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Abstract: In this contribution, a vector-autoregressive
(VAR) process with multivariate t-distributed random de-
viations is incorporated into the Gauss-Helmert model
(GHM), resulting in an innovative adjustment model. This
model is versatile since it allows for a wide range of
functional models, unknown forms of auto- and cross-
correlations, and outlier patterns. Subsequently, a compu-
tationally convenient iteratively reweighted least squares
method based on an expectation maximization algorithm
is derived in order to estimate the parameters of the func-
tionalmodel, theunknowncoefficients of theVARprocess,
the cofactor matrix, and the degree of freedom of the t-
distribution. The proposedmethod is validated in terms of
its estimation bias and convergence behavior by means of
a Monte Carlo simulation based on a GHM of a circle in
two dimensions. The methodology is applied in two dif-
ferent fields of application within engineering geodesy: In
the first scenario, the offset and linear drift of a noisy ac-
celerometer are estimated based on aGauss-Markovmodel
with VAR and multivariate t-distributed errors, as a spe-
cial case of the proposed GHM. In the second scenario real
laser tracker measurements with outliers are adjusted to
estimate the parameters of a sphere employing the pro-
posedGHMwithVAR andmultivariate t-distributed errors.
For both scenarios the estimated parameters of the fitted
VARmodel andmultivariate t-distribution are analyzed for
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1 Introduction

Geodetic observation models of surveyed phenomena of-
ten include unknown quantities in terms of parameters to
be estimated by adjustment computations. The most gen-
eral structure of observation model is described by non-
linear condition equations in whichmultiple observations
and unknown parameters may be linked to each other [1].
This general case of adjustment calculuswas calledGauss-
Helmert model (GHM) by Wolf [2]. There exist numerous
special cases of this model that have been studied exten-
sively, e. g., the errors-in-variables (EIV)model adjusted by
themethod of total least squares [3] or by its various gener-
alizations [4, 5, 6, 7]. Another special case of theGHM is the
Gauss-Markov model (GMM), in which the observations
are still linked to functional model parameters but occur
in separate equations [8, 9, 10]. Suchmodelsmay also con-
tain variance-covariance information about the measure-
ments; this information defines the so-called stochastic
model. Since adjustment calculus has been elaborated on
the basis of matrix calculus, variance-covariance informa-
tion regarding the observables is usually arranged as ama-
trix, called the “variance-covariance matrix” (VCM).

Since the dimension of the VCM equals the number
of observations, the storage and processing of this ma-
trix in the course of the adjustment computations can be
challenging, especially because modern sensors such as
accelerometers, laser scanners, laser tracker or satellite-
based sensors tend to provide huge data sets consisting of
millions or even billions of observations even within rela-
tively short periods of time. It is usually not an option to
omit the variance-covariance information within the ad-
justment computations since the standard parameter es-
timators lose desirable quality characteristics when this
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information is neglected. For instance, the least-squares-
estimator in the GMM ceases to be the best linear unbi-
ased estimator (BLUE) when the VCM is dropped in the es-
timation equation [11]. Furthermore, it is often desirable
in geodetic data analysis to obtain a realistic description
of the uncertainties or variance-covariance information of
the estimated parameters, which information is unavail-
able when an adequate stochastic model of the observ-
ables ismissing. The “curse of dimensionality” concerning
the VCM is aggravated by the increasingly practiced com-
bination of multiple observation series stemming, e. g.,
from 3D sensors or from sensor networks. Time series of
suchmeasurements, e. g., GPS and laser scannermeasure-
ments, frequently have been found to be correlated in such
a way that the VCM is fully populated, e. g., [12, 13, 17, 16,
14, 15].

To alleviate the computational burden or even com-
putational infeasibility in connectionwith the storage and
processing of a huge VCM, an alternative approach to the
stochastic modeling of variance-covariance information
can be applied. The goal of that approach is to fully de-
correlate the observables by transforming the observation
model in such a way that the VCM of the transformed ob-
servables becomes a diagonal matrix, e. g., the identity
matrix [18]. A diagonal VCM can easily be handled within
the adjustment procedure [19], e. g., through vectorization
of the occurring matrix products. In geodetic applications
the correlations of the observables may frequently be de-
scribed as colored noise [20], in which case the stochas-
tic model can be expressed as an autoregressive (AR) or
autoregressive moving average (ARMA) process and the
transformation of the observation equations achieved by
means of a computationally efficient digital de-correlation
filter [21, 22]. Such processes have also been estimated by
means of total least squares based on an EIV model [23].
To model auto- and cross-correlations of multivariate time
series, the aforementioned AR and ARMA processes have
been extended to vector-autoregressive (VAR) and vector-
autoregressive moving average (VARMA) processes [24].
The model order of these recursive processes can be spec-
ified to define how far the correlations reach into the past.
Thus, VAR(MA) processes can be used to model quite de-
tailed patterns of auto- and cross-correlations. The innova-
tion of the current contribution is to incorporate VAR pro-
cesses into the GHM as colored noise models.

The white-noise components of (V)AR or (V)ARMA
processes are usually assumed to be normally distributed.
However, this assumption may be unrealistic or at least
questionable in a practical situation, e. g., due to numer-
ous outliers afflicting the measurements. It may then be

safer to replace the normal distribution by a larger fam-
ily of distributions defined by probability density func-
tions having thicker tails than the “ideal” normal distribu-
tions. For instance, theusageof generalized t-distributions
and of scaled t-distributions has been proposed in connec-
tion with ARMA processes [25]. The scaled, multivariate t-
distributions have also been applied in connection with
VAR processes within rather simple GMM [26, 27]. A key
feature of using multivariate t-distributions is that the as-
sociated degree of freedom (df) can be estimated along-
side the functional parameters, the VAR coefficients and
the scale or cofactor matrix; such a method may be called
a self-tuning estimator [28] since it does not involve a tun-
ing constant for classifying the in- and outliers, in contrast
to for instance Huber’s M-estimator [29]. The df provides
evidence of deviations of themeasurements’ actual proba-
bility distribution from a normal distribution: For large df
the multivariate t-distribution is similar to a multivariate
normal distribution, whereas the t-distribution has much
thicker tails than the latter for a small df, which may indi-
cate the presence of numerous outliers.

The estimation procedure is implemented as an it-
eratively reweighted least-squares (IRLS) method. The
weights are treated as randomvariables, which are numer-
ically determined by the expectation step within an ex-
pectation maximization (EM) algorithm [30]. The various
types of model parameters are estimated group-by-group
within the maximization step. To deal with the condition
equations within the GHM, constrained EM in the spirit
of [31] is applied. Due to the down-weighting of observa-
tions with extreme errors,1 this method can be expected to
yield a robust estimator for the GHM. Koch introduced the
GHM with t-distributed errors and subsequently extended
the model to include variance components [32, 33]. This
type of GHM is now extended to include a VARmodel with
multivariate-t-distributed errors. This yields an approach
complementary to that of modeling a small number of out-
liers as additive, unknown offsets within the afflicted ob-
servations, as done in [34, 35]. Therefore, the proposed ad-
justment model is directed at applications in which rather
large numbers of outliers can be expected. To model the
auto- and cross-correlations, we do not employ the more
general VARMA processes since we found the estimation
of the moving average part by means of an EM algorithm
to diverge.

The paper is structured as follows. In Section 2, we
specify the multivariate observation model, the correla-

1 Weuse the term“error” in the senseof “randomdeviation” through-
out the paper.
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tion model, and the stochastic model, which jointly de-
fine the GHM with VAR and multivariate t-distributed er-
rors. In Section 3, we formulate the optimization princi-
ple employed to adjust this model, and we derive the nor-
mal equations to be solved within the EM algorithm. We
show that this algorithm estimates the functional parame-
ters, the VAR coefficients and the parameters defining the
multivariate t-distribution essentially via IRLS. The Monte
Carlo simulation described in Section 4 serves the purpose
of validating the algorithm, by showing the biases to be
expected in the practical situation of data approximation
by a circle based on a GHM with VAR and multivariate t-
distributed errors. In Section 5 we demonstrate the appli-
cation of the algorithm for the adjustment of a real, multi-
variate accelerometer data set, whose offset and drift are
modeled as part of a GMM (viewed as a special case of
the GHM) with VAR and multivariate t-distributed errors.
In a second applied scenario real laser tracker measure-
ments with outliers are adjusted to estimate the parame-
ters of a sphere employing the proposed GHM with VAR
and multivariate t-distributed errors. Finally, some limi-
tations and consequently potential extensions of the pre-
sented methodology to be explored in the future are out-
lined in the conclusions and outlook.

2 Adjustment models for
multivariate time series

The purpose of this section is to develop adjustment mod-
els suitable for the fitting of multivariate geodetic time se-
ries. According to the standard categorization in geodetic
adjustment theory these models have two main compo-
nents: the deterministic model and the stochastic model.
The following sub-sections demonstrate some possible
structures of these models that have been found useful in
geodetic time series analysis. These structures allow for
certain generalizations of the standard GHM and GHM by
allowing their random deviations to be auto- and cross-
correlated through (V)AR processes while potential devi-
ations from a normal distribution are modeled stochasti-
cally by a multivariate t-distribution.

2.1 Structures of the deterministic
observation model

2.1.1 Deterministic part of the Gauss-Helmert model

We suppose that N time series are observed simultane-
ously without gaps, so that each series consists of n mea-

surements. The measurements can then be doubly in-
dexed in the form ℓk,t with k = 1, . . . ,N and t = 1, . . . , n,
where k represents the group index and t a time-related in-
dex. We further suppose that the measurements are used
to estimate a specified parameter-dependent functional
model, which describes spatial objects possibly varying
throughout time. In the most general case, each observa-
tion ismodeled as the sum of an observation-specific loca-
tion parameter μk,t and a corresponding randomdeviation
or “error” ek,t, that is,

ℓk,t = μk,t + ek,t (k = 1, . . . ,N ; t = 1, . . . , n). (1)

Each type of quantity in these equations can be vector-
ized in different ways to obtain more compact notations.
The rule will be that all column vectors are symbolized by
bold-faced, lower-case Greek letters (in case of unknown
parameters) or Roman letters. Firstly, the quantities of one
type occurring throughout the time series k = 1, . . . ,N may
be collected for every time instance t = 1, . . . , n via

ℓt =
[[[

[

ℓ1,t
...
ℓN ,t

]]]

]

, μt =
[[[

[

μ1,t
...

μN ,t

]]]

]

, et =
[[[

[

e1,t
...

eN ,t

]]]

]

, (2)

to define the multivariate observation time series

ℓt = μt + et (t = 1, . . . , n). (3)

Secondly, the observations, location parameters and ran-
dom deviations can be grouped series-by-series for k =
1, . . . ,N according to

ℓk: =
[[[

[

ℓk,1
...
ℓk,n

]]]

]

, μk: =
[[[

[

μk,1
...

μk,n

]]]

]

, ek: =
[[[

[

ek,1
...

ek,n

]]]

]

, (4)

to define the observation series

ℓk: = μk: + ek: (k = 1, . . . ,N). (5)

Note that the additional colons are used to distinguish the
two types of vectors, e. g., the observations ℓ1 at time in-
stance t = 1 and the observations ℓ1: within time series
k = 1. Finally, it will be convenient to combine the vectors
indexed by time to the “complete” vectors

ℓ =
[[[

[

ℓ1
...
ℓn

]]]

]

, μ =
[[[

[

μ1
...
μn

]]]

]

, e =
[[[

[

e1
...
en

]]]

]

, (6)

so that (3) turns into the single vector equation

ℓ = μ + e. (7)
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Note that the relationshipμ = ℓ−e obtained from (7)would
be written as ℓ̂ = ℓ + v in the usual notation of the GHM,
where ℓ̂ are the (unknown) “adjusted observations”. The
choice of terminology (“locationparameter”) andnotation
(μ) is motivated by our intention to describe the observa-
tions in such a way that maximum likelihood (ML) estima-
tion via an EM algorithm can easily be established.

Note also that the vectors ℓt, μt and et can be retrieved
from the corresponding complete vectors ℓ, μ and e via

ℓt = Jtℓ, μt = Jtμ, et = Jte, (8)

where the (N × Nt)-matrix Jt consists of rows

N ⋅ (t − 1) + 1, . . . ,N ⋅ t

of the (Nn)-dimensional identity matrix INn. This matrix
can be written as the block matrix

Jt = [0N ⋅ ⋅ ⋅ 0N IN 0N ⋅ ⋅ ⋅ 0N ] (t = 1, . . . , n) (9)

beginning with t − 1 square zero matrices 0N of dimension
N, followed by the N-dimensional identity matrix IN , and
ending with n − t further zero blocks 0N .

In practice the goal usually is to fit a specific func-
tional model to the given measurements, e. g., a circle.
Such a model generally depends on unknown parameters
β = [β1 ⋅ ⋅ ⋅ βm]T , e. g., the center coordinates and the ra-
dius of a circle. To incorporate this additionalmodel struc-
ture it is assumed that the functional parameters β and the
location parameters μ fulfill condition equations

h1(β,μ) = 0 (10)
... (11)

hr(β,μ) = 0, (12)

which can be written in vectorized form as

h(β,μ) = 0. (13)

This equation and (7) form the deterministic part of the
GHM, which was defined similarly in [32]. The given some-
what unusual notation, especially the introduction of lo-
cation parameters, in the setup of the GHM ismore aligned
with the method of constrained ML estimation than with
the usualmethod of LS. The former estimationmethodwill
be more suitable than the latter in connection with the es-
timation of VAR models and usage of a non-Gaussian pdf.

2.1.2 Deterministic part of the Gauss-Markov model

With certain kinds of adjustment problems each location
parameter μk,t can be expressed directly as the value of
a function fk,t depending on the functional parameters β,
through the relationship

μk,t = fk,t(β). (14)

Then, the observation equations (1) take the form

ℓk,t = fk,t(β) + ek,t (k = 1, . . . ,N ; t = 1, . . . , n). (15)

Vectorizing the (unknown) function values fk,t(β) similarly
as in (2) and (4), these observation equations can be ar-
ranged by time as

ℓt = ft(β) + et (t = 1, . . . , n), (16)

or by time series as

ℓk: = fk:(β) + ek: (k = 1, . . . ,N), (17)

or collectively, by vectorizing ft(β) for t = 1, . . . , n as in (6),
as

ℓ = f(β) + e. (18)

This structure of observation equation defines the GMM.
Using (14), the condition equations (13) are then simply
taken as h(β,μ) = μ − f(β) = 0. In adjustment computa-
tions it is more common to state the observation equations
in the equivalent form

ℓ + v = f(β), (19)

where the “corrections” v are related to the random devia-
tions e via sign reversal. In view of the additional stochas-
tic model imposed on the observation model later on, the
representation (18) is preferred in this paper. In case the
function f can be written as a matrix-vector product Xβ,
we speak of a “linear model”, where X is called the “de-
sign matrix”; we then write

ℓ = Xβ + e (20)

instead of (18). Linear models have been studied thor-
oughly inmathematical statistics and geodesy [36, 18]. The
parameters β can be estimated without any additional as-
sumptions, e. g., by applying “ordinary LS”. However, if
the observables are correlated or heteroscedastic, the LS
estimator will not be BLUE if the correlations and unequal
variancespresent arenot taken into account by incorporat-
ing a corresponding stochastic model into the observation
model and the estimator.
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2.2 Stochastic modeling

2.2.1 Modeling of correlations using
vector-autoregressive processes

The simplest case of a stochastic model occurs for uncor-
related observables with identical variances, so that the
VCM Σ is the rescaled identity matrix σ2I, where the vari-
ance factor σ2may be a known number or an unknown pa-
rameter. Geodesists have frequently pointed out that ob-
servables are usually correlated (e. g., [37]) and that it is
of great practical importance to take correlations into ac-
count in geodetic data analysis (e. g., [38]). In case of cor-
related measurements the VCM Σ typically is either fully
populated or has a band-limited structure (see [21]). Its de-
composition therefore yields Σ = σ2Q, where the so-called
“cofactor matrix” Q has the same population characteris-
tics as Σ. When a univariate time series is surveyed the cor-
relations between the various random variables are called
“auto-correlations”. Oftentimes these can be modeled by
means of an AR process

Et = α1Et−1 + ⋅ ⋅ ⋅ + αpEt−p + Ut (21)

for some p ∈ ℕ (the “model order” of the AR process)
and some α1, . . . , αp (the “coefficients” of the AR process).
(Ut)t∈ℤ is a white noise series that recursively generates an
auto-correlated time series (Et)t∈ℤ (see, e. g., [42] for de-
tails). In case of multivariate observables, additional cor-
relations between the random variables of different time
series, so-called “cross-correlations”, may occur. To take
both auto- and cross-correlations into account, an error
process (Et)t∈ℤ can be defined to be a VAR(p) process by
the equation (cf. Sect. 8.4 in [24])

Et = A1Et−1 + ⋅ ⋅ ⋅ + ApEt−p + Ut , (22)

where (Ut)t∈ℤ is amultivariate form of white noise. The co-
efficients of this VAR process are now arranged within the
(N × N)-matrices

Aj =
[[[

[

αj,1,1 ⋅ ⋅ ⋅ αj,1,N
...

. . .
...

αj,N ,1 ⋅ ⋅ ⋅ αj,N ,N

]]]

]

(j = 1, . . . , p). (23)

2.2.2 Modeling of observational weights using
multivariate t-distributions

Another standard decomposition of a the VCM Σ is given
in terms of the “weight matrix” P by

Σ = σ2P−1. (24)

The main diagonal of the VCM Σ consists of the variances
of the individual observables, whereas the main diago-
nal elements of P are commonly referred to as “weights”.
The meaning of the weights is twofold in practice: On the
one hand, weights may be interpreted as “repetition num-
bers”, i. e., as the number of times that the corresponding
observations have occurred. On the other hand, weights
can be assigned to observations in order to diminish or
increase their relative importance and influence in statis-
tical inference. Abnormal or extreme observations (“out-
liers”), located in the tails of the probability density func-
tion (pdf) defining their probability distribution, are fre-
quently encountered in geodetic data analysis. One stan-
dard approach to handling such observations consists in
their “down-weighting”bygiving them lesserweights than
non-outliers (“inliers”). Alternatively, it is possible to carry
out statistical tests in order to identify and delete outlying
observations (e. g., [39, 40, 41]). However, the deletion of
observations creates data gaps, which prohibit the usage
of recursive time series models, such as the VAR processes
considered in Sect. 2.2.1. Therefore, we restrict ourselves
to the approach based on the down-weighting of outly-
ing observations, which avoids their elimination and con-
sequential data gaps. Since the data sets analyzed nowa-
days tend to be huge and oftentimes have stochastic prop-
erties unknown to the practitioner, it is necessary to have
a data-adaptive and computationally efficient procedure
for computing weights at hand. Mathematically, such a
procedure is based on a function (the “weight function”),
which corresponds to a certain pdf of the random devia-
tions.

For the purpose of multivariate modeling includ-
ing potential cross-correlations, the well-known Stu-
dent’s t-distribution can be generalized to an N-variate
t-distribution t(μ,Ψ, ν) with location parameter vector μ,
scale matrixΨ and df ν, defined by the pdf (cf. [43])

p(x) =
Γ ( ν+N2 )

(√νπ)N √detΨ Γ ( ν2 )

× (1 + (x − μ)
TΨ−1(x − μ)
ν

)
− ν+N2
. (25)

Since the scalematrixΨ is related to theVCMviaΣ = ν
ν−2 ⋅Ψ

for df ν > 2, it may be viewed as a “cofactor matrix”. Then,
a multivariate t-distributed form of white noise of a VAR
process can be defined by

Ut
ind.∼ t(0,Ψ, ν) (26)



248 | B. Kargoll et al., Adjustment models for multivariate geodetic time series

(see also [44]). The joint pdf of n such white noise vectors
U1, . . . ,Un is therefore given by

p(u1, . . . ,un) =
n
∏
t=1

p(ut) = (
Γ ( ν+N2 )

(√νπ)N √detΨ Γ ( ν2 )
)
n

×
n
∏
t=1
(1 +

uTt Ψ
−1ut
ν
)
− ν+N2

. (27)

This pdf is more intricate and therefore more difficult to
handle in maximum likelihood (ML) estimation than the
pdf of a multivariate normal distribution. However, it is
well known that a multivariate t-distributed random vec-
tor X ∼ t(μ,Ψ, ν) has the property of being a condition-
ally normally distributed random vector X ∼ N(μ,Ψ/w)
wherew is a given realization of a gamma-distributed ran-
domvariableW ∼ G (ν/2, ν/2)W (cf. [43]). Due to this prop-
erty, the distributional model (26) can be replaced by the
assumptions

Ut
ind.∼ N(0,Ψ/wt) (28)

and

Wt
ind.∼ G (ν

2
,
ν
2
) . (29)

It can be seen in (28) that the white noise vectorUt has the
VCM Σt = Ψ/wt, which is a rescaled version of the cofac-
tor matrix Ψ. For a small value wt, the cofactor matrix Ψ
may be viewed as being “inflated”; in the univariate case
N = 1, this rescaling approach therefore has been called
“variance inflationmodel” (e. g., [41]). The idea of this type
of outliermodel is to assign a relatively large variance to an
error which is located in the tails of the pdf, in comparison
to an error near the center of the pdf.

Under the distributional assumptions (28)–(29) the
joint pdf of white noise vectors U1, . . . ,Un and the random
variables W1, . . . ,Wn assigned to n measurements can be
shown to result in

p(u1, . . . ,un,w) = (
( ν2 )

ν
2

Γ ( ν2 )
)

n
n
∏
t=1

w
ν
2 −1
t exp (−ν

2
wt)

×
1

√(2π)N det(Ψ/wt)

× exp (−wt
2
uTt Ψ
−1ut) , (30)

and (27) defines the corresponding marginal distribution
of U1, . . . ,Un. Although the joint pdf (30) appears to be
even more complicated than the marginal pdf defining
the multivariate t-distribution, considerable simplifica-
tions can be achieved by taking a conditional expecta-
tion of the log-likelihood function defined by this pdf. This

step, which exploits the fact that the pdf (30) now involves
natural exponential functions exp(.) in contrast to (27),
corresponds to the “E-step” of an EM algorithm shown in
Sect. 3. We first proceed by defining particular instances
of the aforementioned log-likelihood functions which in-
clude the deterministic model of the GHM or GMM, as well
as the VAR process.

2.3 Representations of the adjustment
models as likelihood functions

A likelihood function L can be defined by a pdf by fix-
ing an element of its domain (the observation space) and
by letting its parameters be “variables”. The pdf (30) di-
rectly involves as parameters the entries of the cofactor
matrixΨ and the df ν. When certain realizations u1, . . . ,un
of the white-noise vector are given, they lead to realiza-
tions e1, . . . , en of the VAR process (22). These computa-
tional relationships can inversely be written as

ut = et − A1et−1 − . . . − Apet−p, (31)

where e0, . . . , e1−p are conventionally taken to be zero vec-
tors. Moreover, the realizations e1, . . . , en of a VAR pro-
cess occur within the condition equations (3) of the GHM,
which can inversely be written as

et = ℓt − μt . (32)

Consequently, (31) can be recast as

ut = I(ℓt − μt) − A1(ℓt−1 − μt−1) − . . . − Ap(ℓt−p − μt−p)

= I(ℓt − μt) − A1L
1(ℓt − μt) − . . . − ApL

p(ℓt − μt)

= (I − A1L
1 − . . . − ApL

p)(ℓt − μt)
= A(L)(ℓt − μt). (33)

Here, for brevity of expressions, we defined the so-called
lag polynomialA(L) (see [24], p. 243) based on the lag oper-
ator L, whose powers are used to shift the time index t ac-
cording to the rule LjZt := Zt−j with j ∈ {1, 2, . . .} (see Chap. 2
in [45]).

Thus, the pdf (30) indirectly depends also on the VAR
coefficients in the matrices A1, . . . ,Ap and on the location
parameters μ1, . . . ,μn of the deterministic model in case of
a GHM. In the case of the more structured GMM, ft(β) is
substituted for μt in (32) and (33) in view of (16), so that the
pdf (30) then depends on functional model parameters β
rather than on μ1, . . . ,μn.

To fix the dimensions of the parameter space, the kth
rows of the VAR coefficient matrices are combined to col-
umn vectors of length p ⋅ N

αk = [(A1)k ⋅ ⋅ ⋅ (Ap)k]
T (k = 1, . . . ,N), (34)
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which in turn are combined to the single column vector

α = [αT1 ⋅ ⋅ ⋅ α
T
N ]

T (35)

of length p ⋅ N2. Similarly, the row-wise vectorization of
the inverted cofactor matrixΨ−1 yields a column vector of
length N2, which is denoted by ψ̄. Then, the parameters
that the pdf for the GHM and the GMM with VAR and mul-
tivariate t-distributed errors directly and indirectly depend
upon can be grouped according to

θGHM = [μ
T αT ψ̄T ν]T (36)

and

θGMM = [β
T αT ψ̄T ν]T . (37)

Taking the natural logarithm of the pdf (30) with ut given
by (33), the log-likelihood functions of this GHMcan be ob-
tained, see (81) in the Appendix. The log-likelihood func-
tion for the GHM describes only the observation model, so
that the constraints h(β,μ) = 0 in (13) need to be provided
for in addition when the model parameters θGHM are es-
timated. Thus, the complete parameter vector consists of
the groups

Φ = [βT θTGHM] = [β
T μT αT ψ̄T ν]T . (38)

A similar log-likelihood involvingmultiple (univariate) AR
processes instead of a single (multivariate) VAR process
was established in [46]. To obtain the log-likelihood func-
tion log L(θGMM; ℓ) for the GMM, which was employed in
[26], the location parameters μt are simply replaced by
ft(β), in which the aforementioned constraints are omitted
since the location parameters μ are notmodeled explicitly.

3 Estimation

Maximum likelihood estimation of the model parameters
θGHM based on the log-likelihood function (81) requires
values for the unobservable data w. Since a stochastic
model has been specified for these quantities, such val-
ues can be determined as part of an EM algorithm [30].
A similar approach has previously been carried out for nu-
merous models that can be identified as special cases of
the current GHM. In all previous instances the EM algo-
rithmwas found to be suitable in view of its stable conver-
gence and its computationally simple form as IRLS (see,
e. g., [47, 48]), where the entries of w play the role of the
weights. The iterations are indexed by s in the following.

In the expectation step (“E-step”) of the EM or IRLS algo-
rithm the weights are computed as conditional expecta-
tions of the random variables W based on their stochas-
tic model, using the current solution θ̂

(s)
GHM. In the subse-

quent maximization step (“M-step”) a new solution θ̂
(s+1)
GHM

is computed bymaximizing the conditional expectation of
the log-likelihood function (“Q-function”) using the cur-
rent weights.

TheQ-function for theGHMwithVARandmultivariate
t-distributed errors is given by (82) in the Appendix. Evalu-
ation of the conditional expectation of the random weight
variablesW yields the computational formula

w̃(s)t =
ν̂(s) + N

ν̂(s) + uTt (Ψ̂
(s)
)−1ut

(39)

The tilde on the conditional expectation w̃(s)t is used to dis-
tinguish this “theoretical” type of quantity from estimates.
To maximize the resulting Q-function (85) under the con-
straints the Lagrangian is defined as

F(ϕ, λ|θ̂
(s)
GHM) = Q(θGHM|θ̂

(s)
GHM) + λ

Th(β,μ), (40)

which involves as additional parameters an (r × 1)-vector
λ of unknown Lagrange multipliers. This approach leads
to a “constrained EM algorithm” [31]. In the frequently en-
countered case thath(β,μ) cannot be expressed “linearly”
in the form of

Xβ + B(μ − ℓ) +m = 0 (41)

for some numerically fixed matrix X, matrix B and vector
m, linearization

h(β,μ) ≈ XΔβ + B(μ − ℓ) +m. (42)

is applied as shown for instance in [32]. Here,we define the
(m × 1)-vector of “incremental parameters”

Δβ = β − β(s), (43)

the (r × 1)-vector of “misclosures”

m(s) = h(β(s),μ(s)), (44)

the (r × 1)-vector of “pseudo-misclosures”

m(s) = m + B(ℓ − μ(s)), (45)

the (r ×m)-Jacobi matrix

X(s) = àh(β
(s),μ(s))
àβ

, (46)
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and the (r × Nn)-Jacobi matrix

B(s) = àh(β
(s),μ(s))
àμ

. (47)

Whereas Δβ is unknown, the quantities (44)–(47) are com-
putable with the given parameter estimates of iteration
step s. For notational brevity, the dependency of the latter
quantities on the iteration step will not be indicated in the
following; thus, we write m, m, X and B instead of m(s),
m(s), X(s) and B(s). Forming now the partial derivatives of
the linearized Lagrangian (86) given in the Appendix with
respect to the different groups of parameters and setting
these equal to zero, one obtains
1. the normal equations for the incremental functional

parameters Δβ:

XTλ = 0[m×1]; (48)

2. the normal equations for the location parameters μ:

n
∑
t=1

̄JTt w̃
(s)
t Ψ−1[ℓ̄t − ̄Jtμ)] + B

Tλ = 0[Nn×1] (49)

denoting

̄Jt = A(L)Jt , (50)

ℓ̄t = A(L)ℓt ; (51)

3. the normal equations for the VAR coefficient matrices
A1, . . . ,Ap:

EW̃(s)
[[[

[

eT1
...
eTn

]]]

]

− EW̃(s)ET
[[[

[

AT
1
...
AT
p

]]]

]

=
[[[

[

0N
...
0N

]]]

]

, (52)

denoting

E =
[[[

[

e0 ⋅ ⋅ ⋅ en−1
...

...
e1−p ⋅ ⋅ ⋅ en−p

]]]

]

(53)

with ei = 03×1 for all i ≤ 0 and letting W̃(s) be the
n-dimensional diagonal matrix with diagonal entries
w̃(s)1 , . . . , w̃

(s)
n ;

4. the normal equations for the inverse cofactor matrix
Ψ−1:

Ψ− 1
n

n
∑
t=1

w̃(s)t [A(L)(ℓt −μt)][A(L)(ℓt −μt)]
T = 0N ; (54)

5. the normal equation for the df ν (cf. Sect. 5.8.2 [47]):

−dg (ν
2
) + log (ν

2
) + 1 + 1

n

n
∑
t=1
(log w̃(s)t − w̃

(s)
t )

+dg(ν
(s) + N
2
) − log(ν

(k) + N
2
) = 0, (55)

involving the digamma function dg;
6. the normal equations for the Lagrange multipliers λ:

XΔβ + B(μ − ℓ) +m = 0[r×1]. (56)

Since the location parameters are obtained from (49) as

μ = (
n
∑
t=1

̄JTt w̃
(s)
t Ψ−1 ̄Jt)

−1

× (
n
∑
t=1

̄JTt w̃
(s)
t Ψ−1ℓ̄t + B

Tλ) , (57)

(supposing that the inverse exists), these parameters can
be eliminated from (56) via substitution, which results in

B(
n
∑
t=1

̄JTt w̃
(s)
t Ψ−1 ̄Jt)

−1

BTλ + XΔβ

= Bℓ −m − B(
n
∑
t=1

̄JTt w̃
(s)
t Ψ−1 ̄Jt)

−1

×
n
∑
t=1

̄JTt w̃
(s)
t Ψ−1ℓ̄t . (58)

Together with (48), this gives the normal equation system

[[

[

B(
n
∑
t=1
̄JTt w̃
(s)
t Ψ−1 ̄Jt)

−1
BT X

XT 0m

]]

]

[
λ
Δβ
]

= [[

[

Bℓ −m − B(
n
∑
t=1
̄JTt w̃
(s)
t Ψ−1 ̄Jt)

−1 n
∑
t=1
̄JTt w̃
(s)
t Ψ−1ℓ̄t

0[m×1]

]]

]

.

(59)

The parameter groups (λ,Δβ), (A1, . . . ,Ap), Ψ−1 and ν are
estimated in that order by successively solving (59), (52),
(54) and (55). The parameter group μ can be determined
through (57) after solving for (λ,Δβ). While equation sys-
tems (59), (52) and (54) are linear, the solution of (55) re-
quires a zero search. This step-wise solution approach de-
fines an ECM algorithm, which extends previously estab-
lished ECM algorithms in simpler models.
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Having completed s iterations, the first ECM-step of
the new iteration s + 1 yields a new solution

[
λ(s+1)

Δβ(s+1)
] = [[

[

B(
n
∑
t=1
̄JTt w̃
(s)
t Ψ−1 ̄Jt)

−1
BT X

XT 0m

]]

]

−1

× [[

[

Bℓ −m − B(
n
∑
t=1
̄JTt w̃
(s)
t Ψ−1 ̄Jt)

−1 n
∑
t=1
̄JTt w̃
(s)
t Ψ−1ℓ̄t

0[m×1]

]]

]
(60)

from (59), where the unknown matricesΨ and

̄Jt = A(L)Jt = Jt − A1Jt−1 − ⋅ ⋅ ⋅ − ApJt−p

are fixed by substituting (i. e., “conditioning on”) the pre-
vious solutionsΨ(s) and A(s)1 , . . . ,A

(s)
p . Substituting then in

addition λ(s+1) for the variables λ in (57) gives the new so-
lution

μ(s+1) = (
n
∑
t=1
( ̄J(s)t )

T w̃(s)t (Ψ
(s))−1 ̄J(s)t )

−1

× (
n
∑
t=1
( ̄J(s)t )

T w̃(s)t (Ψ
(s))−1ℓ̄t + B

Tλ(s+1)) . (61)

Moreover, the new solution

β(s+1) = β(s) + Δβ(s+1) (62)

via substitution into the rearranged equation (43).
The solution (β(s+1),μ(s+1)) might not fulfill the con-

straints h(β,μ) = 0 exactly due to linearization errors.
Therefore, we apply the principle of constrained EM in the
spirit of [31] and iterate the estimation of these parame-
ters until either a maximum number of iteration steps is
reached or the maximum absolute misclosure falls below
a specified threshold (say, 10−14). To do this, the quan-
tities m, m, X and B in (44)–(47) are recomputed using
β[0] := β(s+1) and μ[0] := μ(s+1), and new solutions λ[1],
β[1], μ[1] are computed via evaluation of (60)–(62) by sub-
stituting again the currently available estimates Ψ(s) and
A(s)1 , . . . ,A

(s)
p . When one of the stop criteria is fulfilled, say

after t additional iterations, one redefines λ(s+1) := λ[t],
β(s+1) := β[t] and μ(s+1) := μ[t].

Next, the new solution

[A(s+1)1 ⋅ ⋅ ⋅ A(s+1)p ] = [e
(s+1)
1 ⋅ ⋅ ⋅ e(s+1)n ] W̃

(s)

× (E(s+1))T (E(s+1)W̃(s)(E(s+1))T)
−1

(63)

of the VAR coefficient matrices is computed from (52),
based on the new correlated residuals

e(s+1) = ℓ − μ(s+1) (64)

computed from themodel (7) and the corresponding resid-
ual matrix

E(s+1) =
[[[

[

e(s+1)0 ⋅ ⋅ ⋅ e(s+1)n−1
...

...
e(s+1)1−p ⋅ ⋅ ⋅ e(s+1)n−p

]]]

]

(65)

with the usual boundary values e(s+1)i = 03×1 for all i ≤ 0.
The current VAR model defines a new de-correlation filter
A(s+1)(L), by which the correlated residuals e(s+1) are trans-
formed into the white noise residuals

u(s+1) = A(s+1)(L)e(s+1)t (66)

in view of (33) and (64). Conditional on these values, equa-
tion system (54) gives rise to the solution for the cofactor
matrix

Ψ(s+1) = 1
n

n
∑
t=1

w̃(s)t u(s+1)(u(s+1))T . (67)

Finally, ν(s+1) may be found by a zero search to satisfy (55).
It is generally known that the ECM algorithm can be sped
up by solving instead the equation

0 = log ν(s+1) + 1 − ψ(ν
(s+1)

2
) + ψ(ν

(s+1) + N
2
)

− log (ν(s+1) + N) + 1
n

n
∑
t=1
(log w̃(s+1)t − w̃

(s+1)
t ) (68)

where

w̃(s+1)t =
ν(s+1) + N

ν(s+1) + (u(s+1)t )
T (Ψ(s+1))−1u(s+1)t

. (69)

Equation (68) is obtained by defining the log-likelihood
function directly on the joint pdf (30) of the white-noise
series based on themultivariate t-distribution, and setting
its partial derivative with respect to ν equal to zero. This
modification of the ECM algorithm has been called ECM
either (ECME) [49, 50]. The zero search can be performed
with mathematical standard software such as the INTLAB
library ([51]) or using a grid search. The estimation of the
df concludes the current M-step. The E- and M-step (in the
form of an ECME algorithm) are repeated until certain stop
criteria are fulfilled, e. g., a combination of a maximum
number of iterations and thresholds

d = max(max |ξ̂
(s)
− ξ̂
(s+1)
|,max |α̂(s) − α̂(s+1)|,

max |Σ̂(s) − Σ̂(s+1)|),

dν = max |ν̂(s) − ν̂(s+1)|
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for the minimum absolute difference between the current
and theprevious solution.Wedefined the thresholddν bya
greater value than the other threshold since the df ν fluctu-
ates quite strongly and is the parameter most challenging
to estimate. In the following, the solution resulting from
the final iteration step is indicated by using “hats”, that is,
β̂, μ̂, etc. This EM algorithm was tested in the Monte Carlo
simulation of Sect. 4.1. In the special case of a GMM with
VAR andmultivariate t-distributed errors, a similar uncon-
strained algorithmcanbe derived [26]. Themethodology is
applied in the real data study of Sect. 4.2 and Sect. 4.3.

4 Results

4.1 Gauss-Helmert model: Adjustment of
simulated data of a 2D circle

In the first part of this section, the performance of the EM
algorithm derived in previous Sect. 3 in producing correct
estimates within aMonte Carlo (MC) simulation is studied.
For this purpose, generated measurements of N = 2 time
series are approximated by a 2D circle defined by the non-
linear equation

ht(β,μ) = (xt − cx)
2 + (yt − cy)

2 − r2 = 0. (70)

On the one hand, the vector β of functional parameters
consists of the circle center coordinates cx, cy and radius
r, whose simulated true values are specified by

β = [[
[

cx
cy
r

]]

]

= [[

[

1
1
2

]]

]

. (71)

On the other hand, the vector μ = [μT1 , . . . ,μ
T
n ]

T of location
parameters consists of nmeasured points

μt = [
μx,t
μy,t
] = [

xt
yt
] ,

where n was set to 250, 500, 2500 and 5000 in different
simulation runs. For greater clarity of notation, we write
μx,t, μy,t instead of μ1,t, μ2,t in the sequel. The true point
coordinates were defined by

xt = cx + r sinΦt

yt = cy + r cosΦt

with

Φt = t ⋅
10
n
(t ∈ {1, . . . , n}).

Thus, the measurements are equidistantly distributed
along the circle, and one half of the circle was measured
twice. The numerical realizations et = [ex,t , ey,t]T of the
corresponding random errors are assumed to be deter-
mined by a VAR(1) process

[
ex,t
ey,t
] = [

0.5653 −0.0197
−0.0431 0.7577

] [
ex,t−1
ey,t−1
] + [

ux,t
uy,t
] , (72)

where random numbers ut = [ux,t , uy,t]T for the white-
noise components were generated from the multivariate t-
distribution

[
Ux,t
Uy,t
] ind.∼ t(0,Ψ, ν) = t ([0

0
] , σ20 ⋅ [

Ψx Ψx,y
Ψx,y Ψy

] , ν)

with σ20 = 0.001
2, Ψx = 1.0, Ψy = 4.0 and Ψx,y = 0.5. The

given cofactor matrix reflects the assumption that the en-
tries ofUt are pairwise correlated by correlation coefficient
ρ = 0.25. Simulations were carried out for the df ν = 4 (re-
ferred to as “stochastic model A”) and ν = 7 (“stochastic
model B”).

In total 500 MC samples of the white-noise compo-
nents for stochastic model A and B as well as for the differ-
ent sample sizes n were randomly generated using MAT-
LAB’s mvtrnd routine. The resulting simulated observa-
tions in models A and B were then adjusted by means of
the EM algorithm. Themaximumnumber of iterations was
set to itermax = 50, and the convergence thresholds to
ε = 10−8 and εν = 0.001. The unknownparametersβ andΨ
of the simulatedobservations ofModelAwere additionally
estimatedusing the classical least-squares approach to the
GHM (“LS”), without iterative re-weighting and without
imposing a VAR model (cf. [18]). The comparison between
the results of LS and EM algorithm demonstrates the effect
of assuming a simplified stochastic model.

4.1.1 Analysis of the simplified stochastic model on the
estimation results

The results of this comparison are visualized in Fig. 1 and
Fig. 2 by means of box plots. In each box plot, the middle
line shows the median. The bottom and the top border of
the boxes are the 25th percentile (Q1) and 75th percentile
(Q3), respectively. The distance Q3-Q1 is the inter-quartile
range (IQR). The additional lines above and below the box
are the whiskers defined by Q1− 1.5 ⋅ IQR and Q3+ 1.5 ⋅ IQR,
respectively. The red crosses indicate the outliers in the
sense that their value is more than 1.5 times the IQR away
from Q1 and Q3. The results of Fig. 1 show that the preci-
sion of the estimated parameters β̂ decreases with increas-
ing number of observations. Overall, the mean values of
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the estimated parameters are similar for LS and EM. How-
ever, Fig. 1 shows for numbers of observations less than
5000 that LS produces numerous extreme MC radius esti-
mates outside of the inter-quartile range far away from the
true radius, whereas all radius values estimated by EM lie
within that range. Thus, EM is significantly more accurate
than LS as far as the estimation of the radius is concerned.
Figure 2 shows the estimated scale parameters Ψ̂ for 500
MC runs bymeans of EMand LS estimation. The number of
outliers (red crosses) resulting from the LS estimate is sig-
nificantly larger than the number of outliers from the EM
algorithm. It can be clearly seen that the bias in the EM-
estimated scale parameters is much smaller compared to
the LS-estimated scale parameters. As the number of ob-
servations increases, the bias of the estimated scale pa-
rameters decreases and the dispersion becomes smaller.
The bias of all estimated parameter can be calculated for
each MC run by

ΔΦ̂
(i)
= Φ̂
(i)
−Φ (i = 1, . . . , 500). (73)

The statistical moments of the calculated bias Δβ and ΔΨ
of the simulations with 5000 observations are presented
in Table 1. For the functional parameters β the true value
lies in the 95% confidence interval for all estimates (LS,
EM model A and EM model B). In contrast, the true val-
ues of Ψ lie outside the estimated 95%-confidence inter-
val of the estimated cofactor matrix Ψ̂ when LS is em-
ployed. Applying EM, this statement is valid only for the
95%-confidence interval for Ψ̂x under stochastic model
A and for Ψ̂y under stochastic model B. Here, the biases
of the estimator Ψ̂ with respect to the true simulation pa-
rameter values applying EM is less than the corresponding
bias when employing LS. The greater deviation concern-
ing the VCM estimated by LS is the result of not taking the
correlations and the heavy-tailedness of the noise into ac-
count.

4.1.2 Analysis of the degree of freedom on the
estimation results

The influence of the df on the estimation results using
the EM algorithm is displayed in Fig. 3 and Fig. 4. Figure 3
shows the estimated β̂x, estimated scale parameters Ψ̂ and
the differences of the estimated ν to the true values for 500
MC runs by means of EM model A and EM model B esti-
mation. The values of the estimated functional parame-
ters β̂ under stochastic model A and stochastic model B
show no significant differences. It can be clearly seen that
the bias in the EM model B estimated scale parameters is

much smaller compared to EM model A estimated scale
parameters. The number of outliers (red crosses) resulting
from the EM model A estimate is significantly larger than
the number of outliers from the EMmodel B algorithm. For
both models (A and B) applies that if the number of obser-
vations is increased, the bias and the dispersion becomes
smaller. The bias of the estimated df ν̂ undermodel A is ap-
proximately 2.25,which is significantly larger than the bias
under model B (approximately 0.44). It can clearly be seen
that increasing the number of observations has no signif-
icant influence on the bias of the estimated df ν̂ for both
models. The estimated VAR coefficients for both models
(EMmodelA andEMmodel B) are shown inFig. 4. The esti-
mated MC solutions for both models show similar spread-
ing behavior around the true value. The number of obser-
vations only influences the precision of the estimation but
does not lead to a reduction of the bias. The statistical mo-
ments of the calculated bias Δα̂ and Δν̂ of the simulations
with 5000 observations are presented in Table 2. For the
VAR parameters only α1;2.2 lies in the 95% confidence in-
terval.

4.2 Gauss-Markov model: Adjustment of 3D
MEMS accelerometer data

In the second part of this section, the performance of
the EM algorithm elaborated in Sect. 3 (which we also re-
fer to as “VAR-multivariate algorithm” in the following)
is studied on real data sets, which were measured by an
accelerometer. Cost-effective Micro-Electro-Mechanical-
Systems (MEMS) accelerometers have received increasing
attention innumerous applications suchas vibration anal-
ysis of bridge structures, e. g., [52, 53, 54]. In such appli-
cations, it is desirable to select a suitable accelerometer
by considering, for instance, measurement and sensitiv-
ity ranges, uncertainty of measurements, cost, and sam-
pling rate. [55] proposed a two-step scenario to accom-
plish the suitability analysis for MEMS accelerometers.
Firstly, the calibration of the MEMS accelerometers was
carried out for different positions and over different tem-
perature ranges. Therefore, the characteristics of the cali-
bration parameters such as biases, scale factors and non-
orthogonalities between axes have been inspected during
different temperature changes. Secondly, a controlled ex-
citation experiment was conducted using a shaker to com-
pare and validate estimated harmonic oscillation parame-
ters including frequency, amplitude and phase shift with
other MEMS accelerometers as well as a high-end refer-
ence accelerometer. The second step additionally allowed
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Figure 1:MC simulation results of the estimated parameters for stochastic model A. Dash line: true value of simulation.

Figure 2:MC simulation results of the estimated VCM for stochastic model A.
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Figure 3: Comparison of the MC simulation results between the stochastic model A and B. The maximum deviation of Δν̂ for the stochastic
model B with n = 250 is 113.

Figure 4: Comparison of VAR coefficients between the MC simulation results of stochastic model A and B.
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Table 1: Statistics of MC simulation results for the bias of the estimated parameters β̂ and Ψ̂. The results were calculated for the simulation
with n = 5000 observations. The boundaries of the 95 % interval estimates are defined by the empirical 2.5 and 97.5 percentiles.

LS Model A EM Model A EM Model B

Δβ̂cx
mean 3.7 ⋅ 10−6 3.0 ⋅ 10−6 1.2 ⋅ 10−6

std 1.1 ⋅ 10−4 9.8 ⋅ 10−5 9.0 ⋅ 10−5

minimum −2.4 ⋅ 10−4 −2.4 ⋅ 10−4 −2.2 ⋅ 10−4

maximum 3.5 ⋅ 10−4 3.1 ⋅ 10−4 2.5 ⋅ 10−4

95% interval [−2.0 ⋅ 10−4, 2.1 ⋅ 10−4] [−1.9 ⋅ 10−4, 1.9 ⋅ 10−4] [−1.7 ⋅ 10−4, 1.8 ⋅ 10−4]
Δβ̂cy
mean −6.9 ⋅ 10−7 6.0 ⋅ 10−7 7.1 ⋅ 10−6

std 2.0 ⋅ 10−4 1.9 ⋅ 10−4 1.7 ⋅ 10−4

minimum −7.1 ⋅ 10−4 −6.5 ⋅ 10−4 −4.7 ⋅ 10−4

maximum 5.5 ⋅ 10−4 5.0 ⋅ 10−4 4.2 ⋅ 10−4

95% interval [−3.9 ⋅ 10−4, 4.1 ⋅ 10−4] [−3.8 ⋅ 10−4, 3.9 ⋅ 10−4] [−3.3 ⋅ 10−4, 3.4 ⋅ 10−4]
Δβ̂r
mean 6.3 ⋅ 10−6 3.3 ⋅ 10−6 3.8 ⋅ 10−7

std 9.9 ⋅ 10−5 9.0 ⋅ 10−5 8.3 ⋅ 10−5

minimum −3.1 ⋅ 10−4 −2.7 ⋅ 10−4 −2.1 ⋅ 10−4

maximum 2.8 ⋅ 10−4 2.6 ⋅ 10−4 2.7 ⋅ 10−4

95% interval [−1.9 ⋅ 10−4, 1.9 ⋅ 10−4] [−1.9 ⋅ 10−4, 1.7 ⋅ 10−4] [−1.5 ⋅ 10−4, 1.6 ⋅ 10−4]
ΔΨ̂x
mean 1.2 ⋅ 10−6 3.5 ⋅ 10−7 −6.1 ⋅ 10−8

std 2.8 ⋅ 10−7 1.6 ⋅ 10−7 4.8 ⋅ 10−8

minimum 1.2 ⋅ 10−7 −2.5 ⋅ 10−7 −1.9 ⋅ 10−7

maximum 2.9 ⋅ 10−6 1.6 ⋅ 10−6 1.1 ⋅ 10−7

95% interval [7.0 ⋅ 10−7, 1.8 ⋅ 10−6] [1.2 ⋅ 10−7, 6.7 ⋅ 10−7] [−1.5 ⋅ 10−7, 3.2 ⋅ 10−8]
ΔΨ̂x,y
mean 2.8 ⋅ 10−7 7.4 ⋅ 10−8 −9.2 ⋅ 10−8

std 4.7 ⋅ 10−7 2.1 ⋅ 10−7 6.5 ⋅ 10−8

minimum −3.1 ⋅ 10−6 −1.4 ⋅ 10−6 −3.1 ⋅ 10−7

maximum 4.0 ⋅ 10−6 1.7 ⋅ 10−6 1.1 ⋅ 10−7

95% interval [−4.6 ⋅ 10−7, 1.3 ⋅ 10−6] [−3.0 ⋅ 10−7, 4.6 ⋅ 10−7] [−2.2 ⋅ 10−7, 3.5 ⋅ 10−8]
ΔΨ̂y
mean 4.8 ⋅ 10−6 −2.6 ⋅ 10−7 −1.4 ⋅ 10−6

std 9.4 ⋅ 10−7 3.6 ⋅ 10−7 1.3 ⋅ 10−7

minimum 2.8 ⋅ 10−6 −9.7 ⋅ 10−7 −1.8 ⋅ 10−6

maximum 1.2 ⋅ 10−5 2.6 ⋅ 10−6 −7.1 ⋅ 10−7

95% interval [3.4 ⋅ 10−6, 6.7 ⋅ 10−6] [−7.5 ⋅ 10−7, 5.1 ⋅ 10−7] [−1.6 ⋅ 10−6, −1.2 ⋅ 10−6]

to check the time synchronization between the MEMS ac-
celerometers. Later on [54] extended the aforementioned
two-step scenario to three-step scenario. In the third-step,
a static test experiment was accomplished over a long pe-
riod of time, which allows to estimate an offset and a drift
of the measurements as well as auto-correlations and un-
derlying distributional parameters for each axis individu-
ally.

As part of this study and to make the third step of the
aforementioned three-step scenario more comprehensive,
the (unknown) auto- as well as cross-correlations and the
(unknown) distributional characteristics of the accelera-
tion measurements recorded from three different axes are
analyzed by employing VAR models with t-distributed er-

rors. For this purpose, acceleration measurements were
recorded from a cost-effective MEMS accelerometer of type
BNO055 with Arduino UNO-Board and 9 axes motion
shield (produced from Bosch GmbH), which is a so-called
NAMS. The measurements were carried out in three differ-
ent axes over a period of 24 hours (Fig. 5) with a sampling
frequency of 0.3789Hz. Although it is possible to perform
themeasurementswith a higher sampling frequency (e. g.,
up to 200Hz), the aforementioned sampling frequency is
specified to speed up the processing.

An observation model consisting of (1) a functional
model based on a linear drift with an unknown offset
(intercept) and a linear drift coefficient, (2) an auto- and
cross-correlation model based on a VAR process with un-
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Table 2: Statistics of MC simulation results for the bias of the estimated parameters ν̂ and α̂. The results were calculated for the simulation
with n = 5000 observations. The boundaries of the 95 % interval estimates are defined by the empirical 2.5 and 97.5 percentiles.

EM Model A EM Model B

Δν̂
mean 2.25 0.44
std 0.21 0.21
minimum 1.70 −0.19
maximum 3.12 1.16
95% interval [1.87, 2.70] [0.03, 0.89]
Δα̂1;1,1
mean 6.6 ⋅ 10−2 6.3 ⋅ 10−2

std 1.9 ⋅ 10−2 2.1 ⋅ 10−2

minimum 0.8 ⋅ 10−2 −2.6 ⋅ 10−2

maximum 11.7 ⋅ 10−2 12.4 ⋅ 10−2

95% interval [2.9 ⋅ 10−2, 10.1 ⋅ 10−2] [2.2 ⋅ 10−2, 10.3 ⋅ 10−2]
Δα̂1;1,2
mean −4.4 ⋅ 10−2 −4.8 ⋅ 10−2

std 2.4 ⋅ 10−2 2.4 ⋅ 10−2

minimum −14.2 ⋅ 10−2 −11.2 ⋅ 10−2

maximum 3.9 ⋅ 10−2 3.0 ⋅ 10−2

95% interval [−8.7 ⋅ 10−2, −0.2 ⋅ 10−2] [−9.5 ⋅ 10−2, −0.3 ⋅ 10−2]
Δα̂1;2,1
mean 3.3 ⋅ 10−2 3.4 ⋅ 10−2

std 1.0 ⋅ 10−2 1.0 ⋅ 10−2

minimum 4.8 ⋅ 10−3 6.5 ⋅ 10−3

maximum 6.9 ⋅ 10−2 6.8 ⋅ 10−2

95% interval [1.2 ⋅ 10−2, 5.3 ⋅ 10−2] [1.6 ⋅ 10−2, 5.2 ⋅ 10−2]
Δα̂1;2,2
mean −7.3 ⋅ 10−4 6.3 ⋅ 10−4

std 1.3 ⋅ 10−2 1.4 ⋅ 10−2

minimum −3.4 ⋅ 10−2 −3.9 ⋅ 10−2

maximum 4.6 ⋅ 10−2 3.5 ⋅ 10−2

95% interval [−2.9 ⋅ 10−2, 2.4 ⋅ 10−2] [−2.7 ⋅ 10−2, 2.8 ⋅ 10−2]

Figure 5: Raw acceleration data recorded from the MEMS accelerometer of type NAMS (blue) and fitted linear model (red) estimated from
VAR-multivariate algorithms.

known model order and coefficients, and (3) a stochastic
model based on the multivariate t-distribution with un-
known scale matrix and df. This observation model has
the structure of theGMMwithVARand t-distributed errors.
Themaximumnumber of iterations is set to itermax = 200,
the convergence thresholds to ε = 10−12, and εν = 0.001.

The model parameters estimated by means of the VAR-
multivariate algorithm are then compared with the esti-
mates resulting from the “AR-univariate algorithm” (see
[54] and [56] for details) where each axis of the MEMS ac-
celerometers is modeled by an individual AR process. The
static acceleration measurements ℓ1, . . . , ℓn (n = 32743) are
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Table 3: Statistics of the estimated unknown parameters in the functional model based on the linear drift model, the auto- and cross-
correlation model based on the VAR process and the stochastic model based on the centered and scaled t-distribution with an unknown
degree of freedom and unknown scale factor from the AR-univariate and VAR-multivariate algorithms.

Sensor Method Axis ̂c0 ̂c1 ̂σl p ̂αl WNT ̂ν
[m/s2] [m/s3] [m/s2] [–] [–] [–] [–]

NAMS multivar. x −0.3598 4.80e-09 0.0224 1 – yes 2.1
y 0.2810 −6.11e-08 0.0493 –
z 9.6752 4.63e-09 0.0534 –

univar. x −0.3597 6.81e-09 0.0066 1 −6.2927e-04 yes 16.87
univar. y 0.2811 −6.12e-08 0.0132 1 0.0013 yes 120
univar. z 9.6746 6.65e-09 0.0141 1 0.0087 yes 120

modeled based on a linear drift, which is described by the
model equations

ℓt = ft(β) + et
= c0 + c1xt + et (t = 1, . . . , tn). (74)

where the vectorβ of unknown functional parameters con-
sists of the offset c0 in [m/s2] and the linear drift coefficient
c1 in [m/s3]. The quantities x1, . . . , xn represent equidistant
time instances and e1, . . . , en the random deviations con-
taminated with colored noise. The preceding observation
equations can be written in the form of

ℓt = Xtβ + et , (75)

where Xt are the rows of the design matrix

X =
[[[

[

1 x1
...

...
1 xn

]]]

]

, (76)

which has full rank.
Table 3 summarizes the statistics of the estimated

parameters from the VAR-multivariate and AR-univariate
algorithms based on the GMM. ĉ0 [m/s2] is the estimated
offset and ĉ1 the estimated linear drift coefficient [m/s3]. p
is the VAR model order in case of the VAR-multivariate
algorithm and the AR model order in case of the AR-
univariate algorithm. WNT stands for “white-noise test”
and indicates the acceptance (“yes”) or rejection (“no”)
of the multivariate portmanteau test introduced by [57]
and adapted by [26]. ̂σl is the estimated standard devi-
ation of the white noise components. In this study, the
multivariate portmanteau test is applied to select an ad-
equate VAR model order by testing the residuals of the
VAR model if they are uncorrelated or not. Therefore, the
p-value (pv) is calculated based on different VAR model
orders p = 1, . . . , 10. Beforehand, the significance level
is defined as α = 0.05, and the maximum lag is set to
20 similar to the research of [26]. The WNT is accepted if

pv > 0.05, which corresponds to the acceptance of the
white noise hypothesis, otherwise it is rejected. To esti-
mate the df of the underlying t-distribution a zero search
based on the reliable interval Newtonmethod as described
in [58] is performed by using the INTLAB library [51]. The
estimated unknown parameters including offset and drift
in bothVAR-multivariate andAR-univariate algorithms are
rather similar to each other and no significant differences
are observable. The df estimate initially was below 2 with
the application of the VAR-multivariate algorithm, so that
the covariance matrix Σ of the white noise is theoretically
undefined. We also found some numerical instability with
the estimation of the parameters of the scale matrix, so
that we set the estimate ν̂ to the small but numerically sta-
ble value 2.1 and repeated the algorithm with this fixed df.
In contrast, the AR-univariate algorithm produced much
larger df estimates (16.87, 120, and 120) for the individ-
ual axes. The value 120 is the maximum value of the zero
search interval; if the zero is not found within the search
interval, it is automatically set to the threshold 120 (which
happened in the present case). This threshold indicates
the fitted t-distribution already is very close to a normal
distribution. We may therefore conclude that the combi-
nation of a VAR process with a multivariate t-distribution
yields quite different results than the three individual AR
processes with univariate t-distributions, which ignore
the cross-correlations in the noise. The reason for why the
latter combination leads to increased df estimates needs
to be investigated further. The standard deviations of the
white noise components for both VAR-multivariate and
AR-univariate algorithms are estimated, see Table 3. As it
could be seen, the uncertainties in the x-axis of the NAMS
acceleration data are less than for the two other axes.

Fig. 6 (a) illustrates the estimatedp-values for different
VAR model orders. The estimated p-values are all above
the significance level, and thus, the VAR model order 1 is
selected. Fig. 7 (b) shows the calculated test values that are
comparedwith the cumulative distribution function of the
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Figure 6: Results of the portmanteau test (p-value) for VAR model
orders p = 1, . . . , 10.

Figure 7: Results of the test values for VAR model orders p =
1, . . . , 10.

chi-square distribution (Fχ2(42 ⋅(20−p))) with df = 4
2 ⋅ (20 − p)

[26]. As it could be seen, all test values are below the criti-
cal values, and thus, the WNT are accepted.

The estimated VCM (Σ) and its corresponding correla-
tion matrix (R) based on the VAR-multivariate algorithm
are

Σ̂ = [[
[

0.000501 2.0464e − 05 9.7799e − 06
2.0464e − 05 0.002429 −4.8095e − 05
9.7799e − 06 −4.8095e − 05 0.002862

]]

]
(77)

R̂ = [[
[

1 0.018551 0.008167
0.018551 1 −0.018241
0.008167 −0.018241 1

]]

]

(78)

The latter matrix contains the correlation coefficients be-
tween the different axes. As it could be seen, the correla-
tion coefficients are very small and are negligible. Addi-
tionally, the coefficients of the VAR model order 1 is ar-
ranged within the (3 × 3)-matrix

Â1 =
[[

[

5.7887e − 04 −0.0012 0.0032
0.0090 −0.0020 −0.0090
−0.0120 −2.0993e − 04 0.0083

]]

]

, (79)

Figure 8: Representation of the estimated colored and white noise
residuals (x, y, and z axes in a sequence) obtained from NAMS accel-
eration data for VAR model order 1.

Figure 9: Differences of the estimated residuals (x, y, and z axes in a
sequence) (b).

according to the definition of the VAR coefficient matrix
(23). As it could be seen, the VAR model coefficients cor-
responding to y and z axes are slightly greater than those
for the x-axis. In addition, the estimated colored andwhite
noise residuals obtained from NAMS acceleration data are
illustrated in Fig. 8. The subtraction of the aforementioned
residuals are provided (Fig. 9) to have a better realization
of the amplitude of the colored noise residuals at each
axis. As it could be seen, the y and z-axes of the NAMS ac-
celerometer have stronger colored measurement noise in
comparison to the x-axis.

The proposed approach in this study assists us to se-
lect a proper MEMS accelerometer for, e. g., the purpose
of vibration analysis of bridge structures. It is applied as
a third step of the aforementioned scenario in the suit-
ability analysis of the MEMS accelerometer by providing
information about unknown offset and drift coefficients,
VARmodel order and stochastic model parameters. There-
fore, a sensorwith possibly less offset and drift coefficients
over a long period as well as lower uncertainty of the mea-
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surements could be selected. In addition, a minimumVAR
model order between different MEMS accelerometers re-
veals less cross-correlation between their axes, which can
also be considered as an important influencing factor in
the selection procedure. Moreover, it is observed that the
MEMS accelerometers used in this study have minimum
standard deviations in the x-axis compared to the two
other axes. Therefore, the sensors should bemountedwith
their x-axis in the main observations direction during the
monitoring of bridge structures.

4.3 Gauss-Helmert model: Adjustment of a
sphere from continuous laser tracker
measurements

In the third part of this section, the performance of the EM
algorithm in a real-world application estimating the pa-
rameters β = [cx cy cz r]

T of sphere is studied. The
practical relevance of this sphere parameter estimation
can be seen in the field of surface fitting applications as
well as referencing applications of surface and point-wise
measuring sensors, i. e., laser scanner and laser tracker
measurements. The 3D sphere is defined by the nonlinear
equation

ht(β,μ) = (xt − cx)
2 + (yt − cy)

2 + (zt − cz)
2 − r2 = 0, (80)

which is an extension in 3D space by considering the
z-component in addition to the nonlinear equation of the
2D circle in (70).

To illustrate and discuss the adjustment of a sphere,
3D coordinates on the surface of a sphere with known
radius were obtained by continuous measurements with
10Hz using a laser tracker of type Leica AT960-LR. The
extended uncertainty of the x-, y- and z-coordinate is
given by Ux,y,z = ±15 µm + 6 µm/m (MPE according to ISO
10360-10)while using a Leica RedRing Reflector 1.5” (RRR)
in single measurement mode [60]. Here, the data acqui-
sition is performed in continuous measurement mode at
10Hz using the software tool Tracker Pilot. In the acquisi-
tionprocess, theRRRwasmoved randomlyover the sphere
surface fromonly one laser tracker setup; thus, only a half-
sphere is measured. To capture the full sphere surface at
least two standpoints of the laser tracker are required. In
this case, the measurements have to be transformed into
a common coordinate system. This leads to the presence
of referencing uncertainties besides sensor-related uncer-
tainties. In order to focus on sensor uncertainties only,
the sphere is only observed from one standpoint. The dis-
tancebetween the laser tracker and the spherewas approx-

Figure 10: Results of the test values for VAR model orders p =
1, . . . , 10. Blue line indicates the critical value for the significance
level α = 0.05 and the maximum lag is set to 20. The red dots show
the test values of the weighted white noise, which are larger than
the critical value. The green star represents the test value matching
the null hypothesis H0.

imately 4m and the y-axis of the local coordinate system
of the laser tracker was oriented towards the sphere. The
Cartesian coordinates obtained yield a time series of di-
mensionN = 3 for aperiodof approximately 90 s, resulting
in n = 888 3D points. There are no data gaps, which results
in a Δt = 0.1 s for subsequent measurement. The environ-
mental temperature during the experiment was constant
19.3 ∘C.

4.3.1 Analysis of the measurements

In analogy to the analysis scheme for the simulated 2D
circle in Sect. 4.1, the sphere parameters are obtained on
the one hand by means of a LS estimation, i. e. a classical
GHM, and on the other hand bymeans of the proposed EM
algorithm in this contribution. The thresholds used within
the EM algorithm are similar to the simulation. In this real-
world application study, themultivariate portmanteau test
is applied to select an adequate VARmodel order p by test-
ing the estimated residuals ût of the VARmodel if they are
uncorrelated (i. e., by checking for the presence of white
noise). This VAR model order selection for p = 0, . . . , 10
was similarly applied in Sect. 4.2 using the significance
level α = 0.05, and the maximum lag is set to 20 simi-
lar to the research of [26]. For the VAR model order p =
0 no multivariate VAR process is estimated. Instead, the
GHM with stochastically independent t-distributed errors
is evaluated. The EMalgorithmestimates the unknownpa-
rameters β, Ψ, ν and Aj, which yields – depending on the
VAR model order – in total 4 + 6 + 1 + 9 ⋅ p parameters to
estimate.
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Table 4: Estimated sphere parameters for the LS model and the VAR model orders p = 0 and p = 3.

LS Model EM Model p = 0 EMModel p = 3

β̂cx [mm] 99.317 99.317 99.317
β̂cy [mm] 4014.130 4014.129 4014.125
β̂cz [mm] 4.009 4.009 4.006
β̂r [mm] 68.943 68.943 68.939

Ψ̂ – [[

[

29.24 −0.17 3.09
−0.17 20.86 7.07
3.09 7.07 5.85

]]

]

10−5 [[

[

1.15 0.69 0.31
0.69 0.79 0.38
0.31 0.38 0.35

]]

]

10−5

ν̂ − 2.60 2.10

Σ̂uu
[[

[

60.64 −3.24 3.42
−3.24 57.09 19.55
3.42 19.55 14.29

]]

]

10−5 [[
[

61.15 −3.27 3.22
−3.27 57.06 19.63
3.22 19.63 14.24

]]

]

10−5 [[
[

4.21 3.14 1.31
3.14 3.98 1.89
1.31 1.89 1.54

]]

]

10−5

R̂ [[

[

1.00 −0.06 0.12
−0.06 1.00 0.68
0.12 0.68 1.00

]]

]

[[

[

1.00 −0.06 0.11
−0.06 1.00 0.69
0.11 0.69 1.00

]]

]

[[

[

1.00 0.77 0.51
0.77 1.00 0.76
0.51 0.76 1.00

]]

]

Before discussing the results of the parameter estima-
tion, we will discuss the results of the portmanteau test in
Fig. 10. The blue line indicate the critical value for the sig-
nificance level α = 0.05. The red dots show the test values
of the weighted white noise, which are larger than the crit-
ical value. The green star represents the test value that is
smaller than the critical value,whichmeans that the test is
passed. It canbe seen that the test is passed for orderp = 3,
while for orders p = 4 . . . 7 the test value is close to the crit-
ical value. The test for order p = 0 failed and is, due to its
significantly larger numerical value, not shown in Fig. 10.
Based on these portmanteau test results, we will focus in
the further discussion on the results of the LS model and
the VAR model orders p = 0 and p = 3.

4.3.2 Discussion of the results

The estimated parameters β for the LS model and the VAR
model orders p = 0 and p = 3 shown in Table 4 are almost
the same, with the maximum differences of 5 μm being in
the range of the uncertainty of the laser tracker used. The
small value for the df indicates that the residualsut are not
normally distributed. Differences in the estimated param-
eters of the three models can be found in the scale matrix
and the VCM of the residuals. Σ̂uu is equivalent to the clas-
sical estimate of the VCM of the estimated white noise u.
For the LS model, Σ̂uu is estimated by means of the esti-
mated residuals e. Σ̂uu for VAR model order p = 3 clearly
shows, how the values of the VCM of the observations on
the main diagonal are reduced by means of the VAR pro-
cess. The fact that the matrices Σ̂uu for the LS model and
theVARmodel orderp = 0 are almost identical can be seen
in the residuals shown in Fig. 11.

Figure 11 depicts the estimated colored and white
noise residuals obtained from laser tracker measurements
for VAR model order p = 3. The blue line indicates the col-
ored noise, which shows several significant peaks, which
can be interpreted as potential outliers. These may stem
from the imperfect surface of the sphere or even can be as-
sociated with the roughness of the surface. Furthermore,
these significant peaks can result from the measurement
procedure since for the data acquisition the RRR is moved
individually by hand along the surface. If the contact to
the surface is slightly lost, this will also produce peaks as
can be seen in the blue line. Due to the orientation of the
local laser tracker coordinate system, individual peaks in
the y-component (middle part in Fig. 11) can be associated
with an uplift of the RRR towards the laser tracker. The
minor colored noise level of the z-component also results
from themeasurement setup, i. e. the orientation of the lo-
cal laser tracker coordinate system, and shows the uncer-
tainty differences for the angular and the distance mea-
surement unit. Since the estimated parameters β for the
LS model and the VAR model orders p = 0 and p = 3 are
almost identical (see Table 4), the depicted colored noise
is also nearly identical. For the special case of VAR model
order p = 0 the residual estimates êt and ût are equal.
This implies equality of Σ̂uu for the LS model and the VAR
model order p = 0. Furthermore, the residuals in Fig. 11
show an equal distribution of positive and negative peaks
(outliers) for the individual coordinate components. Due
to the symmetric geometry of the sphere the positive and
negative peaks compensate each other in the estimation of
the parameters β.

The red circles in Fig. 11 indicate white noise and the
green dots indicate the weighted white noise, i. e. white
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Figure 11: Estimated colored and white noise residuals obtained from laser tracker measurements for VAR model order p = 3. Blue line
indicates colored noise, red circles indicate white noise and green dots indicate the weighted white noise.

noise values multiplied with their weights ŵ. It can be
clearly seen that the VAR process is unable to fully smooth
the colored noise. First, the substitution of t-distribution
instead of the normal distribution allow for reducing the
influence of the remaining outliers in the parameter es-
timation. Furthermore, only by using the weighted white
noise (colored in green) the portmanteau test can be
passed, which is not applicable for the white noise (col-
ored in red).

Table 5 shows the results of theVARcoefficients for the
model orders p = 1, 2, 3. To judge about any possible corre-
lations for the colored noise of the x-, y- and z-component,
we can confirm correlations based on the shownVAR coef-
ficients in Table 5. Since the off-diagonal elements are sig-
nificantly different from zero, this indicates the presence
of correlations. As an example, Â3 shows similar magni-
tudes for the x-component with −0.263 and correlations
with the y-component by a value of 0.203. Furthermore,
the alternating positive and negative sign of the coeffi-
cients indicate the negative correlation for the coordinate
components.

Taking a look at the VAR coefficients for the model or-
der p = 1 one can see small off-diagonal elements, which
shows that the correlation of the coordinate components
is hardly reduced. This can also be seen by the significant
difference of the test value in Fig. 10 for p = 1 with respect
to the critical value. For the VAR model of order p = 2 it
is firstly possible to estimate the correlations of the col-
ored noise. On the one hand, in Table 5 the off-diagonal
elements for p = 2 are obviously larger compared to p = 1.
On the other hand, the test value is approaching the criti-
cal value, which can be seen in Fig. 10.

5 Conclusions and outlook
The nonlinear Gauss-Helmert model constitutes the most
general adjustment model, which is widely used in
geodesy. This model consists of condition equations
(which link the observations and the functional parame-
ters occurring in the mathematical model employed to ap-
proximate the measurements) and of a stochastic model.
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Table 5: Results of the VAR coefficients for the VAR models of order p = 1, 2, 3.

EM Model p = 1 EMModel p = 2 EMModel p = 3

Â1
[[

[

0.986 0.006 0.001
−0.023 1.007 −0.021
−0.009 0.007 0.982

]]

]

[[

[

1.412 −0.148 0.108
−0.265 1.622 −0.132
−0.103 0.090 1.355

]]

]

[[

[

1.244 0.051 0.006
−0.218 1.555 −0.149
−0.118 0.108 1.284

]]

]

Â2 – [[

[

−0.427 0.153 −0.151
0.262 −0.623 0.083
0.108 −0.078 −0.430

]]

]

[[

[

−0.002 −0.245 0.091
0.159 −0.439 0.125
0.148 −0.114 −0.220

]]

]

Â3 – – [[

[

−0.263 0.203 −0.159
0.058 −0.115 −0.043
−0.025 0.022 −0.164

]]

]

The latter usually is defined by a VCM, which tends to
be huge when the number of measurements is large. We
therefore applied and investigated, in the context of mul-
tivariate time series, a more manageable type of stochas-
tic model defined by a vector autoregressive (VAR) pro-
cess. This model takes both auto- and cross-correlations
into account and can be estimated alongside the func-
tional model parameters. By employing a multivariate
t-distribution with data-adaptable scale matrix and de-
gree of freedom, moderate deviations from the usual as-
sumption of normally distributed noise are possible. To
fuse this t-distribution with the VAR process and the con-
straints, we applied the idea of formulating a generalized
Gauss-Helmert model in terms of a likelihood function,
which is maximized under the constraints. The proposed
model allows for a computationally convenient iteratively
reweighted least-squares method based on a constrained
expectation maximization algorithm. This methodology
extends the previously established approach involving
univariate autoregressive models that ignored potential
cross-correlations between the time series. Analysis of
the biases by means of Monte Carlo simulations showed
that the functional model parameters tend to be highly
accurate when the number of observations is increased,
whereas a significant bias of the degree of freedom of
the multivariate t-distribution persists, in particular for
smaller degrees of freedom. The accuracy of the estimated
VAR coefficients and of the scale parameters generally
improves with larger datasets. The methodology is also
applicable to functional models that take the form of a
Gauss-Markov model, as shown by an analysis of real ac-
celerometer data modeled by an offset and a linear drift.
For another real-world application, which utilizes contin-
uous measurements of a laser tracker on a sphere, the
applicability of the proposed Gauss-Helmert model was
also demonstrated. Furthermore, the analyses of the re-

sults for this application demonstrated that the estimated
VAR process coefficients and the estimated parameters of
the multivariate t-distribution allows for detailed evalu-
ations of the auto- and cross-correlation as well as the
distributional characteristics of the measurement noise.
Thus, actual deviations of the noise from expected white-
noise and normal-distribution behavior become visible
in the course of adjusting real-world datasets. Due to its
flexibility the proposed innovative type of Gauss-Helmert
model with VAR and t-distributed errors could be useful
in various fields of geodesy such as engineering geodesy
or Earth system modeling where multivariate, function-
ally complex and correlated time series are analyzed. Since
such datasets often contain gaps a further extension of the
model and EM algorithms such that the E-step yields also
values for missing measurement values appears to be use-
ful. It is also conceivable that the VAR processes of the cur-
rent model are replaced by other stochastic processes that
might match the correlation pattern of a given set of ob-
servables better.

Appendix A. Derivations

Log-likelihood and Q-functions

log L(θGHM; ℓ,w) = −
Nn
2

log(2π) − n
2
log detΨ

+
nν
2
log (ν

2
) − n log Γ (ν

2
) + (

N
2
− 1)

n
∑
t=1

logwt

−
1
2

n
∑
t=1

wt[A(L)(ℓt − μt)]
TΨ−1[A(L)(ℓt − μt)]

+
ν
2

n
∑
t=1
(logwt − wt). (81)
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Q(θGHM|θ̂
(s)
GHM) = EW |u;θ̂(s)GHM

{log L (θGHM; ℓ,W)}

= −
Nn
2

log(2π)− n
2
log detΨ + nν

2
log (ν

2
) − n log Γ (ν

2
)

−
n
∑
t=1

1
2
(ν + [A(L)(ℓt − μt)]

TΨ−1[A(L)(ℓt − μt)])

× E
W |u;θ̂

(s)
GHM
{Wt} +

n
∑
t=1

1
2
(ν − 1)E

W |u;θ̂
(s)
GHM
{logWt}.

(82)

Here, the conditional expectations E
W |u;θ̂

(s)
GHM
{Wt} and

E
W |u;θ̂

(s)
GHM
{logWt} are essentially the same as the ones oc-

curring in Eq. (54) in [26] with respect to the GMM with
VAR and multivariate-distributed errors. The only differ-
ence lies in the different parametrization of the determin-
istic model, which is independent of the stochastic model
forWt . Consequently,

w̃(s)t := EW |u;θ̂(s)GHM
{Wt} =

ν̂(s) + N

ν̂(s) + uTt (Ψ̂
(s)
)−1ut

(83)

and

E
W |u;θ̂

(s)
GHM
{logWt} = log w̃

(s)
t + ψ(

ν̂(s) + N
2
)

− log( ν̂
(s) + N
2
) , (84)

with ut = Â(s)(L)(ℓt − μ
(s)
t ), so that the Q-function (82) can

be written as
Q(θGHM|θ̂

(s)
GHM) = −

n
2
log detΨ

−
1
2

n
∑
t=1

w̃(s)t [A(L)(ℓt − μt)]
TΨ−1[A(L)(ℓt − μt)]

+
nν
2
log ν − n log Γ (ν

2
) +

nν
2
[ψ( ν̂

(s) + N
2
)

− log (ν̂(s) + N) + 1
n

n
∑
t=1
(log w̃(s)t − w̃

(s)
t )] . (85)

The following normal equations can be derived from the
linearized Lagrangian (obtained by combining (40) with
(42))

F(ϕ, λ|θ̂
(s)
GHM) ≈ −

n
2
log detΨ

−
1
2

n
∑
t=1

w̃(s)t [A(L)(ℓt − μt)]
TΨ−1[A(L)(ℓt − μt)]

+
nν
2
log ν − n log Γ (ν

2
) +

nν
2
[ψ( ν̂

(s) + N
2
)

− log (ν̂(s) + N) + 1
n

n
∑
t=1
(log w̃(s)t − w̃

(s)
t )]

+ λT [XΔβ + B(μ − ℓ) +m] (86)

by applying slight modifications to the steps concerning
the GMM with VAR and multivariate t-distributed errors
given in Appendix B in [26], using (8).

Normal equations for the location parameters

Applying (8) to eliminate the time dependence of the loca-
tion parameters μt allows one to form (and subsequently
simplify) the partial derivatives with respect to the com-
plete vector μ of location parameters as follows.

0 =
àF(ϕ, λ|θ̂

(s)
GHM)
àμ

= −
1
2

n
∑
t=1

w̃(s)t
à
àμ
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= −
1
2
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=
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Tλ

Normal equations for the VAR coefficient
matrices

Substituting (32) into (86) for brevity of expressions and
applying also Eq. (88) in [59],
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The joint normal equation system for all of the VAR co-
efficient matrices A1, . . . ,Ap then becomes

[[[

[

0N
...
0N

]]]

]

=

[[[[[[[

[

n
∑
t=1

w̃(s)t et−1[A(L)et]T

...
n
∑
t=1

w̃(s)t et−p[A(L)et]T

]]]]]]]

]

=
[[[

[

w̃(s)1 e1−1 ⋅ ⋅ ⋅ w̃(s)n en−1
...

...
w̃(s)1 e1−p ⋅ ⋅ ⋅ w̃(s)n en−p

]]]

]

×
[[[

[

[e1 − A1e1−1 − ⋅ ⋅ ⋅ − Ape1−p]T
...

[en − A1en−1 − ⋅ ⋅ ⋅ − Apen−p]T

]]]

]

=
[[[

[

e0 ⋅ ⋅ ⋅ en−1
...

...
e1−p ⋅ ⋅ ⋅ en−p

]]]

]

W̃(s)

×(
[[[

[

eT1
...
eTn

]]]

]

−
[[[

[

eT0 ⋅ ⋅ ⋅ eT1−p
...

...
eTn−1 ⋅ ⋅ ⋅ eTn−p

]]]

]

[[[

[

AT
1
...
AT
p

]]]

]

)

= EW̃(s)
[[[

[

eT1
...
eTn

]]]

]

− EW̃(s)ET
[[[

[

AT
1
...
AT
p

]]]

]

.

Normal equations for the inverse scale matrix

Substituting (33) into (86) for brevity of expressions and
applying the arguments given in Sect. 373 in [18], one ob-
tains

0 =
àF(ϕ, λ|θ̂
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n
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