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abstract

The geometric theory of pseudo-differential and Fourier Integral Operators relies on the

symplectic structure of cotangent bundles. If one is to study calculi with some specific

feature adapted to a geometric situation, the corresponding notion of cotangent bundle

needs to be adapted as well and leads to spaces with a singular symplectic structure.

Analysing these singularities is a necessary step in order to construct the calculus itself.

In this thesis we provide some new insights into the symplectic structures arising

from asymptotically Euclidean manifolds. In particular, we study the action of the

Poisson bracket on SG-pseudo-differential operators and define a new class of singular

symplectomorphisms, taking into account the geometric picture. We then consider this

notion in the context of the characterisation of order-preserving isomorphisms of the

SG-algebra, and show that these are in fact given by conjugation with a Fourier Integral

Operator of SG-type.

zusammenfassung

Die geometrischen Kalküle von Pseudo-differenzial- und Fourier-Integraloperatoren beru-

hen auf den symplektischen Eigenschaften des Kotangentialbündels. Um neue Kalküle zu

entwickeln, die an eine besondere Geometrie angepasst sind, ist es nötig, singulär-symp-

lektische Mannigfaltigkeiten zu betrachten. Diese müssen zuerst verstanden werden,

bevor man die zugehorigen Operatorkalküle konstruieren kann.

In dieser Dissertation geben wir neue Einblicke in die singulär-symplektischen Struk-

turen, die aus asymptotisch-Euklidischen Mannigfaltigkeiten entstehen. Insbesondere

rechnen wir aus, wie die Poisson-Klammer auf SG-Pseudo-Differenzialoperatoren wirkt,

und definieren eine neue Klasse symplektischer Abbildungen, die an die geometrischen

Besonderheiten angepasst sind. Wir betrachten außerdem die ordnungserhaltenden Iso-

morphismen der SG-Algebra und zeigen, dass unser Konzept von singulär-symplektischen

Abbildungen natürlich in diesem Zusammenhang auftaucht. Wir benutzen es, um diese

Isomorphismen als Konjugation mit einem SG-Fourier-Integraloperator zu charakter-

isieren.
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When you mess with mathematics,

you are digging your own grave.

SLAVOJ ŽIŽEK

Desire brings the participants together.

Data set the limits of their dialogue.

Doubt frames the question.

FRANK HERBERT, God Emperor of Dune
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N O TAT I O N

We use the notation x∈̇Ω to indicate that Ω is an open neighbourhood of a point

x in a topological space. The space of C-valued, k-times continuously differentiable

functions defined on an open Ω ⊂ Rn will be denoted by Ck(Ω; C). The intersection

of such spaces is the space E(Ω) ≡ C∞(Ω; C) =
⋂
k Ck(Ω, C) of C-valued, infinitely

differentiable functions, also known as smooth functions, defined on Ω.

We write RN
0 ≡ RN \ {0} without exceptions.

Unless otherwise stated, if F (Ω; C) is some space of C-valued functions defined on

some Ω ⊂ Rn open, we will only write F (Ω) for F (Ω; C) and furthermore if Ω = Rn

we will write only F . We also append a subscript c, namely we write Fc(Ω), to indicate

functions in F (Ω) having compact support.

For r > 0, Br is the open ball (with respect to the Euclidean distance) of radius r

centred at 0, namely
Br(a) = {x ∈ R

n s.t. |x− a| < r},

Br ≡ Br(0).

We denote by Br(a) the closure of Br(a), so that Br(a) = {x ∈ Rn s.t. |x− a| ≤ r}, in

particular Bn will denote the ball of radius 1 centred at 0 in Rn.

For some functions u, v such that uv ∈ L1(Ω), we let

(u, v) ≡
∫

Ω

u(x)v(x) dx.

This is a sesqui-linear form whenever it is defined, and, in the particular case when

u, v ∈ L2(Ω), it defines the usual Hilbert space structure on L2(Ω). For a linear operator

A on L2(Ω) we write A† to denote the (formal) adjoint of A with respect to Hilbert

product (u, v) =
∫
u(x)v(x) dx, namely

(
A†u, v

)
≡ (u,Av).

For x, y ∈ Rn we denote x · y or, more often, simply xy the Euclidean scalar product

xy =
∑n
i=1 xiyi.

Throughout the whole text, we will use multi-indices, which are useful to simplify the

formulae we write. We recall the corresponding notation.

A multi-index is an n-tuple α = (α1, . . . ,αn) ≡ Nn, and1 we will always indicate

components of a multi-index using the same Greek letter, i.e. αj is the jth component

of α ∈ Nn, for j = 1, . . . ,n. We denote 1j ≡ (0, . . . , 1, . . . , 0)︸ ︷︷ ︸
j

and in particular, if n = 2,

we let 1e = (1, 0),1ψ = (0, 1) and 1 = (1, 1). For a multi-index α ∈ Nn, we define the

height of α as |α| ≡ α1 + · · · + αn and the factorial of α as α! ≡ (α1)! . . . (αn)!. Given

1 Notice that for us 0 ∈ N.
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IV notation

α,β ∈ Nn, we say that β is smaller than α, and write β ≤ α, if βj ≤ αj , j = 1, . . . ,n.

For β ≤ α we define the binomial coefficient of α with respect to β as

(
α

β

)
≡
(
α1

β1

)
. . .

(
αn

βn

)
.

Considering Euclidean coordinates x = (x1, . . . ,xn) on Rn, we define

xα ≡ (x1)
α1 . . . (xn)

αn ,

tacitly denoting by the usual abuse of notation x
αj
j = 1 for αj = 0 and any xj ∈ R, j =

1, . . . ,n. For a function of class Ck and any α ∈ Zn
+ such that |α| ≤ k, we set

∂αf(x) ≡ ∂|α|f

(∂x1)α1 . . . (∂xn)αn
(x).

We also introduce the Japanese or angular bracket of x as the function λ(x) ≡ ⟨x⟩ ≡(
1 + |x|2

)1/2
, whose powers we denote as ⟨x⟩s = λs(x).

The Schwartz space S(Rn) is the set of all u ∈ C∞(Rn) such that xα∂βu ∈ L∞(Rn).

It is a Fréchet space with respect to the family of semi-norms pα,β given by the best

constants Cα,β such that supx∈Rn

∣∣∣xα∂βu(x)
∣∣∣ ≤ Cα,β. Its topological dual S ′(Rn) is the

set of temperate distributions, namely of all linear functionals u : S(Rn) → C such that

u(φj) → 0 ⇐⇒ pα,β(φj) → 0.

We use the notation Hm(Ω) for the standard L2-based Sobolev spaces of order m on

Ω. Namely, Hm(Ω) is the space of all distributions u ∈ S ′ such that ⟨ξ⟩m û(ξ) ∈ L2(Ω).

We also let

A ≲ B ⇐⇒ ∃C > 0 s.t. |A| ≤ C · |B| ,

and use the notation A ≃ B if both A ≲ B and B ≲ A. If we want to be more precise and

specify on which quantities the hidden constant depends, we append those quantities as

a subscript to ≲. For example, for Hörmander-type symbols of order m we might write∣∣∣∂αx ∂
β
ξ a(x, ξ)

∣∣∣ ≲α,β,K (1 + |ξ|)m−|β| to indicate that there exists a constant c depending

on the multi-indices α,β and a compact set K which makes the inequality true.

When dealing with geometric objects and when not using multi-indices, we always

employ the Einstein summation convention, namely we understand a sum over a whole

set of quantities whenever the same index appear both as a super- and as a sub-script in a

product. In regard to tensor fields, we use the following notation. A (complex) tensor of

type (s, r) on a vector space V is a multi-linear map t : V × · · · × V︸ ︷︷ ︸
r

×V ∗ × . . . V ∗
︸ ︷︷ ︸

s

→ C.

We write t ∈ T s
r (V ) for the space of these maps. We call contravariant tensors of type

s the elements of T s
0 (V ) and covariant tensors of type r the maps in T 0

s (V ). Picking a

base (ei) of V induces a dual base (ϵi) of V ∗, defined by ϵi(ej) = δij , and allows us to

define bases for the spaces T s
r (V ) by taking tensor products ei1 ⊗ . . .⊗ eis ⊗ ϵj1 ⊗ . . .⊗ ϵjr .



notation V

With respect to these bases each element t ∈ T s
r (V ) has an expression t = t

i1,...,is
j1,...,jr

ei1 ⊗
. . .⊗ eis ⊗ ϵj1 ⊗ . . .⊗ ϵjr . We define the symmetric product dxi ⊙ dxj ≡ 1/2(dxi ⊗ dxj +

dxj ⊗ dxi), respectively the exterior product dxi ∧ dxj ≡ 1/2(dxi ⊗ dxj − dxj ⊗ dxi),

and extend it to be totally symmetric, respectively alternating, on covariant tensors.

The elements of Λ
rV ≡ A(T 0

r ) are then the alternating r-forms on V and it follows then

that the coefficients of t with respect to ϵj1 ⊗ . . .⊗ ϵjr coincide with those of A(t) with

respect to ϵj1 ∧ · · · ∧ ϵjr .
On a manifold M we define tensor fields of type (s, r) as a family of tensors t =

{t(p)}p∈M , with t(p) ∈ T s
t (TpM ) varying smoothly with p. In a chart U with coordinates

x, t has an expression t(x) = t
i1,...,is
j1,...,jr

(x)∂i1 ⊗ . . .⊗ ∂is ⊗ dxj1 ⊗ . . .⊗ dxjr with smooth

functions t(x). According to our convention, then, vector fields are tensor fields of type

(1, 0) and 1-differential forms have type (0, 1). A Riemannian metric on M is a positive-

definite 2-covariant symmetric tensor field, a p-differential form is a p-covariant totally

alternating tensor field.

For a smooth map F between manifolds X and Y (even with corners, according to the

definitions in Chapter 2), we let F∗ denote the push-forward or tangent map of F , while

F ∗ denotes the pull-back operator. With a slight abuse of notation, we write Λ
k(X) to

be the space of ordinary differential forms on X, so that we can use Ω
α(X) to indicate

the space of α-densities.





I N T R O D U C T I O N

This thesis is concerned with aspects of the global calculus of SG-pseudo-differential

operators, the corresponding classes of Fourier Integral Operators, and their relation as

algebras and modules.

Pseudo-differential operators (ΨDOs in what follows) are one of the most important

tools for the study of (elliptic) partial differential equations (PDEs) and have proven to

be objects of interest for a number of different areas of modern mathematics. The basic

idea is to construct a large class of operators where differential operators admit inverses,

at least in an approximate sense, and with good formal properties which allow one to

more or less freely take compositions, adjoints and so on, while at the same time being

able to control the errors. This is achieved by a generalisation and formalisation of the

techniques of asymptotic analysis, whose origin dates back at least to the 19th century,

with the pioneering works of Laplace, Stokes and Kelvin on the method of stationary

phase. In the 20th century, the study of singular integral operators, initiated by Hilbert

and brought to completion by Mikhlin [Mik50], Calderón and Zygmund [CZ56],[CZ57],

was paired with the language of distributions of Schwartz fame and with many ideas from

the world of quantum mechanics. This led Kohn and Nirenberg [KN65] and Hörmander

[Hör65] to develop a general calculus of ΨDOs and study elliptic PDEs of a very general

type, obtaining existence and uniqueness results for a swath of then-unsolved problems.

In particular, on a compact manifold one can take advantage of the compactness of the

Sobolev embeddings to prove regularity results for the solutions. Furthermore, thanks

to the properties of the calculus, the parametrix construction of Hadamard, originally

invented for differential equations, extends to pseudo-differential operators and shows

that elliptic ΨDOs on compact manifolds are Fredholm thanks to the fact that the

“residual” operator of the construction is compact. Far-reaching subsequent generalisa-

tions led to a global theory of elliptic boundary-value problems on compact manifolds,

including the global definition of the principal symbol of an operator as a function on

the cotangent bundle, and finally to the celebrated index theorem of Atiyah and Singer

[AS68a],[AS68b]. This highlighted the incredible amount of topological and geometrical

information these operators carried and became (in many senses still is to this day) one

of the main motives of research in geometric and global analysis. Shortly thereafter, the

study of limit and boundary-value problems for pseudo-differential equations led Louis

Boutet de Monvel [Bou71] to construct a calculus of manifolds with boundary and to a

topological index formula2.

2 See also [Fed74] for an analytical counterpart and the book [RS85] for a overarching discussion.
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Tailored to the study of elliptic equations, the theory of ΨDO required considerable

effort to be adapted to other classes of PDEs. In relation to the blooming index theory,

the study of the heat equation associated with a second order elliptic ΨDO produced

many insights into the analytical nature of the Atiyah-Singer formula and led to the

local index theorem of Atiyah, Bott, and Patodi [ABP73]. In the following years, a full-

fledged theory of Dirac operators on spin manifolds, shedding light on their importance

to mathematics and physics alike, was investigated and is to this day a very active area

of research (we refer here to the books of Berline, Getzler, and Vergne [BGV04] and

Gilkey [Gil84] for a deep and interesting discussion).

On the other hand, even for simple hyperbolic equations it was clear that ΨDOs could

not provide a satisfactory answer on their own power and that a more general theory

had to be developed. Building on ideas from geometrical optics and earlier work of Lax

and Maslov, Hörmander [Hör71] developed the calculus of Fourier Integral Operators

(FIOs) and applied it3, together with Duistermaat, to the study of hyperbolic systems4.

The theory of FIOs proved to be, in the following years, a fundamental tool to approach

a large number of yet to be tackled problems, including but not limited to existence and

uniqueness for hyperbolic equations, and invigorated the calculus of ΨDOs by providing

new methods to study elliptic equations. This is rendered possible by the celebrated

theorem of Egorov [Ego69], stating that conjugating a ΨDO with principal symbol p

with an invertible FIO produces again a ΨDO with a principal symbol given by pull-

back of p along an underlying canonical transformation of the cotangent bundle. Thanks

to this fact, the theory of ΨDOs and FIOs can be seen, in the context of the Heisenberg

picture of quantum mechanics, as a quantisation scheme where observables are mapped

to self-adjoint ΨDOs and the evolution operator of the system, classically a canonical

transformation, acts as an FIO on the space of observables. At the same time, this idea

of “quantised canonical transformation” expressed by FIOs can be further characterised:

by a theorem of Duistermaat and Singer [DS76], the only order-preserving isomorphisms

(OPIs) of the algebra of (integer order, classical, properly supported) ΨDOs are exactly

given by conjugation with an invertible FIO. This reflects the classical property that if a

diffeomorphism transforms Hamilton equations in Hamilton equations (namely, preserves

the canonical 1-form on the phase bundle), then it is a canonical transformation.5

3 The name is historically controversial. While the theory of Hörmander is without a doubt more general,

a great part of the key ideas can be found in [Mas72], which is a late translation from Russian of a 1965

opus of the same author. At the same time, it seems hard to criticise Dieudonné [Die78, p. 4] when

he appends them the name “opérateurs de Lax-Maslov”, glossing “appelés malencontreusement aussi

«opérateurs intégraux de Fourier», ce qui est d’autant plus ridicule que la transformation de Fourier n’y

joue aucun rôle”. While we acknowledge all these contributions and recognise the elements of truth, we

stick here to the name of Fourier Integral Operators out of mere laziness.
4 J. J. Duistermaat and L. Hörmander. “Fourier integral operators. II”. Acta Math. 128.3-4 (1972), 183–

269. url: https://doi.org/10.1007/BF02392165

5 We remark that here and later we use the terms quantisation or quantisation scheme without properly

defining what we mean by it. In whole honesty, this correspondence does not give a full quantisation of

a classical system according to the Dirac axioms, since we are not really addressing questions such as the

https://doi.org/10.1007/BF02392165
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The question that at this point one might ask is: what can we say about calculi

adapted to non-compact6 manifolds? While the construction of the calculi with the

same formal properties as above does not break down in this setting, one is confronted

with the annoying fact that the residual operators of the parametrix construction, even

though regularising (namely they smooth out all singularities of distribution on arbitrar-

ily large compact sets), are not compact. This, together with the fact that the Sobolev

embeddings are not compact, constitutes a fundamental obstacle to the process of con-

structing solutions with a certain regularity. The problem lies in the calculus itself: the

standard class of ΨDOs is only well-suited to control asymptotic behaviour in the “cotan-

gent direction”, namely if (x, ξ) are coordinates on R2n, we define the class Sm(R2n)

by imposing bounds for x varying in a compact set K and |ξ| → ∞. In particular, the

behaviour of symbols in the x variable is hardly restricted and it suffices that they are

smooth. But then we cannot hope to get from this class any kind of reasonably sufficient

information as |x| → ∞.

In order to obviate to these issues, global calculi were introduced. The main feature7

of a global calculus (and main difference in comparison to ordinary ΨDOs) on Rn is

that we posit a bound on the symbols involving the spatial directions x, too. The

two main (and more successful) examples in this setting are known as Γ-classes and

SG-classes. Introduced by Shubin, the Γ-classes are also known as completely isotropic
symbols and contain those smooth functions a(z) on R2n such that |∂αa(z)| ≲ ⟨z⟩m−|α|

for a fixed m ∈ R known as the order of a. The residual operators in this calculus

are exactly integral operators with kernel in S(R2n), which are known to be compact

on L2(Rn). They have so far found wide ranging application to a number of different

problems in index theory ([ENN96; ENN93]), quantisation ([Fed96]), PDEs and spectral

theory ([Shu01]). Helffer [Hel84] has in addition introduced global FIOs modelled on

the Γ-classes (at the level of the phase and the amplitude), and studied their spectral

properties. However, to this day it seems that the classes haven’t been defined on non-

compact manifolds more general than Rn. Furthermore, Helffer does not study the

associated class of symplectomorphisms on R2n that putatively should be quantised by

his class of FIOs, but derives the properties of the calculus from purely analytical facts.

The other main approach (at least for our concerns) is that of SG-classes8. Origi-

nally introduced by Parenti [Par72] to study PDEs on unbounded domains, the theory

benefited from the contributions of many authors and in particular of Schrohe [Sch87;

classical limit, for example. In this sense the classical theory of FIOs is scale-invariant, since we could in

principal work at the level of co-sphere bundles and contact forms, while a “true” quantisation should

allow one to look at large scale approximation and makes more sense in the context of semi-classical

analysis. Nevertheless the similarities are enough to justify our abuse.
6 The original calculus of Hörmander and the result of Duistermaat and Singer actually hold true for non-

compact manifolds as well, under the assumption, necessary to define composition, that the involved

operators are properly supported. This property, however, destroys the global effects of the operators

and prevents one from studying the geometric structure “at infinity” of many specific examples.
7 Notice also the earlier attempt of Grušin [Gru70], where only uniform bounds on x are required.
8 Here G stands for “global”.
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Sch88]. Their usefulness was soon recognised by Cordes, who significantly enlarged the

original calculus and presented a very general theory of ΨDOs in [Cor95]. The core of

the matter is as follows: instead of looking at completely isotropic symbols, introduce a

new filtration to obtain a class SGm1,m2 , where a is a symbol of bi-order (m1,m2) if a is

bounded by (a positive constant times) ⟨x⟩m1 ⟨ξ⟩m2 and each x-derivative, respectively

ξ-derivative, improves the bound by 1 in x, respectively ξ. Then, the intersection of all

these classes clearly consists of Schwartz functions and the residual operators are again

exactly the integral operators with kernel in S(R2n), but the more flexible structure of

the bounds accounts for a more general class of operators to be studied (albeit of course

with the extra complexity that has been introduced). In Schrohe [Sch87], the calculus

has been generalised to a large class of non-compact manifolds, so-called SG-manifolds,

although one might argue that the class might even be too large for some purposes

(more on this later). The extra flexibility of SG-classes plays here a crucial role: apart

from a technical condition on the charts (in practice, always satisfied), all it suffices to

ask is that the changes of coordinates on the manifold have components which are in

SG1,0. This is of course to be expected if one wants to define SG-classes in an invariant

way on a manifold, since in order to preserve the filtrations we have to require as a

minimum that the transformed base, respectively cotangent, variables be of order (1, 0),

respectively (0, 1). Therefore, the restrictions are in truth quite lax. SG-ΨDOs have

been applied to a variety of problems, including but not limited to spectral asymptotics

on asymptotically Euclidean manifolds (cfr. [CM13; CD21]), and mathematical physics

(see for example [BC11]). FIO calculi modelled on SG-classes have been introduced by

Coriasco [Cor99] first and enriched by Andrews [And09] in a second moment. Although

they have been described only on Rn as globally defined operators, explicit and implicit

hints to possible geometric generalisations were present in both pieces. However, to this

day no such theory has been fully understood and in particular the study of canonical

transformations associated with the existing classes hasn’t been carried out.

In the context of analysis on non-compact spaces, another point of view has been

introduced and studied by many authors falling, to various degrees, under the umbrella

of the so-called “Melrose school”. In this picture, one limits the study to classes of

manifolds having a somewhat “regular” structure at infinity, namely one assumes that,

outside of a compact centre, the non-compact manifold X admits a Riemannian metric

with a specific asymptotic behaviour as “|x| → ∞” (cf. Melrose [Mel95]). Then, one

can construct (explicitly!) a compactified manifold with boundary X whose interior is

diffeomorphic to the original manifold X, and obtain a metric on X, smooth in the

interior and with a prescribed singularity at the boundary. The main example is that of

manifolds with ends. Topologically these are just given by a compact manifold X0 with

boundary ∂X0 = B1 ∪ · · · ∪Bd, where each Bj is a closed codimension 1 submanifold,

and cylinders C1, . . . ,Cd, Cj = R+ × Bj , each glued to the corresponding connected

component of ∂X0. These builds up the “ends” or “exits” of X. This setting, while

included in SG-manifolds, allows for a more refined analysis of the metric structure on
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each end. For example, we might consider a metric which is asymptotically cylindrical,

namely that on the end takes the form

g = dt2 + h

for t the coordinate on R+ and h a metric on Bj . Introducing the change of coordinates

x = e−t maps the infinite cylinder to a finite one, and the above tensor is transformed

to

g =
dx2

x2
+ h,

where h is simply the metric h in the changed coordinates. Having so “rescaled” the

metric structure, it becomes evident that we can consider our original manifold as the

interior of a manifold with boundary by attaching a closed cylinder to the boundary

component Bj , provided that at the same time we keep in mind that we have performed

a change of coordinates. The so-called b-geometry, namely the generalisation of this

example to manifolds with corners, is built upon considering the properties of the Lie

algebra of vector fields on X which are tangent to the boundary. Starting from this Lie

algebra one constructs a calculus of differential and pseudo-differential operators, the so-

called b-calculus9. On the one hand, this is an extremely powerful tool and idea, on the

other there are however a number of non-negligible technical difficulties. In particular,

elliptic operators in the classical sense are not Fredholm and a sort of “non-commutative

boundary symbol” (called indicial operator) needs to be taken into account. Both the

power and the difficulties of the b-calculus are beautifully expounded in Melrose [Mel93],

together with thorough discussion of the related aspects of index theory (specifically, the

Atiyah-Patodi-Singer index theorem) on manifolds with boundary.

With a similar approach one can work in the setting of asymptotically Euclidean

manifolds by attaching cones to each Bj instead of cylinders. While of course this

produces the same underlying topological space as before, we are here imposing that the

metric is conic “at ∞”. After changing coordinates as before and compactifying, we are

then working with a metric which near the boundary is of the form

g =
dx2

x4
+

h

x2
.

While this looks more singular at first glance (indeed recall that x = 0 at the bound-

ary), it turns out the associated Lie algebra of vector fields (the so-called scattering
vector fields) is much easier to study since it is actually commutative “at the boundary”.

Correspondingly, the differential and pseudo-differential operators posses a second com-
mutative symbol σN , defined at the boundary and related to the asymptotic behaviour

9 In this case the naming convention is not nearly as controversial as it is for FIOs, however these operators

are sometimes known as totally characteristic. This name, appearing for example in Hörmander [Hör07],

Section XVIII.3, directs the limelight more towards the fact that the operators indeed exhibit a singular

behaviour at the boundary, whereas historically it turned out to be superseded by the shorter and

suggestive “b”, standing for boundary.
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as |x| → ∞ of the full symbol in the SG-calculus. In fact, classical SG-operators and

classical sc-pseudo-differential operators10 are two sides of the same coin: already in the

’90s it was well known that the symbol classes for the two calculi are isomorphic11. The

choice of which approach to exploit over the other is a mainly just a matter of personal

preference but they have advantages and disadvantages, in that the first is more explicitly

computable whereas the latter is more manifestly global in nature, being defined directly

on a class of manifolds. Part of the goal of this thesis is to explore this correspondence

further, especially in its relation with the symplectic geometry of the cotangent bundle.

Whereas ΨDOs are a very well-explored topic in both these examples (and many

others), the state–of–the–art of FIOs in singular situations, including their ellipticity

properties, index formulæ and the study of their geometrical theory has lagged behind.

In fact, attempts here are somewhat scarce. For the case of the b-calculus, the early paper

of Melrose [Mel81] already contains a study of the class of Lagrangian distributions of

interest, based on the geometrical properties that one should expect from a Lagrangian

relation on a manifold with boundary. However, a study of the respective ellipticity,

Fredholmness and index properties has not been carried out (as far as the author knows,

the only Atiyah-Singer–type formula for the index of an FIO has been derived in the

setting of closed manifolds by Epstein and Melrose [EM98] and Leichtnam, Nest, and

Tsygan [LNT01]). To this end, one would need to analyse closely the behaviour of

the FIO at the boundary and construct a “full calculus” for these objects12. More in

the spirit of Boutet de Monvel, a calculus of FIOs on manifolds with boundary has

been constructed by Battisti, Coriasco, and Schrohe [BCS15]. There, the geometric

and analytical conditions at the boundary were studied in great detail and the authors

were able to prove the Fredholm property for the elliptic elements in their calculus,

thereby setting up the frame for an index problem in the spirit of Weinstein [Wei97]. In

particular they showed that the notion of boundary canonical transformation of Section

III in [Mel81] produces appropriate operators in this calculus. However, the peculiarities

of the Boutet de Monvel calculus complicate the analytical picture and an index formula

was not established.

A third point of view is that of associating ΨDO and FIO calculi with a groupoid. The

philosophy behind this is akin to the singular analytical approach: one considers opera-

tors with a specific degeneracy/peculiarity, tries to encode their properties in a geometric

object (a groupoid in this case, in contrast to the metric on the compactified space in the

Melrose approach), and takes advantage of an overarching calculus structure defined in

general on/for the geometric object. This has been successfully brought to completion in

a multitude of contributions. For ΨDOs, Nistor, Weinstein, and Xu [NWX99] and Mon-

10 Here sc stands of course for “scattering”, another instance of the above naming convention.
11 See for example [ES97], Section 8.2.2 or the more recent [CS17].
12 This is Melrose-speak for a calculus in which the residual operators of the parametrix construction for

elliptic operators are compact.
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thubert [Mon03] introduced the first calculi13, while FIOs have required considerable

more effort and only appeared in such a general setting very recently in [LV17]. Despite

covering a lot of previously examined settings, it appears that an analysis of the condi-

tions under which the calculus of FIOs contains Fredholm operators on an appropriately

defined scale of Sobolev spaces is yet to be examined. Indeed, a direct specialisation

of the techniques in the above papers only recovers the “small calculus”, namely14 con-

structs operator classes adapted to the geometric situation but without regard for the

Fredholmness “at the boundary”. Since these aspects are paramount to us, we shall not

touch on this subject any further.

The author’s interest in the global calculi stems from an idea of Schrohe that a result

like Theorem 1 in [DS76], namely the characterisation of order-preserving isomorphisms

of ΨDOs, might hold true for the classes LGm1,m2 of SG-ΨDOs which are classical

and of order (m1,m2) ∈ Z × Z. This is the main problem we set out to tackle in the

thesis. While this looks like a fairly reasonable expectation (indeed, for example, the

class LG0,m2 is a subclass of Ψ
m2(Rn) and the properly supported property, required

for composition in the usual calculus, is substituted in the SG picture by the estimates

as |x| → ∞), it quickly turned out that a proof along the lines of the original paper

and completely in terms of the “local picture” of the SG-calculus was cumbersome to

say the least. On the other hand, the scattering approach, while being conceptually

advantageous, is less explicit and requires to pick specific local coordinates for compu-

tations. Together with the fact that the existing parametrization results for Lagrangian

submanifolds in the SG setting already employed a “mixed” approach, we resolved to

try and take as much advantage as possible of this double point of view.

We describe briefly the organization of the manuscript. Chapter 1 contains the basics

of the (classical) SG-calculus on Rn. We follow the exposition in [ES97] rather closely,

especially in regard to classicality, however we prefer amplitudes over double symbols

when it comes to composition. Most proofs are here omitted for the sake of brevity,

and can be found in the cited literature. We proceed to analyse the relation of the

symplectic structure with SG-symbols, in particular delineating the action of the Poisson

brackets on principal symbols. We give an overview of the class of SG-FIOs of type Q
introduced by Andrews [And09], which generalises the operators of Coriasco [Cor99] and

appears naturally at the end of Chapter 2. Most of the material in this chapter is taken

almost directly from the cited sources. Notable exceptions are Section 1.2, containing the

analysis of the relation between the Poisson bracket and the principal symbol maps, and

the SG-Egorov Theorem at the end of Section 1.3, which slightly generalises Proposition

14 in [Cor99].

13 Also notice the recent approaches for nilpotent Lie groups and filtered manifolds of Erp and Yuncken

[EY19] and Ewert [Ewe23].
14 This is lingo for a family of operators in which a parametrix construction for elliptic operators makes

sense, but does not necessarily produce a compact remainder on Sobolev spaces.
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Chapter 2 is an introduction to the geometric structure underlying the scattering cal-

culus of Melrose, as presented in [Mel95] and [Mel94]. We start with an overview of

manifolds with corners and the corresponding spaces of distributions and vector fields.

We proceed with a discussion of the scattering cotangent bundle and the symbol spaces,

together with the associated operator classes and the symbol maps. We specialise there-

after to the example of the radial compactification of Rn, on which the equivalence

between the classical SG- and sc-calculi is mostly evident, and which will be our main

focus in Chapter 3. Here again we refer the reader to the cited literature for the majority

of well-known proofs. Novel work starts to appear here: We introduce a definition of

“scattering canonical transformation” (SCT), analyse its geometric properties, and show

that, locally in a suitable sense, its graph admits a parametrisation via an SG-phase

function, parallel to previous work on sc-Lagrangian distributions.

Chapter 3 contains the main results we obtained. We employ the machinery exposed

in the previous Chapters, together with the ideas of Mathai and Melrose [MM17], to

give a proof of the SG-analogue of Lemma 2 in [DS76]. In particular, we prove that the

notion of scattering canonical transformation introduced in Chapter 2 appears naturally.

The approximation scheme of the original paper is then adapted to show that the OPI

is ascertained at the level of the formal symbol algebra by an elliptic SG-FIO of type

Q, associated with the scattering canonical transformation above. We exploit Lemma

3 of [DS76] to find an Eidelheit-type isomorphism in our setting and compare it to

the SG-FIO appearing at the formal level. We prove that this composition is given

by an SG-ΨDO and show that its mapping properties determine it to be the identity

up to an operator with kernel in the Schwartz class. This allows us to conclude that

the Eidelheit isomorphism is itself, up to a smoothing operator, an operator of type Q,

thereby bringing our task to a close.



1 T H E S G - C A L C U L U S

We present here a collection of concepts and facts concerning the SG-calculus, beginning

with a discussion of symbol spaces. A thorough analysis of classical symbols is included,

before moving to the associated operators and the relation between these classes.

1.1 SG-symbols and operators

For later reference, we start by defining Hörmander classes.

Definition 1.1. The class of Hörmander symbols of orderm ∈ R is the set Sm(Rn× RN )

containing all functions p ∈ C∞(Rn × RN ) such that for each α ∈ Nn,β ∈ NN and each

compact K ⊂ Rn one has
∣∣∣∂αx ∂

β
ξ p(x, ξ)

∣∣∣ ≲α,β,K ⟨ξ⟩m−|β|
. x ∈ K, ξ ∈ R

N . (1.1)

A symbol p ∈ Sm(Rn × RN ) with m ∈ Z is said to be classical if for all j ≥ 0 there

exists a smooth function pm−j(x, ξ), ξ-homogeneous of degree m− j outside of a compact

neighbourhood of 0 ∈ RN , such that for all M ∈ N we have the asymptotic expansion

p(x, ξ) −
M∑

j=0

pm−j(x, ξ) ∈ Sm−M−1(Rn × R
N ). (1.2)

In case the original symbol does not depend on x, we write Sm(RN ) and speak about

global classical symbols.

Definition 1.2. The class SGm(Rn × RN ) of SG-symbols of order m = (me,mψ) ∈ R2

is the set of all C∞ functions a : Rn × RN → R such that for all α ∈ Nn,β ∈ NN there

exists c = c(α,β) > 0 with

∣∣∣∂αx ∂
β
ξ a(x, ξ)

∣∣∣ ≲α,β ⟨x⟩me−|α| ⟨ξ⟩mψ−|β|
, x ∈ R

n, ξ ∈ R
N . (1.3)

These are all Fréchet spaces with respect to the semi-norms ∥ · ∥(α,β) given by the best

possible c(α,β) in (1.3). We often write SGm = SGm(Rn × Rn) since we will work

mainly on Rn × Rn ∼= T ∗Rn. We call me the exit order and mψ the pseudo-differential
order, see Remark 1.10.

We collect basic properties of these classes in the Lemma 1.3.

1



2 the SG-calculus

Lemma 1.3. The following holds true.

1. There is a double filtration on the union SG (Rn × RN ) of the classes SGm, that

is, if p = (pe, pψ) ≤ m = (me,mψ), then SGp(Rn × RN ) ⊂ SGm(Rn × RN ).

2. The projective limits SGme,−∞ and SG−∞,mψ are isomorphic to S(RN ,Sme(Rn))

and S(Rn,Smψ (RN )), respectively, while the (double) projective limit SG−∞1(Rn×
RN ) is a Fréchet space equalling the class of Schwartz functions S(Rn × RN ) (we

call elements of these projective limits ψ-smoothing, e-smoothing and smoothing,

respectively).

3. Pointwise multiplication on C∞(Rn × RN ) restricts to SG (Rn × RN ) to make it

(together with addition) into a commutative bi-filtered algebra.

4. For m ∈ R2 the functions λm(x, ξ) = ⟨x⟩me ⟨ξ⟩mψ ∈ SGm(Rn × RN ) are nowhere

zero. Multiplication by λm(x, ξ) induces isomorphisms of Fréchet algebras SGp(Rn×
RN ) → SGm+p(Rn × RN ) for all p ∈ R2.

The symbols λm will be used to give a characterization of the following scale of Sobolev

spaces adapted to the SG-calculus.

Definition 1.4. For m = (me,mψ) ∈ R2 we define the L2-based SG-Sobolev spaces as

HGm ≡ ⟨x⟩−me Hmψ (R
n). (1.4)

Much like for Hörmander classes, a notion of asymptotic expansion is defined and the

principle of asymptotic completeness holds true. The existence of the second filtration

implies that we can define multiple notions of asymptotic sums, so we summarize them

in the following theorem.

Theorem 1.5. The following holds true.

1. Let aj(x, ξ) ∈ SGm(j)
(Rn× RN ) be a sequence of functions withm(j) = (m

(j)
e ,m

(j)
ψ ) →

−∞1 as j → ∞. There exists a ∈ SGm(Rn × RN ),m = (maxm
(j)
e , maxm

(j)
ψ ),

such that, given any c ∈ R, we can find K = K(c) ∈ N with

a(x, ξ) −
K∑

j=0

aj(x, ξ) ∈ SGm−c1(Rn × R
N ), (1.5)

and a is furthermore unique mod S(Rn × RN );

2. Let aj(x, ξ) ∈ SGm
(j)
e ,mψ (Rn × RN ) be a sequence of functions with m

(j)
e → −∞

as j → ∞. There exists a ∈ SGm(Rn × RN ),m = (maxm
(j)
e ,mψ), such that,

given any c ∈ R, we can find K = K(c) ∈ N with

a(x, ξ) −
K∑

j=0

aj(x, ξ) ∈ SGm−c1e(Rn × R
N ), (1.6)

and a is furthermore unique mod SG−∞,mψ (Rn × RN );
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3. Let aj(x, ξ) ∈ SGme,m
(j)
ψ (Rn × RN ) be a sequence of functions with m

(j)
ψ → −∞ as

j → ∞. There exists a ∈ SGm(Rn × RN ),m = (me, maxm
(j)
ψ ), such that, given

any c ∈ R, we can find K = K(c) ∈ N with

a(x, ξ) −
K∑

j=0

aj(x, ξ) ∈ SGm−c1ψ (Rn × R
N ), (1.7)

and a is furthermore unique mod SGme,−∞(Rn × RN ).

In all of the above cases we write a ∼ ∑
aj to indicate that a is the asymptotic sum of

the sequence aj . The scale which we refer to will be in general clear from the context.

Recall that, in the classical theory of ΨDOs, homogeneous functions can be turned

into symbols with the help of an excision function, namely if b ∈ C∞(Rn × RN
0 ) is ho-

mogeneous of degree k in ξ and1 χ(ξ) = 0 near 0 and χ(ξ) = 1 for large |ξ|, then

a(x, ξ) = χ(ξ)b(x, ξ) ∈ Sk(Rn × RN ) and a(x, ξ) − b(x, ξ) = (1 − χ(ξ))b(x, ξ) is com-

pactly supported in ξ. Similarly, asymptotic sums can be made convergent with the help

of such a χ and a sequence R+ ∋ cj → ∞ sufficiently fast as j → ∞, by setting

a(x, ξ) ≡
∑

j≥0

χ

(
ξ

cj

)
aj(x, ξ). (1.8)

The same process works for SG-classes with respect to both sets of variables separately,

so that each of the asymptotic sums in Theorem 1.5 can be made convergent up to some

smoothing term.

Our main object of interest is the subclass of classical (also known as poly-homogeneous)

symbols. Since the situation is slightly more complex than in the case of the Hörmander

classes, we exercise some extra care here in order to define the notion. In particular, the

following relaxed notions of homogeneity are required.

Definition 1.6. For • ∈ {e,ψ}, define the classes of partially m•-homogeneous functions,
m• ∈ R, by

H(mψ)
ψ =

{
a(x, ξ) ∈ C∞(Rn × R

N
0 ) s.t. ∀λ > 0,x ∈ R

n, ξ ∈ R
N
0 a(x,λξ) = λmψa(x, ξ)

}

H(me)
e =

{
a(x, ξ) ∈ C∞(Rn

0 × R
N ) s.t. ∀λ > 0,x ∈ R

n
0 , ξ ∈ R

N a(λx, ξ) = λmea(x, ξ)
}

.

(1.9)

Also define the class of bi-homogeneous functions, letting for each m = (me,mψ) ∈ R2

H(m) =
{
a(x, ξ) ∈ C∞(Rn

0 × R
N
0 ) s.t.

∀λ,µ > 0, (x, ξ) ∈ R
n
0 × R

N
0 a(λx,µξ) = λmeµmψa(x, ξ)

}
. (1.10)

1 Namely, b(x, µξ) = µkb(x, ξ) for all x, ξ ∈ R
n, ξ ̸= 0, µ > 0.
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The conditions defining these classes can be relaxed to define eventually homogeneous
functions, that is, homogeneous outside Bc(0) for some c > 0. Namely

H[mψ ]
ψ =

{
a(x, ξ) ∈ C∞(Rn+N ) s.t. ∀µ ≥ 1,x ∈ R

n, |ξ| > c, a(x,µξ) = µmψa(x, ξ)
}

H[me]
e =

{
a(x, ξ) ∈ C∞(Rn+N ) s.t. ∀λ ≥ 1, |x| > c, ξ ∈ R

N , a(λx, ξ) = λmea(x, ξ)
}

H[me,mψ ] =
{
a(x, ξ) ∈ C∞(Rn+N ) s.t. ∀λ,µ ≥ 1, |x| , |ξ| > c, a(λx,µξ) = λmeµmψa(x, ξ)

}
.

(1.11)

We have then homogeneous symbols:

SGme,[mψ ] = H[mψ ]
ψ ∩ SGme,mψ

SG [me],mψ = H[me]
e ∩ SGme,mψ

SG [me],[mψ ] = H[me],[mψ ] ∩ SGme,mψ

(1.12)

Definition 1.7. The spaces of ξ-classically homogeneous SG-symbols and ξ-classical
SG-symbols are:

SG
[me],mψ
cl(ψ) =

{
a ∈ SG [me],mψ s.t. ∃ak ∈ SG [me],[mψ−k]∀N a−

N∑

k=0

ak ∈ SGme,mψ−N−1

}
,

SG
me,mψ
cl(ψ) =

{
a ∈ SGme,mψ s.t. ∃ak ∈ SGme,[mψ−k]∀N a−

N∑

k=0

ak ∈ SGme,mψ−N−1

}
.

(1.13)

Similarly we have x-classically homogeneous and x-classical SG-symbols:

SG
me,[mψ ]

cl(e) =

{
a ∈ SGme,[mψ ] s.t. ∃ak ∈ SG [me−k],[mψ ]∀N a−

N∑

k=0

ak ∈ SGme−N−1,mψ

}
,

SG
me,mψ
cl(e) =

{
a ∈ SGme,mψ s.t. ∃ak ∈ SG [me−k],mψ∀N a−

N∑

k=0

ak ∈ SGme−N−1,mψ

}
.

(1.14)

Definition 1.8. The space of classical SG-symbols or classical symbols with exit condi-
tion is the set SGm

cl consisting of those symbols a ∈ SGm satisfying:

1. ∀k ∈ N ∃aψk ∈ SG
me,[mψ−k]

cl(e) s.t. ∀N

a(x, ξ) −
N∑

k=0

a
ψ
k (x, ξ) ∈ SG

me,mψ−N−1

cl(e) ; (1.15)

2. ∀j ∈ N ∃aej ∈ SG
[me−j],mψ
cl(ψ) s.t. ∀N

a(x, ξ) −
N∑

j=0

aej(x, ξ) ∈ SG
me−N−1,mψ
cl(ψ) . (1.16)
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We will, from now on, only deal with classical SG-symbols (and later operators). There-

fore, the subscripts cl, cl(e), cl(ψ) will be omitted and existence of asymptotic expansions

tacitly assumed throughout.

Remark 1.9. We remark that an alternative definition for classical SG-symbols has

been given in [Wit98]. Therein, the structure of symbol classes with values in a Fréchet

space is explored and, in particular, it is proven that Smcl (R
n;Slcl(R

n)) ∼= Smcl ⊗̂πS
l
cl

∼=
SGm,l

cl . Here Smcl denotes here the space of global classical symbols in one variable of
order m, namely the space of those smooth functions a(ξ) on Rn which satisfy symbol

estimates of order m and admit an asymptotic expansion in homogeneous functions

ak(ξ) of degree m− k. This would justify the terminology “product-type symbols” for

the SG-classes. However, we refrain from its use since it might be easily confused with

other, similar classes (e.g. the bi-singular operators defined by Rodino [Rod75]). We

remark that, with this definition, it is also directly possible to define classical operators

of complex order (se, sψ) by saying that they are exactly those operators with symbol

in Sse(Rn)⊗̂πSsψ (Rn).

Remark 1.10. We will often use the terms "exit ⊡" and "pseudo-differential ⊡" when

speaking about properties of an object ⊡ associated with the e-asymptotic expansion

and the ψ-asymptotic expansion. For example, we will speak in a short while of “exit

symbol of order me − k” and “pseudo-differential symbol of order mψ − j” for the maps

σme−k
e and σ

mψ−j
ψ , respectively. Also, for brevity’s sake and convenience of notation, we

often shorten σm•−l
• (a) with a•

m•−l for • ∈ {e,ψ,ψe} and, in particular, a• ≡ σm•

• (a).

We call the maps σm•

• the •-principal symbol maps. We will see in the next chapter how

helpful this lingo is in identifying properties of functions defined on different boundary

hyper-surfaces of the scattering cotangent bundle.

Remark 1.11. We will, in general, use round brackets to denote homogeneity in the

respective part of the domain (functions will be defined outside of the corresponding

“zero section”), while square brackets indicate eventual homogeneity as in (1.11). It is

then clear that, being interested only in the asymptotic behaviour of the symbols, we

can pass from round to square brackets and vice-versa by multiplying with an excision

function and adapting therefore the notion of “convergence” of asymptotic sums as in

(1.8). For a symbol a in SG [me],mψ , respectively SGme,[mψ ], the asymptotic expansion

(1.16), respectively (1.15), is then trivial, in the sense that it consists of the function

itself.

Remark 1.12. The terms in the asymptotic sums of Definition 1.8 are uniquely deter-

mined modulo elements in SG−∞,mψ and SGme,−∞, respectively. That is, the eventual
behaviour (outside a compact neighbourhood of 0) is well-defined.

The conditions in Definition 1.8 allow us to canonically identify maps

σme−k
e : SGm → H(me−k)

e , σme−k
e (a)(x, ξ) = aeme−k(x, ξ),

σ
mψ−j
ψ : SGm → H(mψ−j)

ψ , σ
mψ−j
ψ (a)(x, ξ) = a

ψ
mψ−j(x, ξ),

(1.17)
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taking values, respectively, in the classes SG(me−k),mψ and SGme,(mψ−j). In particular,

σme−k
e (a) admits an asymptotic expansion in the classes SG(me−k),mψ−j , j ≥ 0, so that

we can canonically identify bi-homogeneous elements σ
mψ−j
ψ σme−k

e (a) ∈ H(me−k,mψ−j).

The same process, applied to σ
mψ−j
ψ (a) in the classes SGme−k,(mψ−j), k ≥ 0, produces

bi-homogeneous functions σme−k
e σ

mψ−j
ψ (a) ∈ H(me−k,mψ−j), so that we naturally are

interested in the relation between the two. The following Lemma (Exercise 3, Section

8.2 in [ES97]) tells us that it is actually (and luckily) quite simple.

Lemma 1.13. For any m ∈ R2, k, j ∈ N the maps σ
mψ−k
ψ and σme−j

e commute and

define functions aψejk ≡ σ
me−k,mψ−j
ψe (a) ≡ σme−k

e σ
mψ−j
ψ (a). In particular, with any classi-

cal SG-symbol of order m ∈ R2, there is canonically associated an “infinite-dimensional

matrix” (we sometimes call this an asymptotic matrix) of bi-homogeneous functions

{aψejk }j,k≥0 with a
ψe
jk ∈ H(me−k,mψ−j), such that each “row j” or “column k” can be

asymptotically summed to give σ
mψ−k
ψ (a) or σme−j

e (a), respectively.

Remark 1.14. In order to lighten the notation, we often omit the superscript ψe when

dealing with asymptotic matrices. Notice, in addition, that an asymptotic matrix can

always be considered as a single asymptotic expansion. It suffices to consider the trian-

gular enumeration of N2 and sum first each diagonal (a finite sum), so that we are left

with a usual asymptotic expansion and we can determine its sum modulo S. Therefore,

with the help of an excision function, we can always sum an asymptotic matrix.

Similarly to the standard class Ψ(Rn), we define a notion of principal symbol.

Definition 1.15. For a ∈ SGm, the principal symbol of a is the triple of functions

σmpr(a) ≡ (σmee (a),σ
mψ
ψ (a),σmψe(a)) ≡ (ae, aψ, aψe) canonically associated with a as in

Lemma 1.13.

Proposition 1.16 (Properties of the principal symbol). The following holds true:

1. For m ∈ R2 the quotient ΣGm ≡ SG
m

⧸
SG

m−1 contains the principal symbols

(ae, aψ, aψe) of the a ∈ SGm. Equivalently, ΣGm contains the pairs (ae, aψ) with

ae ∈ SG(me),mψ and aψ ∈ SGme,(mψ) such that σmee (aψ) = σ
mψ
ψ (ae).

2. The direct sum of the principal symbol spaces ΣG =
⊕

m∈Z ΣGm has the structure

of a commutative graded module over ΣG0.

3. We can compute the exit and pseudo-differential symbols as

σmee (a)(x, ξ) = lim
µ→∞

µ−mea(µx, ξ),

σ
mψ
ψ (a)(x, ξ) = lim

µ→∞
µ−mψa(x,µξ).

(1.18)

4. The •-principal symbol maps are multiplicative on the respective components, i.e.

σm•+l•
• (ab) = σm•

• (a)σl•• (b) if a ∈ SGm, b ∈ SGl.
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5. If a ∈ SGm and σmee (a) = 0 = σ
mψ
ψ (a), then a ∈ SGm−1.

6. σpr ≡ ⊕
m∈Z σ

m
pr defines a surjective homomorphism of SG onto ΣG.

Remark 1.17. Importantly, in Proposition 1.16 we are not identifying functions with

asymptotic expansions in σψSGm and σeSGm, that is, we are not working in SG
m

⧸
SG

−∞,mψ

and SG
m

⧸
SG

me,−∞ . In these quotient spaces the natural operation to consider is the Leib-

niz product, namely the one defined as the (asymptotic expansion of the) symbol of the

composition of pseudo-differential operators (defined below in Proposition 1.27). While

these can be endowed with the structure of a commutative algebra, we shall need to speak

of the pointwise value of elements in the quotient later in Chapter 3. Were we to identify

elements up to a Schwartz function, we would lose this property. Thus, the components

a• are well-defined smooth functions, homogeneous of degree m• in the corresponding set

of variables, which admit an asymptotic expansion in terms of homogeneous functions

in the other variables.

The notion of principal symbol just introduced has but one problem: it is not given

by a single function. While this is often not an issue, it might be comfortable to have at

hand a function containing in itself the composite asymptotic information of the principal

symbol without keeping track of all the terms in the asymptotic matrix. The following

concept of associated symbol fulfils this rôle, however it depends on the choice of an

excision function, which is used to patch together the components defined on different

spaces.

Definition 1.18. For a symbol p ∈ SGm denote

p̌(x, ξ) ≡ χ(ξ)pψ(x, ξ) + χ(x)pe(x, ξ) − χ(x)χ(ξ)pψe(x, ξ), (1.19)

for χ a smooth excision function in Rn. p̌ is called the associated symbol or principal
part of p, terminology which is justified in view of Lemma 1.19 below.

Lemma 1.19. For any p ∈ SGm we have p̌ ∈ SGm and p − p̌ ∈ SGm−1. That is,

σpr(p̌) = σpr(p).

Remark 1.20. Any choice of an excision function produces therefore a 1-1 correspon-

dence between principal and associated symbols, as the process of constructing p̌ from

σpr(p) is easily reversed by computing σpr(p̌). Heuristically speaking, the associated sym-

bol is the “sum” of the outermost row and column of the asymptotic matrix. Lemma

1.19 is then just the statement that subtracting these from an asymptotic matrix reduces

the order by 1.

We recall hereafter some facts about ellipticity in the SG-calculus. The notion we

define here is a refinement of the usual ellipticity condition for operators on compact

manifolds.
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Definition 1.21. a ∈ SGm is elliptic if all components of its principal symbol do not

vanish on their respective domains.

The previous discussion shows that the principal symbol is the equivalence class of

p ∈ SGm in the quotient ΣGm. Elliptic symbols admit “inverses” in ΣG−m. Namely, it

suffices to construct the symbol

q(x, ξ) = χ(x)pe(x, ξ)−1 + χ(ξ)pψ(x, ξ)−1 − χ(x)χ(ξ)pψe(x, ξ)−1

to see that the products pq, qp lie in SG0 and their principal symbols equal (1,1,1).

Parallel to the classical theory of Hörmander, we can also introduce amplitudes mod-

elled after SG-symbols to gain more flexibility.

Definition 1.22. A function a ∈ C∞(Rn × Rn × Rk) is called an amplitude of SG-type,

or just SG-amplitude, of order (m1,m2,m3), if for all α,β ∈ Nn, γ ∈ Nk it satisfies the

global estimate on Rn

∣∣∣∂αx ∂βy ∂
γ
ξ a
∣∣∣ ≲ ⟨x⟩m1−|α| ⟨y⟩m2−|β| ⟨ξ⟩m3−|γ|

. (1.20)

Notice that an SG-symbol of order (me,mψ) is just an SG-amplitude of order (me, 0,mψ)

which is independent of y. The discussion on classicality can be generalised directly to

the case of an amplitude by asking that it admits asymptotic expansions separately in

all three sets of variables. We come now to SG-pseudo-differential operators. We remark

that most definitions and results below make sense or could be phrased for non-classical

operators as well. However, in view of our future needs, we limit ourselves to classical

objects and, as before, drop the subscripts “cl” from our notation.

Definition 1.23. For a ∈ SGm1,m2,m3 and u ∈ S let (in the sense of oscillatory integrals)

Op(a)u(x) ≡
∫
ei(x−y)ξa(x, y, ξ)u(y) dydξ (1.21)

and call it the operator defined by the amplitude a.

Lemma 1.24. Le A = Op(a) be an SG-pseudo-differential operator defined by an SG-

amplitude of order (m1,m2,m3). There exists an SG-symbol b ∈ SGm1+m2,m3 such that

Op(a) = Op(b). Vice-versa, for every SG-symbol b ∈ SGme,mψ and any t ∈ R we can

find an SG-amplitude at of order (t,me − t,mψ) with Op(at) = Op(b).

Definition 1.25. We let LGm denote the class of pseudo-differential operators defined

by either symbols or amplitudes of SG-type and symbol order m and employ the notation

RG ≡ LG−∞,−∞. RG is a two-sided ideal in each LGm and we let BG denote the

quotient algebra LG⧸RG.

Lemma 1.26. For any m ∈ R2 the operators in LGm(Rn) act continuously between

C∞
c (Rn) and C∞(Rn), and also on S(Rn). Moreover operators A ∈ LG0,mψ act contin-

uously on C∞
b (Rn) and we can compute the symbol via

σ(A)(x, ξ) = e− ixξAeixξ. (1.22)
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Proposition 1.27. The following holds true:

1. Each A ∈ RG is of the form Op(a) with a ∈ S(R2n);

2. The map Op : SGm → LGm is bijective.

Theorem 1.28 (Theorem 7, Section 8.2 in [ES97]). Let A = Op(a) ∈ LGm,B =

Op(b) ∈ LGl. Then AB = Op(c) ∈ LGm+l and we have the asymptotic expansion (the

so-called Leibniz product of a and b)

c(x, ξ) ∼
∑

α≥0

(− i)|α|

α!

∂αa

∂ξα
(x, ξ)

∂αb

∂xα
(x, ξ). (1.23)

Moreover, the principal symbol maps are multiplicative, i.e.

σme+lee (AB) = σmee (A)σlee (B),

σ
mψ+lψ
ψ (AB) = σ

mψ
ψ (A)σ

lψ
ψ (B),

σm+l
ψe (AB) = σmψe(A)σ

l
ψe(B).

(1.24)

In particular, there is an algebra isomorphism BG ∼= SG⧸
SG

−∞1 , where on the left we

have composition and on the right the Leibniz product.

Theorem 1.29. Let A ∈ LGm and A† be the formal L2-adjoint, defined by (Au, v) =(
u,A†v

)
for all u, v ∈ S. Then A† ∈ LGm and, if A = Op(a), we have A† = Op(a†) for

a† admitting the asymptotic expansion

a†(x, ξ) ∼
∑

α≥0

(− i)|α|

α!
∂αx ∂

α
ξ a(x, ξ). (1.25)

Lemma 1.30. There is a short exact sequence for any m ∈ Z2

0 → LGm−1 → LGm σpr−−→ ΣGm → 0. (1.26)

We point out that for operators in LG we have a characterization of the Fredholm

property in terms of the ellipticity. This was historically one of the reasons for the

introduction of global calculi.

Theorem 1.31. The following holds true:

1. The space LG−∞1(Rn) consists of compact operators on L2(Rn);

2. An operator P ∈ LGm is elliptic if and only if it admits a parametrix Q ∈ LG−m,

i.e. an operator Q such that PQ− I,QP − I ∈ LG−∞1;

3. The following are equivalent:
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a) P ∈ LGm is elliptic.

b) P extends to a Fredholm operator P : HGl → HGl−m for some l ∈ Z2.

c) P extends to a Fredholm operator P : HGl → HGl−m for all l ∈ Z2.

We end this section by recalling the existence of so-called order reducing operators.

Lemma 1.32. There exist classical, elliptic, invertible operators P ∈ LG1e ,Q ∈ LG1ψ

giving isomorphisms LGm → LGm+1• by composition. In particular we can take P =

Op ⟨x⟩ ,Q = Op ⟨ξ⟩.
Taking advantage of Lemma 1.24 we introduce a notion of ellipticity for amplitudes.

Definition 1.33. We say that an amplitude a ∈ SGm1,m1me is elliptic if can be quantised

to an elliptic symbol. Namely, a is elliptic if and only if a defines an operator A ∈
LGm1+m2,m3 whose symbol is elliptic.

1.2 SG-symbols and the symplectic structure

We equip R2n ∼= T ∗Rn with the standard symplectic structure ω = dξi ∧ dxi, where ξi
is the canonically dual coordinate to xi. Recall that this induces a Poisson bracket on

smooth functions by

{f , g} =
∂f

∂ξi

∂g

∂xi
− ∂f

∂xi
∂g

∂ξi
. (1.27)

The interplay between this operation and the SG-calculus will help us clarify the situa-

tion for the study of singular symplectomorphisms in Chapter 2.

Proposition 1.34. The following holds true:

1. SG ⊂ C∞(Rn × Rn) is a commutative algebra with respect to the pointwise prod-

uct, which is, in addition, bi-filtered.

2. The Poisson bracket gives the structure of a Lie algebra to SG and in particular

is a bi-filtered bi-derivation of SG . That is, {a, b} ∈ SGm+k−1 if a ∈ SGm, b ∈
SGk,m, k ∈ R2.

3. SG0 is a sub-algebra and Lie sub-algebra of SG , and ΣG0 inherits the structure of

a commutative Lie algebra (namely, the Poisson bracket is trivial in the quotient).

4. The Poisson bracket induces Lie algebra structures on SG1 and ΣG1, and the

principal symbol map is then an homomorphism of Lie algebras. More specifically,

the •-principal symbol of {a, b} only depends on the •-principal symbols of a and

b and can be computed explicitly as

σ1
ψ({a, b}) = {σψ(a),σψ(b)},

σ1
e ({a, b}) = {σe(a),σe(b)},

σ1ψe({a, b}) = {σψe(a),σψe(b)}.

(1.28)
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5. LG1 is a Lie algebra with respect to the commutator and we have an isomorphism

(LG
1

⧸
LG

0 , [ , ]) ∼= (ΣG1, i{ , }).

Proof. The structure of SG as an algebra with respect to the pointwise product has

already been analysed in the previous section. We turn to the statements concerning

the Poisson bracket. Recall that asymptotic expansions and derivatives commute, since

the derivative of a classical symbol is again classical. Therefore if a ∼ ∑
j,k≥0 a

ψe
kj , b ∼

∑
j,k≥0 b

ψe
kj we can write the Poisson bracket {a, b} asymptotically as (omitting the su-

perscript ψe and writing ∂r = ∂
∂ξr

and ∂s =
∂
∂xs

for convenience):

∂ra∂sb ∼ ∂ra00∂sb00

+
∑

j≥1

∂ra00∂sb0j +
∑

k≥1

∂ra00∂sbk0 +
∑

k≥1

∂rak0∂sb00 +
∑

j≥1

∂ra0j∂sb00

+
∑

j,k≥1

∂rak0∂sb0j +
∑

k,k′≥1

∂rak0∂sbk′0 +
∑

k,j≥1

∂ra00∂sbkj

+
∑

j,j′≥1

∂ra0j∂sb0j′ +
∑

j,k≥1

∂ra0j∂sbk0 +
∑

j,k≥1

∂rakj∂sb00

+
∑

j,j′,k≥1

∂ra0j∂sbkj′ +
∑

k,k′,j≥1

∂rak0∂sbk′j +
∑

j,k,k′≥1

∂rakj∂sbk′0 +
∑

j,j′,k≥1

∂rakj∂sb0j′

+
∑

k,k′,j,j′≥1

∂rakj∂sbk′j′ .

(1.29)

We group the terms according to their homogeneity to obtain

∂ra∂sb ∼ ∂ra00∂sb00

+ ∂ra10∂sb00 + ∂ra01∂sb00 + ∂ra00∂sb10 + ∂ra00∂sb01

+ ∂ra20∂sb00 + ∂ra02∂sb00 + ∂ra00∂sb20 + ∂ra00∂sb02

+ ∂ra11∂sb00 + ∂ra10∂sb10 + ∂ra10∂sb01

+ ∂ra01∂sb10 + ∂ra01∂sb01 + ∂ra00∂sb11

+ . . .

=
∑

m≥0

∑

k,j≥0
k+j=m

crs(k, j),

(1.30)

where

crs(k, j) =
∑

l1+l3=k
l1,l3≥0

∑

l2+l4=j
l2,l4≥0

∂ral1l2∂sbl3l4 ∈ H(me+le−1−k,mψ+lψ−1−j)

are the components of the asymptotic matrix of ∂ra∂sb. We can of course obtain a similar

expression for ∂sa∂
rb. Taking the trace r = s and subtracting the two expressions gives
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then the asymptotic matrix of the Poisson bracket {a, b} for symbols of general orders

m, l ∈ R2.

Since taking traces and differences in SGm cannot increase the order of the symbols

in any fashion, the class of {a, b} in the quotient spaces ΣG can be computed from the

classes of a and b, namely, from their principal symbols. Indeed we see directly from

(1.30) that the outer row and column of the asymptotic matrix of ∂ra∂sb correspond to

taking k = 0 or j = 0 in crs(k, j), and thus only depend on the outer row and column of

a and b. Furthermore it is clear that the Poisson bracket commutes with our asymptotic

expansions: indeed, the bracket of classical symbols is again a classical symbol.

We are mainly interested in the algebraic structure of the spaces ΣG0 and ΣG1. For

the former, notice that a, b ∈ SG0 implies that ∂ra∂sb ∈ SG−1 and the same must be

true for {a, b}. Hence, the Poisson bracket vanishes on ΣG0. For the latter, we start

from (1.30) to compute

{a, b} ∼ {a00, b00}+
∑

k≥1

∑

l1+l2=k

{al10, bl20}+
∑

j≥1

∑

l3+l4=j

{a0l3 , b0l4}+
∑

j,k≥1

(crr(k, j)− c̃rr(k, j)),

(1.31)

where c̃rs are the components of the asymptotic matrix of ∂sa∂
rb. Now, all the terms

in the last sum are at most in SG0, while the others are just, respectively, the symbol

σψe({a, b}), the e-asymptotic expansion of σψ({a, b} − {a00, b00}) and the ψ-asymptotic

expansion of σe({a, b} − {a00, b00}).
In fact, more is true: the •-principal symbol of {a, b} only depends on the •-principal

symbols of a and b and can be computed explicitly (notice that the previous computation

only gives the classes of σ•({a, b}) up to SG−1•∞). To show this, consider for example

symbols a, b ∈ SG1,k and r ∈ SG0,l, and look at

{a+ r, b} = {a, b} + {r, b}. (1.32)

It is clear that {a, b} ∈ SG1,k+l−1 and {r, b} ∈ SG0,k+l−1, in view of the properties of

the calculus. Then, the class of {a+ r, b} in ΣG1,• does not depend on r, the limits

lim
λ→∞

λ−1∂j(a+ r)(λx, ξ)∂jb(λx, ξ) and lim
λ→∞

λ−1∂j(a+ r)(λx, ξ)∂jb(λx, ξ) exist, and do

not depend on r either. We can then directly compute, for x ̸= 0, that

σ1
e ({a, b}) = lim

λ→∞
λ−1(∂ja(λx, ξ)∂jb(λx, ξ) − ∂ja(λx, ξ)∂jb(λx, ξ))

= ∂jae(x, ξ)∂jbe(x, ξ) − ∂jae(x, ξ)∂jbe(x, ξ)

= {ae, be}.

(1.33)

Since this can be done in the same way for the other components of σpr({a, b}), we

conclude that ΣG1 is a Lie algebra with respect to the Poisson bracket acting component-

wise.
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We now turn to examine the commutator of two SG-pseudo-differential operators. For

A,B ∈ LG1 with symbols a, b the asymptotic expansions for the products AB,BA can

be written as

σ(AB) ∼ ab+ ∂ξja(x, ξ)Dxjb(x, ξ) +
∑

|α|≥2

1

α!
∂αξ a(x, ξ)Dα

x b(x, ξ),

σ(BA) ∼ ab+ ∂ξjb(x, ξ)Dxja(x, ξ) +
∑

|α|≥2

1

α!
∂αξ b(x, ξ)Dα

xa(x, ξ),
(1.34)

so that, taking the difference, we obtain

σ([A,B]) ∼ i
(
∂ξja(x, ξ)∂xjb(x, ξ) − ∂ξjb(x, ξ)∂xja(x, ξ)

)

+
∑

|α|≥2

iα

α!

(
∂αξ a∂

α
x b− ∂αx a∂

α
ξ b
)

.
(1.35)

In view of the properties of SG-symbols we have ∂αξ a, ∂αξ b ∈ SG−1,1, ∂αx a, ∂αx b ∈ SG1,−1

whenever |α| ≥ 2, so that every time we take a product as in the second term in (1.35)

we obtain at most a symbol in SG0. Hence, in the quotient it holds true that

σ([A,B]) ∼ i{a, b}, (1.36)

and we can take advantage of (1.33) and its ψ− and ψe−counterparts to get the required

formulas at the level of principal symbols. QED

Remark 1.35. As one can directly deduce from the proof of Proposition 1.34, it holds

true that σpr({a− ǎ, b}) = 0 for any a, b ∈ SG1. Accordingly, we can also compute the

Poisson bracket from the associated symbols as

σ1
ψ({p̌, q̌}) = {pψ, qψ},

σ1
e ({p̌, q̌}) = {pe, qe},

σ1ψe({p̌, q̌}) = {pψe, qψe}.

(1.37)

1.3 SG-fourier integral operators

In this Section we briefly describe the calculus of Q-operators of Andrews [And09]. This

is the class of FIOs A : S → S which we will need in our discussion in Chapter 3. Most of

the material hereafter is taken directly from [And09], with some notable exceptions. We

begin with the standard class Q, before introducing a slightly modified (compared with

the original source) generalised type Q class, in that we localise and assume classicality

throughout. Subsequently, we give a small, albeit important to our purposes, generali-

sation of Coriasco’s Egorov–type Theorem (Proposition 14 in [Cor99]) for operators in

the class Q. The functions f , g appearing in the next definition, and also later in the

definition of the generalised class, will be referred to as phase components.
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Definition 1.36. We say that a real-valued function φ(x, y, ξ) = f(x, ξ) + g(y, ξ) is

a type Q phase function, and write φ = f + g ∈ Q, if the following assumptions are

satisfied:

1. f , g ∈ SG1(Rn × Rn);

2. ⟨∇xf(x, ξ)⟩ , ⟨∇yg(y, ξ)⟩ ∼ ⟨ξ⟩

3. ⟨∇ξf(x, ξ)⟩ ∼ ⟨x⟩ ;

4. ⟨∇ξg(y, ξ)⟩ ∼ ⟨y⟩ ;

5. det(∂xi∂ξjf(x, ξ)), det(∂yi∂ξjg(y, ξ)) ≳ 1;

Definition 1.37. A type Q Fourier Integral Operator (Q-FIO) is an operatorA : S(Rn) →
S(Rn), defined by an oscillatory integral

FIO(φ, a)u(x) =
∫
ei(f (x,ξ)+g(y,ξ))a(x, y, ξ)u(y) dydξ, (1.38)

with phase φ = f + g ∈ Q and amplitude a(x, y, ξ) ∈ SGm1,m2,m3(R3n).

Proposition 1.38 (Properties of Q-FIOs). Let A be a Q-FIO with symbol a and phase

φ = f + g. Then

1. A : S → S is well-defined and continuous;

2. With respect to the inner product (u, v) =
∫
u(x)v(x) dx we have that the formal

adjoint A† is given by the Q-FIO with phase φ†(x, y, ξ) = −g(x, ξ) − f(y, ξ) and

symbol a†(x, y, ξ) = a(y,x, ξ);

3. A extends to A : S ′ → S ′ continuously.

We now introduce a generalised class of phases. We remark first that our upcoming

definition differs slightly from the one in the original work of Andrews, in that he defines

FIOs whose phases were asked to satisfy asymmetric assumptions in x and y. Indeed,

the conditions below were required to hold true globally in y and only locally in x, in

order to retain the global non-degeneracy of the second phase component. However,

for our purposes, we only need the assumption of non-degeneracy to hold true on the

supports of locally chosen amplitudes on a certain (singular) Legendrian submanifold.

In other words, our discussion will always be localised and we have accordingly decided

to ask that the same conditions hold true only locally for x and y variables.

We consider functions depending on x, y ∈ Rn and θ ∈ Rn+d for some n > 0, d ≥ 0

(if d = 0 then we set Q(a) = Q in what follows). Also we relax some of the conditions

imposed on Q to hold true only on the support of a given amplitude.
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Definition 1.39. Let a ∈ SGm1,m2,m3(Rn × Rn × Rn+d) be an SG-amplitude and

φ(x, y, θ) = f(x, θ) + g(y, θ) for some smooth f , g and (x, y, θ) ∈ Rn × Rn × Rn+d. We

write φ ∈ Q(a) if, on supp(a), the following conditions hold true: we have f , g ∈ SG1

with ⟨∇xf(x, θ)⟩ , ⟨∇yg(y, θ)⟩ ∼ ⟨θ⟩, and we can find (possibly after rearranging) a split-

ting θ = (ξ, η) ∈ Rn × Rd and an open set Vϕ ⊂ Rd with supp(a) ⊂ Rn × Rn × Rn × Vϕ
such that:

1. ⟨∇ξg(y, θ)⟩ ∼ ⟨y⟩ on Rn × Rn × Vϕ;

2. (∂yi∂ξjg(y, θ)) has maximal rank on Rn × Rn × Vϕ and the absolute value of its

determinant is uniformly bounded away from 0;

3. ∂yi∂ξjg(y, θ) ≲ 1 on Rn × Rn × Vϕ;

4. For every fixed y ∈ Rn, η ∈ Vϕ we have |dyg(y, θ)| → ∞ as |ξ| → ∞;

5. The same assumptions 1.–4. hold true also for f(x, θ) with yi replaced by xi.

Given an amplitude a ∈ SGm1,m2,m3 and a phase φ ∈ Q(a), the Fourier Integral Operator

associated with a and φ is defined by (1.38), replacing the variables ξ with θ. We will

use the notation Qgen to speak about operators in the classes Q(a) for an arbitrary

a ∈ SGm1,m2,m3 , and we will refer to the variables ξ in a splitting as above as the regular
variables of the phase.

The next result is (a specialisation to our setting of) Theorem 8.5.1 of [And09].

Theorem 1.40 (Composition of Qgen-operators). Given a ∈ SGm1,m2,m3 , b ∈ SGl1,l2,l3 ,

phases φ = f(x, θ) + g(y, θ) ∈ Q(a), η = u(y,κ) + v(z,κ) ∈ Q(b) and corresponding

operators A = FIO(φ, a),B = FIO(φ, b), the composition A ◦B is, modulo a compact

operator on Rn, a Fourier Integral Operator of type Qgen. In particular, for each p, q ∈ R

such that p+ q = m1 +m2 + l1 + l2 we can find an amplitude c ∈ SGp,q,m3+l3 and a phase

Φ ∈ Q(c) such that A ◦B = FIO(Φ, c). If θ = (ξ, η) ∈ Rn+d1 and κ = (µ, ν) ∈ Rn+d2

for ξ,µ ∈ Rn, the phase Φ has the form Φ(x, z, γ) = f(x, θ) + h(x, θ,κ) + v(z,κ) where

γ = (µ, ỹ, θ, ν) are 3n+ d1 + d2 frequency variables with µ the regular ones in a splitting

as in Definition 1.39. Moreover f + h and v are phase components and h satisfies:

d1 = d2, g(y, ξ) = −u(y, ξ) =⇒ h(x, θ,κ) = 0. (1.39)

Corollary 1.41. The class Qgen satisfies:

1. LG ◦ Qgen ◦ LG ⊂ Qgen.

2. If A ∈ Qgen with phase φ = f + g and amplitude a(x, y, θ), then A† ∈ Qgen with

phase φ† = (−g) + (−f) and amplitude a†(x, y, θ) = a(y,x, θ). In particular if

a(x, y, θ) = a(y,x, θ) then A ∈ Q(a) if and only if A† ∈ Q(a).

3. For each a ∈ SGm1,m2,m3 we have Q(a) ◦ Q(a)† ⊂ LG , Q(a)† ◦ Q(a) ⊂ LG .



16 the SG-calculus

4. A ∈ Qgen extends to a continuous operator A : S ′ → S ′.

Notice that, in view of the last theorem and in particular of the properties of the

function h, the statements in the corollary are a generalisation of the corresponding

assertions in Proposition 1.38. The following specialised composition results for the

class Q, Theorem 7.2.1 in [And09], also follow at once from the composition theorem for

Qgen.

Theorem 1.42. Let A,B be Q-FIOs with amplitudes a, b (of arbitrary orders m, l ∈ R3)

and phases φ = f + g, p = r+ s.

1. If g(y, ξ) = −r(y, ξ) then AB ∈ Q with phase f + s and symbol c ∈ SGp,q,m3+l3 ,

where we can choose p, q so that p+ q = m1 +m2 + l1 + l2.

2. If in addition f(x, ξ) = −s(x, ξ), then AB is an SG-ΨDO and we can choose again

p, q with p+ q = m1 +m2 + l1 + l2 so that we have an amplitude c̃ ∈ SGp,q,m3+l3 .

Moreover, the amplitudes of AB in both cases admits an asymptotic expansion (cf.

[And09], Proposition 4.0.4).

Remark 1.43. We have to remark that Andrews does not assume classicality for any

of the operator classes he introduces. However, looking at the asymptotic expansions

he obtains, it becomes clear that the assumptions of classicality (for both phases and

amplitudes) and integer order for all operators are preserved by his composition formulæ

and therefore we obtain without fuss a sub-calculus modelled after LG .

Remark 1.44. The FIOs of type Q are a direct generalisation of the operator calculus

introduced by Coriasco [Cor99]. This calculus corresponds to the subclass where we

always take g(y, ξ) = −yξ (type I operators) or f(x, ξ) = xξ (type II operators). It

is an important feature for us that the Egorov theorem for type I and II operators

(namely, Proposition 14 in [Cor99]) extends to Q. It suffices for this to look at the

first term in the asymptotic expansion of Proposition 4.0.4 of [And09] and use the same

formal proof as given by Coriasco. At the same time, we remark that Q-FIOs are given

by arbitrary compositions of type I and type II operators. Indeed according to 1. in

Theorem 1.42, when we compose a type I operator with phase φ = f(x, ξ) − yξ and

a type II operator with phase p = xξ − g(y, ξ), we obtain the Q-operator with phase

q = f + g. Furthermore, applying this line of thought in reverse, we see that any Q-

operator with phase q = f + g can be written as a composition of a type I operator with

phase φ = f(x, ξ)− yξ and a type II operator with phase p = xξ− g(x, ξ). This justifies

the following definition as a direct generalisation of Definition 9 in [Cor99].

Definition 1.45. An FIO of type Q is called elliptic if its amplitude is elliptic in the

sense of Definition 1.33.

Proposition 1.46. Let A = FIO(φ, a) be an elliptic FIO of type Q. Then A admits a

parametrix A# ∈ Q, namely an operator such that AA# − I,A#A− I ∈ RG.
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Theorem 1.47 (Egorov’s Theorem for Q). Let A be an elliptic global Ql-FIO with

phase f(x, θ) + g(y, θ) and amplitude a ∈ SG0, and let P ∈ LGm. Then A#PA ∈ LGm

and σpr(A#PA) = C∗σpr(P ) where C is the triple of homogeneous symplectic maps

defined by the principal symbols of the phase function f + g. Namely C is given as a

triple (Ce,Cψ,Cψe) with each map acting by pull-back on the respective component of

the principal symbol and such that φ• is a phase function parametrising the graph of C•

as

∇θφ• = 0 =⇒ graphC• = (x, ∇xφ•, y, ∇yφ•).

Proof. Write A = BC for B a type I operator with phase f(x, θ) + yθ and amplitude
√
a

and C a type II operator having phase x, θ+ g(x, θ) and amplitude
√
a in the notation

of Remark 1.44. Since A is elliptic, both B and C are elliptic and admit parametrices

B# and C#, respectively of type II with phase −xθ− f(y, θ) and of type I with phase

−g(x, θ) − yθ. Moreover APA# = BCPC#B#, so that applying Proposition 14 in

[Cor99] to CPC# = Q gives that this composition is a SG− ΨDO of order m. A second

application of the same result to BQB# gives the final claim. QED





2 S C AT T E R I N G G E O M E T R Y

2.1 manifolds with corners and scattering ge-

ometry

We give hereafter a short account of basic definitions of manifolds with corners, smooth

structures with corners and so on, adopting in essence the same conventions as in

[CDS19]. A more detailed exposition can be found, for example, in [Mel96], while a

comparison of the different existing notions can be found in [Joy12]. Notice that, for the

sake of simplicity and clarity, we prefer here an extrinsic approach.

Definition 2.1. A parametrised patch of dimension d, with corners of codimension k,

0 ≤ k ≤ d, on a para-compact Hausdorff topological space Z, is a pair (U ,φ) where

V ⊂ [0, ∞)k × Rd−k is open and φ : U → φ(U) ⊂ Z is a homeomorphism. If we can

choose k = 0 then (U ,φ) is just a parametrisation of an interior patch on Z (namely,

φ(U ) ∩ ∂Z = ∅), while if we can have k = 1 we say that (U ,φ) is a parametrisation of

a boundary patch. We say that a pair (V ,ψ) is a chart of dimension d, with corners
of codimension k, if (U ,φ) ≡ (φ(U ),ψ−1) is a parametrised patch of dimension d, with

corners of codimension k. We adopt the same terminology with respect to interior and

boundary charts.

Definition 2.2. A C∞-manifold of dimension d, with corners of (maximal) codimension
k is a para-compact, second countable, Hausdorff topological space Z, together with a

collection {(Ui,φi)} of parametrised patches of dimension d and corners of codimension

k, such that {φ(Ui)} covers Z and, whenever φj(Uj) ∩ φi(Ui) ̸= ∅, the changes of

coordinates φij = φ−1
i |ϕj(Uj)∩ϕi(Ui) ◦ φj : Uj → Ui are smooth maps, in the sense that

there exists a smooth map φ̃ij : Ũj → Ũi, with open sets Ũi, Ũj ⊂ Rk × Rd−k containing

Ui,Uj , respectively, satisfying φ̃ij |Uj = φij . If, at every point p ∈ Z, we can find

parametrised patches with k = 0, then Z is a smooth manifold. Similarly, if all the

patches can be picked with k = 1, then Z is a smooth manifold with boundary.

Lemma 2.3. Let Z be a C∞-manifold of dimension d > 0, with corners of codimension

k. There exists a smooth manifold Z̃ of dimension d, without boundary, such that Z̊ is

open and non-empty in Z̃.

Definition 2.4. The space of C∞-functions on Z is the set C∞(Z) consisting of all re-

strictions of smooth functions from Z̃ to Z. If we do not specify further, every geometric

object (for example, vector bundles, differential of a smooth map, and so on) defined on

Z is obtained as the restriction of the corresponding concept from Z̃.

19
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Convention 1. In what follows, we always assume that Z is compact and that there

exist a finite collection of smooth functions ρi, i ∈ I, on Z̃ such that Z = {p ∈ Z̃ s.t. ∀i ∈
I ρi(p) ≥ 0} and such that, whenever for a sub-collection J ⊂ I it holds true ρj(p) = 0

for all j ∈ J , then the differentials dρj are linearly independent. Near points p, for which

each patch containing p has codimension k > 0 corners, we always use coordinates in

the form (ρi1 , . . . , ρik , zj1 , . . . , zjd−k
) for z coordinates on the codimension k corner in

the patch U .

Remark 2.5. The structure of the spaces defined by our axioms corresponds to the

notion of manifold with embedded corners of Joyce [Joy12]. Accordingly, we can always

pick a local boundary-defining function, and since corners are embedded sub-manifolds

we can always find a global one associated with any boundary hyper-surface.

Lemma 2.6. Any C∞-manifold Z of dimension d, with corners of codimension k, admits

a stratification ∪ki=0Zi, where Zi is a C∞-manifold of dimension d− i, with corners of

codimension k − i. We call the union of the strata Zi for i ≥ 1 the boundary of the

manifold with corners Z.

Definition 2.7. The depth of a point p ∈ Z, depth(p), is the number of independent

boundary-defining functions vanishing at p. Equivalently, it is the codimension of the

boundary stratum Zi to which p belongs.

Remark 2.8. Joyce makes a distinction between the boundary of Z, interpreted as a

manifold with corners in its own right and admitting the stratification of Lemma 2.6,

and the embedded boundary of Z, which is in general only a topological manifold. In

our definition we insist that the corners are embedded, and we must therefore adopt

the second point of view. This forces us to define “smooth” functions on ∂Z as the

restriction of a smooth function on Z to ∂Z, which does not agree in general with the

concept of smooth function on the boundary interpreted according to Joyce’s point of

view. This is however only a minor inconvenience for our future purposes and we shall

stick with this definition, more widespread in the context of singular analysis.

Remark 2.9. Notice that our definition of manifolds with corners does not include

many other singular situations that have been considered in the literature. Indeed, on

manifolds with corners, the function depth has the following property: if depth(p) = k

and 0 ≤ s < k, then any neighbourhood of p (in the topology of Z) contains a point

q ̸= p with depth q = s. This is obviously untrue in other settings. For example, any

closed cone (more generally, any manifold with a conical singularity) clearly doesn’t have

this property.

Definition 2.10. A relatively open set U ⊂ Z is said to be interior if U ∩ ∂Z = ∅.

In case U ∩ ∂Z ̸= 0, we always assume that U ∩ ∂Z ⊂ U , and we call U either a

boundary neighbourhood or a corner neighbourhood, depending on whether U intersects

only the stratum of codimension 1 or not. The set C∞(U ) of smooth functions on
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U consists of all the restrictions of smooth functions on Z to U . For U a boundary

neighbourhood, intersecting a corner of codimension s, the set ρm1

i1
. . . ρmsis C∞(U) consists

of those functions h ∈ C∞(∈̇U) such that ρ−m1

i1
. . . ρ−ms

is
h extends to a smooth function

ũ ∈ C∞(U ). We have then a natural notion of smooth functions on a boundary hyper-

surface, namely, the restriction of a function on a boundary neighbourhood U to U ∩ ∂Z.

Remark 2.11. Notice that, in our setup, the boundary ∂Z is not itself a manifold with

corners and does not carry a natural smooth structure. We obviate to this problem by

choosing the following notion of smoothness. For a relatively open V ⊂ ∂Z, intersecting

the codimension 2 stratum Z2 and no higher-codimensional stratum, the smooth func-

tions h ∈ C∞(V ) are given by a pair of smooth functions h = (f , g) on the two boundary

hyper-surfaces such that f |V ∩Z2
= g|V ∩Z2

. The notion for higher-codimensional strata is

defined accordingly. This notion of smoothness across the corner, while in a certain sense

arbitrary, fulfils the natural requirement that the function f |Z2
identifies with a smooth

function on the corner. We will see later that, for the scattering calculus of pseudo-

differential operators, the principal symbols are identified with continuous function on

the boundary of a certain manifold with corners, smooth across the corner according to

this definition. Notice how this contrasts with Joyce’s convention, which implies that the

boundary of Z carries a natural smooth structure given by considering it as a manifold

with corners on its own right.

Definition 2.12. The space Ċ∞(Z) consists of those functions f : Z → C such that f

and all it derivatives vanish at the boundary. The space of extendible distributions on

Z, E ′(Z), is the (topological) dual space of Ċ∞(Z, Ω(Z)), the sections of the density

bundle having coefficients in Ċ∞(Z).

On any manifold with corners there is a natural Lie sub-algebra Xb(Z) of X(Z), con-

sisting of vector fields which are tangent to all boundary hyper-surfaces. Namely, on

an interior neighbourhood U we have Xb(U) ∼= X(U ), while if U is a boundary neigh-

bourhood with corners of codimension k then Xb(U) is the Lie algebra generated, over

C∞(Z) and in standard local coordinates for a patch with codimension k corners, by

ρ1∂ρ1
, . . . , ρk∂ρk , ∂x1

, . . . , ∂xd−k
. (2.1)

Equivalently, V is a b-vector fields if V ρi = αiρi for any boundary-defining function on

Z, where αi are smooth functions. These have become known as b-vector fields (b for

"boundary"). The dual C∞(Z)-module is the module of b-differential 1-forms b
Λ

1(Z).

Namely, it is the module generated, locally near the boundary, by

dρ1

ρ1

, . . . ,
dρk

ρk
, dx1, . . . , dxd−k. (2.2)

There is an obvious perfect duality b
Λ

1(Z)×Xb(Z) → C. Namely, this pairing identifies
b
Λ

1(Z) with the dual of Xb(Z) and vice-versa.
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Lemma 2.13. 1. There exist vector bundles bTZ → Z and bT ∗Z such that Xb(Z)

and b
Λ

1(Z) are respectively the spaces of smooth sections of bTZ and bT ∗Z over

Z.

2. If U ⊂ Z is interior, then Xb(U ) ∼= X(U ) and b
Λ

1(U ) ∼= Λ
1(Z).

3. There are natural vector bundle maps bTZ → TZ and T ∗Z → bT ∗Z, dual to each

other, which are isomorphisms over any interior neighbourhood.

4. The b-vector fields on a manifold with boundary (Z, ρ) are identified, in a collared

neighbourhood of ∂Z, with the sections of TZ having bounded length with respect

to the exact b-metric

g =
dρ2

ρ2
+ h, (2.3)

that is, g(V ,V ) < ∞ for any b-vector field V . Here h is the pull-back of a metric

h∂Z on the embedded boundary ∂Z to the collared neighbourhood ∂Z × [0, 1).

Remark 2.14. Lemma 2.13 could be reformulated in the language of Lie algebroids. In

particular, Xb(Z) is a Lie algebroid with anchor map given by the natural bundle map

of item 3.

Having concluded our brief recap on manifolds with corners, we recall the notion of

scattering structure of Melrose, which is known to yield a pseudo-differential calculus

equivalent on Rd to the classical SG-calculus. This will be stated precisely later on.

Definition 2.15. A topological space X is called a scattering manifold if X is a compact

manifold with boundary, with boundary defining function ρ, equipped with a Riemannian

metric g which in a collared neighbourhood of the boundary takes the form

g =
dρ2

ρ4
+

h

ρ2
. (2.4)

In (2.4) h is a symmetric, 2-covariant tensor field containing no dρ factors. Namely it is

the pull-back of metric on ∂X to the collared neighbourhood ∂X × [0, ε).

On a scattering manifold X, we have obviously a notion of b-vector fields given by

the geometric structure. However, the scattering metric on X is quite different from

a b-metric. The structure of the manifolds near the boundary (“at infinity”) can be

identified either with a cone (scattering) or with a cylinder (b-metric). Correspondingly,

there is another Lie algebra of vector fields which describes the scattering structure.

These so-called scattering vector fields are the elements of

Xsc(X) ≡ ρXb(X), (2.5)
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that is, they are sections of TX which are tangent to the boundary and have bounded
length w.r.t. g, i.e. g(V ,V ) < +∞ for V ∈ Xsc(X). They are generated (near the

boundary ρ = 0, parametrized by coordinates y) by

ρ2∂ρ, ρ∂y. (2.6)

Furthermore, they are the sections of a vector bundle over X called the scattering tangent
bundle, scTX.

Remark 2.16. The process of constructing these Lie sub-algebras of X(X), adapted to

the geometric situation of interest, can be described in a much more general framework

by the process of rescaling of Lie algebroids. Building on ideas of Melrose (who first

dealt with the rescaling of Lie sub-algebras of X(X)) and Scott (see [Sco16]), Lanius

[Lan21] described the process for a general Lie algebroid and initiated the study of

scattering-symplectic manifolds, at the same time exploring the Poisson-geometric side

of the matter. In this picture, the scattering algebroid scTX is exactly the rescaling of the

b-algebroid bTX along the algebroid of so-called 0-vector fields of Mazzeo and Melrose,

namely those vector fields which vanish at the boundary. However, at the boundary the

b- and 0-calculus are highly non-trivial, in the sense that there is a non-commutative

algebra of “indicial operators” which need to be inverted when considering ellipticity.

We will see that the situation for the scattering structure is much nicer.

Example 2.17. We can turn Rn into a scattering manifold by considering the radial
compactification1. It is obtained from the stereographic projection as follows. Consider

Sn+, the upper closed half-sphere of radius 1 in Rn+1 with coordinates (x1, . . . ,xn+1), and

identify Rn with the hyperplane xn+1 = 1 in Rn+1. A point p ∈ Rn is mapped bijectively

to q ∈ S̊n+ by taking the line lp joining p to the origin and setting q =intersection of

lp with Sn+. Let us denote by R this embedding. Then we “add the points at ∞” to

Rn by embedding Sn−1 as the boundary of Sn+ = {(x0, . . . ,xn) ∈ Sn s.t. xn+1 ≥ 0} in

the radially compactified picture. The lingo is justified by the fact that, approaching

Sn−1 along a (half of a) maximal circle of Sn, we are in fact going to infinity along the

corresponding ray in Rn. We introduce coordinates near the boundary of Sn+ as follows.

Describe Rn, at least outside a compact neighbourhood of 0, using polar coordinates

(r, y) with y angular coordinates (that is, coordinates on Sn−1 ⊂ Rn). Using R we map

this description to coordinates on the open half-sphere S̊n+, and take ρ ≡ 1/r. One

shows easily that ρ is a boundary-defining function and that the pull-back via R of the

Euclidean metric to Sn+ produces a metric of the form (2.4), with h = standard metric

on Sn−1 embedded in Rn. We also remark that the only (eventually) homogeneous

functions on Rn which extend to a smooth function to Sn+ are those of non-positive

1 Different schools in the literature use different names for the object here described. The continental school

tends to stick to the name stereographic compactification for the map R we are about to introduce, and

reserves the term radial compactification for the construction of the upcoming Remark 2.18. Overseas,

this last concept takes the name quadratic compactification.
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order. Specifically, those of order 0 extend to the boundary with their radial limit while

those of negative order take value 0 at the boundary.

Remark 2.18. In the previous example, one might wonder why we don’t consider, as

a compactified space, the projection of Sn+ onto the plane xn+1 = 1, namely a closed

ball Bn of radius 1 in Rn. Notice that, with such a choice, the projection map, certainly

bijective and smooth Sn+ → Bn, does not have a smooth inverse, since this has a square-

root singularity. On the other hand, stereographic projection from (0, . . . , 0, −1) onto

xn+1 = 1, restricted to the upper closed half-sphere, gives a diffeomorphism from Sn+ to

Bn, so we can understand this from both points of view, if only with the need to make the

correct identifications. Notice, in addition, that, in the literature with an SG approach,

one often uses a different boundary defining function, namely one takes a diffeomorphism

Q of Rn onto the open ball B1(0), given for |x| > 3 by Q(x) = x
|x|

(
1 − 1

|x|

)
. For [x] any

smooth function such that [x] = |x| for |x| > 3, we obtain that (Q−1)∗[x] is a boundary

defining function. It can be checked directly that it is equivalent to (R−1)∗ ⟨x⟩. Namely

that, in sufficiently small neighbourhoods of the boundary, they are just a multiple

of each other by a positive smooth function. It follows that the two approaches are

really equivalent. A third approach, yet again equivalent, would be to map a point x to
x

⟨x⟩ ∈ B1(0) and applying the same process as before. This would result in another choice

of “standard” boundary-defining function. We will mainly stick to Sn+ and (R−1)∗ ⟨x⟩
for conceptual purposes. However we will at times switch to a different picture for

convenience of notation.

With any scattering manifold, as we have seen, is associated a rescaling of the tangent

bundle. The dual construction applied to T ∗X yields the scattering cotangent bundle
scT ∗X. Namely, it is the bundle whose sections are the rescaled 1-forms sc

Λ
1(X), gen-

erated, as a C∞(X)-module near the boundary, by

dρ

ρ2
,

dy

ρ
. (2.7)

In the scattering approach, it turns out that it’s quite convenient to consider a com-

pactified version of this space. Namely, given X a scattering manifold and scT ∗X its

scattering cotangent bundle, we compactify each fibre from Rn to Sn+ with the map R and

consider the total space so obtained, which we denote by scT
∗
X. This is now a manifold

with corners. Indeed, we have two boundary defining functions ρe and ρψ, respectively,

for the boundary ∂X and the boundary of the half-spheres in the compactification of

the fibres. The common zero locus of these functions, i.e. the space ρe = ρψ = 0, is a

codimension 2 corner.

Example 2.19. In the example of X = Sn+, i.e. of the compactification of Rn, we have

that scT ∗X is trivial, so the compactification process in the fibres yields the manifold
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Sn+ × Sn+. The boundary of this manifold is traditionally called the SG-wave-front space
(cfr. [CM03] and [Cor95]) and can be decomposed as

∂(Sn+ × S
n
+) = (Sn−1 × R

n) ∪̇ (Rn × S
n−1) ∪̇ (Sn−1 × S

n−1). (2.8)

For later reference we denote the three pieces, respectively, by W̃e, W̃ψ, W̃ψe.

The scattering differential operators on X are the elements of Diffsc(X), the C∞(X)-

enveloping algebra of Xsc(X). That is to say, Diffsc(X) is the filtered algebra generated,

on a boundary neighbourhood U , by ρ2∂ρ, ρ∂y, 1 over C∞(U), and isomorphic to Diff(U),

the usual differential operators, if U is an interior neighbourhood. There is a well-defined

(principal) symbol map σsc on scattering operators defined as follows. For a scattering

vector field V , consider it as a section of scTX. At each point p, we can identify V (p)

with a linear map on the fibres of the dual bundle (since a finite-dimensional vector space

is canonically isomorphic with its bi-dual), so V (p) : scT ∗
pX → C, and obtain a smooth

function on scT ∗X. Set then σsc,1(V ) ≡ iV and extend it multiplicatively to the whole

Diffmsc(X) to a map σsc,m, taking values in Pol(m)(scT ∗X) (as before, round brackets

mean homogeneity). This gives the usual short exact sequence

0 → Diffm−1
sc (X) → Diffmsc(X)

σsc,m−−−→ Pol(m)(scT ∗X) → 0. (2.9)

Moreover, in view of the homogeneity of the polynomials in (2.9), we can identify the

principal symbolσsc,m(P ) with a smooth function on scS∗X, the scattering co-sphere
bundle of X. This is just the sub-bundle of scT ∗X with fibre the sphere of radius 1 with

respect to the inverse of the metric (2.4).

The main difference with the usual differential operators is the fact that invertibility

of σsc,m(P ) does not guarantee the existence of a “good” parametrix (one with compact

remainder). This is due to the fact that the coefficients of an “elliptic” operator might

not have good growth/decay properties as |x| → ∞. There is, on the other hand, a way

to take this behaviour into account, which we describe hereafter. For scattering vector

fields, the Lie bracket satisfies

[Xsc(X),Xsc(X)] ⊂ ρXsc(X), (2.10)

so that for each point p ∈ ∂X the evaluation map defines a Lie algebra homomorphism

into a trivial (namely, commutative) Lie algebra

Nsc,p : Xsc(X) → scTpX. (2.11)

Functions can be evaluated at a point, too, and the two evaluations are compatible (that

is, (fV )(p) = f(p)V (p)), so we have a unique multiplicative extension to Diffsc(X) with

values in translation-invariant (namely, constant coefficients) differential operators on
scTpX. On a vector space, the Fourier transform identifies these with (non-homogeneous)

polynomial functions, so that, at each point p ∈ ∂X, we obtain a map

N̂sc,p : Diffmsc(X) → Polm(scT ∗
pX). (2.12)
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This is known as the normal symbol or normal operator and gives another short exact

sequence,

0 → ρDiffmsc → Diffmsc
N̂sc,p−−−→ Polm(scT ∗

pX) → 0. (2.13)

Notice that the only relation between the symbol and the normal operator is that

evaluation of the symbol at a boundary point should equal the leading term of the

normal operator at that point (compare with the SG-principal symbol). Namely, at

p ∈ ∂X it holds true

σsc,m(P )|p − N̂sc,p(P ) ∈ Polm−1(scT ∗
pX). (2.14)

The two symbol maps are combined in the so-called joint symbol map

jsc,m(P ) ≡ (σsc,m(P ), N̂sc(P )) ∈ scP̃ol
m,0

(X), (2.15)

where scP̃ol
m,0

(X) is the space of all pairs of functions (q, N̂ ) with q ∈ Pol(m)(scT ∗X),

N̂ ∈ Polm(scT ∗
∂XX) and such that N̂ − p|∂X ∈ Polm−1(scT ∗

∂XX). There is then a

combined short exact sequence:

0 → ρDiffm−1
sc (X) → Diffmsc(X)

jsc,m−−−→ scP̃ol
m,0

(X) → 0. (2.16)

Lemma 2.20. The space scP̃ol
m,0

(X) can be canonically identified with a subalgebra

of ρ−m
σ C∞(∂(scT

∗
X)).

Proof. A function f is an element of C∞(∂(scT
∗
X)) if it is given as f = (fN , fσ) for

two smooth functions fN ∈ C∞(scT ∗
∂XX), fσ ∈ C∞(scS∗X) satisfying (2.14). Clearly

the normal symbol N̂sc is such a fN . On the other hand, identifying the boundary

of the fibre-wise compactification with the co-sphere bundle S∗X, the function σsc,m is

determined by homogeneity by an element fσ ∈ C∞(scS∗X). For a P ∈ Diffmsc(X), then

we obtain a pair of functions as above, The proof is complete. QED

To define pseudo-differential operators on a scattering manifold, we start with the

model case of Sn+. The Weyl calculus of Hörmander with respect to the temperate metric

g = ⟨x⟩−2
dx2 + ⟨ξ⟩−2

dξ2 gives a class of operators on S(Rn) having distributional

kernels given by

K(x, y) =
∫
ei(x−y)ξpL(x, ξ)dξ, (2.17)

where the function pL(x, ξ) is the left-symbol of the operator P . Then, the function

pL satisfies the estimates (1.3). Namely, pL is a symbol with respect to the above

metric, the standard symplectic form and the order/weight function ⟨x⟩l ⟨ξ⟩m. Using

the stereographic projection R (recall the definition in Example 2.17) we can transfer

these to Sn+. Set Ċ∞(Sn+) to be the space of all smooth functions on Sn+ which vanish at

the boundary together with all their derivatives.
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Definition 2.21. The space of scattering-conormal pseudo-differential operators on Sn+,

Ψ
l,m
scc (S

n
+), is the set of all the linear operators A : Ċ∞(Sn+) → Ċ∞(Sn+) such that, if P is

defined by R∗(Au) = P (R∗u) for all u ∈ Ċ∞(Sn+), then P is given as an operator with

Schwartz kernel as in (2.17), with a left symbol pL of order (l,m).

We let R2 ≡ R×R : Rn × Rn → Sn+ × Sn+ be separate radial compactification in each

factor and choose boundary defining functions ρσ : Sn+ × Sn−1 × [0, 1) → R, ρN : Sn−1 ×
[0, 1)× Sn+ → R for the two boundary hyper-surfaces (for example, R∗ρσ = ⟨ξ⟩−1

,R∗ρN =

⟨x⟩−1). Let Diffb(S
n
+ × Sn+) be the enveloping algebra (over C∞(Sn+ × Sn+)) of Xb(S

n
+ × Sn+),

the so-called totally characteristic or b-differential operators. We define a space of dis-

tributions, conormal to boundary in the sense of Hörmander, of order (l,m) as

I l,m(Sn+ × S
n
+) ≡ {u ∈ ρ−l

N ρ
−m
σ L∞(Sn+ × S

n
+)

s.t. Diffb(S
n
+ × S

n
+)u ⊂ ρ−l

N ρ
−m
σ L∞(Sn+ × S

n
+)}.

(2.18)

This defines a global space of kernels whose microlocal representation is given by oscil-

latory integrals as in (2.17). Indeed, it is easily seen that pL satisfies (1.3) if and only if

pL ∈ R∗
2I
l,m(Sn+ × Sn+) with me = l,mψ = m (confer [Mel94], Section 4).

Remark 2.22. For b- and 0-differential operators, one has a well-defined normal opera-

tor Np at the boundary. However, the condition (2.10) fails. Indeed, no extra vanishing

factors appear when commuting elements of the forms ρ∂ρ, ρ∂y, ∂y, so the normal ho-

momorphism takes values in a non-commutative algebra. This is the reason why those

structures are much more complicated from an analytical perspective.

To obtain classical operators, we refine Definition 2.21 by asking that the left-symbol

is actually a (weighted) smooth function on Sn+ × Sn+.

Definition 2.23. The space of classical scattering pseudo-differential operators Ψ
l,m
sc (Sn+)

is the subspace of Ψ
l,m
scc (S

n
+) consisting of those operators with

pL ∈ R∗
2(ρ

−l
N ρ

−m
σ C∞(Sn+ × S

n
+)). (2.19)

Despite a lot of what follows being true mutatis mutandis also for the larger class Ψscc,

in the sequel we will consider classical operators, avoiding repeated explicit mention.

For the sake of completeness, we include a definition of scattering ΨDOs on a general

scattering manifold. Although this will not be needed in the sequel (we will only concern

ourselves with classical scattering operators on Sn+ × Sn+), it reveals that the more “global”

nature of the scattering calculus transfers more easily to general settings in comparison

with the SG-calculus. On the other hand, however, we recall that the class of SG-

manifolds as defined by Schrohe [Sch87] (or even just the class of S-manifolds in the

sense of Cordes [Cor95]) is significantly larger. The following lemma expresses coordinate

invariance and is a direct consequence of the calculus of [Mel94].
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Lemma 2.24. Let F : Sn+ → Sn+ be a diffeomorphism. Then for any P ∈ Ψ
l,m
sc (Sn+) we

have F∗PF
∗ ∈ Ψ

l,m
sc (Sn+), namely, conjugation with a diffeomorphism defines an order-

preserving automorphism of Ψ
l,m
sc (Sn+).

For a scattering manifold X, an operator P : Ċ∞(X) → Ċ∞(X) has a kernel which

in general is an extendible distribution KP ∈ E ′(X2,π∗
RΩ), where πR is the projec-

tion onto the second factor and Ω is the density bundle on X. We define regularising

ΨDOs as exactly those integral operators with kernel in Ċ∞(X2,π∗
RΩ). We notice that

R∗Ċ∞(Sn+) = S(Rn). We can then introduce the calculus on X along the lines of the

usual definition by localisation for manifolds without boundary, simply replacing any

instance of ‘manifold’ with ‘manifold with corners’, ‘open set in Rn’ with ‘open set in

[0, ∞)k × Rn−k’ and so on (effectively, we are giving the same definition as Definition

18.1.20 in [Hör07] in the new category of ‘manifolds with corners’, modelling our opera-

tors on Ψ
l,m
scc (S

n
+)).

We collect some of the properties of this algebra before turning our attention to the

symbol calculus for scattering operators.

Proposition 2.25. The following holds true.

1. The spaces Ψ
l,m
sc (X) sit in a partial order where Ψ

l,m
sc (X) ⊂ Ψ

l′,m′

sc if and only if

l ≤ l′ and m ≤ m′; they form a bi-filtered algebra Ψsc(X) under composition.

2. Diffmsc(X) ⊂ Ψ
0,m
sc (X).

3. Multiplication with a boundary-defining function defines an order reduction for

the first filtration, namely ΛN = Mρ is a classical, invertible, scattering operator

of order 1e.

4. The operator Λσ =
√

1 − ∆sc, for ∆sc the Laplace operator associated with the

metric (2.4), is an order reduction for the second filtration, namely Λψ is a classical,

invertible, scattering operator of order 1ψ.

Recall that for scattering differential operators the principal symbol is a continuous

function on the boundary of scT
∗
X, smooth across the corner in the sense of Remark 2.11.

We let BscX ≡ ∂(scT
∗
X) = scT

∗
∂XX ∪scS∗

∂X
X
scS∗X and denote by C∞(BscX) the set

of smooth functions according to this definition. If we are given vector bundles EN ,Eσ
over scT

∗
∂XX, scS∗X respectively, with a specified identification of their restrictions to

scS∗
∂XX, then we can also consider

C∞(BscX; (EN ,Eσ)) = {(uN ,uσ) ∈ C∞(scT ∗
∂XX;EN ) × C∞(scS∗X;Eσ)

s.t. uN |scS∗

∂X
X = uσ|scS∗

∂X
X}. (2.20)

Notice in particular that this is the case if we are given a vector bundle over the whole

of scT
∗
X.
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Lemma 2.26. The elements of ρ−l
N ρ

−m
σ C∞(scT

∗
X) are the sections of a trivial bundle

Sl,m over scT
∗
X, equipped with a b-connection. Namely, for every V ∈ Xb(X) and every

section a of Sl,m, it holds true V a ∈ Sl,m.

With this notation set, we can finally express the principal symbol sequence.

Proposition 2.27. The maps N̂sc and σsc extend from Diffsc(X) to Ψsc(X) to give

the scattering joint symbol jsc,l,m : Ψ
l,m
sc (X) → C∞(BscX;Sl,m), and we have the exact

sequence

0 → Ψ
l−1,m−1
sc (X) → Ψ

l,m
sc (X)

jsc,l,m−−−−→ C∞(BscX;Sl,m) → 0. (2.21)

Furthermore, the joint symbol is multiplicative. Namely, for any A ∈ Ψ
l1,m1
sc (X),B ∈

Ψ
l2,m2
sc (X), it holds true

jsc,l1+l2,m1+m2
(AB) = jsc,l1,m1

(A)jsc,l2,m2
(B), (2.22)

with the product given component-wise.

Before moving towards the discussion of the symplectic structure on BscX, we notice

some special properties of the model case X = Sn+. The first is that conjugation with

the Fourier transform gives an automorphism of pseudo-differential operators, a peculiar

feature of this setting. We report a proof of this fact, since it is instructive about the

nice properties of SG and sc-calculi.

Proposition 2.28. Let F : S(Rn) → S(Rn) be the Fourier transformation and consider

the map F : Ċ∞(Sn+) → Ċ∞(Sn+) given by F ≡ (R∗)−1 ◦ F ◦R∗. Then

F ◦ Ψ
l,m
sc (Sn+) ◦ F−1

= Ψ
m,l
sc (Sn+). (2.23)

Proof. The action of P ∈ Ψ
l,m
sc is expressed “locally” as P(v) = R∗(Pu) for each u ∈

Ċ∞(Sn+) and v = R∗u ∈ S(Rn) (recall that R∗Ċ∞(Sn+) = S(Rn)), in particular

Pv =
∫
eixξpL(x, ξ)v̂(ξ)dξ,

Pv̂(ξ) =
∫
ei(ξ−η)zpL(ξ, z)v̂(η)dz dη.

(2.24)

Consider P̃ = F−1 ◦P ◦ F . This is the “local representation” of F ◦ P ◦ F−1
, since

clearly

P̃v = (F−1 ◦P ◦ F)(R∗u) = F−1 ◦P ◦R∗(Fu)
= R∗(F−1 ◦ (R∗)−1 ◦P ◦R∗ ◦ Fu)
= R∗(F−1 ◦ P ◦ Fu).

(2.25)
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Computing the action of P̃, we observe

P̃v(x) = F−1(Pv̂)(x) =
∫
eixξei(ξ−η)zpL(ξ, z)v̂(η)dz dηdξ

=
∫

ei(x+z)ξpL(ξ, z)

(∫
e− i ηz v̂(η) dη

)
dzdξ

= (2π)n
∫
ei(x+z)ξpL(ξ, z)v(−z)dzdξ

=
∫
ei(x−y)ξpL(ξ, −y)v(y) dydξ.

(2.26)

Hence, the claim is in fact just the equivalence of the classes of left- and right-quantised

SG-operators, namely Lemma 1.24. QED

The second aspect relates to the equivalence of the classical sc- and SG-calculi, which

is especially manifest in the model case, as the next theorem shows (cf. [ES97], Section

8.2.2, for a proof).

Theorem 2.29. The following properties hold true.

1. For any a ∈ SGm,m = (me,mψ) ∈ R2, the function ⟨x⟩−me ⟨ξ⟩−mψ a(x, ξ) extends

smoothly to Sn+ × Sn+.

2. For any m ∈ R2 there exist an isomorphism

ȷm : SGm ∼−→ ρ−me
∂ ρ

−mψ
σ C∞(Sn+ × S

n
+),

ȷm(a)(ρ∂ , z, ρσ, ζ) = ρme∂ ρ
mψ
σ a(R−1(ρ∂ , z),R−1(ρσ, ζ)),

(2.27)

where (ρ∂ , z, ρσ, ζ) are coordinates near the corner of Sn+ × Sn+, ρ∂ and ρσ being

boundary-defining functions with R∗ρ∂ = ⟨x⟩−1, R∗ρσ = ⟨ξ⟩−1.

3. Under the isomorphism of the previous point 2., the principal symbol can be com-

puted by restriction to the boundary hyper-surfaces as

σmee (a)(x, ξ) = |x|me ȷm(a)
(

0,
x

|x| ,R(ξ)
)

,

σ
mψ
ψ (a)(x, ξ) = |ξ|mψ ȷm(a)

(
R(x), 0,

ξ

|ξ|

)
,

σmψe(a)(x, ξ) = |x|me |ξ|mψ ȷm(a)
(

0,
x

|x| , 0,
ξ

|ξ|

)
.

(2.28)

Remark 2.30. In view of Remark 1.9, 1. and 2. in Theorem 2.29 are consequences of

the fact that C∞(Sn+ × C∞(Sn+))
∼= C∞(Sn+)⊗̂πC∞(Sn+).

We recall that the compatibility conditions for principal SG-symbols are actually suf-

ficient for the existence of a global symbol. In the scattering picture, this corresponds
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to principal symbols being smooth functions on BscX according to Remark 2.11. By

definition of C∞(scT
∗
X) and C∞(BscX), we have therefore the extension result of Propo-

sition 2.32 below. First however, let us recall and introduce some notation we will use

throughout the rest of our treatment (confer Example 2.19)

Definition 2.31. The space BscX is given by the disjoint unionBscX = W̃ψ ∪ W̃e∪ W̃ψe

where the manifolds W̃• are (the second equality is what happens in the model case

X = Sn+)

W̃ψ = sc
S

∗X̊ (= S̊n+ × S
n−1),

W̃e =
scT ∗

∂XX (= S
n−1 × S̊n+),

W̃ψe =
sc

S
∗
∂XX (= S

n−1 × S
n−1).

We set Wψ = W̃ψ ∪ W̃ψe, respectively We = W̃e ∪ W̃ψe. In particular, We and Wψ are

the boundary hyper-surfaces of scT
∗
X, both manifolds with boundary, W̃e and W̃ψ are

the respective interiors, and W̃ψe is the corner.

Finally, we will also find use for the following spaces:

Wψ = W̃ψ × R
+ ∼= T ∗X \ {0} (= S̊n+ × R

n
0 ),

We = R
+ × W̃e

∼= T ∗(R+ × ∂X) (= R
n
0 × S̊n+),

Wψe = R
+ × W̃ψe × R

+ ∼= T ∗(R+ × ∂X) \ {0} (= R
n
0 × R

n
0 ).

In the above formulæ, {0} denotes the zero section of the involved cotangent bundles.

Also notice that R+ × ∂X is, topologically, the (interior of) a collared neighbourhood of

∂X, seen however with the metric structure of a cone over ∂X.

Proposition 2.32. Let a• ∈ C∞(W•), • ∈ {e,ψ} and aψe ∈ C∞(W̃ψe) be smooth

functions satisfying ae|W̃ψe
= aψ|

W̃ψe
= aψe. There exists then a function a ∈ C∞(Bn ×

Bn) such that a|W•

= a•.

Under pull-back with the radial compactification map, the associated symbol p̌ of

(1.19) is of course nothing else than a particular choice of such an extension to the

interior. There is a similar extension result for maps between the boundary faces, namely

Theorem 2.34 below (as formulated in [CDS19], Proposition 1.30). To state it we need

to discuss scattering maps between scattering manifolds.

Definition 2.33. Given two scattering manifolds X,Y and a smooth map C : X → Y ,

we say that C is a scattering map if, for any given m ∈ R and any a ∈ ρ−m
Y C∞(Y ) it

holds true that

1. C∗a ∈ ρ−m
X C∞(X);

2. if q = C(p) for p ∈ X and ρ−m
Y a(q) > 0, then ρ−m

X C∗a(p) > 0.
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Locally, this corresponds to the fact that scattering maps (sc-maps for short) are exactly

those maps which pull back ρY to ρXh for some positive function h ∈ C∞(X). We call

maps satisfying this condition local sc-maps and extend their definition to manifolds with

corners as follows. Given complete sets of boundary-defining functions (ρi) for X and

(ri) for Y (that is, such that the whole boundary of the manifold can be identified with∏
ρi = 0 or

∏
ri = 0 respectively), C is a local sc-map if there exist positive functions

hi ∈ C∞(X) for which it holds true C∗ri = hiρi.

In [CDS19] it is proven that sc-maps are really morphisms in the category of scattering

manifolds. We will not need many facts from the theory explored there, so we’ll only state

what we’ll need in the following. In particular, the next theorem is the aforementioned

extension result near the corner of a product X × Y of manifolds with boundary.

Theorem 2.34. Consider manifolds with boundary Xi,Yi, i = 1, 2, with boundary defin-

ing functions ρXi , ρYi , and the products Bi = Xi × Yi. Consider, for • ∈ {e,ψ}, local

sc-maps C• : W1

• → W2

• defined near a point p ∈ ∂X1 × ∂Y1, such that Ce|∂X1×∂Y1
=

Cψ|∂X1×∂Y1
. There exists then a local sc-map C on a neighbourhood p∋̇U ⊂ B1 such

that Ce = C|∂X1×Y1
, Cψ = C|X1×∂Y1

and

∂C∗ρY2

∂ρX1

=
∂C∗ρX2

∂ρY1

= 0. (2.29)

Moreover, provided that both C• are local diffeomorphisms near p, then C is also a local

diffeomorphism near p. If both C• are diffeomorphisms defined in a neighbourhood of

the whole corner in the respective boundary hyper-surface, then we can pick C to be

a diffeomorphism of a neighbourhood of the corner in B1 onto a neighbourhood of the

corner in B2.

2.2 symplectic and contact properties of the

scattering bundle

Recall that on every cotangent bundle T ∗X a canonical 1-form, known as the Liouville

form λ, is defined. If x are local coordinates on X and (x, ξ) are the induced canonical

coordinates on the cotangent bundle, λ takes the form ξ dx. The differential ω = dλ =

dξi ∧ dxi is a symplectic form on T ∗X, which is therefore an exact symplectic manifold.

In the classical theory of FIOs, the 1-form λ plays a crucial role, in that it determines the

conic Lagrangian submanifolds and, therefore, the microlocal form of the operators. In

the global scattering calculus, it turns out that λ does not suffice to describe the peculiar

features that appear at “spatial infinity” ∂X. In the existing literature, the problem has

been obviated to by introducing a similar structure on a collared neighbourhood of ∂X.

Since this is paramount for our future discussion, we recall hereafter, following [CS17]
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and [MZ96], the important concepts, all the while introducing the notation we shall refer

to.

First, we note that the Poisson brackets {·, ·} associated with the symplectic form ω

extends to BscX. If we keep in mind Theorem 2.29, we understand that, in the model

case X = Sn+, we can reformulate Proposition 1.34 in the language of scattering geometry

(cf. [Mel94], Proposition 4).

Proposition 2.35. The Poisson structure on T ∗X̊, induced by the canonical symplectic

form dλ, extends to BscX = ∂(scT
∗
X) as a filtered bracket between (weighted) smooth

functions on Bsc. More precisely, the Poisson bracket extends to a map

{·, ·} : C∞(BscX;Sl1,m1) × C∞(BscX;Sl2,m2) → C∞(BscX;Sl1+l2−1,m1+m2−1),

where we understand that we obtain such a map on each boundary hyper-surface and

that {·, ·} preserves the compatibility condition in the corner. Namely, if we have tuples

(a•), (b•), extended to functions a, b ∈ C∞(scT
∗
X) according to Proposition 2.32, then

the Poisson brackets of the tuples ({a•, b•}) satisfy the same conditions and admit there-

fore an extension to a smooth function c ∈ C∞(scT
∗
X). In particular, the extensions

a, b and c can be chosen so that c = {a, b}.

Second, denote the Liouville 1-form by λψ and recall that λψ, being homogeneous of

degree 1 in the fibres of T ∗X, induces a contact structure on S∗X. In particular, λψ
restricts to a contact form there, so it can be rescaled by a conformal factor without

changing the actual structure. Of course, since W̃ψ is diffeomorphic to S∗X̊, it also is a

contact manifold and we give it a specific contact structure as follows. For ρσ = R∗ ⟨ξ⟩−1,

our standard boundary-defining function, consider the inward-pointing radial vector field

ρσ∂ρσ . This is just the Euler vector field ξj∂ξj expressed in adapted coordinates at the

boundary. Then, since λψ = ρσ∂ρσ⌟ω, and ρσ is positive in the interior, we can consider

the rescaled radial vector ρ2
σ∂ρσ , which, inserted into ω, gives the 1-form αψ ≡ ρ2

σ∂ρσ⌟ω.

This form is conformally equivalent to λψ in the interior, and we consider it as the

“standard” contact form on W̃ψ, the co-sphere bundle at infinity.

A similar process produces our “standard” contact form on W̃e. Choosing a collared

neighbourhood and canonical coordinates (ρN , z, τ ,µ) near ∂scT ∗X, with ρN a boundary-

defining function, ω is the differential of a 1-form λe given by

λe =
1

ρN
(dτ + µk dzk). (2.30)

Notice that λe = ρN∂ρN ⌟ω is not a smooth 1-form on T ∗X, since it blows up at ∂X.

It is however smooth as a scattering 1-form on scT ∗X and can be rescaled to give a

smooth 1-form αe = ρ2
N∂ρN ⌟ω near the interior of the boundary hyper-surface. Since

the collared neighbourhood gives a conic structure near W̃e, we obtain a contact structure

on the boundary hyper-surface as above. Moreover, the contact distribution over W̃e

is unambiguously determined by the restriction of αe to W̃e, and αe is a contact form
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there. Notice again that this is conformally equivalent to λe in the interior but not at

“spatial infinity” ∂X.

We have then a pair of 1-forms αψ,αe on T ∗X which determine the symplectic struc-

ture at either spatial infinity or fibre infinity. In particular, since they induce contact

distributions of W̃ψ and W̃e, we can speak of Legendrian submanifolds at infinity. Re-

call that, classically, FIOs are operators whose singularities are contained in conic La-

grangian submanifolds of T ∗X \ {0}, which in turn can be identified with Legendrian

submanifolds of the co-sphere bundle by restriction. Parallel to this situation, Melrose

and Zworski [MZ96] introduced a class of Legendrian distributions in W̃e, which has

been subsequently generalised in [CDS19] to include singularities in the whole BscX.

As a last step, before introducing our notion of singular symplectomorphism, we recall

the notion of the so-called SG/sc-Lagrangians/Legendrians, that have been studied by

Coriasco and collaborators, and refer to the cited literature for more details.

Definition 2.36 (SG-Legendrian). Let Λ = Λe ∪ Λψ ⊂ BscX be a closed submanifold,

where Λe ⊂ We and Λψ ⊂ Wψ and Λ• denotes the closure of Λ•. Λ is called an

SG-Legendrian submanifold if it satisfies the following conditions:

1. Λψ is Legendrian in W̃ψ;

2. Λe is Legendrian in W̃e;

3. Λe has boundary if and only if Λψ has boundary, in which case

Λψe = ∂Λe = ∂Λψ = Λe ∩ Λψ

with clean intersection.

Having finished our recap, we build upon this structure to introduce our notion of

symplectomorphism. Here and later, X,Y are scattering manifolds and we use the nota-

tion of Definition 2.31 to refer to subsets of BscX and BscY indifferently (no confusion

should arise, in particular, in view of the fact that all statements to come can be checked

in local coordinates).

Definition 2.37. Let U , respectively V , be open in BscX, respectively BscY . As-

sume χ : U → V is a diffeomorphism (in particular, a sc-map), given as a pair of maps

χ = (χe,χψ) defined on U ∩ We and U ∩ Wψ, respectively (if U ∩ W• = ∅, • ∈ {e,ψ},

we understand that χ• is not present). We define the notion of scattering symplecto-
morphism or scattering-canonical transformation (SCT) depending on whether U and

(consequently) V intersect the corner: If U ∩ W̃ψe = ∅, we say that χ is an SCT if χ•

is a contact diffeomorphism with respect to α•; else, χ is an SCT if both χe and χψ are

contact diffeomorphism in the interior of the respective boundary face and χ preserves

the Poisson bracket on C∞(U ;Sl,m) across the corner.

We have the following easy-to-prove properties of a scattering-symplectomorphism,

which reflect classical behaviour of regular symplectomorphisms.
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Lemma 2.38. Let χ : U → V be an SCT. Then χ maps SG-Legendrian submanifolds

in U to SG-Legendrian submanifolds in V . Moreover, if U ∩ W̃ψe = ∅, then χe, respec-

tively χψ, extends to a homogeneous symplectomorphism on a collared neighbourhood of

∂T ∗X, respectively on T ∗
0X, which admits a local parametrisation via a e-homogeneous,

respectively ψ-homogeneous, phase function. Finally χ induces Poisson maps on the

boundaries and corners (i.e. it preserves the Poisson structure in Proposition 2.35).

Proof. First, recall that a diffeomorphism between contact manifolds X and Y is contact

if and only if it preserves each Legendrian submanifold (cf. [Sas64]). Then, since χ is

a diffeomorphism by definition, we obtain at once that SG-Legendrians are preserved if

U ∩ W̃ψe = ∅. On the other hand χ preserves clean intersection so the preservation of

SG-Legendrians for U ∩ W̃ψe ̸= ∅ also follows.

The second statement is obtained by applying the classical procedure of symplectisa-

tion to the contact manifolds W̃ψ and W̃e separately. Indeed notice that, if U does not

intersect the corner, then U can be “conified” to a subset of T ∗X. Near the boundary we

just have to pick a collared neighbourhood ∂X × [0, 1) and pull-back (U ∩ W̃e) × [0, 1)

with R× id, while on the co-sphere at ∞ we just identify U ∩ Wψ with a subset of S∗X

and consider, as in the classical theory, the associated conic neighbourhood. Let us spend

a few extra words to describe, for the e-component, how one obtains a symplectic form

and can extend χe to a homogeneous symplectomorphism. More details can be found

in [MS17], Section «Symplectization of contact manifolds», or in [Arn89], Appendix 4.

We are given the contact form αe = dτ + µk dzk on W̃e. In the conified neighbour-

hood R+ ×Ue, we are introducing the new coordinate ρN , effectively identifying Ue with

{1} ×Ue, and can consider

ωe = − d(ρNαe) = −ρN
(

dρN

ρN
∧ αe + dαe

)
.

It is readily checked that this is now a symplectic form on the conified neighbourhood. By

definition of contact transformation, χ∗αe = gαe for a positive smooth function g. Then,

the extension Ce(ρN , z, τ ,µ) ≡ (ρN/g(z, τ ,µ),χ(z, τ ,µ)) is homogeneous symplectic.

Indeed,

C∗
eωe = − dC∗

e (ρNαe) = − d

(
ρN

g
gαe

)
= ωe,

proving that Ce is symplectic. The homogeneity is, on the other hand, manifest.

We have now the homogeneous symplectic extensions Ce and Cψ. Now, the local

parametrisation of Cψ is the classical result of Hörmander, Proposition 25.3.3 in [Hör09].

On the other hand, for Ce it suffices to exchange the rôles of variables and covariables

(also cf. [MZ96], Section 6).

Concerning the last statement, observe that, at the corner, the Poisson structure is

preserved by definition. On the other hand, the homogeneous symplectic extensions just

constructed guarantee that {, } is preserved away from the corner. QED
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In the next Theorem 2.39 we present a more thorough analysis of the structure of a

sc-symplectomorphism defined near the corner. To avoid overburdening the notation,

let us first clarify that the local expressions given below hold true in coordinates (x, ξ),

obtained as the pull-back of standard systems of coordinates near the boundary faces

(or possibly the corner). In particular, the α’s are angular coordinates on Sn−1 and the

boundary-defining function is the inverse of the radial coordinate in polar coordinates.

That is, xi = |x|Xi(α) for smooth functions Xi such that (X1)2 + · · ·+ (Xn)2 = 1 and

ρ∂ = 1/ |x|. We employ the same convention for ξ’s and β’s. Also, in this notation we

will consider homogeneous extensions of functions Sn−1 × Rn to Rn
0 × Rn. To be precise,

we will look for R+-equivariant maps C• : W• → W• agreeing with χ• on W̃•. Any such

map is of the form (for example • = e, w.l.o.g.)

Ce(r,α, ξ) = (fe(α, ξ)r,χe(φ, ξ)) (2.31)

for some smooth fe ∈ C∞(W̃e), where (r = |x| ,α) are the above polar coordinates on Rn
0

and ξ are coordinates on Rn. The inverse of such map, again taking polar coordinates

on the first factor and global coordinates on the second, is given by

C−1
e (s,α, η) =

(
s

fe(χ
−1
e (α, η))

,χ−1
e (α, η)

)
. (2.32)

Recalling again Section «Symplectization of contact manifolds» in [MS17], it must be

possible to choose fe appropriately to ensure that Ce so extended is symplectic. We will

find the explicit form of the section fe (and fψ too, of course) in the next chapter, in the

course of the proof of Lemma 3.5. For the moment, we content ourselves with saying

that such a choice is possible.

Theorem 2.39. Let χ be a sc-canonical transformation, between open sets U ,V as

above, with U ∩ W̃ψe ̸= ∅. Then χ is given as the datum of a triple of diffeomorphisms

(χe,χψ,χψe), for χ• : W̃• → W̃•, such that

1. If χe(α, ξ) = (T (α, ξ),H(α, ξ)) for T : Sn−1 × Rn → Sn−1,H : Sn−1 × Rn → Rn,

then the components of H are elements of C∞(Sn−1; S1(Rn));

2. If χψ(x,β) = (Y (x,β),G(x,β)) for G : Rn × Sn−1 → Sn−1,Y : Rn × Sn−1 → Rn

then the components of Y are elements of C∞(Sn−1; S1(Rn));

3. If χψe(α,β) = (A(α,β),B(α,β)) and we write χe,χψ as above, the principal sym-

bol of Y , respectively H, restricted to Sn−1 × Sn−1 coincides with T , respectively

F . More generally, it holds true that

A(α,β) = lim
λ→+∞

T (α,λξ) = lim
λ→+∞

1

λ
Y (λx,β), (2.33)

B(α,β) = lim
λ→+∞

1

λ
H(α,λξ) = lim

λ→+∞
G(λx,β); (2.34)
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4. We can pick homogeneous extensions Ce of χe in α, Cψ of χψ in β and Cψe of χψe
in α and β separately, so that C• is a symplectomorphism, homogeneous in the

respective variables;

5. Writing these extensions as C•(x, ξ) = (Y•(x, ξ),H•(x, ξ)) for Y• = (Y 1
• , . . . ,Y n

• ),

H• = (H•
1 , . . . ,H•

n), we have that each triple (Y j
• ), (H•

k ) can be continued to

a classical SG-symbol near “infinity”. In particular there is a diffeomorphism

C(x, ξ) = (Y j(x, ξ),Hk(x, ξ)) near “infinity” having (Ce,Cψ,Cψe) as “principal

symbol”.

Proof. For 1., notice that χe is given as a diffeomorphism of Sn−1 × Bn. We pull it back

to a diffeomorphism of Sn−1 × Rn using id ×R. But then the Rn-components of χe must

be classical symbols of order 1 in ξ, depending in a smooth way on α ∈ Sn−1. This is

exactly the claim.

For 2., we argue exactly as in 1., exchanging the rôles of the variables.

To prove 3. notice that the expressions involving H and Y are just the standard for-

mulæ to compute the principal symbol for the classes S1(Rn), depending on a parameter

on Sn−1. Recalling Theorem 2.29 we see immediately that we can compute it also by

restriction to Sn−1 × Sn−1. Now, χ• is obtained as a diffeomorphism of ∂(Sn+ × Sn+), so

in the corner χe = χψ. Pulling this back with id ×R and R× id and comparing the

respective components gives the claimed formulas.

4. is clear if one exploits the close relation between canonical transformations and

contact diffeomorphisms. However, a more explicit construction will be given in the

proof of Lemma 3.5, where we will see that the choice of order reductions uniquely

determines the homogeneous extensions to be symplectic.

5. is now a consequence of the above facts. Indeed, the components of the homogeneous

extensions C• satisfy symbol estimates in the non-homogeneous variables. In particular,

each pair of components (Y j
e ,Y

j
ψ ), respectively (He

k,H
ψ
k ), can be continued to a symbol

Y j ∈ SG1e(Rn × Rn), respectively Hk ∈ SG1ψ (Rn × Rn). We can choose them so that

the resulting map C(x, ξ) = (Y (x, ξ),H(x, ξ)) is a diffeomorphism, in view of Theorem

2.34. Indeed, our maps are all globally defined on the boundary hyper-surfaces and the

corner, so they can be patched together correctly. QED

Remark 2.40. One would certainly hope that the extension in 5. of the above theorem

could be achieved symplectic. However, the best of our efforts could not deduce this

desirable fact from the properties of Ce,Cψ and Cψe.

Remark 2.41. Notice that, for a scattering map on a manifold with corners, one pre-

assigns an ordering on the set of the boundary-defining functions, so that at a corner

we are specifying which boundary hyper-surface is mapped to which. For example on

Sn+ × Sn+, seen as scT ∗Sn+, we use the ordered set of boundary-defining functions (ρN , ρσ).

Then, it is easily seen that the symplectic rotation F : (x, ξ) → (ξ, −x), extended to

the compactification as in Theorem 2.29, is not a scattering map in this sense, since
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F ∗ρN = ρσ and vice-versa. This reflects the fact that, on a manifold with boundary

X, the two components of the joint scattering symbol live as smooth functions on two

in principle different compact manifolds, namely, the scattering co-sphere bundle and

the boundary of X (pulled back to the compactified scattering cotangent bundle). Of

course, nothing in principle prevents us from considering F as some sort of “generalised

scattering map” on the model case Sn+. However we notice that pull-back along F does
not preserve SG-classes, since it exchanges the two filtrations as in Proposition 2.28. We

will therefore assume that SCTs cannot exhibit this kind of behaviour, although we will

comment again on this point at the very end of Chapter 3.

We now come to the core of this section: the relation between scattering-symplectic

maps and the classical SG-phase functions.

Theorem 2.42 (Parametrising sc-symplectomorphisms). Let χ : ∂(Sn+ × Sn+) → ∂(Sn+ ×
Sn+) be a (possibly only locally defined) scattering canonical transformation. Then, at

each point (p, q) on the graph of χ, we can find a neighbourhood Ũ of p, a neighbourhood

Ṽ of q and an SG-phase function φ(x, y, ξ) ∈ SG1

(x,y),ξ, parametrising a neighbourhood

of (p, q). More explicitly, if p does not lie on the corner, then we can parametrise the

homogeneous symplectic extension C of χ near p via a homogeneous phase function

in the classical sense. On the other hand, if p is in the corner then there is a conic

neighbourhood Ue, respectively Uψ, associated with a neighbourhood Ũe, respectively

Ũψ, of p in Sn−1 × Sn+, respectively Sn+ × Sn−1, and we find a phase φ as above such

that φe = σe(φ), respectively φψ = σψ(φ), parametrises the graph of Ce, respectively

Cψ, in the usual sense for conic Lagrangians, and φψe parametrises the bi-homogeneous

extension Cψe of χψe.

Proof. The case (p, q) ∈ W̃ψ × W̃ψ is just an instance of the classical parametrization

result for homogeneous symplectomorphisms of Hörmander, namely Proposition 25.3.6

in [Hör09]. To see this, consider neighbourhoods U of p and V of q which are away from

the corner W̃ψe. Then, we can exploit the triviality of the bundle π : U × Rn
0 → U × Sn

to define a homogeneous extension C of χ. By picking the correct section of π, we can

ensure that C is actually a homogeneous canonical transformation (namely it preserves

the canonical 1-form λψ) and apply Hörmander’s result. Similarly, if (p, q) ∈ W̃e × W̃e,

we can consider the trivial bundle Rn
0 × Rn → Sn−1 × Rn. Here we can pick homogeneous

extensions in x and reproduce the proof of Hörmander (notice also [MZ96], Section

6) exchanging the rôles of x and ξ (in particular, using the fact that C∗λe = λe for

λe = xj dξj). The case (p, q) ∈ W̃ψe × W̃ψe is a bit more involved and we adapt the

careful analysis of [CS17].

Mimicking the construction there, we work in a chart Ũ ⊂ W̃ around p where on

Ũ ∩ W̃ψe we have coordinates in the form

(α1, . . . ,αn−1,
√

1 − (α1)2 − · · · − (αn−1)2,
√

1 − (β2)2 − · · · − (βn)2,β2, . . . ,βn). (2.35)
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On W̃e and W̃ψ we use adapted coordinates

(α1, . . . ,αn−1,
√

1 − (α1)2 − · · · − (αn−1)2, ρ2,β2, . . . ,βn) ∈ W̃ψ,

(α1, . . . ,αn−1, ρ1,
√

1 − (β2)2 − · · · − (βn)2,β2, . . . ,βn) ∈ W̃e,

(2.36)

where ρ1 =
√

1 − (α1)2 − · · · − (αn−1)2 and ρ2 =
√

1 − (β2)2 − · · · − (βn)2 are defining

equations for the common boundary Ũ ∩ W̃ψe. We can similarly choose coordinates

(θ, r1, r2, γ) satisfying the same relations in a chart Ṽ around q. In these coordinates

the map C̃ = (C̃e, C̃ψ) can be expressed as

C̃•(α, ρ1, ρ2,β) = (T•(α, ρ1, ρ2,β), r•
1(α, ρ1,β), r•

2(α, ρ2,β),G•(α, ρ1, ρ2,β)), (2.37)

namely θ = T• and γ = G• are equations defining the graph of C̃• in Ũ × Ṽ . Let Ũ• =

Ũ ∩ W̃• and U• be the conic set associated with Ũ• under inverse radial compactification.

Then, on U• we can introduce “polar coordinates” and extend C• homogeneously. For

example, on Ue we choose a section fe(α, ρ2,β) : Sn−1 × Rn → Rn
0 × Rn, pull back the

covariables using R, and set, for µ > 0 and ρ2 > 0,

(x, ξ) ≡ (µα1, . . . ,µαn−1,µ

√
1 − |α|2,R−1(ρ2β1, . . . , ρ2βn)),

Ce(x, ξ) =

(
Te

(
x

µ
,µ,R(ξ)

)
, re1

(
x

µ
,R(ξ)

)
, re2

(
x

µ
,R(ξ)

)
,Ge

(
x

µ
,µ,R(ξ)

))
.

(2.38)

Again as in [MS17], the section fe can be appropriately chosen to ensure that Ce is

symplectic and homogeneous in the x variables. Therefore, it preserves the 1-form λe.

Similarly, we have an extension Cψ which preserves the Liouville 1-form λψ (using a

section fψ : Sn−1 × Uψ → Rn
0 × Uψ), and we can also define a map Cψe by extending

χψe using both sections fe, fψ. Then, in Cartesian coordinates on Rn × Rn, taking

into account Theorem 2.29, we have then 3 symplectomorphisms Ce,Cψ,Cψe defined

for x ̸= 0, ξ ̸= 0 and x, ξ ̸= 0, respectively. Their components are parts of principal

SG-symbols:

Ce(x, ξ) = (Y 1
e (x, ξ), . . . ,Y n

e (x, ξ),He
1(x, ξ), . . . ,He

n(x, ξ)),

Cψ(x, ξ) = (Y 1
ψ (x, ξ), . . . ,Y n

ψ (x, ξ),Hψ
1 (x, ξ), . . . ,Hψ

n (x, ξ)),

Cψe(x, ξ) = (Y 1
ψe(x, ξ), . . . ,Y n

ψe(x, ξ),Hψe
1 (x, ξ), . . . ,Hψe

n (x, ξ)),

Y j
e ∈ SG(1),0, Y

j
ψ ∈ SG1,(0),σe(Y

j
ψ ) = σψ(Y

j
e ) = Y

j
ψe

He
k ∈ SG(0),1, H

ψ
k ∈ SG0,(1),σe(H

ψ
k ) = σψ(H

e
k) = H

ψe
k .

(2.39)

The SG estimates for these functions follow directly from the previous considerations,

Chapter 6 in [And09], and our particular choice of coordinates. Now, the twisted graphs

Λ• = gr′(C•) of these maps are conic Lagrangians (either in x, ξ or both). As in the

classical theory of canonical graphs, we can find (possibly after rearranging) a partition

I = (1, . . . , d),J = (d+ 1, . . . ,n) so that (xJ , ξI , η) can be taken as coordinates on Λ•.
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Notice that, in principle, in what follows we should choose different sets of coordinates

for each map. However, the boundary hyper-surfaces intersect cleanly and all the changes

of coordinates just defined are either diffeomorphism or homogeneous extensions outside

a compact neighbourhood of 0, so they preserve this structure. Hence, near the corner

we can always take the same partitions I,J .

From here to the end of the proof, we employ a modified Einstein convention, namely:

the indices i belong to I, j to J , k to {1, . . . ,n}, and repeated i or j means summing

only over I and J . The other coordinates are defined implicitly on Λ• as

xi = Xi
•(x

J , ξI , η), ξj = Ξ
•
j (x

J , ξI , η), ηk = H•
k (x

J , ξI , η). (2.40)

In view of Chapter 6 of [And09], we see that these function X, Ξ,H must satisfy SG-

estimates. In particular, they belong to the following classes (the classicality is implied

by the fact that we are pulling-back smooth functions on the compactified space along

R):

Xi
e ∈ SG(1),0(Rn+d × R

n−d), Xi
ψ ∈ SG1,(0)(Rn+d × R

n−d),

Ξ
e
j ∈ SG(0),1(Rn+d × R

n−d), Ξ
ψ
j ∈ SG0,(1)(Rn+d × R

n−d),

He
k ∈ SG(0),1(Rn+d × R

n−d), H
ψ
k ∈ SG0,(1)(Rn+d, R

n−d).

(2.41)

Still following the ideas of [CS17], we now define directly homogeneous phase functions

that parametrise locally the graphs of these diffeomorphisms and show they can be

patched together to a single SG-phase function. To begin with, we look at the condition

that Ce be an e−homogeneous canonical transformation. This amounts to Ce preserving

the 1-form αe, namely C∗
eαe = αe. In the above coordinate patches, this is expressed as

0 = (xdξ − y dη)|Λe

= Xi
e dξi + xj

(
∂Ξ

e
j

∂xj1
dxj1 +

∂Ξ
e
j

∂ξi
dξi +

∂Ξ
e
j

∂yk
dyk

)
− Y k

e dηk

=

(
Xi
e − xj

∂Ξ
e
j

∂ξi

)
dξi + xj1

∂Ξ
e
j1

∂xj
dxj +

(
xj
∂Ξ

e
j

∂ηk
− Y k

e

)
dηk.

(2.42)

Therefore, all expressions in parenthesis must vanish on the graph. Very similar relations

hold true for Cψ, which we give explicitly hereafter:

Ξ
ψ
j + ξi

∂Xi
ψ

∂xj
− ηk

∂Y k
ψ

∂xj
= 0,

ξi
∂Xi

ψ

∂ξI
− ηk

∂Y k
ψ

∂ξI
= 0,

ξi
∂Xi

ψ

∂ηl
− ηk

∂Y k
ψ

∂ηl
= 0.

(2.43)

Let us consider first the functions S• defined by

Se(x
J , ξI , η) = xjΞej(x

J , ξI , η),

Sψ(x
J , ξI , η) = −Xi

ψ(x
J , ξI , η)ξi + Y k

ψ ηk.
(2.44)
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We prove that they are generating functions for the canonical transformations C•. First

looking at Se we have, using (2.42), that

∂Se

∂xj
= Ξ

e
j + xj1

∂Ξ
e
j1

∂xj
= Ξ

e
j ,

∂Se

∂ξi
= xj

∂Ξ
e
j

∂ξi
= Xi

e,

∂Se

∂ηk
= xj

∂Ξ
e
j

∂ηk
= Y k

e ;

(2.45)

hence Se generates Λe. The computation for Sψ using (2.43) is very similar and gives

∂Sψ

∂xj
= Ξ

ψ
j ,

∂Sψ

∂ξi
= −Xi

ψ,
∂Sψ

∂ηk
= Y k

ψ . (2.46)

We have then established that S• is a generating function for Λ•, so we now consider

the phase functions

φe(x
I ,xJ , y, ξI , η) ≡ xiξi + ykηk + xjΞej

= xiξi + ykηk + Se(x
J , ξI , η) ∈ SG(1),1(R2n × R

n+d),

φψ(x
I ,xJ , y, ξI , η) ≡ xiξi − ykηk − ξiX

i
ψ + ηkY

k
ψ

= xiξi − ykηk + Sψ(x
J , ξI , η) ∈ SG1,(1)(R2n × R

n+d).

(2.47)

Then d(ξI ,η) φ• = 0 if and only if (2.42) and (2.43) hold true. Then, computing the other

derivatives gives the desired parametrisation.

It remains to show that the functions φ• can be realised as the principal symbol

of an SG-function. To this end, the methods of [CS17] and [CDS19] still prove vi-

able: using (1.18) and keeping in mind that the tuples (Xi
e,X

i
ψ,Xi

ψe), (Ξ
e
j , Ξ

ψ
j , Ξ

ψe
j ) and

(He
k,H

ψ
k ,H

ψe
k ) are principal symbols, we compute σe(φψ) − σψ(φe) restricted to the

graph of Cψe:

σe(φψ) = lim
λ→∞

1

λ
φψ(λx, ξI ,λy)

= lim
λ→∞

1

λ
(λxiξi − λykηk −Xi

ψ(λx
J , ξI , η)ξi + Y k

ψ (λx
J , ξI , η))

= xiξi − ykηk −Xi
ψeξi + Y k

ψeηk,

σψ(φe) = lim
λ→∞

1

λ
φe(x,λξI , y)

= lim
λ→∞

1

λ
(λxiξi + λykηk + xjΞej(x

J ,λξI , y))

= xiξi + ykηk + xjΞ
ψe
j

=⇒ (σψ(φe) − σe(φψ))|Λψe = (2ykηk + xjΞ
ψe
j +Xi

ψeξi − Y k
ψeηk)|Λψe

= Xi
ψeξi + xjΞ

ψe
j + Y k

ψeηk = ((x, y), (ξ, η)) |Λψe
(2.48)
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However, recall that Λψe is bi-conic, so the phase φψe parametrising it is bi-homogeneous

of degree 1 in (x, y) and (ξI , η). Since on the graph we have (ξ, η) = d(x,y) φψe(x, y, ξI , η),

we can apply Euler’s equation for homogeneous functions twice to obtain

((x, y), (ξ, η)) |Λψe =
(
(x, y), d(x,y) φψe(x, y, ξI , η)

)

= φψe(x, y, ξI , η)|Λψe =
(
(ξI , η), d(ξI ,η) φψe(x, y, ξI , η)

)

= 0,

(2.49)

where for the last equality we noticed that d(ξI ,η) φψe = 0 is exactly the relation defining

the set in R3n+d which parametrises the graph of Cψe. Therefore, on the graph of Cψe
we have that σe(φψ) = σψ(φe), which is the compatibility condition for SG-principal

symbols. This proves that (φe,φψ) can be realised as the principal symbol of a function

φ ∈ SG1(R2n × Rn+d). This concludes the proof.

QED

Remark 2.43. Looking at the phase functions (2.47), it is clear that, in bi-conic neigh-

bourhoods of infinity, they actually belong to the class Q. Namely, they are given as a

sum of two terms f(x, θ) + g(y, θ) for θ = (ξI , η) satisfying appropriate SG estimates.

Remark 2.44. We remark that, while our discussion above was limited to the model

case Bn × Bn, our definition of SCTs and the related results all have a local character

(in the sense that they can be checked in coordinates near the corners). Therefore,

they apply mutatis mutandis to general scattering manifolds, their scattering cotangent

bundles, and the fibre-wise compactifications thereof. However, the theory of FIOs on

scattering manifolds has not yet reached a completely satisfactory status. In particular,

the concept of elliptic FIO in this setting has not yet been defined and analysed to the

extent that we need. So, for our purposes in the coming Chapter 3 we will stick to the

model case.
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3.1 preliminary definitions and auxiliary results

In this chapter, we work exclusively in the model case of Rn and its compactification Sn+.

Although we believe that most of what follows should hold true in general for operators

defined on an asymptotically Euclidian manifold X (or even scattering), the theory of

FIOs in this setting has not been studied in the required depth to allow us to formulate

certain results below. On the other hand the nature of the argument is such that, given

the existence of a sufficiently precise calculus structure, the computations need only to

be performed locally, thus reducing them to the model case. Therefore our choice of

fixing X = Sn+ and working with SG-classes below.

Recall that, until now, we have specialised to the sub-classes of classical symbols, in

order to study the analytical and geometrical properties of the principal symbol. Here, we

specialise further by assuming that the order of the involved operators is (me,mψ) ∈ Z2.

There will be only a single exception to this rule, which will be mentioned explicitly.

Again, we always omit to write cl, cl(e), cl(ψ) in the corresponding notations in Definition

1.8.

We want to address the question of the order-preserving isomorphisms in the SG-

setting. Our main object of investigation is the following.

Definition 3.1. Consider the algebra LG and an algebra isomorphism (not necessarily

topological nor a *-isomorphism) ı : LG → LG . We say that ı is an SG-order preserving
isomorphism (SGOPI) if for any m ∈ Z2 it holds true

ı(LGm) ⊂ LGm, (3.1)

that is, ı preserves the double filtration on LG .

The approach for this result is very much in line with the original paper [DS76], but a

number of differences arise, due to the introduction of the second filtration. In particular,

we have to work with products of manifolds with boundary, and many of the ideas in

[CDS19] and [MZ96], as we developed further in the previous chapters, are useful.

For later reference, we list various, easy properties of SGOPIs in the following lemma.

These are direct algebraic consequences of Definition 3.1

Lemma 3.2. Let ı be a SGOPI. Then:

1. ı maps ideals to ideals and in particular maximal ideals to maximal ideals;

43
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2. ı(RG) = RG.

We will need to employ, in the course of the proof of Theorem 3.19, the principle

which has come to be known as Milnor’s exercise (namely Problem 1-C in Section 1 of

[MS74]). It is generally presented in the following form:

For a compact smooth manifold X, the maximal ideals in C∞(X) are given

by functions vanishing at a point. Namely, I ◁ C∞(X) is maximal if and only

if I = Ip ≡ {f ∈ C∞(X) s.t. f(p) = 0} for some p ∈ X.

A direct corollary is that any algebra isomorphism F : C∞(X) → C∞(Y ) is induced by

a diffeomorphism C : X → Y via pull-back and, hence, automatically continuous. For our

purposes, we need to consider X,Y manifolds with corners and an algebra isomorphism

F : C∞(∂X) → C∞(∂Y ), and ask ourselves the question whether F is also induced by

a diffeomorphism C : ∂X → ∂Y . We state here a slight generalisation of this principle,

applicable to certain sub-algebras of continuous functions on a compact topological space

X. This version has arisen in a discussion with Philipp Schmitt, concerning the minimal

conditions which such a subalgebra has to satisfy in order to be able to characterise the

maximal ideals.

Proposition 3.3 (Milnor’s exercise). Let X be a compact topological space and A ⊂
C(X) a sub-algebra having the same unit as C(X). Assume the following:

1. A is spectrally invariant in C(X), namely, C(X)−1 ∩ A = A−1, where the super-

script −1 denotes the group of invertibles;

2. A is closed under complex conjugation (or simply A consists of real-valued func-

tions).

Then, every maximal ideal in A is of the form Ip for some p ∈ X. In particular it has

codimension 1.

Proof. Let I ◁A. We claim that there exists p ∈ X such that f(p) = 0 for every f ∈ I.

Arguing by contradiction, assume that for each point x ∈ X we can find a function

fx ∈ I with fx(x) ̸= 0. In particular, by continuity of the elements in A there exists

an open cover {Ux}x∈X of X where fx(y) ̸= 0 for all y ∈ Ux. By compactness, we

can look at a finite sub-cover {U0, . . . ,Un} associated to the points x0, . . . ,xn and the

functions f0, . . . , fn. Then for all i, |fi|2 = fifi are non-negative elements of I which

only vanish (if anywhere) outside Ui. The pointwise sum f =
∑n
i=0 |fi|2 is therefore

everywhere positive and belongs to I. By spectral invariance, f is invertible in A so

I = A, contradicting our assumption of maximality. The proof is complete. QED

Applying this to C∞(BscX) and C∞(BscY ) (algebras which clearly satisfy the condi-

tions above), for two scattering manifolds, X,Y gives that any algebraic isomorphism
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is induced by a diffeomorphism BscX → BscY . Notice that there is a little extra struc-

ture hidden here: smooth functions of BscX are actually pairs of smooth functions on

manifolds with boundary together with an identification of the boundaries, so this really

means that we obtain a triple of compatible diffeomorphisms. In the model case Bn × Bn,

this excludes directly the possibility of the symplectic rotation of Remark 2.41. For the

sake of clarity and to push the analogy between scattering and SG as far as possible, we

give in Lemma 3.5 an argument adapted to this situation.

Next, we give a complete proof of (an adaptation of) the spectral argument used in

[MM17] to exclude the possibility of a skew-symplectic diffeomorphism.

Lemma 3.4. Let ı be an SGOPI. Then the following holds true:

1. If A ∈ LGm is elliptic, ı(A) is elliptic as well;

2. Let A• be a •-order reduction, that is A• ∈ LG1• is elliptic and self-adjoint, and

let B• = ı(A•). If a• > 0 and Im b• = 0, we also have b• > 0.

Proof. 1. Consider a parametrix R of A. Then there exist operators K1,K2 ∈ RG
such that AR− δ = K1,RA− δ = K2. Applying ı to these relations gives immedi-

ately that ı(R) is a parametrix of ı(A), therefore ı(A) is elliptic.

2. First notice that the assumption of self-adjointness is not really restrictive, since

any elliptic operator with positive symbol is equal to a self-adjoint one modulo

lower order operators. Therefore, assume A• ∈ LG1• has the required properties

and let B• = ı(A•). By the previous point, B• is elliptic as well, so its symbol

can be either positive or negative everywhere in view of the assumption b• ∈ R.

Assume, arguing by contradiction, that b• < 0. We can then find an operator

N• ∈ LG0 so that B• = BW
• + N• where BW

• is the Weyl operator associated

with b•. Notice, in particular, that B• is a bounded perturbation of its Weyl

counterpart. By assumption, BW
• is unbounded self-adjoint and has real spectrum

bounded from above. We can also estimate

spec(B•) ⊂ {λ ∈ C s.t. dist(λ, spec(BW
• +N•)) ≤ ∥N•∥}. (3.2)

We conclude that there exists a constant K• ∈ R such that BW
• +N• − t is in-

vertible for all t /∈ (−∞,K•] × [−∥N•∥, ∥N•∥], with inverse being an operator

lying in LG−1• . Let now M• = ı−1(N•) and consider A• +M• − t, which has

to be invertible with inverse in LG−1• for the same t’s. The spectrum of A• is

real and bounded from below since A• is positive, moreover M• is bounded, so

that, just like in (3.2), the spectrum of A• +M• is unbounded but contained in

a tube [D•,+∞) × [−∥M•∥, ∥M•∥] for some D• ∈ R. Then, A• +M• − t is in-

vertible for all t outside this set, but, at the same time, there exists at least one

t̃• ∈ spec(BW
• +N•) for which A• +M• − t̃• cannot be invertible, since the spectra

are unbounded. This is a contradiction. We conclude that b• has to be positive as

well, completing the proof.

QED
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3.2 the case of the formal symbol algebra

We begin our investigation with the formal symbol algebra BG = LG⧸RG
∼= SG⧸

SG
−∞1 .

At this level, we can exploit the explicit relation between (asymptotic expansions of)

symbols and operators.

Lemma 3.5. Given an SGOPI ı, there exists a scattering canonical transformation

C : ∂(Bn × Bn) → ∂(Bn × Bn) such that for all (a•) ∈ ΣGm it holds true ı(a•) =

a• ◦C−1
• .

Proof. The algebraic properties of ı guarantee that

ı (LGm1,m2⧸RG) = LGm1,m2⧸RG.

ı also acts on the space of principal symbols. Indeed, it preserves SG−1e , SG−1ψ ,

SG−1e ⊕ SG−1ψ as ideals in SG0, so it descends to a map ıpr on ΣG0 ∼= C∞(∂(Sn+ × Sn+)),

whose elements can be identified with pairs of functions (ae, aψ) on the respective (open)

boundary face W̃e = Sn−1 × Rn, W̃ψ = Rn × Sn−1, having the same “limit” in the corner

W̃ψe = Sn−1 × Sn−1. That is, they extends smoothly to the whole ∂(Sn+ × Sn+). We have

then the commutative diagram

LG0 ı−−−−→ LG0

σpr

y σpr

y

ΣG0 ıpr−−−−→ ΣG0,

(3.3)

meaning that we have maps ı• satisfying

σpr(ı(A)) = (ıeae, ıψaψ, ıψeaψe). (3.4)

In view of the multiplicative properties of σpr in Proposition 1.16 we see that the maps ı•
are multiplicative on the respective spaces. We can then apply a Milnor-type argument

to obtain bijections of W̃•. Let I• be a maximal ideal in C∞(W̃•). This is given by the set

I•
p• of those functions on W̃• which vanish at p• ∈ W̃•. Then, ı• gives a correspondence

χ• : W̃• → W̃• defined by ı•(I•
p•) = I•

χ•(p•).

We may repeat the same argument with ı−1 to obtain another triple of bijections

ζ• : W̃• → W̃•. By writing I•
p = ı−1

• ı•(I•
p ) we find then that ζ• = χ−1

• . Furthermore, we

see that it holds true

ı•a• = a• ◦ χ−1
• ; (3.5)

indeed for a• ∈ C∞(W̃•) we have a• − a•(p•)1 ∈ I•
p•

, hence ı•(a•)(χ•(p•))− a•(p•)1 = 0,

as claimed. We remark here in addition that the identification of principal symbols of

order 0 with smooth (in the sense of Remark 2.11) functions on ∂(Bn × Bn) is canonical,
since it does not depend on the choice of a boundary defining function.
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These maps must be smooth. To see this, for example, for • = e, it suffices to choose

local coordinates (θi, ξj) on W̃e near a point pe. By definition, these coordinates are

smooth function on Sn−1 × Rn, so they can be identified canonically with homogeneous

symbols θ̃i, ξ̃j of order 0, namely, with elements of SG(0),1. We can then apply ı to obtain

θi ◦ χ−1
e = ı(θ̃i) ∈ SG(0),1,

ξj ◦ χ−1
e = ı(ξ̃j) ∈ SG(0),1.

(3.6)

It follows that the components of χ−1
e are smooth functions by composition, so χ−1

e is

smooth itself. The same argument, using ı−1
e , gives that χe is actually a diffeomorphism.

Having determined the action of ı on principal symbols of order (0, 0), we use order

reductions to extend it to ΣGm for any m ∈ Z2. Namely, recalling Lemma 1.32 we write

A ∈ LGm as

A = PmeQmψB (3.7)

for B ∈ LG0 and P , resp. Q, an e-order reduction, resp. a ψ-order reduction. Thus the

image of A via ı can be computed as

ı(A) = P̃meQ̃mψ ı(B), (3.8)

where P̃ = ı(P ) ∈ LG1e , Q̃ = ı(Q) ∈ LG1ψ are elliptic and ı(B) is an operator of order

(0, 0). To determine the action of ı on principal symbols of any order it suffices then to

describe it on the order reductions. Looking at the pairs picture of principal symbols

(cf. Proposition 1.16), we see that σpr(ı(B)) = (be ◦ χ−1
e , bψ ◦ χ−1

ψ ) and

σpr(ı(A)) = (p̃mee q̃
mψ
e be ◦ χ−1

e , p̃meψ q̃
mψ
ψ bψ ◦ χ−1

ψ ) (3.9)

for (p̃e, p̃ψ) and (q̃e, q̃ψ) the principal symbols of P̃ and Q̃, respectively. In particular we

analyse closely the case m = 1, for which we know that ΣG1 is a Lie algebra by Lemma

1.34.

For any a,α ∈ SG1 consider the relation ı{σpr(α),σpr(a)} = σpr({ı(α), ı(a)}) and

write a and α as in (3.7), namely

a = pqb,

α = pqβ.
(3.10)

Denoting r = pq, r̃ = ı(r), we pass to principal symbols and look at the single compo-

nents. Let us work out in detail what happens for • = e, since for the case • = ψ the

same proof suffices up to an exchange in the homogeneities, and the exit behaviour is

the main novelty here. The above relation for the Poisson brackets reads

{r̃ebe ◦ χ−1
e , r̃eβe ◦ χ−1

e } = ıe({rebe, reβe})
= ıe(re)ıe(re)

−1ı({rebe, reβe})
= r̃eı(r

−1
e {rebe, reβe}).

(3.11)
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In particular, if we choose βe = 1, we obtain that, for any be,

{r̃e, be ◦ χ−1
e } = {re, be} ◦ χ−1

e . (3.12)

We claim now that we can extend the map χe homogeneously to a map Ce so that

r̃e = re ◦C−1
e . This choice will give that {re ◦C−1

e , be ◦C−1
e } = {re, be} ◦C−1

e , so that

going back to (3.11) we find that for any two symbols a,α of order 1 it holds true

{αe ◦C−1
e , ae ◦C−1

e } = {αe, ae} ◦C−1
e . (3.13)

This is equivalent to Ce being a canonical transformation.

To see that we can indeed make such a choice, recall that homogeneous maps in

Rn
0 × Rn are written as in (2.31) for some fe real-valued and smooth on Sn−1 × Rn. We

now define Ce to be the 1-homogeneous extension of χe given by

Ce(ρ1, θ, ξ) =

(
pe(1, θ, ξ)

p̃e(1,χe(θ, ξ))
ρ1,χe(θ, ξ)

)
. (3.14)

Recall that here θ are coordinates on Sn−1, ρ1 ∈ R+ and ξ ∈ Rn. This choice satisfies

r̃e = re ◦C−1
e . Indeed, notice that both qe and q̃e do not play a rôle here since they are

e-homogeneous of degree 0. More precisely, qe(1, θ, ξ) = q̃e(1,χe(θ, η)). Keeping this in

mind, and denoting χe(θ, ξ) = (φ, η) with σ1 ∈ R+ the newly introduced coordinate in

the target space, the check is immediate, using the e-homogeneity of pe and p̃e:

r̃e(σ1,φ, η) = p̃e(σ1,φ, η)q̃e(1,φ, η)

re ◦C−1
e (σ1,φ, η) = re

(
pe(1,χ−1

e (φ, η)

p̃e(1,φ, η)
σ1,φ, η

)

=
pe(1,χ−1

e (φ, η)

p̃e(1,φ, η)
σ1 · pe(1,χ−1

e (φ, η))qe(1,χ−1
e (φ, η))

= p̃(σ1,φ, η)qe(1,χ−1
e (φ, η)).

(3.15)

With this choice, Ce is then a homogeneous diffeomorphism We → We, preserving the

Poisson bracket for e-principal symbols.

Having constructed the required extensions, it follows that χ is a scattering canonical

transformation. The proof is complete. QED

By Theorem 2.42, we can locally parametrise the graph of χ via SG-phase functions

of order 1 and type Qgen. Covering graphχ with these coordinate patches and picking

local amplitudes, we can construct an elliptic FIO F of type Qgen associated with χ, in

the sense that its principal symbol can be identified with a function on the graph. If we

denote by F# the parametrix of F , which is again elliptic of type Qgen and is associated

with the inverse map χ−1, we have then that ȷ(P ) ≡ FPF# is an automorphism of
LG⧸RG preserving principal symbols, in view of Theorem 1.47. Our next goal is to

analyse ȷ more closely by mirroring the argument of [DS76] and refining it to SG-classes.

Before we start with that task, we need to prove an auxiliary result, adapted from

Theorem 2.2.10 in [AM08].
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Lemma 3.6. Consider X = Rn
0 × Rk and the space Hm,l(X) of functions of (x, y) ∈ X

being positively homogeneous of degree m in x and y−classical of degree l. H =
⋃Hm,l

is a filtered algebra. Consider a derivation θ : H → H. Then there exists V ∈ X(X) such

that θ = LV as a derivation.

Proof. Let us make a few remarks to begin with. First, given a vector field V ∈ X(X),

the Lie derivative LV is well defined for functions in H ⊂ C∞(X). In particular, it is a

derivation. However, for a general V , there is no guarantee that V (H) ⊂ H since the

local expressions of the coefficients of V need not be y−classical.

Second, θ is a local operator on H, i.e. if a ∈ H, (x0, y0)∈̇U and a|U = 0, then

θ(a)(x0, y0)) = 0. To see this, pick a smooth cut-off function g such that g = 1 on

U ∋̇(x0, y0),U ⊂ V and g = 0 outside V . It follows that a = (1 − g)a everywhere, so by

the derivation property and the assumptions we have

θ(a)(x0, y0) = θ(a)(x0, y0)(1 − g(x0, y0)) − θ(g)(x0, y0)a(x0, y0)

= 0,
(3.16)

as required.

We can now proceed to the main part of the proof. The locality property implies that

we can define restrictions of θ to open subsets (x, y)∈̇V ⊂ X by

θ|V (a)(x, y) ≡ θ(ga)(x, y), (3.17)

where g is a smooth cut-off such that g = 0 outside V and g = 1 on some (x, y)∈̇U ⊂ V .

Again by locality, it follows that θ|V doesn’t actually depend on the choice of such a

cut-off. We keep denoting by θ the restrictions to open subsets.

Pick a chart (U , ρ) on X with coordinates (xi, yα), let p ∈ U and a ∈ H. Assume

ρ(p) = q = (xi0, yα0 ). Then, we can write, in a sufficiently small W ∋̇q and denoting

cq(t) ≡ q + t(xi − xi0, yα − yα0 )

(ρ∗a)(x
i, yα) = (ρ∗a)(q) +

∫ 1

0

∂

∂t
[(ρ∗a)(cq(t))] dt

= (ρ∗a)(q) + (xi − xi0)
∫ 1

0

∂ρ∗a

∂xi
(cq(t)) dt+ (yα − yα0 )

∫ 1

0

∂ρ∗a

∂yα
(cq(t)) dt.

(3.18)

Let U ′ = ρ−1(W )∋̇p and u ∈ U ′. There exist then functions gi, gα ∈ C∞(U ) such that

gi(p) =
∂ρ∗a

∂xi
(q), gα(p) =

∂ρ∗a

∂yα
(q) (3.19)

and

a(u) = a(p) + (xi − xi0)gi(u) + (yα − yα0 )gα(u). (3.20)

We apply θ to (3.20) to obtain

θ(a)(u) = θ(xi)(u)gi(u) + (xi − xi0)θ(gi)(u) + θ(yα)(u)gα(u) + (yα − yα0 )θ(gα)(u),
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so that, evaluating this expression at p and using (3.19), we have

θ(a)(p) = θ(xi)(p)
∂ρ∗a

∂xi
(p) + θ(yα)(p)

∂ρ∗a

∂yα
(p). (3.21)

It is readily seen that a change of coordinates does not affect this expression. We define

then a vector field Vρ on U by setting

Vρ(x
i, yα) ≡

(
(xi, yα), (θ(xi)(u), θ(yα)(u))

)
(3.22)

for ρ(u) = (xi, yα). It follows that Vρ|U is independent of the chart, so that the collection

of these objects defines a vector field V ∈ X(X). Now, by definition, the Lie derivative

with respect to V in a local chart (U , ρ) of a ∈ H is

LV a|U = D(a ◦ ρ−1)(xi, yα)Vρ(x
i, yα)

=
∂

∂xi
(a ◦ ρ−1)(xi, yα)θ(xi)(xi, yα) +

∂

∂yα
(a ◦φ−1)(xi, yα)θ(yα)(xi, yα)

= θ(a)(u),

(3.23)

and that the claim follows. The proof is complete. QED

Remark 3.7. This lemma shows that it suffices to have a derivation on (certain) sub-

algebras of C∞(Rn
0 × Rn) to determine a vector field on Rn

0 × Rn. We will find use for

this fact in the proof of Lemma 3.10 below. In addition, we will see that the properties

of the subalgebra (in this case, homogeneity in x and classicality of order 0 in y) are

reflected in the properties of the coefficients of the obtained vector field.

Remark 3.8. Notice that Duistermaat and Singer do not need this specialised result.

Indeed in their setting they obtain derivations on the whole C∞(S∗X), which are given

by vector fields by the standard theory.

We can now begin our analysis of the map ȷ, which will lead to the following first main

result.

Theorem 3.9. Assume given an automorphism ȷ : LG⧸RG → LG⧸RG preserving princi-

pal symbols, namely ȷ(P ) − P ∈ LG
m−1

⧸RG whenever P ∈ LGm. Then, ȷ is given by

conjugation with some elliptic B ∈ LGs for some s ∈ C2.

For the sake of clarity, we split the proof into a series of lemmata.

Lemma 3.10. Assume that, for some l ≥ 1, we have ȷ(P ) − P ∈ LGm−l1 for any

P ∈ LGm with principal symbol (pe, pψ). Then σpr(ȷ(P ) − P ) only depends on the

principal symbol of P and it is obtained as (βepe,βψpψ) for two vector fields βe,βψ.

Moreover these vector fields are Hamiltonian, that is, there exist functions fe, fψ such

that β•p• = Hf•
p• ≡ {f•, p•}.
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Proof. For a fixed l ≥ 1 consider, for all m ∈ Z, the map Zm : LGm → LG
m−l1

⧸
LG

m−(l+1)1 ,

Zm(P ) ≡ ȷ(P ) − P mod LGm−(l+1)1. Zm only depends on the principal symbol of P .

Indeed, if Q = P +W for some W ∈ LGm−1, it follows that

Zm(Q) = Zm(P ) + Zm(W )

= ȷ(P ) − P + ȷ(W ) −W mod LGm−(l+1)1

= Zm(P )

(3.24)

since, by assumption, ȷ(W ) −W ∈ LGm−(l+1)1. Hence, by composition with the prin-

cipal symbol map, Zm descends to a map βm : ΣGm → ΣGm−le. We show that βm (or

rather the direct sum β =
⊕

m∈Z2 βm) is a bi-derivation of the bi-algebra ΣG. To this

end, consider Z(PQ) for some operators P ∈ LGm,Q ∈ LGk. Recalling the algebraic

properties of ȷ, we have by definition,

Zm+k(PQ) = ȷ(PQ) − PQ mod LGm+k−l1

= ȷ(P )ȷ(Q) − ȷ(P )Q+ ȷ(P )Q− PQ mod LGm+k−l1

= ȷ(P )Zk(Q) + Zm(P )Q mod LGm+k−l1

= Zm(P )Zk(Q) + PZk(Q) + Zm(P )Q mod LGm+k−l1

= PZk(Q) + Zm(P )Q mod LGm+k−l1,

where we noticed that Zm(P )Zk(Q) ∈ LGm−l1 · LGk−l1 ⊂ LGm+k−2l1 ⊂ LGm+k−l1.

Taking principal symbols gives the Leibniz rule. Similarly, for Z[P ,Q] we obtain

Zm+k−1[P ,Q] = [Zm(P ),Q] + [P ,Zk(Q)] mod LGm+k−(l+1)1,

so that β is a derivation with respect to the Poisson bracket. Therefore, β acts as a

bi-derivation on the space of principal symbols ΣG. Keeping in mind the pairs picture

of Proposition 1.16, denote the action of β as

β(pψ, pe) = (βψpψ,βepe). (3.25)

Similarly to (3.24), one sees that βψpψ, respectively βepe, only depends on the component

pψ, respectively pe, of the principal symbol, and it holds true that σ
mψ−l
ψ (βepe) =

σme−l
e (βψpψ). We can write, more explicitly,

βψpψ = σ
mψ−l
ψ (βp̌)

βepe = σme−l
e (βp̌).

(3.26)

Applying Lemma 3.6, we obtain that both βψ and βe are given by vector fields on

Rn × Rn
0 and Rn

0 × Rn, respectively. We have then

βψ = γiψ
∂

∂xi
+ ρ

ψ
k

∂

∂ξk
,

βe = γie
∂

∂xi
+ ρek

∂

∂ξk
,

(3.27)
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where, by definition, γi• = β•x
i, ρ•

k = β•ξk. In particular, by definition of β, it holds true

that
γiψ(x, ξ) = βψx

i ∈ SG(−l),1−l
cl(x) ,

ρ
ψ
k (x, ξ) = βψξk ∈ SG(1−l),−l

cl(x) ,

γie(x, ξ) = βex
i ∈ SG−l,(1−l)

cl(ξ) ,

ρek(x, ξ) = βeξk ∈ SG1−l,(−l)
cl(ξ) ,

(3.28)

so that the components of the obtained vector fields mirror the extra properties of the

algebra of functions from which they are derived. Recall also that {xi,xj}, {xi, ξj} and

{ξi, ξj} are all constant, hence, if we apply β•, to them we obtain 0. On the other hand,

by using the derivation property, we see that it must hold true that

∂γi•
∂ξj

=
∂γ

j
•

∂ξi
,

∂ρ•
i

∂xj
=
∂ρ•

j

∂xi
,

∂γi•
∂xj

= −
∂ρ•

j

∂ξi
. (3.29)

But this is the same as saying that the (symplectic) dual 1-form to β• is closed, hence

locally equal to df• for some smooth f•. Locally, we have then shown β• = Hf•
, the

Hamiltonian vector field defined by f•. The proof is complete. QED

The next step consists in establishing under which conditions ȷ is given by conjugation

with an SGΨDO at the level of principal symbols.

Lemma 3.11. There exist B ∈ LGs, s ∈ C2, such that σpr(ȷ(P )) = σpr(BPB−1) if

and only if σpr(B) = (e− i fe , e− i fψ ) for functions f• such that β• = Hf•
.

Proof. Notice first that BPB−1 − P = [B,P ]B−1, so that taking principal symbols

yields
σpr(BPB

−1 − P ) = σpr([B,P ])σpr(B
−1)

=

(
1

i be
{be, pe},

1

i bψ
{bψ, pψ}

)

=
(
Hi log be(pe),Hi log bψ (pψ)

)
.

(3.30)

Remark that, for an invertible b, both logarithms exist. Then applying Lemma 3.10

with l = 1 gives that σpr(BPB−1 −P ) = σpr(ȷ(P )−P ) = (Hfe(pe),Hfψ (pψ)) for some

smooth fe, fψ if and only if {
bψ = e− i fψ

be = e− i fe
(3.31)

are homogeneous in ξ, respectively x, of degree sψ, respectively se. Using Euler’s equa-

tion, we can rewrite this as 



ξk
∂fψ

∂ξk
= i sψ,

xj
∂fe

∂xj
= i se.

(3.32)
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Recalling that ∂ξkf• and ∂xjfe are, respectively, the components γkψ and ρej of the vector

fields β•, we see that the claim is equivalent to ξkγ
k
ψ and xjρej being constant. We

check this directly by computing the derivatives of these expressions w.r.t. xr and ξr.

Considering, for instance, the vector field βψ, we have ∂xjγ
i
ψ = −∂ξiρψj and ∂ξjγ

i
ψ =

∂ξiγ
j
ψ, in view of the symmetry relations of (3.29). Then, recalling the homogeneities of

(3.28) and that l = 1, we obtain

∂(ξkγ
k
ψ)

∂xr
= ξk

∂γkψ

∂xr
= −ξk

∂ρψr
∂ξk

= 0,

∂(ξkγ
k
ψ)

∂ξr
= γrψ + ξk

∂γkψ

∂ξr
= γrψ + ξk

∂γrψ

∂ξk
= 0.

(3.33)

In a completely analogous fashion one proves the corresponding results for βe. This

concludes the proof. QED

Lemma 3.12. Assume that for some l > 1 we have ȷ(P ) − P ∈ LGm−l1 for any P ∈
LGm. Then, there exist C ∈ LG(1−l)1 such that (I − C) ◦ ȷ(P ) ◦ (I − C)−1 − P ∈
LGm−(l+1)1.

Proof. We apply Lemma 3.10 again by defining directly the Hamiltonian functions of the

vector fields. Recall that γj• and ρ•
k are the components of the vector field β• determining

the action of ȷ on principal symbols. Using these functions, set




cψ ≡ 1

1 − l
ξjγ

j
ψ ∈ SG(1−l),1−l

cl(x) ,

ce ≡ 1

l− 1
xjρej ∈ SG1−l,(1−l)

cl(ξ) .

(3.34)

With these definitions, we see that Hc•
= β•. Indeed, for instance

∂cψ

∂xk
=

1

1 − l
ξj
∂γ

j
ψ

∂xk
=

1

l− 1
ξj
∂ρ

ψ
k

∂ξj

=
1

l− 1
(1 − l)ρψk = −ρψk ,

∂cψ

∂ξk
=

1

1 − l


γkψ + ξj

∂γ
j
ψ

∂ξk




=
1

1 − l

[
γkψ + ξj

∂γkψ

∂ξj

]
=

1

1 − l

[
γkψ − lγkψ

]

= γkψ,

(3.35)

where we have used again (3.28) and (3.29). With the aim of associating an operator

with c = (ce, cψ), we verify that, indeed, c ∈ ΣG(1−l)1, namely, that σ1−l
e (cψ) = σ1−l

ψ (ce).

Computing these symbols, we have to prove that

ξjγ
j
ψ,1−l = −xjρe,1−l

j , (3.36)
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where γjψ,1−l, respectively ρe,1−l
j , is the (1 − l)-homogeneous component in the asymptotic

expansion of γjψ, respectively ρej . To this end, consider the third relation in (3.29),

multiply it by ξk and take the trace to obtain

ξk
∂γkψ

∂xj
= −ξk

∂ρ
ψ
k

∂ξj
= (l− 1)ρψk . (3.37)

Here we took again advantage of the homogeneity properties in (3.28). The first and

last sides of (3.37) are x−classical symbols, so we can expand them in x−homogeneous

functions. Since asymptotic expansions are uniquely determined, we find that the two

must be equal term by term, so the top order relation reads

ξk
∂γkψ,1−l

∂xj
= (l− 1)ρψ,−l

j . (3.38)

Multiplying by xj (namely, taking the trace of the matrix (xrξk∂xjγ
k
ψ,1−l)), we obtain

by homogeneity

(l− 1)xjρψ,−l
j = (1 − l)ξjγ

j
ψ,1−l. (3.39)

On the other hand, considering p = ξr as a symbol and applying β gives

(βp)ψ = ρψr ∈ SG(1−l),−l
cl(x)

(βp)e = ρer ∈ SG1−l,(−l)
cl(ξ)





=⇒ ρψ,−l
r = ρe,1−l

r , (3.40)

where we computed the principal symbol of βp. Since (3.40) holds true for any r, it

follows that we can substitute it in (3.39) to obtain (3.36), as required.

Let then C ∈ LG−l1 be an operator whose principal symbol is i c and let (I −C)# be

a parametrix of (I −C), that is

(I −C)(I −C)# = (I −C)#(I −C) = I +R

for some R smoothing. Recall here that l > 1 so C has negative integer order and thus

I −C ∈ LG0 with σ0
pr(I −C) = 1. Therefore, the parametrix of I −C exists and has

a compact remainder since R has kernel in the Schwartz class. Moreover, (I −C)# =

I − C ′ for some C ′ ∈ LG−1. Let then P ∈ LGm. By commuting P and I − C and

noticing that [I,P ] = 0, we obtain

(I −C)#P (I −C) = (I −C)# ((I −C)P + [P , I −C])

= (I −C)#(I −C)P + (I −C)#[C,P ]

= P + [C,P ] mod LGm−(l+1)1.

(3.41)

Thence, the principal symbol of (I −C)#P (I −C) − P equals the principal symbol of

the commutator, namely, the Poisson bracket of the principal symbols. Specifically, we

have
σpr

(
(I −C)#P (I −C) − P

)
= − iHi c(p) = Hc(p)

= {c, p} = β(p)

= σpr(ȷ(P ) − P ).

(3.42)
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It follows that ȷ(P ) − P = (I − C)#P (I − C) − P mod LGm−(l+1)1, so in particular

there exists Q ∈ LGm−(l+1)1 such that ȷ(P ) = (I − C)#P (I − C) +Q. Conjugating

with the parametrix (I −C)# gives now

(I −C)ȷ(P )(I −C)# = (I −C)(I −C)#P (I −C)(I −C)# + (I −C)Q(I −C)#

= P +RP + PR+RPR+ (I −C)Q(I −C)#.

(3.43)

Now, on the one hand PR and RP are smoothing, since R ∈ RG, on the other hand we

have, thanks to Theorem 1.47,

(I −C)Q(I −C)# ∈ LGm−(l+1)1. (3.44)

Thence, it holds true that (I −C)#ȷ(P )(I −C) − P ∈ LGm−(l+1)1. The proof is com-

plete. QED

Proof of Theorem 3.9. Exploiting Lemmas 3.11 and 3.12 we can set up an inductive

procedure which constructs a sequence of pseudo-differential operators B0,C1,C2, . . . ,

where:

1. B0 is elliptic of some order s ∈ C and Cj ∈ LG−j1;

2. conjugation with Bl = (I −Cl) . . . (I −C1)B0 gives an automorphism of LG⧸RG,

approximating ȷ up to order m− (l+ 2)1.

A computation of the asymptotic expansion of the symbol of Bl shows that (I −Cl+1)Bl
only changes the symbol up to s− (l + 1)1. There exists, then, an elliptic operator

B ∈ LGs, such that, for each l, we have B − Bl ∈ LGs−(l+1)1. Thus, the difference

Bȷ(P )B−1 − P is smoothing, in view of said asymptotic expansion. This proves the

claim. QED

The preceding results proven thus far enable us to prove the main result of this section,

namely the characterisation of the SGOPS of the formal symbol algebra BG.

Theorem 3.13 (OPIs of the formal SG-algebra). Let ı : BG → BG be an SGOPI on

the formal symbol algebra BG. There exists then an elliptic SGFIO A, of type Qgen,

such that ı(P + RG) = A#PA+ RG for any P ∈ LGm.

Proof. On the one hand, we know that there exists an elliptic SGFIO F of type Qgen

such that Fı(P )F# − P is an automorphism of BG preserving principal symbols. On

the other hand, Theorem 3.9 guarantees that every such automorphism is given by

conjugation with an elliptic B ∈ LGs for some s ∈ C2. Therefore, we see that, mod

RG, Fı(P )F# = BPB#, so that setting A ≡ B#F gives that ı(P ) = A#PA. This

concludes the proof. QED
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3.3 lifting the characterisation to LG

We now turn to the problem of lifting this characterisation to the whole algebra. We

notice first that we are able to take advantage of the Eidelheit Lemma of [DS76] without

any further hassle.

Lemma 3.14 (Eidelheit-type Lemma). Given an algebra isomorphism φ : RG → RG
there exists a topological isomorphism V : S → S such that φ(P ) = V PV −1 for any

P ∈ RG.

Proof. We show that the assumptions of Lemma 3 in [DS76] hold true for E = Ẽ =

S, U = Ũ = RG. Indeed, S is an infinite dimensional Fréchet space and RG comprises

linear bounded operators on S. Moreover, for u, v ∈ S, the rank 1 operator u⊗ v lies

in RG. Then, picking a sequence vj converging to v in the weak topology, we see that

u⊗ vj converges to u⊗ v in the operator topology, so that S ′ = F = F̃ in the notation

of [DS76]. The claim follows then directly from the quoted result. QED

On the other hand, Lemma 4 of [DS76] is not as straightforward to generalise to SG-

operators. Indeed, when looking at the proof there, one is confronted with the possible

incapability of choosing a function u ∈ S(Rn) with the property that u(x) ̸= u(y) for

each x, y ∈ Rn. Accordingly, it is not clear whether such a claim is at all true. We set

out then to prove directly that the composition of the Eidelheit isomorphism with the

FIO coming from the formal algebra is a multiple of the identity up to some operator

with Schwartz kernel. Consider to this end the composition E = V A of the Eidelheit

isomorphism V with the FIO A coming from Theorem 3.13.

Lemma 3.15. E : S → S is bounded and extends to a bounded operator E : HGk1 → L2

for some k ∈ N.

Proof. E is clearly bounded as an operator S → L2. Then, there is a finite set of semi-

norms {p0, . . . , pn} on S which estimate ∥Eu∥L2 , namely, ∥Eu∥L2 ≤ maxi∈{0,...,n} pi(u).

Thus, there is an integer k so that ∥E∥L2 ≤ ∥u∥Hk
. This shows that E extends as a

bounded operator HGk1 → L2. The proof is complete. QED

We choose now order reductions P ,Q, as in the proof of Lemma 3.5 and consider

K ≡ ER−k as an operator L2 → L2, where we denote R = PQ. Our goal is to

prove that K is an SG-pseudo-differential operator of order (0, 0). For this, we look at

commutators and use the characterisation of Schrohe [Sch87] of SG-pseudo-differential

operators on the weighted Sobolev spaces HG(l,k). Here and later we write adK for

the operator on LG acting by commutation with K, namely (adK)(P ) = [K,P ]. We

owe the idea of the following strategy to Ryszard Nest, whom we thank for the helpful

suggestion. We start with the following easy lemma.

Lemma 3.16. adK preserves the double filtration andK extends to a bounded operator

K : HGr1 → HGr1 for every r ∈ R2.
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Proof. Fix r ∈ R2 and consider v ∈ HGr1. Setting v0 ≡ Λ
r1v for Λ an elliptic SGΨDO

of order 1, we have that v0 ∈ L2 and

Kv = KΛ
−r1v0 = KΛ

−r1K−1Kv0.

Remarking that adE preserves the double filtration of LG , we see that

KPK−1 = Λ
−l1EΛ

−k1PΛ
k1E−1

Λ
l1,

so that also adK preserves the double filtration. It follows directly that (adK)(Λ−r1)

has order −r1, and since Kv0 ∈ L2 by assumption, we have Kv ∈ HGr1. QED

Proposition 3.17. K is a (non necessarily classical) SG-pseudo-differential operator of

order (0, 0).

Proof. We prove that for every α,β ∈ Nn there exists an operator Rαβ ∈ LG−|α|,−|β|

such that, continuously,

(adMx)
α(ad ∂)βK = RαβK : HGr → HGr+(|α|,|β|), (3.45)

where Mxj is the multiplication operator by xj . This is known by [Sch88] to be equivalent

to K ∈ LG0. We show first that, for every β ∈ Nn, there exists Qβ ∈ LG0,−|β| such that

(ad ∂)βK = QβK. (3.46)

We argue by induction on |β|.
For |β| = 1 we have

(ad ∂xj )K = [∂xj ,K] = (∂xj −K∂xjK
−1)K

= QjK.

Here, Qj ∈ LG0,−1, since adK is an automorphism preserving the principal symbol. So

the base step holds true.

Assume the claim holds true for every |β| ≤ r and consider then γ ∈ Nn with |γ| =
r+ 1. Then γ = β + 1j for some j ∈ {1, . . . n} and some β with |β| = n. We write

(ad ∂)γK = (ad ∂xj )
[
(ad ∂)βK

]

= (ad ∂xj )(QβK) = (ad ∂xj )(Qβ)K +Qβ(ad ∂xj )K

= [∂xj ,Qβ ]K +QβQjK,

having used the inductive hypothesis twice and the properties of ad. Now, QβQj =

Q̃βj ∈ LG0,−|β|−1 by composition, on the other hand ∂xjQβ,Qβ∂xj ∈ LG1,−|β|. However,

they have the same principal symbol, so that in view of 5. in Proposition 1.16 we have

[∂xj ,Qβ ] = Q̌βj ∈ LG0,−|β|−1. It follows now that

(ad ∂)γK = (Q̌βj + Q̃βj)K ≡ QγK, (3.47)
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with Qγ ∈ LG0,−|β|−1 = LG0,−|γ|. By induction, then, (3.46) holds true for any β ∈ Nn,

as claimed.

We now prove (3.45) for any α,β ∈ Nn. For |α| = 0 there is nothing to prove. For

clarity’s sake, we spell out the case α = 1j . Then,

adxj(ad ∂)βK = adxj(QβK) =
[
xj ,Qβ

]
K +Qβ

[
xj ,K

]
.

Similarly as above [xj ,K] = (xj − KxjK−1)K = P̃jK with P̃j ∈ LG−1,0, so that

QβP̃j = R̃
j
β ∈ LG−1,−|β| by composition. On the other hand, [xj ,Qβ ] = R

j
β ∈ LG−1,−|β|

in view of the observation above about the order of commutators in the SG-calculus.

Assume now that (3.47) holds true for any α ∈ Nn such that |α| ≤ n, and let γ =

α+ 1j for some j. Then, using the properties of ad as a derivation,

(adx)γ(ad ∂)β(K) = adxj(adx)α(ad ∂)β(K)

= adxj(PαβK) =
[
xj ,Pαβ

]
K + Pαβ

[
xj ,K

]

=
([
xj ,Pαβ

]
+ Pαβ P

j
)
K,

(3.48)

with Pαβ given by inductive hypothesis and P j given by the previous step with |β| = 0.

Now, P̃αjβ ≡
[
xj ,Pαβ

]
∈ LG−|α|−1,−|β| by assumption and the properties of [ , ]. On the

other hand, by composition, P
αj
β ≡ Pαβ P

j ∈ LG−|α|−1,−|β| as well. Thus, setting

P
α+1j
β ≡ P̃

αj
β + P

αj
β (3.49)

it follows P γβ ∈ LG−|γ|,−|β|. The induction is complete.

Armed with this relation, it is now easy to show that the required mapping properties

hold true. Indeed, K maps HGr → HGr continuously for each r ∈ R2 by Lemma

3.16. On the other hand, Pαβ ∈ LG−|α|,−|β| gives exactly that Pαβ : HGr → HGr+(|α|,|β|)

continuously for each r ∈ R2. The composition PαβK satisfies then the same properties.

Thus, we have proven the characterization (3.45) and K is a pseudo-differential operator

of SG-type of order 0, 0. QED

Notice, in addition, that, while Lemmas 3.15 and 3.16, together with Proposition 3.17,

imply that E is a pseudo-differential operator as well, its order is not necessarily integral.

Therefore, adE is not an inner automorphism, cf. also [MM17]. This is the reason why,

in general, we cannot expect to obtain an FIO of integer order.

If we start with the inverse of the Eidelheit isomorphism, V −1, we obtain, by the

same argument, another pseudo-differential operator, Ẽ. They satisfy EP − PE ∈
RG, ẼP − PẼ ∈ RG, for any P ∈ LGm. We notice that this means, in particular,

that E almost commutes with Shubin operators since Γ
m(Rn) ⊂ SGm,m. Notice that

here we are disregarding classicality, notion which has different meanings for Γ and SG .

However, Lemma 3.18 below, suggested in a private communication by Elmar Schrohe,
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is a statement about smooth, bounded functions on R2n which does not need classicality

in any sense. Therefore, it can be proven almost exactly as in the Master thesis of Robert

Hesse [Hes21]. We reproduce here the proof since the aforementioned work may not be

readily available.

Lemma 3.18. Let E, Ẽ : S → S be ΨDOs of SG-type, parametrices of each other, such

that [E,P ], [Ẽ,P ] ∈ RG for each P ∈ LG . Then, E = cI +R for some c ∈ C,R ∈ RG.

Proof. First, notice that the conditions on E and Ẽ imply that their symbols e, ẽ are

of order at most 0 and their derivatives are rapidly decreasing. Indeed, {e, p} ∈ S ∀p ∈
SG ⇐⇒ ∂xe, ∂ξe ∈ S, and it follows that e is bounded. Moreover, ∇e is a conservative

vector field with potential e. Namely, for each path γ : [a, b] → R2n we have

e(γ(a)) − e(γ(b)) =
∫ b

a
∇(e)(γ(s)) · γ̇(s) ds. (3.50)

Fix now some point z in S2n−1 (an oriented direction in R2n) so that, for 1 < t1 < t2, it

holds true

e(t2z) − e(t1z) =
∫ t2

t1

∇(e)(sz) · z ds. (3.51)

By assumption, ∇e has rapidly decaying component. It follows that, for any v ∈ R2n,

we have |∇e(v)| ≲N ⟨v⟩−N and, for each M ≥ 2, we can estimate the integral as
∣∣∣∣
∫ t2

t1

∇e(sz) · z ds

∣∣∣∣ ≲M ⟨s⟩2−2M |t2t1 . (3.52)

So, the integral converges to 0 uniformly in t2 as we take the limit t1 → ∞. We can, on

the other hand, also estimate |e(t2z) − e(t1z)| ≲k ⟨t1⟩k. In particular then, we can pass

to the limit t2 → ∞ in this expression to obtain, for the radial limit l(z) ≡ limt→∞ e(tz),

the bound

|l(z) − e(tz)| ≲k ⟨t⟩−k
. (3.53)

We claim now that l(z) does not depend on z, tht is, the radial limit is constant on

the sphere S2n−1. To see this, choose another w ̸= z on S2n−1 and assume, pos-

sibly after having applied an orthogonal transformation, that z = (1, 0, . . . , 0) and

w = (cosα, sinα, 0, . . . , 0). We consider a family of paths γt : [0,α] → R2n given by

γt(θ) = (t cos θ, t sin θ, 0, . . . , 0). Pick an ε > 0. Using (3.53) for both directions z,w we

know that there exists a T > 1 such that for all t ≥ T we have |l(z) − e(tz)| < ε and

|l(w) − e(tw)| < ε. On the other hand, for each fixed t ≥ T , we have

e(tz) − e(tw) =
∫

γt

∇e(z) · dz =
∫ α

0
∇e(γt(θ)) · γ̇t(θ) dθ, (3.54)

so that taking absolute values and noticing that |γt| = |γ̇t| = t, we estimate, for each

M ≥ 2,

|e(tz) − e(tw)| ≤
∫ α

0
|∇e(γt(θ)) · γ̇t(θ)| dθ ≲M

αt

⟨t⟩M
, (3.55)
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where we again used the fact that ∇e has rapidly decaying components. Clearly, for

each M , the right-hand side decays to zero. We collect then

|l(w) − l(z)| ≤ |l(w) − e(tw)| + |e(tz) − l(z)| + |e(tw) − e(tz)| ≤ 3ε, (3.56)

which shows that l(z) = l(w) as claimed. We let c be the constant value of l on S2n−1

and look at the function f = e− c. Clearly, f has rapidly decreasing derivatives. On

the other hand, we can compute, for z ∈ S2n−1, that

f(tz) = e(tz) − l(z) = −
∫ +∞

t
∇e(sz) · z ds (3.57)

and conclude, as before, that f(tz) is rapidly decreasing as a function of t. As above, the

convergence to zero is also uniform in S2n−1 and we discover that f is rapidly decreasing

itself. Summing up, we have proven that f ∈ S(R2n).

Now, set R = Op(f) ∈ RG. Then, e = c+ f implies E = cI +R, and, since Ẽ is a

parametrix for E, we have, for some R′ ∈ RG,

(cI +R)Ẽ = I +R′, =⇒ cẼ = I mod RG. (3.58)

Therefore, c must be different from 0, and we deduce that also Ẽ = 1
c
I + S for some

S ∈ RG. This concludes the proof. QED

With all the above pieces in place, we can now state and prove our third main result.

Theorem 3.19 (Characterisation of SG-order-preserving isomorphisms). Let ı : LG →
LG be an SGOPI. Then, there exists an invertible, classical SGFIO A of type Qgen such

that, for all P ∈ LG , we have

ı(P ) = A−1PA. (3.59)

Proof. Consider E = FV −1 where V is the Eidelheit isomorphism of Lemma 3.14 and F

the SGFIO obtained from Theorem 3.9 by considering the induced isomorphism on the

formal symbol algebra BG. Then, by the above discussion, we have that E : S(Rn) →
S(Rn) is continuous. Moreover, it is an elliptic SGΨDO of order (0, 0), with parametrix

Ẽ = V F#. Furthermore, both E and Ẽ commute mod RG with every P ∈ LG . By

Lemma 3.18, it follows that E = cI +R with R ∈ RG, so that F = cV +RV . But then

V = c−1(F −RV ) and V −1 = c(F −RV )# + S with some S ∈ RG, so that V is an

invertible SGFIO, as claimed. QED

The following corollary is now completely straightforward.

Corollary 3.20. Let ı : LG → LG be an algebra isomorphism satisfying the condition

ı(LGm1,m2) ⊂ LGm2,m1 ∀(m1,m2) ∈ Z
2. (3.60)

Then, ı(P ) = (F A)−1P F A, where A is an invertible Q-FIO and F is the Fourier

transform.



3.3 lifting the characterisation to LG 61

Proof. This is obtained by combining Theorem 3.19 with Proposition 2.28. Namely,

consider the isomorphism ȷ(P ) = F ı(P )F−1, which, by assumption, is now an SGOPI.

It follows that ȷ(P ) = A−1PA for some invertible Q-FIO. Then ı(P ) = F A−1PAF , as

claimed. QED
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