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A B S T R A C T

On the way to fully autonomous machine tools it is essential to independently select suitable process parame-
ters and adapt them on-the-fly to the appropriate process conditions in a self-controlled manner. Such sys-
tems require complex physical process models and are usually limited to feed and spindle speed adaption
during the milling process. This paper introduces a new approach enabling machines during the milling pro-
cess to learn which parameters lead to a stable process with maximum productivity and to adjust them
autonomously. It is shown that this approach enables the machine tool to independently find stable process
parameters with maximum productivity.

© 2021 The Authors. Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Self-excited chatter vibrations are one of the main limitations
regarding productivity in metal cutting [1,2]. The choice of suitable pro-
cess parameters for a stable and productive process is a major challenge
due to the nonlinear correlation between process parameters (depth of
cut ap; width of cut ae and spindle speed n) and the occurrence of chat-
ter. To select appropriate process parameters, costly experiments and
time-consuming simulations to obtain stability lobe diagrams (SLD)
have to be carried out for each process setup [3�5]. Additionally, simpli-
fied model assumptions lead to uncertainties [6]. Time variant changes
in the stability limit, e.g. due to tool wear can only be considered to a
limited extent [7]. To overcome these challenges, an autonomous online
optimization of the process parameters is required.

In the context of Industry 4.0, Self-optimizing machining systems
(SOMS) are becoming increasingly relevant. SOMS are able to inde-
pendently evaluate their current process conditions and autono-
mously adapt process parameters to increase productivity [8,9].
Previous works on SOMS for online chatter avoidance address the
variation of cutting speed vc to increase the process stability [10�12].
For this purpose, the dominant chatter frequency is identified by the
spectrum of sensor signals, e.g. from a microphone. The spindle speed
is adapted such that the chatter frequency is a multiple of the tooth
passing frequency. In combination with an iterative increase of the
width or depth of cut increased productivity was achieved. However,
the method is limited to processes with a single chatter frequency
and simple tool geometries with equal flute spacing. Further, the
method for adaption of vc only considers process stability. As soon as
stable parameters are found no further adaption of the cutting speed
occurs and thus the productivity is kept constant. Knowledge from
previous cuts is not used in this method. SOMS are able to learn the
correlation between process parameters and process stability inde-
pendently during the process. Hereby stable parameters with maxi-
mal productivity could be determined for different tool geometries
and without prior knowledge of the process dynamics. However,
SOMS with these capabilities and adapting vc and the width or depth
of cut during the process for increasing the productivity with regard
to the process stability do not exist.

A basic requirement for such a SOMS is the process parallel deter-
mination of the correlation between process parameters and process
stability. Approaches for this include the process parallel determina-
tion of frequency response functions [13] and data-driven modelling
of the SLD utilizing machine learning (ML) [14�16]. The experimental
effort to gain training data for the ML models is time-consuming. Sur-
rogate-based optimization allows to simultaneously train ML models
in relevant areas and to optimize parameters [17]. In this work, surro-
gate-based optimization is used for the first time for self-learning
optimization of milling parameters during the process. Based on
online learning SLD (LSLD), the machine tool learns to find process
parameters that lead to a stable process with maximum material
removal rate Qw and adapt them during the process. For the first
time, a SOMS is presented and realized that is able to autonomously
adjust the tool path and the cutting speed during milling to maximize
Qw while considering the process stability. A prerequisite of the sys-
tem is the online monitoring of the process stability. As shown in
[18], static process forces can be measured by strain gauges applied
to the spindle slide. In this paper, a new method for chatter detection
based on semi-conductor strain gauges is presented.

2. Surrogate-based optimization of process parameters

Surrogate-based optimization is a global optimization strategy
that does not require any analytical description of the objective
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Fig. 1. System overview.
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function. It is common for the optimization of expensive-to-evaluate
functions [17]. Since the true objective function is not known, statisti-
cal models are used as surrogate models. Iteratively, optimal values
are determined by optimizing the surrogate model. The real objective
function is evaluated at these values and the obtained results are
used to improve the surrogate model. In the following, the feed per
tooth fz is kept constant such that Qw can be calculated depending on
ap, ae and n.

2.1. Objective function

Assuming a function fSLD, which has positive values if chatter
occurs and negative values otherwise, the optimal operation point
paramopt ¼ ðap;opt ; ae;opt ;noptÞ with maximum productivity can be
determined by solving the optimization problem Eq. 1.

paramopt ¼ argmaxap ; ae ;n Qw ap; ae; n
� �

;

s:t: �fSLD ap; ae; n
� ��0

vc nð Þ � vc; min�0 ^ vc;max � vc nð Þ>0
ð1Þ

To avoid excessive tool wear, additional limitations for the
cutting speed vc;min and vc;max are specified. Further technical limi-
tations could be added equivalently. For solving Eq. 1, the target
and the technical limitations are combined into a common objective
function ftarget as a weighted linear combination (Eq. 2). For a higher
generality and a better comparability of the individual terms, Qw is
normalized by its theoretically maximum. To consider the restric-
tions to vc, log-barrier functions bvc ðnÞ were used (Eq. 3), which are
common for constrained optimization [19]. Thus, parameters are
rated less suitable the further they deviate from the recommended
parameters.

ftarget ¼ λtarget ¢ 1� Qnorm
w ap; ae;n

� �� �
� λSLD ¢ fSLD ap; ae; n

� �þ fsafe ap; ae; n
� �� �

þ λvc ¢ bvc nð Þ
ð2Þ

bvc nð Þ ¼ �Re log
����vc;min � vc nð Þ

����
� �� �

� Re log
����� vc nð Þ þ vc;max

����
� �� � ð3Þ
2.2. Learning stability lobe diagram

Since fSLD is unknown, a LSLD is used as a surrogate model. In
[15], the suitability of different ML methods and hyperparameters
has already been investigated. In this paper, Regularized Kernel
Interpolation (RKI) is used for LSLD since it has the best conver-
gence rate, a high classification quality, and short training times.
The RKI model is a linear combination of kernel functions kw , cen-
tered at the individual samples of the training data (Eq. 4). The ker-
nel parameter e determines the expansion of the individual terms.
To determine the weights ai;λ, the linear system of equations Eq. 5
with the kernel matrix K ; the regularization parameter λ and the
identity matrix I is solved.

fSLD x; λ; �ð Þ ¼
XN
i¼1

ai;λkw x; xi; �ð Þ

kw x; y; �ð Þ ¼ max 0; � ¢ x � yð Þ2; x; y ¼ ae;nð Þ�R2
þ

ð4Þ

al ¼ K þ λIð Þ�1 ¢ y ð5Þ
For simplification, only the autonomous adaption of n and ae is

considered in this paper. However, the method can also be extended
to the depth of cut. The individual terms of the objective function can
be interpreted as a safety zone around the unstable operating points.
Since operating points with the same n and higher ae are also proba-
bly unstable, this safety zone is additionally extended upwards to
higher values of ae (Eq. 6).

fsafe ae;nð Þð Þ ¼
X

ae;j ;njð Þ 2Xchat

min 0; ae � ae;j
� �

1þ n� nj
� �2 ð6Þ
2.3. Autonomous parameter adaption

For the parameter optimization, the LSLD is inserted as a sur-
rogate model into ftarget . A stochastic gradient method with multi-
ple starting values is used to select optimal parameters. This
reduces the probability of reaching only a local minimum and the
optimization for the individual start values can be carried out in
parallel, to reduce the computing time. The process stability is then
determined for the parameters identified by the optimization. Via
this surrogate-based optimization, productivity is maximized and
an increasingly accurate LSLD is created. The LSLD selects its train-
ing data independently during the process. In the following, the
method is investigated with a previously untrained LSLD. If data is
already available, a pre-trained LSLD can also be used to accelerate
the optimization.
3. Realization of the intelligent machine tool

As depicted in Fig. 1, the system consists of a machine tool, a pro-
cess-parallel data acquisition and a parameter optimization. In the
following, these components are described in more detail.
3.1. Physical system

The system was implemented on a 5-axis machine tool DMG
Mori HSC 30. The machine is controlled by a Sinumerik 840D sl
machine control. A Process Field Bus (Profibus) is used for com-
munication with the machine control. Control data (axis posi-
tions, spindle speed, etc.) is written to the Profibus via the
Siemens ADAS compile cycle in the interpolation cycle (4 ms) of
the machine tool.

3.2. Data acquisition

To enable online learning, the process parameters and the pro-
cess stability must be continuously recorded. While n can be read
from the machine control, ae and ap must be calculated from the
axis positions. For simple processes, as the face milling process
examined in this paper, this can be realized in the NC code. For pro-
cesses with a higher complexity, a process-parallel milling simula-
tion based on the axis positions is used [20]. A semiconductor strain
gauge on the spindle slide was used to evaluate the process stabil-
ity. The sensor signals were recorded at a sampling rate of 20 kHz
and filtered by an analogue low-pass filter with a cut-off frequency
of 5 kHz to avoid aliasing. An accelerometer was used as a reference.
The dominant chatter frequency was identified in the range of 1-
4 kHz, therefore 5 kHz were considered sufficient for subsequent
analysis. The once-per-revolution variance varSG [21] was used for
chatter detection, because it requires only a small computation
time and is therefore well suited for a real-time system. To deter-
mine the statistical limits bchat , experiments with four different
feeds and cutting speeds were performed in Al7075 and AISI 1045.
The courses of varSG and bchat for a ramp milling process are shown
in Fig. 2.

In the investigations, tools with a maximum width of flank wear
(VBmax = 15 mm) were used. Width and depth of cut were increased



Table 1
Experimental design

Al7075 AISI 1045

end milling cutter tool diameter D 10 mm 8mm
tool length L 72 mm 63 mm
helix angle 45° 36°/38°
coating TiAIN AlTiN

ref. values fz 0.04 mm 0.045 mm

Fig. 2. Chatter detection with semi-conductor strain gauges.
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in steps of 0.1 mm. Constant cutting parameters were used for each
step to avoid difficult to classify transition areas, as in ramp milling.
To increase the sensitivity, bChat was chosen as the maximum value of
the processes without visible chatter marks instead of a 6s-limit. Fur-
ther experiments with a worn tool (VB = 140 mm) were performed in
AISI 1045 to investigate the influence of tool wear. On average, varSG
was higher with the worn tool in stable areas and lower in unstable
areas due to higher damping. Nevertheless, the stable and unstable
processes could be clearly separated by bchat . Chatter occurring for
process parameters near the stability limit, respectively in the semi-
stable area, is in general less pronounced than chatter occurring far
outside the stable range. This is also reflected by the amplitude of
varSG. To address this constraint, the LSLD is trained with the chatter
score lchat from Eq. 7 as a regression task. Due to the negative value of
lchat at stable operating points, these parameters are preferred during
optimization. To avoid a premature stagnation of the algorithm, the
value of lchat in the stable range has to be weighted lower than in the
unstable range. In a series of experiments (�stab ¼ 1, 0.5, 0.1) �chat = 1
and �stab = 0.1 proved to be suitable.

lchat ¼
�stab ¢ varnorm � 1ð Þ; varSG < bchat
�chat ¢ varnorm � 1ð Þ; varSG�bchat

(

varnorm ¼ varSG
bchat
vc 300 m/min 180 m/min
start values ae;start 0.1 mm 0.1 mm
optimization parameters constraint vc +/- 20% +/- 20%

Dae 0.5 mm 0.5 mm
3.3. Soft computing

The number of computational operations for training the LSLD
and for the optimization cannot be predicted deterministically.
Therefore, these modules are implemented outside of the real-time
system as a “soft computing” system with Python. As soon as new
process information is available, the training of the LSLD is triggered.
In contrast to offline learning where model parameters can be
selected based on the available amount of data, in online learning
they have to be adapted to the current data situation. To ensure con-
tinuous adaption of the models to the data density, the kernel param-
eter � is reselected at each learning step by the fill distance [15]. If the
unstable areas are insufficiently known, the optimization would
select high values for ae to maximize productivity, which can result
in chatter. Thus, a limit to the maximum step size Dae is introduced.

4. Process parallel parameter adaption

NC programs can only be changed to a limited extent during the
process. For a process parallel change of ae and ap, preparation of the
NC code is necessary. In Fig. 3, the prepared NC code for a slot milling
process is shown. While vc can be changed on the entire tool path, ae
may only be adapted after a completely machined tool path. This is
Fig. 3. Parameter adaption while the test process.
realized by synchronous actions and querying new ae after each tool
path. To avoid overfitting in the LSLD, a simultaneous optimization of
all parameters is reasonable. Otherwise, by continuously adjusting vc
during machining, more process information can be obtained. Two
adaption strategies can thus be selected: a) only simultaneous change
of ae and n, b) continuous change of n and change of ae at special
adaption points.

5. Experimental investigations

5.1. Experimental setup

Experimental cutting tests were carried out on the machining
centre HSC 30 in milling operations without coolant. To show the
general validity of the approach different materials (aluminum
Al7075 and steel AISI 1045) were investigated. All experiments were
carried out with initial flank wear of < 15 mm. After optimization, no
significant change in flank wear could be observed. The experiments
have been conducted with a solid carbide endmill with four teeth
fixed in a shrinking chuck. The depth of cut was kept constant at
3 mm. The process parameters are listed in Table 1. As initial values
for the cutting speed, the process parameters recommended by the
tool manufacturer were used. Experimental SLD were created to eval-
uate the optimization. For this purpose, ramps with increasing width
of cut and different cutting speeds (step size 200 1/min) were
machined.
5.2. Influence of the optimization parameters

The kernel parameter � and the regularization parameter λ of the
LSLD are crucial for the optimization result. Large values for λ or small
values for � lead to a fast learning progress, but also to a smoothing of
the learned stability limit so that small peaks may not be detected. In
experimental investigations, � = 1 and λ = 4 have been proven to be
suitable. The weights λtarget , λSLD and λvc in ftarget are further relevant.
Too small values of λtarget lead to a prematurely stagnation. Too large
values of λtarget in relation to λSLD can lead to increased chatter. In
experiments with previously recorded SLD, λtarget=10 and λSLD= 20
have proven to be suitable. If the optimization stagnates and the
dynamic behavior does not change significantly, there is no motiva-
tion for the algorithm to further adapt the parameters. To enforce fur-
ther learning, λtarget or the kernel parameter � can be increased.

5.3. Results

The optimization results of both strategies are shown in Fig. 4 and
Fig. 5. For all processes, the productivity has been increased in less
than 20 milling paths by more than 450%. For Al7075, both strategies
increased Qw from 458 mm3/min to about 50,000 mm3/min. For AISI
1045, an increase in Qw from 387 mm3/min to 21,070 mm3/min with
strategy a) and to 22,860 mm3/min with strategy b) has been
achieved. Chatter occurred two times with strategy a) and four times
with strategy b). Due to the continuous adaption of vc with strategy
b), the time periods with chatter are smaller than with strategy a). As
soon as chatter is detected, vc is adapted to stable parameter ranges.
Only if no stable point is found, long chatter phases occur until ae can be



Fig. 4. Results of the two optimization strategies for Al7075: a) simultaneous change of
ae and n, b) continuous change of.

Fig. 5. Results of the two optimization strategies for AISI 1045: a) simultaneous change
of ae and n, b) continuous change of.
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reduced again. With strategy a), less data is available for training the
LSLD. Investigations with ae;start = 1 mm showed significant chatter at the
end of the optimization with strategy a) because cutting speeds were
selected in parameter ranges that have not yet been tested. To compare
the determined operation points of both strategies, measurements of the
surface roughness were performed. For Al7075 a surface roughness of
Rz = 7.9 mm for strategy a) and Rz = 7.6 mm for strategy b) results. This
high roughness values can be traced back to the increased adhesion at
maximum Qw due to absence of coolant. The surface with visible chatter
marks has a surface roughness of Rz = 14.4 mm.

6. Conclusion and Outlook

This paper provides a new method for the autonomous online
optimization of milling parameters with regard to process stability
and productivity. It was shown, that the machine tool can autono-
mously increase productivity by an online adaption of n and ae based
on a self-learning algorithm. By applying the method to two different
materials, the general applicability was demonstrated. In contrast to
analytical methods, the approach does not require any prior knowl-
edge or complex physical models. Therefore, time and cost-consum-
ing determination of the dynamic behavior is unnecessary and errors
due to model uncertainties are avoided. During the experiments for
this paper, no further adjustment of the optimization parameters
was necessary for the different workpiece materials. This shows the
generality of the chosen hyperparameters. Continuous learning
allows the consideration of time-varying changes.

However, due to the stochastic nature of the optimization, conver-
gence to the global optimum is not assured. In contrast to analytically
calculated SLD, LSLD requires data from stable and unstable processes
for learning. Thus, the stability limit may be exceeded during optimi-
zation. Even if the process can be stabilized rapidly by an adaption of
vc , the surface quality may already be affected. For practical applica-
tion, the optimization should be performed on non-critical parts of
the workpiece. A stock allowance can be defined for which the opti-
mization is disabled. If knowledge about the dynamic behavior is
already available an augmented strategy could be used in the future,
where the LSLD are pre-trained by analytically determined SLD. Thus,
the training of the LSLD can be accelerated and model uncertainties
and time-varying changes can be considered. For a higher perfor-
mance ap can also be added as additional parameter in the LSLD and
thus be considered in the optimization. Although online path adap-
tion via adaption points in the NC code works for many standard 3-
axis milling operations, further research is required for more complex
geometries. One limitation is that unrecognized process influences,
such as chatter due to thin-walled workpieces, can lead to inaccurate
training data. To avoid contour violations, additional limitations for
ap and ae must be defined. For practical application further technical
limitations, such as a maximum torque, must also be considered.

Technical limitations for predictable values can be added equiva-
lent to Eq. 3, while additional physical or statistical models are
needed for unknown values.

Further research addresses the consideration of additional technical
limitations and their impact on the optimization. Furthermore, the
choice of optimal optimization parameters depending on the particular
practical requirements and of prior knowledge will be investigated.
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