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Abstract. We review the semiclassical two-step model for strong-field ionization. The semiclassical two-
step model describes quantum interference and accounts for the ionic potential beyond the semiclassical
perturbation theory. We discuss formulation and implementation of this model, its further developments,
as well as some of the applications. The reviewed applications of the model include strong-field holography
with photoelectrons, multielectron polarization effects in ionization by an intense laser pulse, and strong-
field ionization of the hydrogen molecule.

1 Introduction

Strong-field physics studies phenomena arising from
the interaction of strong laser pulses with atoms and
molecules. The most well-known examples of these
highly nonlinear phenomena are above-threshold ion-
ization (ATI), formation of the high-energy plateau in
the electron energy spectrum (High-order ATI), genera-
tion of high-order harmonics (HHG) and nonsequential
double ionization (NSDI), see Refs. [1–5] for reviews.
Both experimental and theoretical approaches used to
analyze these processes are constantly being improved.
The vast majority of the modern theoretical methods
used in strong-field physics are based on the strong-field
approximation SFA [6–8], the direct numerical solu-
tion of the time-dependent Schrödinger equation (see
Refs. [9–12] and references therein), and the semiclassi-
cal models applying classical mechanics to describe the
electron motion in the continuum. The widely known
examples of the semiclassical models are the two-step
model [13–15] and the three-step model [16,17].

In the SFA ionization is described as a transition
from an initial state unaffected by the laser field to a
Volkov state, i.e., the wave function of an electron in
an electromagnetic field. Therefore, the SFA neglects
the intermediate bound states and the Coulomb inter-
action in the final state. The SFA provides the illustra-
tive physical picture of many strong-field phenomena
and often allows for the analytic solutions. Nevertheless,
the approximations used in the SFA are strong enough
and may sometimes lead to wrong results. The widely
known example is the fourfold symmetry of the photo-
electron angular distributions in the elliptically polar-
ized field predicted by the SFA [18]. In contrast to this,
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the experimental angular distributions show only the
inversion symmetry: They are asymmetric in any half
of the polarization plane [19]. The theoretical studies
[20–25] have shown that the fourfold symmetry of the
angular distributions is a direct consequence of neglect-
ing the effect of the Coulomb potential on the electron
motion in the continuum.

In most cases the direct numerical solution of the
TDSE provides a good agreement with the experimen-
tal results. However, it is often difficult to understand
the physical mechanism of the phenomena under study
with only the numerical wave function. What is also
important, the capabilities of modern computers are
not unlimited. One of the most prominent examples is
the strong-field ionization of molecules. The solution of
the TDSE in three spatial dimensions is possible only
for the simplest molecules and with selection of the
most relevant degrees of freedom [26,27]. Indeed, ion-
ization of a molecule by an intense laser pulse is much
more complicated than ionization of an atom. This is
because of the existence of additional degrees of free-
dom (nuclear motion), the associated time scales, and
the complex shape of the electronic orbitals. For typical
laser paremeters used in experiments nuclear motion
should be treated on an equal footing with the pro-
cesses induced by a strong laser field. Simultaneously,
the rich nuclear structure of molecules results in orbitals
of diverse symmetries.

Although the first semiclassical model (i.e., the
two-step model) was formulated in 1988-1989 [13–15],
the trajectory-based models are still widely used for
description of various strong-field phenomena. This is
due to a number of important advantages characteristic
to the semiclassical approaches. The semiclassical mod-
els provide a great insight into strong-field processes.
They allow to reveal the specific mechanism responsible
for the process under investigation, as well as visualize
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it using classical trajectories. This point needs to be
discussed in more details.

In the ATI an electron absorbs more photons than
necessary for ionization. The studies of the ATI have
revealed that the majority of the ionized electrons do
not experience hard recollisions with their parent ions.
These electrons are referred to as direct electrons. They
contribute to the low energy part of the ATI energy
spectrum E < 2Up, where Up = F 2

0 /4ω2 is the pondero-
motive energy. Here, in turn, F0 and ω are the ampli-
tude and the frequency of the laser field (atomic units
are used throughout the paper). The two-step model
allows to describe the spectrum of the direct electrons.
In the first step of the this model an electron tunnels
out of an atom. In the second step it moves along a
classical trajectory in the laser field towards a detector.

There are also rescattered electrons that are driven
back by the laser field to their parent ions. Upon their
returns the rescattered electrons scatter from the par-
ent ions by large angles close to 180◦. These electrons
form the high-energy plateau of the ATI spectrum. The
rescattering scenario provides the basis for an under-
standing of the HHG and NSDI. Indeed, the returning
electron can recombine to the parent ion and as the
result of the recombination a high-frequency photon
(harmonic) radiation is emitted. Alternatively, if the
energy of the scattered electron is sufficient enough, it
can release the second electron from the ion, e.g., by
impact ionization. The three-step model comprises the
interaction of the rescattered electron with the parent
ion as the third step. As the result, the three-step model
provides the qualitative description of the rescattering-
induced processes.

The three-step model explained a number of features
revealed in the studies of the high-order ATI, HHG,
and NSDI: the cutoffs in high-order ATI spectrum [28]
and HHG [16,29], the maximum angles of the angular
distributions of ionized electrons [30], the characteristic
recoil ion momenta in NSDI [31,32], etc. Originally the
two-step and the three-step models did not account for
the effect of the ionic potential on the electron motion
in the continuum. The inclusion of the ionic force in
the Newton’s equation of motions allowed to uncover
the Coulomb focusing effect [33], study the Coulomb
cusp in the angular distributions of the photoelectrons
[34], investigate the low-energy structures in ionization
by the strong midinfrared pulses [35–43] (the so-called
ionization surprise observed for the first time in exper-
iment [44]), explore the nonadiabatic effects in ioniza-
tion by intense laser pulses (see, e.g., Refs. [45–47]),
etc.

The trajectory-based simulations are often (although
not always) computationally less expensive than the
solution of the TDSE. Furthermore, for some strong-
field processes the semiclassical simulations are presently
the only feasible approach. The most well-known exam-
ple of such process is the NSDI of atoms by circularly
[48] or elliptically polarized pulses [49–51], as well as
the NSDI in molecules [52]. Therefore, further devel-
opment of the semiclassical approaches to strong-field
phenomena is an important objective.

Until recently the trajectory-based models were not
able to describe quantum interference effects. However,
a significant progress along these lines has been made
in the last decade. The trajectory-based Coulomb SFA
(TCSFA) [37,53], the quantum trajectory Monte Carlo
model (QTMC) [54], the semiclassical two-step model
(SCTS) [55], and the Coulomb quantum orbit strong-
field approximation (CQSFA) [56–60] (see Ref. [61] for
the foundations of the CQSFA approach) are recent
trajectory-based models that are capable to reproduce
interference structures in photoelectron momentum dis-
tributions of the ATI process. These models assign cer-
tain phases to classical trajectories, and the contribu-
tions of different trajectories leading to the same final
momentum are added coherently.

The TCSFA is an extension of the CCSFA [62,63]
that on an equal footing accounts the laser field and
the Coulomb force in the Newton’s equation for electron
motion in the continuum. The TCSFA applies the first-
order semiclassical perturbation theory [64] to account
the Coulomb potential in the phase associated with
every trajectory. The same first-order semiclassical per-
turbation theory was used in the phase of the QTMC
model. In contrast to this, the SCTS and the CQSFA
approaches go beyond the perturbation theory.

The SCTS model operates with large ensembles of
classical trajectories that are propagated in the con-
tinuum to find the final asymptotic momenta and bin
them (and, therefore, the corresponding contributions
assigned to these trajectories) in bins in momentum
space. This approach is often referred to as “shoot-
ing method” (see, e.g., Ref. [37]). Instead, the CQSFA
model solves the so-called inverse problem, i.e., finds
all the trajectories leading to a given final momen-
tum. This allows to avoid large ensembles of trajecto-
ries and establish a better control over cusps and caus-
tics that are inevitable in trajectory-based simulations.
The price that is to be paid is that the solution of the
inverse problem is a difficult task. In addition to this,
the approach with the inverse problem can often be less
versatile.

In this paper we review the SCTS model, as well as
two recent implementations of this model. We also dis-
cuss some of the applications of the SCTS. The SCTS
model has been applied to the investigation of the intra-
half-cycle interference of photoelectrons with low ener-
gies [65], to the studies of the interference patterns aris-
ing in the strong-field photoelectron holography [66–
68], to the analysis of the sub-cycle interference in ion-
ization by counter-rotating two-color fields [69], to the
investigation of sideband modulation by subcycle inter-
ference in ionization by circularly polarized two-color
laser fields [70], etc. Here we focus on the applications
of the SCTS to the strong-field photoelectron hologra-
phy, study of the multielectron polarization effects, and
the ionization of the H2 molecule.

The paper is organized as follows. In Sect. 2 we
review the SCTS and discuss different approaches used
to implement this model numerically. In Sect. 3 we dis-
cuss the further modifications of the SCTS model: the
semiclassical two-step model with quantum input and
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the SCTS model accounting for the preexponential fac-
tor of the semiclassical propagator. In Sect. 4 we briefly
review applications of the SCTS model to the strong-
field photoelectron holography. The application of the
SCTS to the study of the multielectron polarization
effects in the ATI are discussed in Sect. 5. In Sect. 6
we review the usage of the SCTS model to describe the
strong-field ionization of the H2 molecule. The conclu-
sions of this colloquia paper are given in Sect. 7.

2 Semiclassical two-step model

2.1 Formulation of the semiclassical two-step model

As any semiclassical model, the electron trajectory in
SCTS is calculated using classical equation of motion:

d2r

dt2
= −F (t) − ∇V (r, t) , (1)

where F (t) is the laser field and V (r, t) is the ionic
potential. In order to find the trajectory from Eq. (1),
we need to specify the initial conditions, i.e., the ini-
tial velocity of the departing electron and the start-
ing point. In the original version of the SCTS model
it is assumed that the electron starts with zero ini-
tial velocity along the laser field v0,z = 0, but it can
have a nonzero initial velocity v0,⊥ in the perpendicu-
lar direction. We note that the application of the SFA to
describe the electron motion under the potential barrier
leads to a nonzero initial longitudinal velocity v0,z �= 0.
The effect of the nonzero v0,z will be discussed later. Let
us first assume that the interaction of the ionized elec-
tron with the ion is modelled by the Coulomb potential.
Then the starting point of the trajectory, i.e., the tun-
nel exit point, can be obtained using the separation of
the static tunneling problem in parabolic coordinates.
For the static field polarized along the z-axis we define
the parabolic coordinates as ξ = r + z, η = r − z, and
ϕ = arctan (y/x) and find the tunnel exit coordinate ηe
from the following equation:

− β2 (F )
2η

+
m2 − 1

8η2
− Fη

8
= −Ip (F )

4
. (2)

Here m is the magnetic quantum number of the initial
state, Ip (F ) is the Stark-shifted ionization potential,
and

β2 (F ) = Z − (1 + |m|)
√

2Ip (F )
2

. (3)

The tunnel exit point is given by ze = −ηe/2. In the
general case, the ionization potential Ip (F ) in Eq. (2)
is given by

Ip (F ) = Ip (0) + (μN − μI) · F +
1
2

(αN − αI)F2.(4)

Here Ip (0) is the ionization potential in the absence of
the field, and μN,I and αN,I are the dipole moments
and static polarizabilities, respectively. The index N
refers to the neutral atom (molecule), and the index
I stands for its ion. We note that for atom the term
linear with respect to F is absent in Eq. (4). The static
field F in Eqs. (2), (3), and (4) should be replaced by
the instantaneous value of the laser field at the time of
ionization t0.

The instants of ionization and the initial transverse
velocities are distributed in accord with the static ion-
ization rate [71]:

w (t0, v0,⊥) ∼ exp
(

− 2κ3

3F (t0)

)
exp

(

− κv2
0,⊥

F (t0)

)

, (5)

where κ =
√

2Ip. Following the original formulation of
the SCTS model we omit the preexponential factor in
Eq. (5). For atoms it only slightly affects the shape of
the electron momentum distributions.

After the laser pulse terminates an electron moves
in the Coulomb field only. If the electron energy at
the time t = tf at which the laser pulse terminates
is negative E < 0, the electron moves along the ellip-
tical orbit, and it should be treated as captured into
a Rydberg state [72,73]. The corresponding process is
often referred to as frustrated tunnel ionization, see,
e.g., Refs. [74–77]. It is clear that the trajectories with
E < 0 should be excluded from consideration, if we
are interested in ionized electrons. The latter obviously
correspond to the hyperbolic trajectories (E > 0). The
asymptotic momentum k of the electron is determined
by its position r (tf ) and momentum p (tf ) at the time
t = tf :

k = k
k (L × a) − a

1 + k2L2
, (6)

see Refs. [73,78]. In Eq. (6) L = r (tf ) × p (tf ) and
a = p (tf )×L−Zr (tf ) /r (tf ) are the angular momen-
tum and the Runge-Lenz vector, respectively. The mag-
nitude of the momentum k is determined by the energy
conservation:

k2

2
=

p2 (tf )
2

− Z

r (tf )
. (7)

The key ingredient of the SCTS model is the expres-
sion for the phase associated with every trajectory. This
phase corresponds to the phase of the matrix element
of the semiclassical propagator USC (t2, t1) between the
initial state at time t1 and the final state at time t2
[79–81] (for a text-book treatment see Refs. [82,83]).
Depending on the variables used to describe the initial
and final states there exist four equivalent forms of the
semiclassical propagator USC :

〈r2| USC (t2, t1) |r1〉 =

[
−det

(
∂2φ2 (r1, r2) /∂r1∂r2

)
(2πi)3

]1/2
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× exp[iφ1(r1, r2)], (8a)

〈r2| USC (t2, t1) |p1〉 =

[
−det

(
∂2φ2 (p1, r2) /∂p1∂r2

)
(2πi)3

]1/2

× exp [iφ2 (p1, r2)] , (8b)

〈p2| USC (t2, t1) |r1〉 =

[
−det

(
∂2φ3 (r1,p2) /∂r1∂p2

)
(2πi)3

]1/2

× exp [iφ3 (r1,p2)] , (8c)

〈p2| USC (t2, t1) |p1〉 =

[
−det

(
∂2φ4 (p1,p2) /∂p1∂p2

)
(2πi)3

]1/2

× exp [iφ4 (p1,p2)] . (8d)

Here r1 (r2) and p1 (p2) are the initial (final) coor-
dinates and momenta, respectively. The phase φ1 that
corresponds to the transition from the initial state to
the final state, which are both described by the posi-
tion, is determined by the classical action:

φ1 (r1, r2) =
∫ t2

t1

{p (t) ṙ (t) − H [r (t) ,p (t)]} dt, (9)

where H [r (t) ,p (t)] is the classical Hamiltonian func-
tion that depends on the canonical coordinates r (t) and
momenta p (t). The other three phases φ2, φ3, and φ4

are related to φ1 by the canonical transformations:

φ2 (p1, r2) = φ1 (r1, r2) + p1 · r1 , (10a)
φ3 (r1,p2) = φ1 (r1, r2) − p2 · r2 , (10b)
φ4 (p1,p2) = φ1 (r1, r2) + p1 · r1 − p2 · r2 ,

(10c)

Then the question arises: Which of these phases should
be chosen for description of the strong-field ionization
process? On the assumption that for a given ioniza-
tion time the starting-point of the electron trajectory is
localized in space [see Eq. (2)] and the final state is char-
acterized by the asymptotic momentum k, the phase
φ3 is used in the SCTS model. Indeed, the strong-field
ionization can be viewed as a half-scattering process
of an electron that is initially localized near the atom
(molecule) and detected with the final momentum k.
We note that if the initial longitudinal velocity is equal
to zero, the initial electron momentum p1 is orthogo-
nal to the initial position vector r1 (i.e., p1 · r1 = 0),
and therefore, the phases φ3 and φ4 coincide with each
other. For nonzero v0,z the term p1·r1 is to be accounted
in the phase. However, in most cases this term almost
does not affect the resulting electron momentum distri-
butions.

As the result, after a partial integration, the phase
corresponding to a given trajectory in the SCTS model
is given by:

ΦSCTS (t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt {ṗ(t) · r(t) + H[r (t) ,p(t)]} , (11)

where it is assumed that the trajectory has also the ini-
tial phase exp (iIpt0) that describes the time evolution
of the ground state. The expression (11) can be also
written as follows:

ΦSCTS (t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
+ V [r(t)] − r(t) · ∇V [r(t)]

}
.

(12)

To arrive at the expression (12), we use the explicit form
of the Hamiltonian for an arbitrary effective potential

H [r (t) , p (t)] =
p2 (t)

2
+ F (t) · r (t) + V (r) (13)

and employed Newton’s equation of motion (1). This
formula is applicable for any single-active-electron
potential used to describe the multielectron system
(atom or molecule), including pseudopotentials (see,
e.g., Ref. [84] and references therein). For the specific
case of the Coulomb potential, the phase (12) reads as

ΦSTCS (t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
− 2Z

r (t)

}
. (14)

This formula should be compared with the phase used
in the QTMC model:

ΦQTMC (t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
− Z

r (t)

}
. (15)

It is seen that the QTMC phase can be obtained from
Eq. (14) by neglecting the term r(t) · ∇V [r(t)] in the
integrand. This term leads to the double weight of the
Coulomb term in the SCTS compared to the QTMC.
Therefore, the QTMC phase can be considered as an
approximation to the SCTS one. The double weight of
the Coulomb contribution leads to a better agreement
with the TDSE results [55].

The SCTS phase (14) is divergent at t → ∞, and
therefore, it is to be regularized. The regularization
(see Ref. [55]) can be accomplished by decomposing the
SCTS phase as

ΦSCTS (t0,v0) = −v0 · r(t0) + Ipt0

−
∫ tf

t0

{
p2 (t)

2
− 2Z

r (t)

}
−

∫ ∞

tf

dt

{
E − Z

r (t)

}

(16)

and separating the time-independent part of the inte-
grand in the term

∫ ∞
tf

dt {E − Z/r (t)}. Although this
time-independent part leads to the contribution
lim
t→∞ E (t − tf ) that diverges linearly when t → ∞, it
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does not produce a phase difference for electron tra-
jectories ending up in the same bin. Indeed, the final
momenta of such trajectories (and, therefore, their ener-
gies) should be considered as equal. Using the solution
of the Kepler problem (see, e.g., Ref. [85]) we calculate
the divergent integral

ΦC
f (tf ) = Z

∫ ∞

tf

dt

r (t)
(17)

analytically: ΦC
f (τf ) = Z

√
b [ξ (∞) − ξ (tf )]. The param-

eter ξ is used to parametrize the time t and the distance
r from the Coulomb center:

r (t) = b (g cosh ξ − 1) ,

t =
√

b3 (g sinh ξ − ξ) + C (18)

Here, in turn, b = 1/ (2E) and g =
√

1 + 2EL2. The
constant C in Eq. (18) is to be found using the initial
conditions, i.e, r (tf ) and p (tf ). It is easy to verify that

ξ (tf → ∞) = ln
(

2t

g
√

b3

)
, (19)

see Ref. [55]. Therefore, for trajectories arriving at the
same bin, we can discriminate between the common
divergent part ln

(
2t/

√
b3

)
and the finite contributions

determined by − ln (g). We note that the latter depends
not only on the energy, but also on the angular momen-
tum L, and thus is different for different trajectories
interfering in a given bin. Since

ξ (tf ) = arsinh
{
r (tf ) · p (tf )

g
√

b

}
, (20)

we obtain the following contribution to the phase accu-
mulated in the time interval [tf ,∞] due to the Coulomb
potential (see Ref. [55]):

Φ̃C
f (tf ) = −Z

√
b

[
ln g + arsinh

{
r(tf ) · p(tf )

g
√

b

}]
.(21)

This asymptotic correction of the phase which we call
post-pulse phase is missing in the QTMC model.

2.2 Implementation of the semiclassical two-step
model

The expression for the phase can be conveniently
treated as an additional equation in the system of the
first-order ordinary differential equations for electron
coordinates and velocity components following from
(1). This system can be solved using the fourth-order
Runge–Kutta method with adaptive step size [86]. The
ability of the numerical method to change the integra-
tion step is particularly important at small distances
from the Coulomb center.

It is clear that the convergence of the results must be
controlled with respect to both the size of the bin in the
momentum space and the number of trajectories. It is
particularly convenient to control convergence by using
the energy spectra. In contrast to the three-dimensional
(3D) differential momentum distributions or their two-
dimensional (2D) cuts, the spectra are functions of only
one variable. They can be easily compared to each other
in, e.g., logarithmic scale.

Already the first practical application of the SCTS
model has shown that a large number of trajectories is
needed for convergence (see Ref. [55] for details). Typ-
ically, for the same laser parameters a thousand times
more trajectories are needed for the simulations with
the phase compared to a semiclassical model disregard-
ing the interference effect. This can be expected tak-
ing into account the fine interference details of elec-
tron momentum distributions generated in ionization
by strong laser pulses. For this reason, it is important
to consider optimization of the codes implementing the
SCTS model. The most obvious way to speed up the
SCTS calculations is to use parallelization. Indeed, any
trajectory-based simulation can be very easily and effi-
ciently implemented on a computer cluster by parallel-
ing the loop over the number of trajectories.

Another approach consists in an efficient sampling
of the initial conditions, i.e., times of ionization tj0
and initial velocities vj

0, where index j enumerates the
trajectories of an ensemble. In a standard trajectory-
based approach the initial conditions are chosen either
randomly or from a certain uniform grid. Neglecting
interference effect the ionization probability R (k) for
the final momentum k that corresponds to the bin
[ki, ki + Δki] (i = x, y, z) is calculated as

R (k) =
np∑

j=1

w
(
tj0, v

j
0

)
, (22)

while the similar formula for the SCTS model reads as

R (k)

=
np∑

j=1

∣
∣∣∣∣

√

w
(
tj0, v

j
0

)
exp

[
iΦSCTS

(
tj0, v

j
0

)]
∣
∣∣∣∣

2

.(23)

The sums in Eqs. (22) and (23) are calculated over all
np trajectories arriving at the given bin. However, the
approach sketched here is not the only possible one.
Importance sampling widely used in Monte-Carlo inte-
gration (see, e.g., Ref. [86]) can be used to implement
the SCTS model.

We turn first to the semiclassical simulations disre-
garding interference. In the important sampling approach
the weights (importance) of classical trajectories are
accounted already at the sampling stage. More specif-
ically, the sets of initial conditions

(
tj0, v

j
0

)
are dis-

tributed in accord with the tunneling rate w
(
tj0, v

j
0

)
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and the ionization probability R (k) is given by a num-
ber of trajectories reaching the bin corresponding to the
final momentum k. It is easy to see that the ionization
probability in the SCTS model based on the importance
sampling reads as

R (k) =
np∑

j=1

∣∣∣exp
[
iΦSCTS

(
tj0, v

j
0

)]∣∣∣
2

. (24)

with the initial conditions distributed in accord to the
square root of the ionization probability. In many situa-
tions the important sampling technique provides faster
convergence compared to the standard approach of
Eqs. (22–23). Its performance, however, depends on the
laser-atom parameters and the specific part of photo-
electron momentum distribution under study.

2.3 Benchmark case: ionization of the H atom

The SCTS model was compared with the QTMC
approach and direct numerical solution of the TDSE for
ionization of the hydrogen atom (see Ref. [55]). The 2D
electron momentum distributions calculated in accord
to the all three approaches are shown in Fig. 2a–c. The
simulations are done for ionization by a few-cycle laser
pulse linearly polarized along the z-axis and defined
through the vector-potential:

A (t) = (−1)n
F0

ω
sin2

(
ωt

2n

)
sin (ωt + ϕ) ez. (25)

Here n is the number of optical cycles within the pulse,
and ez is the unit vector in the polarization direc-
tion. The pulse (25) is present between t = 0 and
t = tf = (2π/ω) · n. The laser field is to be calcu-
lated from Eq. (25) as F (t) = −dA (t) /dt. The factor
(−1)n in (25) ensures that Fz (t) for ϕ = 0 has its max-
imum (equal to F0) for ωt = πn, i.e., at the center of
the pulse. We do calculations for ϕ = 0.

It is seen that the most important features of the
TDSE result are reproduced by the semiclassical mod-
els (see Fig. 1a, c, e). Indeed, the electron momentum
distributions are stretched along the z-axis and show
clear ATI rings as well as the pronounced interference
structure in their low-energy parts. The width of the
momentum distributions along the polarization direc-
tion is obviously underestimated by both semiclassical
models. This is due to the initial condition v0,z = 0 (see
Ref. [55] for details).

However, a closer examination of the low-energy
parts of the distributions reveals remarkable deviations
Indeed, for |k| < 0.3 a.u. the photoelectron momentum
distributions demonstrate pronounced fanlike interfer-
ence structures, see Fig 1b, d, f. These structures are
similar to the ones of Ramsauer-Townsend diffraction
oscillations, see Refs. [87–90]. It is seen that the SCTS
model reproduces the interference pattern of the TDSE,
whereas the QTMC model predicts fewer nodal lines.
This fact was attributed to the underestimate of the

Fig. 1 Two-dimensional electron momentum distributions
for ionization of the H atom by a laser pulse with a duration
of n = 8 cycles, peak intensity of 0.9 × 1014 W/cm2, and
wavelength of 800 nm calculated from the QTMC model [a,
b], numerical solution of the TDSE [c, d], and the SCTS
[e, f ]. Panels b, d, and f display the magnifications for
|kz|,|k⊥| < 0.3 a.u. of the distributions shown in (a), (c),
and (d), respectively. The laser pulse is linearly polarized
along the z axis. The distributions are normalized to the
total ionization yield. A logarithmic color scale in arbitrary
units is used

Coulomb potential in the expression for the phase used
in the QTMC model. The comparison of the photo-
electron energy spectra dR/dE shows that the QTMC
and the SCTS qualitatively reproduce the ATI peaks,
see Fig. 2a–c. However, both semiclassical approaches
can quantitatively reproduce the amplitude of interfer-
ence oscillations only for a few low-order peaks. This
is related to the fact that due to the initial conditions
[Eq. (5)] used in both semiclassical models too few tra-
jectories with large initial momenta in the polarization
direction are launched. This also explains why the semi-
classical energy spectra fall off too rapidly with the
increase of energy. In order to test this hypothesis, the
initial longitudinal velocity for every ionization time is
set to the value predicted by the SFA, see, e.g. Ref.
[37]. This change in initial conditions leads to a better
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Fig. 2 Photoelectron energy spectra for ionization of the
H atom by a laser pulse with a duration of n = 8 cycles
and peak intensity of 0.9 × 1014 W/cm2 calculated using
the TDSE (thick light blue curve), the QTMC (dashed blue
curve) and the SCTS (solid red curve). Panels a, b, and
c correspond to the wavelengths of 800 nm, 1200 nm, and
1600 nm, respectively. The spectra are normalized to the
peak value
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Fig. 3 Photoelectron energy spectra calculated from the
TDSE (thick light blue curve), the QTMC model (dashed
blue curve) and the SCTS (solid red curve). A nonzero initial
parallel velocity predicted by the SFA is used in both the
QTMC and SCTS simulations. The pulse parameters are as
in Fig 2a

agreement between the SCTS model and the TDSE, see
Fig. 3 and Ref. [55]. Therefore, the main reason of devi-
ations of the SCTS results from the TDSE solutions is
not the semiclassical treating of the electron motion in
the continuum, but the fact that the SCTS model does
not describe the tunneling step accurately enough.

Here we compare the semiclassical simulations with
the direct numerical solution of the TDSE assuming
that the latter approach is exact. However, it should
be noted that the numerical solution of the TDSE
can sometimes have its own limitations. This is also
true for the extraction of the photoelectron momentum
distributions from the time-dependent wave function,
which is a non-trivial problem. Some methods used for
this purpose can cause wrong results (see Ref. [91] for
details).

3 Modifications of semiclassical two-step
model

Substantial efforts have been recently made to mod-
ify the SCTS model. These modifications are aimed at
providing not only a qualitative, but also a quantita-
tive agreement with the TDSE. To achieve this goal, it
is necessary to overcome the deficiencies of the SCTS
model (as well as of any other semiclassical model) in
description of the ionization step. The simplest way is
to use the SFA formulas to distribute the initial condi-
tions of classical trajectories. This approach dates back
to the studies of Refs. [92,93]. It is used in the various
semiclassical models (see, e.g., Refs. [37,45–47]), as well
as in the implementations of the SCTS model developed
in Refs. [70,94]. We note, however, that the validity of
the SFA formulas used as initial conditions for classi-
cal trajectories requires a systematic study. To the best
of our knowledge, such a study has not been accom-
plished so far. Here we discuss two modifications of the
SCTS model: The semiclassical two-step model with
quantum input (SCTSQI) [95] and the SCTS model
with the prefactor [94].

3.1 Semiclassical two-step model with quantum
input

The SCTSQI model combines the SCTS with initial
conditions obtained from the solution of the TDSE.
Such a combination leads to a novel quantum-classical
approach. The SCTSQI model is formulated for ioniza-
tion of a one-dimensional (1D) model atom. Therefore,
before reviewing the SCTSQI, we briefly discuss the
solution of the 1D TDSE, as well as the application of
the SCTS model in 1D case.

For the 1D model, the TDSE in the velocity gauge is
given by

i
∂

∂t
Ψ (x, t)

=

{
1
2

(
−i

∂

∂x
+ Ax (t)

)2

+ V (x)

}

Ψ (x, t) ,

(26)
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where Ψ (x, t) is the wave function in coordinate space.
The 1D soft-core Coulomb potential

V = − 1√
x2 + a2

(27)

with a = 1.0 (see Ref. [96]) is used in Ref. [95]. The
corresponding time-independent Schrödinger equation
reads as:

{
−1

2
d2

dx2
+ V (x)

}
Ψ (x) = EΨ (x) . (28)

Equation (28) can be easily solved on a grid using, e.g.,
the well-known three-step formula for approximation of
the second derivative and subsequent diagonalization.
In Ref. [95] the TDSE (26) is solved using slit-operator
method [97]. In the regions xb ≤ |x| ≤ xmax the wave
function is multiplied by a mask

M (x) = cos1/6
[

π (|x| − xb)
2 (xmax − xb)

]
, (29)

where x = ±xb correspond to the internal boundaries of
the absorbing regions, and xmax is the size of the com-
putational box. The mask prevents unphysical reflec-
tions of the propagating wave function from the grid
boundary and allows to calculate the electron momen-
tum distributions using the mask method [98].

In the 1D case the Newton’s equation for an electron
moving in the laser field and the field of the potential
(27) reads as

d2x

dt2
= −Fx (t) − x

(x2 + a2)3/2
. (30)

The corresponding SCTS phase is given by (see Ref.
[95]):

ΦSCTS (t0,v0) = Ipt0

−
∫ ∞

t0

dt

{
v2
x (t)
2

− x2

(x2 + a2)3/2
− 1√

x2 + a2

}

.

(31)

We note that the ionization rate (5) in the 1D case is
to be replaced by

w (t0) ∼ exp

(

−2 (2 |E0|)3/2
3F (t0)

)

, (32)

where E0 = −0.6698 a.u. is the ground-state energy in
the potential (27). Equation (30) is to be numerically
integrated up to the end of the laser pulse at t = tf .
The asymptotic momentum of the photoelectron can be
found from x (tf ) and px (tf ) using the energy conser-
vation law. We note that after the end of the pulse the

unbound electron cannot change its direction of motion,
and, therefore, kx has the same sign as that of px (tf ).

In order to correctly apply the SCTS model in the
1D case, the post-pulse phase is to be calculated. This
calculation can be performed as follows (see Ref. [95]).
At first, we decompose the phase as:

ΦSCTS (t0,v0) = Ipt0

−
∫ tf

t0

dt

{
v2
x (t)
2

− x2

(x2 + a2)3/2
− 1√

x2 + a2

}

+ΦV
f , (33)

As in the 3D case, we separate the post-pulse phase
into parts with time-dependent and time-independent
integrands and disregard the linearly divergent contri-
bution from the first part. As the result, the post-pulse
phase is determined by:

Φ̃V
f =

∫ ∞

tf

x2 (t)

[x2 (t) + a2]3/2
dt. (34)

The divergent part of this integral can be efficiently
isolated. Indeed, Eq. (34) can be equivalently rewritten
as follows:

Φ̃V
f =

∫ ∞

tf

[
x2

(x2 + a2)3/2
− 2Et2

(2Et2 + a2)3/2

]

dt

+
∫ ∞

tf

2Et2

(2Et2 + a2)3/2
dt. (35)

Since the second divergent term in Eq. (35) depends
on the electron energy E and the parameter a, it is
the same for every trajectory that arrives at a given
bin [kx − Δkx, kx + Δkx]. Therefore, it does not affect
the resulting interference pattern and can be omitted
[95]. The post-pulse phase is determined by the first
term in Eq. (35). This converging integral is easily cal-
culated numerically. It depends on the position x (tf )
and velocity px (tf ) at the end of the laser pulse what
suggests an efficient way to calculate it by interpolation
[95].

This is not a simple task to unify the direct solution of
the TDSE and the trajectory-based approach in one sin-
gle model. The main problem of such combination has
a fundamental origin. Indeed, both the starting point
and the initial velocity are needed to uniquely deter-
mine the classical trajectory. On the other hand, the
Heisenberg’s uncertainty principle imposes a limit to
the precision with which position and momentum (as
other canonically conjugated variables) can be simul-
taneously known. The application of quasiprobability
distribution allows to extract the information from the
wave function about both the coordinate and momen-
tum.

The most widely-known examples of the quasiproba-
bility distributions are the Wigner function and Husimi
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distribution [99] (see Ref. [100] for a textbook treat-
ment). The latter can be obtained by smoothing of the
Wigner function with a Gaussian weight. The Gabor
transformation [101] was used in Ref. [95]. The Gabor
transformation is presently widely used in studies of the
ATI (see, e.g., Ref. [102]) and, especially, the HHG (see,
e.g., Refs. [103–105]). The Gabor transform of the wave
function Ψ̃ (x, t) near the point x0 is given by:

G (x0, px, t) =
1√
2π

∫ ∞

−∞
Ψ̃ (x′, t) exp

[

− (x′ − x0)
2

2δ20

]

× exp (−ipxx′) dx′, (36)

where δ0 is the width of the Gaussian window. The
square modulus |G (x0, px, t)|2 corresponds to the momen-
tum distribution of the particle in the vicinity of x = x0

at time t and is just the Husimi distribution [99]. The
Husimi distribution is a positive semidefinite function,
which helps to interpret it as a quasiprobability distri-
bution.

The SCTSQI model employs the solution of the
TDSE in the length gauge:

i
∂

∂t
Ψ (x, t)

=
{

−1
2

∂2

∂x2
+ V (x) + Fx (t) x

}
Ψ (x, t) . (37)

Two additional spatial grids containing N points are
introduced the absorbing regions |x| ≥ xb:

xj
0,± = ∓ (xb + Δx · j) , (38)

Here j = 0, ..., N and Δx = (xmax − xb) /N . In the
SCTSQI the Gabor transforms of the absorbed part
of the wave function Ψ̃ (x, t) = [1 − M (x)] Ψ (x, t)
are calculated at every time at the points xj

0,− and
xj
0,+ of the grids (38). The value of the Gabor trans-

formation at an arbitrary point belonging to D1 or
D2 can be obtained by interpolation (see Ref. [95]
for a details of the implementation of the SCTSQI
model). Hence, at every time t the Gabor transform
G (x, px, t) is known on the grids in the phase-space
domains D1 = [−xmax,−xb] × [−px,max, px,max] and
D2 = [xb, xmax] × [−px,max, px,max]. An example of the
Husimi distribution obtained in the domains D1 and D2

at t = 3tf/2 is shown in Fig. 4. It should be stressed
that the size of the computational box xmax used in the
SCTSQI can be much smaller than the one required to
obtain accurate momentum distributions by using the
mask method.

At every time t0 an ensemble of np classical trajec-
tories with random initial positions xj

0 and momenta
pjx,0 (j = 1, ..., np) is launched in the SCTSQI model.
Every trajectory of the ensemble is assigned with the

x (a.u.)
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Fig. 4 The Husimi quasiprobability distribution
|G (x, px, t)|2 at t = 3tf/2 calculated for ionization of
1D model atom by a laser pulse with a duration of n = 4
cycles, wavelength of 800 nm, and peak intensity of
2.0 × 1014 W/cm2. The distribution is calculated in the
phase space domains D1 and D2 (see text). The points S1,
S2, and S3 depicted by a magenta square, cyan triangle,
and green circle, respectively show the three main maxima
of the Husimi distribution. A logarithmic color scale is used

amplitude G
(
t0, x

j
0, p

j
x,0

)
and the SCTSQI phase

ΦSCTSQI
0

(
t0, x

j
0, p

j
x,0

)

= −
∫ ∞

t0

dt

{
v2
x (t)
2

− x2

(x2 + a2)3/2

− 1√
x2 + a2

}
. (39)

This phase coincides with the phase of the semiclassi-
cal propagator describing a transition from an initial
state characterized by the momentum to a final state,
which is also described by the momentum value. The
ionization probability R (kx) is calculated as:

R (kx) =

∣∣∣∣
∣∣

NT∑

m=1

nkx∑

j=1

G
(
tm0 , xj

0, p
j
x,0

)

× exp
[
iΦSCTSQI

(
tm0 , xj

0, p
j
x,0

)]∣∣∣
2

, (40)

where NT is the number of steps that is used in the
TDSE propagation and nk is the number of trajecto-
ries arriving at the same bin centered at kx. It is impor-
tant to stress that G

(
tm0 , xj

0, p
j
x,0

)
is a complex function

having both modulus and the phase.
The SCTSQI model was tested by comparing its pre-

dictions with the numerical solution of the TDSE and
the SCTS model, see Fig. 5a, b. It is seen that the
SCTSQI provides not only qualitative, but also quan-
titative agreement with the TDSE result. This is true
for both the width of the electron momentum distribu-
tions and the positions of the interference maxima and
minima. The small discrepancy in the heights of some
interference peaks (see Fig. 5a) is attributed to the fact
that the SCTSQI model does not account for the pre-
exponential factor of the semiclassical matrix element.
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Fig. 5 a The photoelectron momentum distributions for
ionization of a 1D atom by a laser pulse with a duration
of n = 4 cycles, wavelength of 800 nm, and peak inten-
sity of 2.0 × 1014 W/cm2 calculated from the solution of
the TDSE (thick light blue curve) and the SCTSQI model
(dashed green curve). b Electron energy spectra obtained
from the TDSE (thick light blue curve), SCTSQI (dashed
blue curve), and the SCTS (red curve). The distributions
and spectra are normalized to the peak values

We note that as in the 3D case (see Sect. 2.3) the 1D
SCTS model shows only a qualitative agreement with
the fully quantum results, see Fig. 5b. Specifically, the
SCTS model underestimates the width of the momen-
tum distributions. The electron energy spectra calcu-
lated within the SCTSQI model and from the solution
of the TDSE are in almost perfect agreement. Simulta-
neously, the spectrum calculated using the SCTS model
falls off too rapidly with the increase of the energy. This
is caused by the underestimation of the width of the
electron momentum distributions in the SCTS model.
It was shown that the phase of the Gabor transform is
very important in the SCTSQI [95]. Without this phase
the SCTSQI model does not provide even a qualita-
tive agreement with the TDSE result. This could be
expected, since the amplitude G (t, x, px) contains all
the information about the quantum dynamics of the
absorbed part of the wave function before it was trans-
formed in an ensemble of trajectories. In a way the term
Ipt0 in the phase (11) of the SCTS model plays the same
role as the phase of G (t, x, px) in the SCTQI approach.

As any semiclassical approach, the SCTSQI model
can visualize the physical mechanism responsible for the
strong-field process under study using classical trajecto-
ries (see Ref. [95] for details). Since the initial conditions
in the SCTSQI model are determined from the direct
solution of the TDSE, we expect that this model will
be able to provide more accurate trajectory-based pic-
tures of strong-field phenomena compared to the stan-
dard semiclassical approaches. This advantage of the

SCTSQI model should be used in studies of compli-
cated strong-field processes. In addition to this, after
some modification the SCTSQI model can be applied
to studies of the rescattering-induced phenomena, espe-
cially the high-order ATI and the HHG. The ways of
this modification are suggested in Ref. [95]. Finally,
the extension of the SCTSQI model to the three-
dimensional (3D) case is straightforward and develop-
ments in this direction are on the way. Most impor-
tantly, the model solves the non-trivial problem how to
choose initial conditions for classical trajectories. In the
SCTSQI model these initial conditions are determined
by the exact quantum dynamics.

3.2 SCTS model with preexponential factor

An efficient modification and extension of the SCTS
model was proposed recently in Ref. [94]. This study for
the first time investigates systematically the influence
of the preexponential factor of the semiclassical matrix
element (8c) (see Refs. [106,107]) that was not explic-
itly considered in all other versions of the SCTS. This
preexponential factor for strong-field processes was cal-
culated in Appendix B of Ref. [108]. The modulus of
this prefactor that corresponds to the mapping from
initial conditions to the final momentum components
influences the weights of the classical trajectories. Its
phase known as the Maslov phase can be identified as a
case of Gouy’s phase anomaly and modifies the interfer-
ence structures [94]. In addition, the authors propose a
novel way of solving the so-called inverse problem based
on a clustering algorithm.

Since the SCTS implementation of Ref. [94] employs
the SFA and the saddle-point approximation to calcu-
late the ionization weight of the classical trajectories
and their initial positions, the ionization time t0 for
each initial electron momentum k′ is determined by
the real part of the corresponding saddle-point time
ts = t0+ it1. The saddle point ts satisfies the equation:

1
2

[k′ + A (ts)]
2 + Ip = 0. (41)

The ionization probability is calculated as:

R (k)

=

∣∣∣∣∣

∑ DCCoul√|J (t → ∞) | exp
[
i
(
S0

↓ + S→ − νπ

2

)]
∣∣∣∣∣

2

.

(42)

Here, the summation is over all the initial momenta k′
leading to the final momentum k. D is the matrix ele-
ment emerging when the saddle-point method is applied
to calculate the SFA ionization amplitude and CCoul is
the Coulomb correction of the ionization rate [64]. The
phase associated with every trajectory is decomposed
in Eq. (42) as S0

↓ + S→, where
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S0
↓ = Ipts − 1

2

∫ t0

ts

dt [k′ + A (t)]2 (43)

corresponds to the ionization step (motion under the
potential barrier), and

S→ =

−
∫ ∞

t0

dt

{
p2(t)

2
+ V [r(t)] − r(t) · ∇V [r(t)]

}

(44)

accounts for the electron motion in the continuum. We
note that the phase S→ coincides with the third term
of the SCTS phase [see Eq. (12)]. The Jacobian J is
calculated as

J (t) = det
(

∂k (t)
∂k′

)
. (45)

The Maslov index ν changes at focal points, i.e, at times
T when the Jacobian is zero J (T ) = 0. The change
(jump) of the Maslov index when the trajectory passes
through a focal point is calculated as:

Δν (T ) = m − 1 + sgn det (g) , (46)

where the m × m matrix g is given by

gi,j = δr(i) · Hesser,r (H) δr(j) (47)

Here, in turn, m is the number of linearly independent
directions d(i) (i = 1, ...,m), which can be found at the
focal points, such that infinitesimal changes of the ini-
tial momenta in these directions k′ → k′ + εd(i) do
not affect k (T ) in the first order of ε. These changes of
the initial momenta correspond to the changes of the
position

δr(i) = ε
∑

j

∂r (T )
∂k′

j

d
(i)
j , (48)

see Eq. (47). The Hessian Hesser,r (H) of the Hamilto-
nian function

H =
1
2

[k + A (t)]2 + V (r) (49)

is calculated with respect to the position vector r.
The inverse problem is solved in Ref. [94] by using

clustering algorithms. More specifically, density-based
spatial clustering of applications with noise algorithms
was applied. The solution of inverse problem with clus-
tering shows an example of the application of machine
learning (see Ref. [109] for a text-book treatment) to
strong-field phenomena. Other recent applications of
the machine learning in strong-field physics are dis-
cussed in, e.g., Refs. [110,111].

The fact that the Jacobian is explicitly taken into
account in Eq. (42) along with the solution of the

inverse problem ensures the correct preexponential
weight of every trajectory, namely, 1/

√|J |. It should
be emphasized that this weight cannot be reproduced in
“shooting method”, since the distribution of the trajec-
tories over the cells in accord with their final momenta
automatically creates a factor of 1/ |J | instead of the
1/

√|J |. This problem was ignored in the implemen-
tation of the SCTS [55], since the implementation of
Ref. [55] accounts only for the exponential factors in
the trajectories weights.

The simple relation between the Jacobian in the 3D
case and the corresponding Jacobian for two spatial
dimensions was derived in [94] for systems (ionic poten-
tial and the laser field) with cylindrical symmetry:

|J3D| =
k⊥
k′

⊥
|J2D| , (50)

where k⊥ =
√

k2
x + k2

y (the field is polarized along

the z-axis). This correction weight allows to obtain the
results for the 3D system performing only the 2D sim-
ulations, and, by doing so, reduce the computational
costs of the SCTS model significantly. We note that
Eq. (50) has been already used in the SCTS simula-
tions of Ref. [55].

The modified version of the SCTS is in excellent
agreement with solution of the TDSE. This applies
for both electron momentum distributions and energy
spectra [94]. It is shown that the inclusion of the preex-
ponential factors is crucial for quantitative agreement
with the TDSE results. The extended version of the
SCTS can be applied not only to the linearly polarized
pulses, but also to non-cylindrically-symmetric laser
fields, e.g., bicircular ones, see Ref. [94]. Undoubtedly
the version of the SCTS developed in [94] is a valuable
tool that is extremely useful in studies of strong-field
ionization.

4 Semiclassical two-step model and the
strong-field holography with photoelectrons

Development of the techniques capable to image the
atomic positions that change in time in a chemical
reaction will lead to a revolution in chemistry, biology,
nanoscience, etc. At present there are many methods
for time-resolved molecular imaging (see Ref. [112] for a
review). These methods have been developed due to the
prominent progress in laser technologies. This applies
above all to the development of the technology for pulse
compression and the emergence of free-electron lasers.
Moreover, the availability of table-top intense femtosec-
ond lasers, which led to the emergence of strong-field,
ultrafast, and attosecond physics, gave a strong impulse
to the development of new techniques for time-resolved
molecular imaging. Among these techniques are: laser-
induced Coulomb-explosion imaging [113–116], laser-
assisted electron diffraction [117,118], high-order har-
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monic orbital tomography [119,120], laser-induced elec-
tron diffraction (see, e.g., Refs. [121–123]), and strong-
field photoelectron holography (SFPH) [124].

The SFPH method implements the widely-known
idea of holography (1971 Nobel Prize in Physics awarded
to Dennis Gabor, see Ref. [125]) in strong-field physics.
It was for the first time shown in 2011 by Y. Huis-
mans et al. [124] that a holographic pattern can be
clearly recorded in experiment. This pattern in the
electron momentum distributions is created by the sig-
nal (rescattered) and reference (direct) electrons. The
SFPH can be implemented in a table-top experiment.
It was shown that the holographic patterns encode a
lot of spatio-temporal information about both the par-
ent ion and the recolliding electron [124]. Last but not
least, the electron dynamics can be imaged with sub-
cycle (i.e., attosecond) time resolution. These advan-
tages have triggered extensive studies of the SFPH,
both experimental [66,126–129] and theoretical [56–
60,124,126,127,130–135].

However, the first SFPH experiments [124,126–128,
130] investigated the ionization process and the dynam-
ics of the electron wave packet rather than molecu-
lar structure or dynamics. This is because of the fact
that for diatomic and small molecules the holographic
structures are mostly determined by the long-range and
the alignment-independent Coulomb potential. As the
result, the short-range effect reflecting the molecular
structure cannot be observed on the background of the
more intense Coulomb contribution. This problem was
elegantly solved in experiment of Ref. [129] by consid-
ering the difference between the normalized photoelec-
tron holograms for aligned and antialigned molecules.
This approach is based on the fact that for large scat-
tering angles the differential cross section deviates from
the Coulomb one and depends on the alignment of the
molecule at the ionization instant. A similar method
was also used in Ref. [66]. Various approaches were
used for theoretical analysis of the SFPH: the three-step
model [131–133,135], the SFA version that accounts for
rescattering [124,130], the Coulomb-corrected strong-
field approximation [124,130], the CQSFA [56,57,59,
60], etc. (see Ref. [136] for recent review).

4.1 SCTS model and experimental holographic
patterns

The SCTS model was applied to the simulations of the
holographic interference patterns observed in the exper-
iment [66]. In the study [66] the electron momentum
distribution produced in ionization of the NO molecule
were calculated for two different cases. In the first case
the electron density of the highest occupied molecu-
lar orbital (HOMO) is aligned along the polarization
direction, whereas in the second case this density is
orthogonal to it. These distributions, as well as their
normalized difference are shown in Fig. 6. To apply the
SCTS model, the distributions over the initial trans-
verse velocities are needed for both these cases. These
distributions were determined using the approach based

Fig. 6 Photoelectron momentum distributions for ioniza-
tion of the NO molecule by a laser pulse with a duration
of 35 fs, intensity of 2.3 × 1014 W/cm2, and wavelength of
800 nm calculated using the SCTS model. The panels a and
b show the distributions obtained in the cases where the
electron density of the HOMO is aligned along the laser
polarization direction and perpendicular to it, respectively.
Panel c presents the normalized difference of the distribu-
tions shown in (a) and (b). The figure is reprinted from Ref.
[66]

on partial Fourier transform generalized to molecules
(MO-PFT) [137–139]. The MO-PFT approach works
with the electron wave function in mixed (coordinate-
momentum) representation and uses the Wentzel-Kra-
mers-Brillouin (WKB) approximation. The MO-PFT
requires the corresponding HOMO’s that were obtained
using the GAMESS package [140]. The semiclassi-
cal simulations are in a perfect agreement with the
experimental results [66]. The simulations within the
SCTS model reproduce all characteristic features of the
holographic patterns. The regions of constructive and
destructive interference predicted by the model of Ref.
[131] that neglects the Coulomb potential are shown
in Fig. 6 with white and black color, respectively. It is
seen that the three-step model overestimates the spac-
ing between the holographic fringes in the direction per-
pendicular to laser polarization. Therefore, the account
of the Coulomb potential leads to the improved agree-
ment between the experiment and the semiclassical sim-
ulations.
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4.2 Effects of the Coulomb potential and the
strong-field photoelectron holography

The three-step semiclassical model predicts different
types of subcycle interferometric structures, see Ref.
[131]. Various types of the holographic structures arise
due to the fact that the reference and signal electrons
can start from different quarter cycles of the laser field.
In Ref. [67] the various types of the subcycle interfer-
ence patterns revealed in [131] were calculated account-
ing for the Coulomb potential of the ion with the
adapted version of the SCTS model. Here we sketch
the main points of this adapted SCTS.

First, an ensemble of classical trajectories is launched
only from the central period of a long (8 optical cycles)
laser pulse. Second, the simple formula entirely neglect-
ing the Coulomb potential, i.e., considering triangu-
lar potential barrier formed by the laser field and the
ground state energy, is used for the tunnel exit point:

|ze (t0)| = − Ip
F (t0)

, (51)

where the sign of ze (t0) is to be chosen to ensure the
electron tunnels in the direction opposite to the instan-
taneous field F (t0). This makes it possible to directly
compare the resulting interference patterns with the
patterns of the three-step model. Third, the weights
(5) of classical trajectories were not taken into account,
and the trajectories were distributed uniformly, which
is justified by the fact that holographic patterns and
not electron momentum distributions were calculated in
Ref. [67]. Finally, a special approach instead of Eq. (23)
has to be used in the semiclassical model to obtain
the phase difference between the signal and reference
electrons. Indeed, to calculate the phase difference we
need to isolate only one kind of rescattered trajectories
and only one kind of the direct ones. This is a com-
plicated task if the Newton’s equation of motion (1) is
solved treating the laser field and the Coulomb force
on equal footing. First of all, it is necessary to answer
the question: How to distinguish between the direct and
rescattered electron trajectories in the presence of the
Coulomb field? Indeed, all the trajectories are, to some
extent, affected by the Coulomb potential.

The following simple recipe is used in Ref. [67].
The reference trajectories were defined as those pass-
ing the ionic core at large distances and thus experi-
encing small-angle scattering only. More precisely, the
reference electrons obey the condition v0,⊥ky ≥ 0. In
contrast to them, the signal trajectories come close to
the parent ion and undergo large-angle scattering that
changes direction of the ky component compared to
the initial one. Therefore, the signal trajectories can
be defined as obeying the condition v0,⊥ky ≤ 0. How-
ever, these conditions are not sufficient to calculate the
holographic structures correctly. The fact is that in the
presence of the Coulomb field the mapping from the
plane of initial conditions (t0, v0,⊥) to the (kx, ky) plane
is a complicated function. For example, in the domain
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Fig. 7 Holographic patterns emerging due to interference
of a direct electron with a rescattered one that has the short-
est travel time (see Ref. [67]) calculated a using the three-
step model with time-dependent exit point, and b account-
ing for the Coulomb potential of the ion. The interference
patterns are calculated for ionization of the H atom at a
wavelength of 800 nm and intensity of 6.0 × 1014 W/cm2

where the condition v0,⊥ky ≤ 0 defining the signal tra-
jectories is fulfilled, this mapping is not one-to-one: Dif-
ferent sets of initial conditions lead to the same momen-
tum k, see Ref. [67] for details. The separation of trajec-
tories of different kinds can be efficiently done by using
the clusterization algorithms. In Ref. [67] this trajec-
tory separation was accomplished manually by careful
inspection of the mapping (t0, v0,⊥) → (kx, ky).

It was found that the Coulomb potential changes
interference patterns significantly. Three main effects
of the Coulomb field in the holographic patterns were
identified in Ref. [67]. These are: shift of the interfer-
ence pattern as a whole, filling of the parts of the pat-
tern that are unfilled when the Coulomb potential is
disregarded, and the characteristic kink of the interfer-
ence pattern in the vicinity of ky = 0 (cf. Fig. 7a, b).
This kink at zero transverse momenta was attributed to
the Coulomb focusing effect [141]. However, the ques-
tion remains, how sensitive are the predicted Coulomb
effects to focal averaging. Therefore, further studies are
required to understand which of these effects can be
observed in experiment.

5 Semiclassical two-step model and
multielectron polarization effects

The theoretical methods used in strong-field physics
usually employ the single-active electron approxima-
tion (SAE). In the SAE an atom or molecule interact-
ing with the laser pulse is replaced by a single elec-
tron. This single electron moves in the laser field and
in the field of an effective potential. Therefore, the ion-
ization is treated as a one-electron process. The SAE
is a basis for understanding of many strong-field pro-
cesses, including ATI and HHG [2,83]. Nevertheless,
the role of the multielectron effects (ME) in strong-
field and ultrafast physics has been attracting partic-
ular attention (see, e.g., Refs. [142,143] and references
therein). By now many theoretical approaches aimed at
the description of the ME effects have been developed.
The most well-known and widely used of them are:
the time-dependent density-functional theory [144] (see
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Refs. [145,146] for a text-book treatment), multiconfig-
uration time-dependent Hartree-Fock theory [147,148],
time-dependent restricted-active-space [149] and time-
dependent complete-active-space self-consistent field
theory [150], time-dependent R-matrix theory [151,152]
and R-matrix theory with time-dependence [153,154],
time-dependent analytical R-matrix theory [155], etc.
(see Ref. [156]). There are also many semiclassical
approaches capable to account for the ME effects, see,
e.g. Refs. [43,78,142,157–159]. The advantages of the
trajectory-based models discussed in Sect. 1 are partic-
ularly valuable in studies of complex ME effects.

One of the most well-known ME effects in strong-field
ionization is laser-induced polarization of the parent
ion. Recently the polarization effects in the ATI have
been actively studied, see, e.g., Refs. [43,78,142,157–
160]. In Refs. [161,162] and [160] the effective potential
for the outer electron that accounts for the external
laser field, the Coulomb interaction, and the polariza-
tion effects of the ionic core, is derived in the adia-
batic approximation. It was for the first time found in
Ref. [157] that the time-independent Schrodinger equa-
tion with this effective potential and accounting for the
Stark-shift of the ionization potential can be approx-
imately separated in parabolic coordinates. This sep-
aration determines a certain tunneling geometry. The
emerging physical picture of the flow of the electron
charge associated with the tunneling electron is referred
to as tunnel ionization in parabolic coordinates with
induced dipole and Stark shift (TIPIS). The semiclassi-
cal model based on the TIPIS approach and disregard-
ing the interference effect has shown a good agreement
with experimental data (see Refs. [157–159]) and the
TDSE results [78,157].

The electron momentum distributions generated in
ionization of different atoms and molecules, including
Ar, Mg, CO, naphthalene, etc., are very sensitive to the
ME effects accounted by the induced dipole of the ionic
core [43,78,157–159]. These studies consider ionization
by circularly or elliptically polarized laser pulses. This
is due to the fact that the effective potential derived
in Refs. [161,162] and [160] is valid only at large and
intermediate distances from the ionic core. In close to
circularly polarized laser fields the rescattering-induced
processes are suppressed (see Ref. [163]), and, there-
fore, the vast majority of the ionized electrons do not
return to the parent ion. However, this is not true
for linearly polarized field, and the applicability of the
TIPIS approach in semiclassical simulations in the case
of linear polarization raised questions. This problem is
addressed in Ref. [156]. Furthermore, the study [156]
combines the TIPIS approach with the SCTS model.
The resulting two-step semiclassical model for strong-
field ionization is capable to describe quantum inter-
ference and accounts for the Stark-shift, the Coulomb
potential, and the polarization induced dipole potential.

5.1 Combination of the TIPIS model and the STCS

The ionic potential derived in Refs. [160–162] reads as:

V (r, t) = −Z

r
− αIF (t) · r

r3
, (52)

where ME effect is accounted through the induced
dipole potential

[
αIF (t) · r/r3

]
. For the potential of

Eq. (52) the starting point of a classical trajectory can
be obtained as the tunnel exit in the TIPIS model.
More specifically, the tunnel exit point is given by
ze ≈ −ηe/2, where ηe satisfies the equation:

− β2 (F )
2η

+
m2 − 1

8η2
− Fη

8
+

αIF

η2
= −Ip (F )

4
, (53)

It is seen that Eq. (53) has the additional ME term in
the left-hand side compared to the equation (2). Since
the ME term in the potential (52) is proportional to
the laser field F(t), it is absent at t > tf . Therefore,
after the laser pulse terminates, the electron moves in
the Coulomb field only. This makes it possible to use
Eq. (6) for calculation of the asymptotic momentum of
the electron from its position and momentum at t = tf .
The SCTS phase (12) with the potential V (r, t) defined
by Eq. (52) reads as:

ΦSCTS (t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
− 2Z

r
− 3αIF (t) · r

r3

}
. (54)

In order to implement the resulting semiclassical model,
the importance sampling method was used in Ref.
[156]. We note that in addition to the inapplicability
of the potential (52) at small distances, there exist
other conditions that restrict the range of applicabil-
ity of the TIPIS model (see Refs. [78,156] for details).
The study [156] focuses on the cases of Mg (Ip =
0.28 a.u., αN = 71.33 a.u., αI = 35.00 a.u.) and Ca
(Ip = 0.22 a.u., αN = 169.0 a.u., αI = 74.11 a.u.)
atoms, which have similar ionization potentials. But
their static ionic polarizabilities are different by approx-
imately two times.

In order to avoid the application of the potential (52)
at small distances, a special cutoff radius rC was intro-
duced in Ref. [156], and all the trajectories entering
the sphere r < rC were ignored. The remaining trajec-
tories do not reach the vicinity of the ion. It is clear
that the elimination of the whole class of the trajec-
tories (the returning ones) depletes some parts of elec-
tron momentum distributions. However, these depleted
parts usually correspond to the boundary of the direct
ionization spectrum. Therefore, they do not affect the
main part of the momentum distributions that provides
major contribution to the ionization yield, see Ref. [156]
for details.

5.2 Application of the combined semiclassical model

The 2D photoelectron momentum distributions calcu-
lated in accord with the resulting semiclassical model
are shown in Fig. 8a–d. Figure 8a, c correspond to the
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Fig. 8 Two-dimensional electron momentum distributions
for the Mg [a, b] and Ca [c, d] atoms calculated by combin-
ing the TIPIS approach with the SCTS model. The wave-
length is 1600 nm and the pulse duration is n = 8 cycles.
Panels [a, b] and [c, d] show the distributions calculated at
the intensities of 3.0 × 1013 W/cm2 and 1.0 × 1013 W/cm2,
respectively. The distributions [a, c] are obtained neglecting
the ME terms in Eqs. (52), (53), and (54), whereas the dis-
tributions [b, d] are calculated accounting the ME terms in
all these equations. The momentum distributions are nor-
malized to the total ionization yield. A logarithmic color
scale in arbitrary units is used

distributions calculated accounting for the laser and
Coulomb fields. Figure 8b, d display the results of the
combined TIPIS + SCTS model, i.e., with the account
of the ME potential. The panels (a, b) and (c, d) cor-
respond to ionization of Mg and Ca, respectively. It is
seen that the presence of the ME term in the potential
of Eq. (52) results in a narrowing of the longitudinal
momentum distributions and modification of the inter-
ference structures.

We first discuss the narrowing of the longitudinal dis-
tributions. This effect is further illustrated in Fig. 9a,
c that show the longitudinal momentum distributions
obtained with and without the ME term for Mg and Ca,
respectively. Since the widths of the distributions do not
change due to the interference effects, the phase is disre-
garded in the calculations of Fig. 9a, c. The correspond-
ing electron energy spectra are shown in Fig. 9b, d. It is
seen that the spectra calculated accounting for the ME
term fall off more rapidly with increase of the energy
than the ones obtained neglecting the ME effects. This
is a direct consequence of the narrowing of the corre-
sponding 2D electron momentum distributions.

The mechanism underlying the narrowing effect has
a kinematic origin [156]. The analysis of classical trajec-
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Fig. 9 a, c Electron momentum distributions in the longi-
tudinal direction, and b, d energy spectra. Panels [a,b] and
[c,d] correspond to the ionization of Mg and Ca, respec-
tively. Thick green curve and thin blue curve show the
semiclassical results obtained with and without ME terms,
respectively. The wavelength and duration of the pulse are
as in Fig. 8. The panels [a, b] and [c, d] are calculated for
the intensities of 3.0 × 1013 W/cm2 and 1.0 × 1013 W/cm2,
respectively. The longitudinal distributions and energy spec-
tra are normalized to the maximum value

tories has shown that there is a certain class of trajecto-
ries strongly affected by the induced polarization of the
ionic core. The trajectories of this class start closer to
the parent ion that other trajectories and their initial
transverse velocities are not too large (see Ref. [156] for
details). Indeed, the force acting on the electron due
to the ME polarization effect (the ME force) decays as
1/r2 with increasing r. Therefore, this force can change
the electron motion only at the initial part of the trajec-
tory adjacent to the tunnel exit. The ME force reduces
both longitudinal and transverse components of the
electron final momentum, and, as the result, the tra-
jectories belonging to this class lead to the bins with
smaller k. We note that for close to circularly polarized
laser pulses the ME effects result in the rotation of the
2D electron momentum distributions towards the small
axis of polarization ellipse [157].

It is seen that the presence of the ME term in the
equations of motion and the phase does not dramat-
ically change the interference patterns. The interfer-
ence structure is modified only in the first and the sec-
ond ATI peaks and also in the vicinity of the kz axis.
The analysis of the mechanism behind the polarization-
induced interference effect showed that the changes in
interference patterns are mostly caused by the ME term
in the equation of motion, whereas the presence of the
term −3αIF · r/r3 in the phase (54) does not play a
substantial role [156].

It was found that the trajectories interfering in a
given bin often have similar ME contributions to the
phase
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Fig. 10 Two-dimensional photoelectron momentum dis-
tributions for the Ba atom ionized by a laser pulse with
a duration of n = 4 cycles, intensity of 3.0 × 1013 W/cm2

and a wavelength of 1600 nm obtained by semiclassical sim-
ulations neglecting the ME term in the phase (54) [a, c]
and including this term [b, d]. Panels (c) and (d) display
the magnification for |kz| ≤ 0.3 a.u. and |k⊥| ≤ 0.25 a.u. of
the momentum distributions shown in (a) and (b), respec-
tively. In both cases the ME force is included in the New-
ton’s equation of motion. The normalization to the total
ionization yield is used. The color scale is logarithmic with
arbitrary units

−
∫ ∞

t0

dt
3αIF · r (t)

r3 (t)
, (55)

and therefore, the difference of these contributions is
small. This difference is the only important quantity
for the interference effect. The ME contributions to the
phase are similar due to the combination of the follow-
ing reasons: (i) the tunneling probability is a sharp func-
tion of the laser field F (t0) at time of ionization, (ii)
the tunnel exit depends only on F (t0) and the param-
eters of the atom (molecule), and (iii) only the initial
part of the electron trajectory is relevant in the integral
(55). Nevertheless, for atoms and molecules with large
values of the ionic polarizability αI , the difference of
the ME contributions to the phase is essential. As the
result, the changes in the interference patters due to
the ME effect can be significant. This is illustrated in
Fig. 10a–d. It is seen that the number of radial nodal
lines in the fanlike interference pattern at low energies
is different when calculated with and without the ME
term in the phase of Eq. (54). In Fig. 10c there are six
nodal lines for positive k⊥, while in the presence of the
ME term only five such lines are visible [see Fig. 10d].

6 Semiclassical two-step model for H2

molecule

To the best of our knowledge, there are only a few works
that apply semiclassical models accounting for the
quantum interference effect to describe strong-field ion-
ization of molecules, see Refs. [139,164,165]. The stud-
ies [139,164] extend the QTMC model to the molecu-
lar case. The SCTS model was applied to the hydro-
gen molecule in Ref. [165]. Two-dimensional electron
momentum distributions, energy spectra, and angu-
lar distributions were compared to the ones calculated
for ionization of the atomic hydrogen. The study [165]
revealed substantial differences in electron momentum
distributions and energy spectra as compared to the
atomic case.

6.1 SCTS model for hydrogen molecule

The ionic potential experienced by a single-active-
electron in the H2 molecule is given by

V (r) = − Z1

|r − R/2| − Z2

|r + R/2| (56)

Here R is the vector pointing from one nucleus to
another. It is assumed that the origin of the coordi-
nate system is located in the center of the molecule.
The effective charges Z1 and Z2 are chosen to be equal
to 0.5 a.u. [139,164]. It is obvious that the question
how to distribute initial conditions of classical trajec-
tories is more complicated for a molecule than for an
atom. Presently there are two well-known approaches
to this problem: Molecular quantum-trajectory Monte-
Carlo model (MO-QTMC) [139,164] and MO-PFT
[137–139]. The MO-QTMC model applies expressions
of the molecular strong-field approximation (MO-SFA)
[166,167]. The MO-SFA is a generalization of the SFA
that was initially developed for atoms to the case of
molecules. The MO-PFT model was used in Ref. [165].

The bound state orbital in the H2 molecule is the
bonding superposition of the two 1s atomic orbitals
located at the centers of the atoms:

ΨH2 (r) =
1

√
2 (1 + SOI)

[ψatom1 (r − R/2)

+ ψatom2 (r + R/2)] . (57)

The corresponding partial Fourier transform is given by
(see Ref. [138]):
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ΠH2 (px, py, z) = exp
(

− i

2
R sin θm [px cos ϕm

+ py sin ϕm]
)

Πatom1

(
px, py, z − R

2
cos θm

)

+ exp
(

i

2
R sin θm [px cos ϕm

+ py sin ϕm]
)
Πatom2

(
px, py, z+

R

2
cos θm

)
. (58)

Here θm and ϕm are the polar and azimuthal angles of
the molecular axis, respectively, and Πatom (px, py, z)
is the partial Fourier transform of the 1s orbital. Sub-
stituting the expression for Πatom (px, py, z) (see Ref.
[137]) in Eq. (58) we obtain the following formula for the
mixed-representation wave function of the H2 molecule
applicable just beyond the tunnel exit:

Π (px, py, ze)

∼
{

exp
(

− i

2
R sin θm [px cos ϕm + py sin ϕm]

)

× exp
(

−1
2
κR cos θm

)

+ exp
(

i

2
R sin θm [px cos ϕm + py sin ϕm]

)

× exp
(

−1
2
κR cos θm

)}

× exp

[

− κ3

3F
− κ

(
p2x + p2y

)

2F

]

. (59)

As in Ref. [139], this expression (without prefactor)
was used in [165] as a complex amplitude describing
ionization at time t0 with initial transverse velocity
v0,⊥ = p0,⊥. In the simplest case analyzed in Ref. [165]
the molecule is oriented along the laser polarization
direction (θm = ϕm = 0), and the factor in brackets in
Eq. (59) is constant for a fixed internuclear distance
R. This allows to use only the exponential factor of
Eq. (59).

Different approaches can be used to find the tunnel
exit point, i.e., the starting point of the trajectory, in
the molecular case. The simplest one consists in neglect-
ing the molecular potential, i.e., considering triangu-
lar potential barrier (51). An alternative approach, the
so-called field direction model (FDM) (see Ref. [78]),
accounts for the molecular potential. The potential bar-
rier in the FDM model is formed by the molecular
potential and the laser field in a 1D cut along the field
direction. Therefore, the tunnel exit point in the FDM
model is defined by the equation:

V (r) + F (t0) ze = −Ip. (60)

To finalize the generalization of the SCTS model to the
case of the H2 molecule, we need to obtain the phase,
which is assigned to a classical trajectory. This phase is

derived by substituting the potential (56) in Eq. (12):

ΦSCTS
H2

(t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2(t)

2
− Z1 (r − R/2) · (2r − R/2)

|r − R/2|3

+
Z2 (r + R/2) · (2r + R/2)

|r + R/2|3
}

, (61)

see Ref. [165]. It is seen that for r � R/2 this phase cor-
responds to the SCTS phase for the Coulomb potential
−Z/r with the effective charge Z = Z1+Z2. In contrast
to this, the QTMC phase for the H2 molecule is given
by:

ΦQTMC
H2

(t0,v0) = −v0 · r(t0) + Ipt0

−
∫ ∞

t0

dt

{
p2 (t)

2
− Z1

|r − R/2| − Z2

|r + R/2|
}

.

(62)

The expression (61) can be simplified at large distances
and, as the result, the SCTS phase for the H atom is
reproduced. Finally, it is assumed in Ref. [165] that at
the end of the laser pulse the ionized electron is far
enough from both nuclei, i.e., r (tf ) � R. If this con-
dition is met, after the end of the pulse the electron
moves in the Coulomb field with the effective charge Z.
Therefore, its asymptotic momentum can be calculated
from Eq. (6), and the post-pulse phase is determined
by Eq. (21).

6.2 Application of the SCTS model to H2 molecule

In Fig. 11 we compare the photoelectron momentum
distributions calculated within the SCTS model for the
hydrogen atom (Fig. 11a) and hydrogen molecule (Fig.
11b, c), see Ref. [165]. The starting point of the trajec-
tory for H is calculated using the triangular potential
barrier (51). The distribution of Fig. 11b for H2 is also
obtained for the exit point calculated from Eq (51).
We note that the molecular potential is fully taken into
account in the classical equations of motion (1) and in
the phase (12) when calculating Fig. 11b. The electron
momentum distribution of Fig. 11c corresponds to the
tunnel exit obtained by using the FDM model. The elec-
tron momentum distributions shown in Fig. 11a, b are
similar to each other. Therefore, it can be concluded
that if the molecular potential is not accounted in cal-
culating the starting point, the effects of the molec-
ular structure are not visible in electron momentum
distributions. This result can be expected bearing in
mind that r0 = Ip/F0 � R/2 for the parameters of
Fig. 11, and the distance between the ionized elec-
tron and the molecular ion increases further when the
electron moves along the trajectory. As the result, the
departing electron feels only the Coulomb asymptotic
instead of the full molecular potential. The FDM model
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predicts smaller exit points as compared to the triangu-
lar barrier formula (51), see Ref. [165]. For this reason,
the effects of the molecular potential (56) are visible
in Fig. 11c. First, the photoelectron momentum dis-
tribution is more extended in the polarization direc-
tion. As the result, the energy spectra for the hydro-
gen molecule falls off slower with the increase of energy
than the ones for the H atom. Simultaneously, the angu-
lar distributions in the molecular case are more aligned
along the polarization direction. Second, at the same
parameters of the laser pulse the holographic interfer-
ence fringes are more pronounced for H2 than for H (see
Fig. 11). The comparison of the distributions calculated
using the SCTS and QTMC models for ionization of the
H2 molecule is presented in Fig. 12a–d. Two different
pulse envelopes were used in Fig. 12a–d. Figure 12a, b
corresponds to the sine squared pulse, whereas Figure
12c, d shows the distributions obtained for the trape-
zoidal pulse (see Ref. [165] for details). Figure 12a, c
display the momentum distributions calculated within
the QTMC model, and Fig. 12b,d show the correspond-
ing SCTS results. For the sine squared pulse these dis-
tributions have a pronounced fan-like structure in their
low-energy part. For the trapezoidal envelope the fans
are substituted by the characteristic blobs (see Fig. 12c,
d) lying on a circle with the radius k = 0.30 a.u. Simi-
lar to the atomic case, the QTMC predicts fewer nodal
lines in the interference structure at low energies than
the SCTS model. This fact can be again attributed to
the underestimation of the Coulomb potential in the
QTMC phase [165].

7 Conclusions

The semiclassical models using classical mechanics to
describe the electron motion after it has been released
from an atom or molecule are one of the powerful meth-
ods of strong-field, ultrafast, and attosecond physics.
The standard formulation of the trajectory-based mod-
els does not allow to describe the effects of quantum
interference. Nevertheless, a substantial progress in sim-
ulations of the interference effects using the semiclassi-
cal models has been achieved recently. By present sev-
eral trajectory-based models capable to describe the
interference effects have been developed and success-
fully applied to the studies of the ATI. Here we discuss
one of these models, namely, the SCTS.

The SCTS model allows to reproduce interference
patterns of the ATI process and accounts for the ionic
potential beyond the semiclassical perturbation theory.
In the SCTS the phase assigned to every classical tra-
jectory is calculated using the semiclassical expression
for the matrix element of the quantum mechanical prop-
agator [79–81]. As the result, the SCTS model yields a
good agreement with the direct numerical solution of
the TDSE, better than, e.g., the QTMC model apply-
ing the first-order semiclassical perturbation theory to
account for the Coulomb potential in the phase.
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Fig. 11 Two-dimensional electron momentum distribu-
tions for ionization of a the H atom and b, c the H2 molecule
by a laser pulse with the duration of n = 4 cycles, inten-
sity of 2.0 × 1014 W/cm2, and wavelength of 800 nm. The
distributions shown in panels a and b correspond to the
tunnel exit point calculated from Eq. (51). The distribution
of panel c is obtained using the FDM expression for the
tunnel exit. The H2 molecule is oriented along the polar-
ization direction of the laser field (z-axis). The holographic
fringes are shown by white lines in panel (a). The normal-
ization to the total ionization yield is used. The color scale
is logarithmic with arbitrary units

Here we review further developments and applica-
tions of the SCTS. At first, we review the formulation
of the SCTS and its numerical implementation. The
application of the model was illustrated in the case
of the H atom. We next turn to the further develop-
ments of the SCTS: the SCTSQI model [95] and the
SCTS model with the prefactor [94]. In the SCTSQI
model the initial conditions for classical trajectories are
determined from the exact quantum dynamics of the
wavepacket. For ionization of the 1D atom the SCTSQI
model yields not only qualitative, but also quantitative
agreement with the numerical solution of the TDSE.
Further work is needed to accomplish the generaliza-
tion of the SCTSQI on the 3D case. The developments
in this direction have already begun. The quantitative
agreement with the TDSE was also achieved by the
extension of the SCTS model that accounts for the pref-
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Fig. 12 The low-energy parts of the two-dimensional pho-
toelectron momentum distributions for the H2 molecule ion-
ized by a laser pulse with a duration of n = 4 cycles, wave-
length of 800 nm, and peak intensity of 1.2 × 1014 W/cm2.
The left column panels a and c show the results of the
QTMC model. The right column panels b and d present
the distributions calculated within the SCTS model. Pan-
els [a, b] and [c, d] are calculated for the sine squared and
trapezoidal envelopes of the laser pulse, respectively (see
Ref. [165]). The molecule is oriented along the laser polar-
ization direction (z-axis). A logarithmic color scale in arbi-
trary units is used

actor of the semiclassical matrix element. Furthermore,
the 3D implementation of the SCTS [94] has a number
of other important modifications.

We discuss the application of the SCTS approach
to the SFPH. The semiclassical simulations within the
SCTS model are in perfect agreement with the results of
the recent experiment [66]. The model is able to repro-
duce all characteristic features of the observed holo-
graphic patterns. The SCTS model also allows to inves-
tigate the effect of the Coulomb potential on the holo-
graphic structures. Three main Coulomb effects in the
interference patterns were predicted [67]. However, it
should be investigated how sensitive are these Coulomb
effects to focal averaging. This further work will allow
to understand, which of the predicted effects can be
observed.

We also present a quick review of the application
of the SCTS to study of the multielectron polariza-
tion effects. We discuss the modification of the SCTS
model accounting for the multielectron polarization-
induced dipole potential. The semiclassical simulations
predict narrowing of the electron momentum distribu-
tions along the polarization direction. This narrowing
arises due to the focusing of the ionized electrons by the
induced dipole potential. Furthermore, the polarization

of the ionic core can also modify the interference pat-
terns in electron momentum distributions.

Finally, we briefly reviewed the extension of the
SCTS model to ionization of the hydrogen molecule.
The SCTS model for the H2 can be generalized to
an arbitrary laser polarization and orientation of the
molecule, as well as to heteronuclear and polyatomic
molecules. We believe that these generalizations being
combined with the extended versions of the SCTS will
result to an emergence of powerfool tools for studies of
the strong-field processes.

Acknowledgements We are grateful to M. Lein,
L. B. Madsen, J. Burgdörfer, H. J. Wörner, C. Lemell,
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103. C.C. Chirilă, I. Dreissigacker, E.V. van der Zwan, M.

Lein, Phys. Rev. A 81, 033412 (2010)
104. K.-J. Yuan, A.D. Bandrauk, J. Phys. B: At. Mol. Opt.

Phys. 45, 074001 (2012)
105. J. Wu, B.B. Augstein, C. Faria, Phys. Rev. A 88,

023415 (2013)
106. S. Levit, U. Smilansky, Ann. Phys. (N.Y.) 108, 165

(1977)
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