the left in Table 1. In 
Collection, necessary data is acquired. In the second phase Identification, the case ID needed to conduct PM 
is determined. Segmentation deals with the division of the sensor data following some logic. In 
Characterization, relevant features to distinguish possible activities are identified and calculated. Based on 
these features, the phase Clustering deals with the (automated) grouping of the sensor values. Afterwards, 
these clusters need some Interpretation, often using domain expert input. Once sensor data is clustered and 
interpreted, activities with human readable names can be derived in the Generation phase. In Creation, the 
final event log is generated, followed by the actual process Mining. 

Van Eck et al. [12] propose a six step transformation approach to use sensor data from smart products in 
PM. Compared to the other approaches, the approach has a detailed description of activity generation. 
Koschmider et al. [10] develop a four step framework to derive process models from any kind of sensor data. 
Prathama et al. [26] derive a three step framework that utilizes sensor data from wearable devices in PM. 
The authors have a dedicated step for data acquisition. Brzyhczy and Trzcionkowska [24] report on their 
four step experience creating an event log from underground mining machinery logs. In contrast to the other 
authors, a detailed discussion on the challenges of case ID identification is reported. Lastly, de Leoni and 
Dündar [25] propose a four step abstraction technique based on clustering, that functions with little domain 
knowledge. Their approach is rather algorithmic and general. The two publications [25,12] also appear in 
the taxonomy in [23]. A general observation of Table 1 is that none of the procedures are applied to industrial 
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manufacturing settings within a factory, albeit [24] describe a underground mining setting. Possibly 
therefore, they are the only ones discussing the challenge of identifying the case ID. The approaches 
[24,10,25,12] additionally have a strong focus on the computation of clusters by using distances measures 
or machine learning. De Leoni and Dündar [25] highlight this aspect as a key contribution. 

Table 1 Overview of literature dealing with sensor data in the context of PM [24,10,25,26,12] 

2.3 Comparison of Big Beverage Inc. needs and the state of the art 

In summary, abstracting fine granular event data to higher level is a known challenge both in practice and 
research. Their overall goal is to create an event log with the columns case ID, timestamp, activity, and 
lifecycle information from raw sensor data. Even though Big Beverage Inc. has data from their machines at 
hand and goals in mind, the existing knowledge base about data abstraction does not prove to be applicable 
for them. This has to do with two aspects. First, the existing solutions rarely focus on manufacturing 
challenges, especially for BCP. These challenges include the difficulties of identifying activities and the lack 
of a case ID. This is complicated by the high parallelism and nesting of the manufacturing steps which leads 
to the challenge of associating activities and cases. Second, the algorithmic heavy approaches do not fit into 
the daily work of the company, because experts on clustering techniques from machine learning are sparse. 
As a result, we derive the following research question (RQ):  

RQ: What is a general approach for manufacturers to utilize their machine sensor data in process mining? 

Given the application scenario, the following prerequisites can be assumed. First, the needed data sources 
are known (i.e. if and where machine data exists). Second, the data has been extracted and is complete (e.g. 
queries for data bases are written and it is not a streaming PM use case). Third, the existing data is of adequate 
quality (e.g. no missing data). Various guiding publications can be found in literature concerning these issues 
[22,28,29,12], and are hence not explicitly detailed within this paper. 

3. Research methodology to close the need for action

To answer our research question and achieve the goal of Big Beverage Inc., we followed the ADR approach 
proposed by [16]. The ADR team consists of the ADR researcher from academia, and various departments 
on the practitioner’s side, such as the digital transformation, IT and production. Our research procedure, 
which took half a year in total, the design iterations, and the final generalization are shown in Table 2.  

4. Framework for the domain driven utilization of manufacturing sensor data

The outcome of stage 4 of the research methodology is a framework that guides practitioners to utilize PM 
on their manufacturing sensor data. The framework consists of six phases with 17 sub-steps. Section 4.1 
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introduces the general procedure of the framework. Because phase (5) of the framework utilizes a grouping 
scheme and a dedicated case-inheritance algorithm, details about these two contributions will be given in a 
separate section 4.2. The framework is applied to Big Beverage Inc. in section 4.3. 

Table 2 Summary of the ADR process and generated artefacts according to [16] 

4.1 Procedure model of the framework 

The first phase (1) Envision the desired outcome of the process mining analysis has two sub-steps. In 
(1.1) the desired outcome needs to be determined. By outcome, we refer to the analysis-artifact that needs to 
be generated to achieve the higher hierarchy project goal. In (1.2) relevant stakeholders are listed. We 
differentiate between a shortlist team, i.e. the core project team, and a longlist team, i.e. experts who might 
be relevant for the process, IT or the sponsoring of the project. 

Figure 2 Framework for the utilization of manufacturing sensor data in PM projects 

The second phase (2) Domain driven activity and perspective uses the initially defined outcome targets as 
an input. The outcome of this phase is a data frame, where every sensor value has an activity label. In (2.1) 
the relevant perspective for the analysis is chosen, based on the defined goals. This step has a crucial impact 
on the case definition in later steps. The perspective directly relates to the analysis goal. In (2.2) the core 
project team determines the possible activities and their relation. This can be done in a brainstorming session. 
Alternatively, a first sketch of the expected process or old process model can be made and discussed, e.g. by 
using process modeling techniques such as BPMN. The relation aspect refers to the possibility of activities 
having direct relation, e.g. when one tank fills, another one empties. In (2.3) initial data drops are reviewed, 

Stages and Principles Artefact
Stage 1: Problem Formulation
Principle 1: Practice-Inspired 
Research

The research was driven by the need for machine data to be analyzed with PM, and the 
challenges faced while generating an event log.

Recognition: While many approaches for event abstraction exist, they do not fit 
the needs of Big Beverage Inc. Many organizations have similar processes. A 
generalized framework is beneficial for many organizations.  Principle 2:

Theory-Ingrained Artefact
We use the existing literature base depicted Table 1 and the event abstraction taxonomy by 
van Zelst et al. as a guiding principle. 

Stage 2: Building, Intervention, and Evaluation
Principle 3: Reciprocal 
Shaping

The initial utilization was not as straight forward as the final framework may suggest. 
Instead, phases were constantly redone and generalized together with the domain experts. 
Especially the case definition proofed to be challenging, and multiple approaches were tried. 

The first analysis approach resulted in an event log that only captured individual
machine behavior but could not relate multiple machine to the manufacturing of
the same product. A second analysis approach with a refinement of the machine
data and a collaborative breakthrough in how cases are associated to machine
behavior resulted in an event log that reflected all machine efforts necessary to
produce a product. By the end of stage 2, we had the technological capability to
transform the data to an event log.

Principle 4:
Mutually Influential Roles

The ADR team included researchers, domain experts, and process analysts, both from 
academia and practice. The lead for the ADR project lays within the academia. 

Principle 5: Authentic and 
Concurrent Evaluation

A technical solution for the utilization was derived to work on the specific, real world 
machine data provided by Big Beverage Inc. A usable event log could be generated.

Stage 3: Reflection and Learning
Principle 6:
Guided Emergence

The manufacturer realized that a standardization of the procedure was necessary to reproduce 
results in different machine areas. The ADR team conducted various brainstorming 
sessions to analyze the most relevant actions taken to achieve the project goal. 

By the end of stage 3, a schematic description of our technical solution was 
derived. 

Stage 4: Formalization of Learning
Principle 7: Generalized 
Outcomes

We synthesized the schematic description of our actions by aggregating steps and cutting 
individual solutions. 

The artefact of stage 3 is the framework for utilizing machine sensor data in 
process mining

(2) Domain driven activity and perspective definition

(3) Grouping of activities (4) Case definition

(5) Case inheritance to other activities

(6) Filtering and event log generation
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(2.3) Review the existing data
(2.4) Determine calculation rules for each activity (sensor vs. equation based)
(2.5) Calculate the activity-label for every sensor value (Single-Point-Of-Integration)

(3.1) Determine a unique task ID
(3.2) Aggregate multiple events
(3.3) Define final activities (see 4.2), & corner-
stone-activities

(4.1) Gather & evaluate approaches
(see 2.3 & 3.3) 
(4.2) Determine duration of case

(5.1) Grouping of activities based on final and corner-stone activities
(5.2) Backwards association of cases to activity groups (see 2.1 & 4.2)

(6.1) Filter out activities that are calculation-based and are below a duration threshold
(6.2) Drop unnecessary parallel activities (see 2.1)
(6.3) Create event log
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possibility leading to a first refinement of the needed data. In step (2.4) for each possible activity, calculation 
rules are determined. We differentiate between sensor- and equation-based rules. Sensor-based rules refer to 
calculations made using other sensor information, e.g. using machine coupling information. Equation-based 
rules are mathematical calculations performed to the existing data, e.g. a gradient. Lastly, in (2.5) the 
equations are applied to the sensor data. We advise to use one existing data file that fits the perspective the 
best, and then associate further sensor information to it. We call this the single-point-of-integration.  

The third phase (3) Grouping of activities and the fourth phase (4) case definition are performed in parallel. 
In (3.1), every sensor response is given a unique task ID by finding the first and the last consecutive activity-
label of the same kind. This task ID can be artificial, e.g. a combination of a consecutive number and the 
first letter of the activity-label. Then, in (3.2) the same events can be grouped to activity-label. Lastly, in 
(3.3) activities can be marked as a special activity based on the results from phase (4). Two kinds of activities 
are important: activities that can be the final activities in the process and activities which are corner-stone 
activities. Corner-stone activities are characteristic to the business process and are the primary activities in 
a process, which other sub-process activities work towards to.  

In phase (4) Case definition the notion of a case is determined. In (4.1) possibilities for the case definition 
are gathered. This step is dependent on the initially defined perspective. While ideally, some business level 
information, e.g. a manufacturing order number, is available, our methodology is specifically designed for 
manufacturers who do not have these information on their machine data level (see section 1). Therefore, we 
propose a workaround that allows for the artificial generation of a case. We suggest looking for distinct 
characteristics in the machine data. This might be a certain machine status, sequences of machine states, or 
other characteristics that define the end of the case relevant to the analysis perspective. In (4.2) the start and 
end time of the case are determined as a preparation for the fifth phase.  

In the fifth phase (5) Case inheritance to other activities, every activity is iteratively associated to a case, 
based on the backwards oriented business perspective of a final product. Because of this iterative passing 
down of case association, we call this inheritance. Like the previous phase, this phase is also tailored to 
organizations who have a more classical IT-architecture (see section 1). To achieve this, in (5.1) activities 
are grouped based on a special scheme utilizing the corner-stone activities. Afterwards, in (5.2) the final case 
ID can be iteratively associated to these groups. Remarkably, this allows to integrate BCP. The activity 
grouping scheme and the case inheritance algorithm are described in more detail in section 4.2. 

Lastly, in (6) Filtering and event log generation, final preparations are conducted. In (6.1) activities below 
a certain duration threshold are dropped. In this way, the to-be discovered process model becomes clearer. 
For the same reason, we suggest dropping parallel, related activities in (6.2). Parallelism is a complex driver 
in PM, especially when using out-of-the-box directly follows graphs, as used by most software vendors. 
Finally, in (6.3), the event log is generated in a CSV, XES, OCEL, etc. standard. 

4.2 Activity grouping scheme and case inheritance algorithm 

Phase (5) of the framework introduces the concept of activity grouping and iterative case inheritance. In 
(5.1), all activities are associated to the same group until a relevant corner-stone or final activity occurs. 
Then, a new group is build following the same scheme. This scheme is shown in Figure 3. The corner-stone 
and final activities are in bold letters. The group building scheme is displayed on the left side. Groups are 
necessary to cut down parallelism, and to associate a wide range of activities to a case. This association is 
done in (5.2), where activity-groups are now iteratively connected to the interval of the case using 
information about activity relations from step (2.1) of the framework. This association is performed on the 
three dimensions relation, time, and case-association-status. The association concept is shown in Figure 3 
on the right side. We start by looking at the first defined case, which is case ID 1. We find an activity that 
has a relation to other activities (“Filled by Tank” is related to “Filling to Tank”). Based on the duration 
(dimension time) of that activity, we can search in the pool of all activity groups for a related activity 
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(dimension relation) that has no case association yet (dimension case-association-status), for a closely 
overlapping activity. If we find one, like the activity in group 1, we associate all activities in that group to 
case ID 1. The same procedure is performed to the case ID 2, associating activity group 2 to the case. 

Figure 3 The schemes for the group building in step (5.1) and the (5.2) backwards association scheme 

This algorithm is then performed again. While we will not find new activities for association in the activity 
groups 3 and 4, the activity group 1 is now associated to case ID 1, and has an activity “Filled by Tank 1” 
which possibly has a related activity, which is not associated to any case ID yet (not displayed in Figure 3). 
The iteration terminates, when no more associations can be made. This algorithmic approach is displayed in 
Figure 4, and can be executed in most programming languages.  

Figure 4 Algorithm to iteratively associate case IDs 

4.3 Application example at Big Beverage Inc. 

As mentioned in section 3, our methodology involved multiple iterations to come up with the final solution. 
In this section, we briefly want to highlight the key application steps of the framework and the results 
achieved. In the beginning, the product batch was chosen as the analysis perspective to determine the needed 
interactions between tanks (2.1). Then, the activities were defined using a BPMN sketch of the process (2.2). 
In a workshop, each activity was related to one another (e.g. bottling and pipe flow need to be in parallel) 
and was given a calculation rule (2.4). While the interaction between the tanks could be determined using 
the connection data, other activities needed to be calculated using the gradient of filling level (e.g. filling by 
pipes). In the grouping of activities phase (3), we used the labelled sensor data to derive actual activities. 
The first and last sensor value of the same kind can easily be determined using a helper column that identifies 
changes to new labels. The data state after phase (3) is shown on the left side in Figure 5. The label “Fill” is 
reported from 2023-07-03 10:57 to 2023-07-03 12:13. These two timestamps can be taken and aggregated 
based on the task ID to the table structure on the right side. Depending on the analysis goal, the sensor data 
in between those two timestamps can be dropped or aggregated. For example, we kept the start and end 
payloads. The labels are now called activity because they have a start and end. It is now possible to mark 
final and primary activities, which can be used to form activity groups. In phase (4) a case ID needs to be 
determined. For example, we found that the final bottling machines saves data on the product change. This 
can be used to determine start and end timestamps for products. However, the bottling machine is not linked 
to other machines. But because these production times and the filling to the pipes are related activities, the 
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case inheritance algorithm can be applied, iteratively associating more activity groups to a case ID. The data 
wrangling was conducted using the programming language Python.  

Figure 5 Schematic visualisation of the data transformation in phase (3) 

5. Discussion

The application of the framework in section 4.3 shows that our framework produces viable event logs for 
PM, fulfilling the requirements given in section 2.3. From a managerial perspective, we contribute an 
applicable, easy to use framework for practitioners. With our framework, data scientists at Big Beverage Inc. 
were able to identify and quantify the frequency of tank utilization patters needed to produce a final beverage. 
In the future, the organization wants to incorporate the framework into a data pipeline, to reproduce the 
analysis more frequently. Practical limitations are twofold. First, the prerequisites discussed in section 2.3 
need to be fulfilled. Second, the framework is designed with and for BCP. While this limits the contribution, 
the phenomenon of BCP is very frequent, e.g. in pharmaceutical processes [17]. In summary, our approach 
is applicable to manufacturing companies, especially with BCP, where data (sources) are known, extracted 
and of adequate quality. Additionally, no streaming PM use cases are possible. Therefore, our framework is 
relevant for practice and not only limited to beverage manufacturing scenarios. From a scientific perspective, 
we contribute a framework, the grouping scheme, and the case inheritance algorithm to the knowledge base. 
All three artefacts have been iteratively designed, generalized, and proven valid in a real-world setting. We 
briefly want to highlight the key differentiations to the existing state of the art. In contrast to [25], our 
framework is less algorithmic. Unlike [10,12] where sensor data is clustered, then labelled, we identify the 
activities domain-driven, and then determine them in the data. In that way, we are more applicable for 
practitioners. By particularly addressing BCP, we address shortcomings of [26,12], who focus on smart 
products. Lastly, both [24] and our framework address the problem of identifying a case ID. However, unlike 
[24] we do not have the possibility to identify the case IDs based on the workers positions. We therefore
propose the case inheritance algorithm, whereby we address the high parallelism and nesting of typical BCP.
In summary, we answer our initially defined research question, as well as the call for research in [13–15].

6. Conclusion and outlook

In this paper, we derive a framework for the utilization of manufacturing sensor data to be used in PM 
projects by conducting ADR. The framework consists of six phases that guide practitioners in transforming 
raw manufacturing sensor data to PM usable event logs. By using the framework, domain experts and process 
scientists can systematically solve challenges inherent in sensor data from batch and continuous 
manufacturing processes, such as a lack of case notion. We further contribute an activity grouping scheme 
and a case inheritance algorithm to the knowledge base. In contrast to other publications, we put a strong 
emphasis on involving domain expertise into the activity and case ID definition, because our ADR revealed 
this to be more practical in real world settings. Additionally, this allows for a wider range of application 
scenarios, such as pharmaceutical BCP. By collaborating with an organization from the beverage industry 
throughout the ADR, we demonstrate and validate the usability of our framework in real world scenarios. 
Limitations of our research are a possible over-specificity to the application scenario used in the ADR cycle. 
Further research should therefore identify, refine, and adjust our framework to more domains, process types 
and application scenarios. 

timestamp (ts) Payload label is new Task ID
2023-07-03 10:57 100 Fill True F1

… … … … …
2023-07-03 12:13 5000 Fill False F1
2023-07-03 12:13 5000 Wait True W1

Start ts End ts activity Start pl End pl is final is cs
2023-07-03 
10:57

2023-07-03 
12:13 Fill 100 5000 False True

… … … … … … …

Initial data state Target data with the representation of the necessary sub steps

Define a unique ID3.1

Aggregate by label3.2 Define final and corner-
stone (cs) activities3.3
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