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Abstract 

The semiconductor industry operates in a dynamic environment characterized by rapid technological 
advancements, extensive research and development investments, long planning horizons, and cyclical 
market behavior. Consequently, staying vigilant to technological disruptions and shifting trends is crucial. 
This is especially challenging when external shocks seriously affect supply chain processes and demand 
patterns. Particularly, recent events, such as the COVID-19 pandemic, the ongoing Russian invasion of 
Ukraine, and high consumer price inflation impacting the semiconductor cycle emphasize the need to 
account for these influences. 

In this context, we analyze growth patterns and life cycles of various technologies within the semiconductor 
industry by estimating logistic growth models. The logistic growth model was originally formulated to 
describe population dynamics. However, many processes outside the discipline of ecology share the 
fundamental characteristics of natural growth: self-proportionality and a self-regulating mechanism. Out of 
the different applications, two are of particular interest in the context of strategic business decisions: (1) 
modeling innovation diffusion and technological change to predict the mid- to long-term growth of a market, 
and (2) modeling of product life cycles. To obtain market growth and life cycle predictions, we apply the 
logistic growth model to forecast cumulative revenues by technology over time. 

This model treats the analyzed technology as a closed system. However, in practice, external shocks are the 
norm. To analyze the robustness to such external shocks, we compare technology life cycle estimates derived 
from logistic growth models before and after the effects of COVID-19 became evident for a wide array of 
semiconductor technologies. We find that the impact of COVID-19 on these life cycle estimates is mixed, 
but the median change is low. Our findings have implications for the application of logistic growth models 
in strategic decision-making, helping stakeholders navigate the complexities of technological innovation, 
diffusion, and market growth. 
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1. The semiconductor industry

The semiconductor industry is characterized by long lead times for expanding fabrication capacity, 
shortening life cycles, and rapid technological advances [1–3]. Consequently, strategic decisions are often 
long range and high impact, especially when involving R&D and fabrication capacities. Missing out on an 
important development can cost months or years to catch up market share. Capital-intensive investments in 
fabrication and high R&D costs raise the stakes further [4,5]. This highlights the need for forecasting 
methods that provide support to managers [4–6]. Life cycle modelling can give an indication of technologies 
prone to stagnation and disruption [7], providing managers with important information. 

Apart from its importance to the wider economy [8], the semiconductor industry is a great test case for 
forecasting methods, which include technology diffusion and life cycle models [7,9,10], due to the 
challenges involved.  Rapid technological advancements and shortening product life cycles imply that 
demand is volatile and difficult to predict [4,11,12]. Furthermore, the semiconductor industry does not only 
have complicated supply chains but also lies upstream in the supply chain for many consumer products. 
Consequently, it is exposed to the bullwhip effect. This effect refers to the phenomenon where small 
fluctuations in consumer demand can result in amplified variations in ordering patterns along the supply 
chain [13,14].  

The above-mentioned challenges suggest that a closed-system view might be simplistic. In fact, the 
semiconductor industry has experienced several external shocks with severe consequences over the last few 
years: From geographic risks, such as earth quakes damaging sensitive fabrication equipment [15], to the 
impact of the COVID-19 pandemic, including subsequent government responses, and trade frictions on the 
global semiconductor supply chain [16] or the ongoing Russian invasion of Ukraine with its effects on 
inflation and consumer sentiment [17].  Therefore, the consideration of external disruptions in forecasts and 
technology life cycle analysis is particularly relevant in this industry, which motivates this study. 

The main objective of this paper is the assessment of the trustworthiness of technology life cycle estimates 
derived from the logistic growth model under extreme events. Hence, a case study involving a significant 
external shock - the onset of the COVID-19 pandemic – is presented and its effects on these life cycle 
estimates are examined. 

Structure: the next section provides an overview of the history of the logistic growth model and its 
application to innovation management and technology life cycle analysis. The methodology of this paper is 
presented in Section 3 with an emphasis on the estimation of the logistic curve and the derivation of 
technology life cycles. Section 4 completes the paper by applying the methodology to a technology portfolio 
of a leading semiconductor company and discussing the findings of this case study. 

2. The logistic growth model

The logistic growth model, also referred to as S-shaped or sigmoidal curves, is characterized by the logistic 
differential equation dN

dt
= rN (1 − N

K
). Here, 𝑁 represents the population size, 𝐾 the carrying capacity, and

𝑟 the growth rate. It was first derived by Verhulst in the early to mid-nineteenth century to describe 
population dynamics [18,19] and plays an important role in the Lotka-Volterra equations [20,21]. Since then, 
they have become popular to quantify natural growth more broadly. Growth patterns outside the discipline 
of ecology resemble a similar dynamic and their application across diverse disciplines has been studied by 
several authors [7,22–24]. For example, logistic growth models have been employed in studying the adoption 
of renewable energies [25], the development of prostatic hyperplasia [26], production forecasting in 
extremely low permeability oil and gas reservoirs [27], performance analysis of technologies [28], modelling 
bacterial growth [29], forecasting long-term country GDP development [30,31], and more recently, 
modelling the development of COVID-19 cases [32–34]. Furthermore, S-curves are popular in corporate 
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strategic decision-making revolving around innovation, such as anticipating disruptive attacks on one's 
business [35] or life cycles and investments in the adoption of new technologies as they diffuse through the 
marketplace [7,36,37]. This technological progression is exemplified by the evolution of mobile phones in 
Figure 1. The lower left logistic curve represents classical cell phones, starting from their introduction in the 
1970’s. Despite their vast technological improvements over the decades, their design was a limiting factor 
to the value they could offer to consumers: the small screen and buttons meant that they were primarily used 
for voice calls, messaging, and short emails. The utility of the mobile phone was radically redefined with the 
introduction of the iPhone, the first commercially viable smart phone. This marked the launch of the second 
logistic curve, which subsequently disrupted the classical cell phone market (including the decline of its 
former champions, Nokia and Blackberry).  

This motivates the application of logistic curves in the context of technological progress and life cycle 
analysis. To study the impact of the technology life cycle on strategic business decisions and corporate 
structure, the S-curve is often partitioned into 5 phases, as illustrated in Figure 2 [23,38,39]: 

1. Birth /winter (1.4% - 6.3%): the technology is barely known or explored. Growth is slow and a large
degree of effort is needed to progress. Entrepreneurship and a decentralized company structure are
common.

2. Growth / spring (6.3%-30%): the technology is slowly getting adopted as “the next big thing”.
Growth remains nearly exponential. This phase is characterized by learning, product innovation, and
continuous improvement.

3. Maturity / summer (30%-70%): the technology is being adopted and growing at its maximum rate.
However, there are first signs of costs of complexity as the rate is approximately constant and departs
from earlier near-exponential growth. Processes are driven by vertical integration, refinement, and
bureaucratization.

4. Decline / autumn (70%-92.7%): the technology nears its limit. The growth rate remains positive but
accelerates its decline. Managers should be on the lookout for the next “next big thing”. This is the
ear of process innovations and face lifts.

5. Death / winter (92.7%-98.6%): the technology has nearly reached its peak. There is little growth left
to achieve, which requires increasingly higher investments. This means that technological progress
stalls and the technology becomes prone to disruptions. Managers are looking to transition to
alternative technologies while the current one phases out (compare the transition from cell to
smartphones in Figure 1).

Figure 1: Technological progression exemplified by the evolution of mobile phones. 

Augmented Reality 
Glasses? 
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This highlights the interpretability and usability of the simple logistic model, which played a pivotal role in 
formalizing the study of life cycles, on a business level. However, various extensions and generalizations of 
the simple logistic curve have been proposed [10, 19,40–44], such as the Richards’ curve [45] or Gompertz 
curve. Ex post, these extended models may yield better fits [29]. However, the generalized models usually 
require more parameters. This can lead to identifiability issues [46,47]. Furthermore, the trajectory is 
seldomly observed completely, which can exacerbate the issue. Therefore, we focus on the simple logistic 
model in our analysis.  

3. Methodology

We introduce the notation and explain the interpretation and meaning of the different parameters of the 
logistic growth model in 3.1. Subsection 3.2 provides details of the assumed data generating process and the 
estimation of model parameters. 

3.1 Notation 

As described in Section 2, the logistic growth model is described by the differential equation dN
dt

=

rN (1 − N
K

).  For consistency with common statistical notation, we rewrite the solution of this differential 
equation as 

𝑌 = 𝑀
1+𝑒𝑎𝑋+𝑏 + 𝐶,  (1) 

where 𝑌 is the response variable (in place of 𝑁), 𝑀 is the carrying capacity or maximum cumulative market 
size, 𝑎 corresponds to the growth rate (the maximum growth rate of 𝑎𝑀/4 is reached at the inflection point), 
𝑏 determines the location of the inflection point (at 𝑥 = −𝑏/𝑎), 𝐶 is introduced to allow for vertical offsets 
of the logistic curve, and 𝑋 denotes the dependent variable. The logistic curve with its parameters and their 

Figure 2: Partitioning the S-curve into life cycle stages. 
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respective interpretations is illustrated in Figure 3. This parametrization implies that the life cycle stage can 
be estimated as (𝑚𝑎𝑥(𝑌) − 𝐶)/(𝑀 − 𝐶). 

3.2 Estimation 

We assume the data generating process 

𝑌 = 𝑀
1+𝑒𝑎𝑋+𝑏+𝜀 + 𝐶,  (2) 

where ε is an identically and independently distributed error variable with existing first and second moments. 
This model formulation allows us to estimate the parameters 𝑀, 𝐶, 𝑎, 𝑏 in an iterative two-step process: 

i. Estimate 𝑀 and 𝐶. At initialization, start with two reasonable first guesses 𝑀̂ > 𝑚𝑎𝑥(𝑌), 𝐶̂ <
𝑚𝑖𝑛(𝑌). For later iterations minimize the mean squared error of the step ii. regression with
regard to 𝑀 and 𝐶.

ii. Given 𝑀 and 𝐶, the remaining parameters can be obtained via a simple linear regression

𝑙𝑜𝑔 (𝑀̂−𝑌+ 𝐶̂
𝑌− 𝐶̂

) = 𝑎𝑋 + 𝑏 +  𝜀.  (3) 

The mean squared error is given by 1
𝑁

∑ [𝑙𝑜𝑔 (𝑀̂−𝑌𝑖+𝐶
𝑌𝑖−𝐶

) − 𝑎̂𝑋𝑖 − 𝑏̂]𝑁
𝑖=1

2
, where 𝑁 is the sample 

size. 

The optimization in step i. can be performed with any conventional optimization routine, such as Nelder and 
Mead’s Simplex algorithm [48] or quasi-Newton methods such as BFGS or L-BFGS-B [49]. However, these 
local optimization methods tend to struggle with local optima [50]. This is particularly problematic when the 
error surface is rough. We used Generalized Simulated Annealing, which is implemented in the “GenSA” R 
package [51], as this yielded the most reliable results. 

4. Empirical Analysis

Subsection 4.1 covers the introduction to the data and includes all pre-processing steps in. Subsection 4.2 
presents the results of the analysis and discusses the implications. 

Figure 3: Parametrization and interpretation of parameters of the logistic curve. 
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4.1 Data 

We obtained revenues for a diverse portfolio of products ranging from October 2006 to January 2023 from 
a leading semiconductor company. However, it is not reasonable to assume that one Euro today has the same 
value it had 17 years ago. Therefore, it is important to adjust for the general price level. This was done with 
the Harmonized Index of Consumer Inflation, which is published by the European Central Bank1 [52]. These 
revenues were mapped to technology categorizations on the aggregation levels: Level 1, containing 18 
technologies and Level 2, containing 10. Here, Level 1 (component) technology groups are more granular 
than Level 2 technology groups, see Figure 4 (the technologies and their corresponding technology groups, 
which are covered in this paper, can be seen in Table 1 in the appendix).  

We consider both, Level 1 and Level 2 technologies, because Level 1 technologies are more homogeneous 
but Level 2 technologies include more sub-technologies that would need to be excluded due to lack of data 
history. By aggregating several similar technologies, we further hope to reduce the effects of substitution 
and similar interactions. Furthermore, the logistic model should be applicable on either level because of its 
fractal property.  

Further, we analyzed cyclicality by means of spectral analysis, particularly using a periodogram [53]. 
However, no frequency surpassed the significance threshold of the harmonic F-test [54] provided in the 
“multitaper” R package. As Figure 5 shows, there is no statistically significant cyclicality at any frequency 
when adjusting for multiple testing.  

 
1 Information on the Harmonized Index of Consumer Inflation and the corresponding time series can be found at 
www.ecb.europa.eu/stats/macroeconomic_and_sectoral/hicp 

Figure 4: Example of a technology hierarchy. 

Figure 6: Periodograms before (left) and after (right) seasonal adjustment. 

Figure 5: Harmonic F-test statistic over the frequency domain. The dashed red line corresponds to a point 
wise 95% confidence threshold, the dotted red line to a global 95% confidence threshold. 
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Additionally, we performed a time series decomposition into trend, seasonal effects, and a random 
component [55] using the “decompose” function in R. However, the time series post seasonal adjustment 
was not noticeably less noisy than the original time series, nor did the periodogram change much (see Figure 
6). Therefore, we proceeded with the original data without seasonal adjustments.  

4.2 Result 

Logistic growth models were fit to cumulative technology revenues using the algorithm described in Section 
3.2. We visually checked the models for consistency with the logistic curve by observing the quality of the 
fit and producing residual plots. These residual plots were helpful in checking if the models converged as 
expected and to identify residual patterns, which indicate a poor model fit.  

Figure 7 indicates a residual plot of a good logistic fit for Tech. 14, whereas the residual plot for Tech. 17 
raises questions. Residuals are indicated by red circles. The drawn blue line represents the linear fit of the 
data in step ii. of section 3.2. If this line differs from the horizontal line at 𝑌 =  0, it indicates that the 
algorithm did not converge as expected. The dashed and dotted blue lines represent point-wise confidence 
intervals and confidence bands at 95%, respectively. Hence, a residual lying outside the 95% point-wise 
confidence interval would be expected to be observed every 20 data points, whereas a residual lying outside 
the 95% confidence band would be expected every 20 residual plots. These plots can help identify external 
shocks or patterns that are not captured by the model. In case of the left plot, the residuals are well dispersed 
and no clear trend is identifiable. This indicates a good fit. On the right, there is a clear pattern, which 
indicates a poor model fit. 

Additionally, we validated the logistic life cycle estimates by expert opinion. We excluded poor fits and 
technologies that were clearly driven by external structural effects (the semiconductor industry is largely a 
B2B business, where sales are often conducted through direct relationships – in segments where revenues 
are overwhelmingly driven by a few large customers, patterns in the data may be dominated by individual 
decisions at the level of a single customer and not always be reflective of the technological potential of the 
product). Overall, we excluded seven of the eighteen Level 1 technologies and four Level 2 technology from 
further analysis (see Table 1 in the Appendix). 

Figure 8 illustrates logistic fits for Tech. 14 (left), which fits well, and Tech. 17 (right), which does not.  
Tech. 17 is an example of a technology that is driven by individual projects (also observe that the data in the 
right plot appears to be consisting of two logistic curves, not one). The blue curve indicates the estimated 
logistic model, the red dots correspond to the observed cumulative revenues, and the grey dotted lines 

Figure 7: Example residual plots 

Figure 8: Example logistic fits. Tech. 14 (left) is an example of a good fit, Tech. 17 (right) one of a 
questionable one. 

39



correspond to the estimated lower bound, 𝐶, and the estimated upper bound, 𝑀 + 𝐶. Generally, we did not 
estimate lower bounds unless we had reason to believe that we were missing previous revenues.  

These logistic curves were estimated based on the complete history (from October 2006 to January 2023) 
and on the basis of the historical data preceding the COVID-19 Pandemic. After the curves were obtained 
and validated for the various Level 1 and Level 2 Technologies, we compared the life cycle estimates of the 
pre- and post-COVID models. 

Figure 9 illustrates the distributions of the Pre- (red) and Post- (cyan) COVID life cycle estimates on 
technology Level 1 (left) and 2 (right), respectively. Given the strong demand for consumer electronics and 
the subsequent rejuvenation of sales numbers, we expected lower life cycle estimates as an impact of the 
pandemic. Meanwhile, a moderate increase is expected without the interference of external shocks, given 
that two years elapsed and the technology has aged. On Level 1, the median life cycle estimate remained 
relatively stable, though more concentrated in the lower range. Thus, the logistic fits for the Level 1 
technologies seem relatively unaffected by the pandemic. This is confirmed by Figure 10, which shows that 
the median life cycle estimate has increased slightly after COVID, which is consistent with our expectation. 
This result is slightly different for Level 2 technologies. As Figure 9 indicates, the distribution of life cycle 
estimates has noticeably shifted downwards. This observation is confirmed by Figure 10, which indicates 
that the median life cycle estimates have decreased by 2% after the revenues during the pandemic are 
included. This seems to confirm our hypothesis that COVID has had an impact on the logistic growth models. 
On the other hand, this decrease could be due to the inclusion of new emerging sub-technologies in the 
broader technology group. These would have been omitted during the analysis of the Level 1 technologies, 
due to small volumes and an insufficient amount of historical data.  

We conclude that logistic growth models are a valuable tool for managers in assessing product life cycles if 
the model is applicable. This is particularly useful in understanding technological limitations and guarding 
against the risk of disruption. The robustness to external effects could be further improved by incorporating 
them into the logistic growth model. For example, researchers have modelled the upper bound dynamically 
[56,57]. Given the dynamic nature of the semiconductor industry, the complexity of supply chain 
dependencies, and the exposure to other external factors, this highlights a potential for future research in the 
field.  

Figure 9: Boxplots of life cycle estimates before and after COVID. 

Figure 10: Boxplots of the change in life cycle estimates before and after COVID. 
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Appendix 

Table 1: Technology table of technology groups and the corresponding technologies. Technologies marked with an 
(X) were excluded from further analysis.

Technology Group (Level 2) Technology (Level 1) 
Tech. Group 1 Tech. 7, Tech. 3 (X), Tech. 1 (X) 
Tech. Group 2 Tech. 2, Tech. 4 
Tech. Group 3 Tech. 17 (X), Tech. 14, Tech. 5 
Tech. Group 4 (X) Tech. 11, Tech. 9 (X), Tech. 6 
Tech. Group 5 (X) Tech. 12, Tech. 10 (X) 
Tech. Group 6 Tech. 8 
Tech. Group 7 Tech. 13 
Tech. Group 8 Tech. 15 
Tech. Group 9 (X) Tech. 16 (X) 
Tech. Group 10 (X) Tech. 18 (X) 
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