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Abstract— Controller design for continuum robots maintains
to be a difficult task. Testing controllers requires dedicated
work in manufacturing and investment into hardware as well as
software, to acquire a test bench capable of performing dynamic
control tasks. Typically, proprietary software for practical
controller design such as MATLAB/SIMULINK is used but lacks
specific implementations of soft material robots.
This intermediate work presents the results of a toolchain to
derive well-identified rod simulations. State-of-the-art methods
to simulate the dynamics of continuum robots are integrated
into an object-oriented implementation and wrapped into the
SIMULINK framework. The generated S-function is capable
of handling arbitrary, user-defined input such as pressure
actuation or external tip forces as demonstrated in numeri-
cal examples. With application to a soft pneumatic actuator,
stiffness parameters of a nonlinear hyperelastic material law
are identified via finite element simulation and paired with
heuristically identified damping parameters to perform dy-
namic simulation. To prove the general functionality of the
simulation, a numerical example as well as a benchmark from
literature is implemented and shown. A soft pneumatic actuator
is used to generate validation data, which is in good accordance
with the respective simulation output. The tool is provided as
an open-source project**.

I. INTRODUCTION

The field of continuum robotics has been inspired by

the inherent compliance of the systems, suited for safe

human-robot interaction. Especially manipulators manufac-

tured from soft materials such as silicone-based polymers

have gained rising popularity in the robotics community.

In the recent years, several toolboxes for modelling of soft

continuum manipulators were published, based on various

approaches [1]. They differ in their goals such as fast simu-

lations for re-enforcement learning approaches [2], working

towards coherent multi-flexible-body system frameworks and

control application [3], [4], [5], [6], full-body deformation

analyses, control, and topology optimisation [7] and sys-

tem analysis with coupled structures [8]. At the centre of

each simulation lies the trade-off between the accuracy and

computational efficiency of numerical methods solving a

set of partial or ordinary differential equations (PDE/ODE).

Therefore, model order reduction techniques are applied to

decrease the system’s total degrees of freedom (DoF), one
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of them being the dimensional reduction from 3D body

configurations to 1D beam representations of slender objects,

i.e. soft robotic manipulators.

By experimental validation, the Cosserat rod theory, as

one representative of possible dimensional reductions, has

repeatedly been proven to be a valid choice for describing

slender structures for continuum robots [9], [10], including

pneumatically driven silicone-based actuator modules [11],

[12]. The shooting method has been a popular choice and

has shown capabilities of fast simulations [10]. The imple-

mentations provided by Till et al. are a stepping stone toward

more detailed models in simulation.

A. Preliminary work

Based on Till’s works, investigation of phenomena oc-

curring during pressurisation of soft pneumatic actuators
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Fig. 1. The toolchain is schematically portrayed. (1) From FE simulation
parameters for nonlinear hyperelastic materials are found. (2) Those are
used to implement a Kelvin-Voigt model of which the inverse map is
learned. (3) Inverse material functions are exported into an object-oriented
C++ implementation where the SPAs are assembled. (4) Multiple SPAs are
simulated within Simulink using a fixed-step discrete-time solver.
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TABLE I

MODELS USING NONLINEAR ELASTICITY AND/OR A COMBINATION OF

NONLINEAR ELASTICITY AND VISCOSITY

Ref. Kinematic NL-HE NL Visco-HE

[18] PCC

[19] CC

[20] PCC −

[2] Kinematic chains − −

[8] Discrete elastic rods − −

have been conducted within the authors’ research project

[13], [14], [15]. Different approaches for handling nonlinear

effects of material and pressure actuation in static Cosserat

rod models, solved using the shooting method, are presented.

The works of [16] in contrast implement an Ogden ma-

terial model (OM) for a variational Simo-Reissner beam

formulation and identify parameters as well as a mapping

for pressure to actuation forces with help of various ex-

periments, showing good accordance between simulation

and results from the test bench. The topic of nonlinear

(NL) hyperelasticity (HE) for structural models has gained

a substantial rise in attention, mostly due to its application

in soft-material robotics [17]. It has also been discussed

in various publications for models with varying kinematic

assumptions, which are listed in Table I (excluding finite

element (FE) approaches).

Specifically in low-dimensional approaches using (piece-

wise) constant curvature (PCC/CC), nonlinear elasticity is

often used, to approximate the general behaviour of the po-

tential energy. For the more complex kinematics of structural

models, nonlinear hyperelasticity has also been examined

[20]. However, based on various experiments conducted

using a soft pneumatic actuator (SPA), the best results were

achieved using a Hookean (linear) constitutive equation to

computed strains. Still, separating nonlinear effects of the

material, or other ones as observed in [15] is important for

accurate modelling. With the previous works, it is shown

that, given the correct material description, identification of

parameters and mapping of actuation forces as well as accu-

rate and efficient simulation of soft-material manipulators is

possible.

The problems in the context of the shooting method are

how to implement nonlinear (visco-)hyperelastic materials

in a computationally efficient matter and how to parametrise

them. Furthermore, the implementations should target a gen-

eralising structure, capable of simulating different geometries

and multiple actuators with varying material properties.

B. Contribution and Structure of this Paper

Presented in this paper is an intermediate result of a

coherent methodology, as depicted in Fig. 1, leading to

well-parametrised simulations of soft-material robots (SMR)

based on the works of [10]. The foundation of the method-

ology is a library of material data from stress-strain experi-

ments. Integrated into FE simulation, a detailed model of an

actuator is set up in ABAQUS [15]. Providing detailed insight

into deformation behaviour comes at the cost of a high

computational burden, especially when it comes to dynamics.

A dimensional reduction, and thereby gain in computational

efficiency, is achieved by using Cosserat rod models.

Constitutive equations in rod models contain parameters

which if chosen incorrectly lead to a poor approximation of

the reality [13] or more detailed simulations. This is tackled,

by numerically reducing the data from FE simulation and

computing kinematic components describing Cosserat rods.

Parameters for respective material laws are then identified

using the exported local body forces/moments and local

displacements. This is demonstrated for a nonlinear OM

presented in [16]. Finding these accurate rod material pa-

rameters, that generalize the behaviour of the actuator in

different loading conditions in experiments is a cumbersome

task, which as we show in this paper can then be omitted.

With this work, a simulation framework is introduced. The

framework is integrated into MATLAB/SIMULINK to quickly

set up dynamics simulations and evaluate their results. In-

cluding the OM in the popular shooting method leads to a

substantial rise in computation time due to nonlinear solving

for deformation parameters at each integration step. This is

solved by applying an approximation of the inverse material

equations using simple four-layer feed-forward neural net-

works. Summarising this paper’s contributions, we are

• providing a coherent methodology to identify necessary

parameters of the proposed Ogden model in [16] with-

out extensive experiments,

• extending the nonlinear hyperelasticity by integrating it

in a Kelvin-Voigt material model,

• implementing the material models into the numerical

scheme of [10] without loss of computational efficiency,

• and validating the simulation with experiments.

The paper is structured as follows. The second section

includes theoretical and numerical modelling aspects of

Cosserat rods with (visco-)hyperelastic material as well

as a brief review on works investigating nonlinear hyper-

elasticities. Thereafter in Sec. III, the data export and compu-

tation required for the proposed identification strategy of the

hyperelasticity is performed using point-cloud registration.

In Sec. IV, we show experiments in which dynamics param-

eters are still tuned heuristically, but show good accordance

with the simulation. In Sec. V numerical examples are

demonstrated on the one-hand side for verifying benchmarks

from the literature and on the other side for showing the

capabilities of the tool.

The simulation was implemented object-oriented, based on

provided code in C++ and moulded into a CMake project,

which is capable of automatically generating S-Functions for

MATLAB/SIMULINK integration. All code of this publication

is made publicly available and is subject to the authors’

future work.

II. MODELLING

A. Cosserat Rod

This section briefly reviews the governing equations of

motion for a Cosserat rod. The theory is equivalent to the
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Simo-Reissner theory of beams undergoing large deflections

[16]. The configuration of the deformed slender structure

at time t is described, as the spatial curve r(s, t) and the

orientation of cross-sections expressed by R(s, t) ∈ SO(3).
Derivatives in spatial and time domain s and t are given by

rs = Rv, rt = Rq, (1)

Rs = RS(u), Rt = RS(ω), (2)

with local strains v(s, t) and u(s, t) and local velocity q(s, t)
and angular velocity ω(s, t). The skew-symmetric cross-

product operator is denoted by S() ∈ so(3) . The rate of

change of the local velocity and angular velocity w.r.t. the

material coordinate s is

qs = vt − S(u)q + S(ω)v (3)

ωs = ut − S(u)ω . (4)

The force and moment balance equations on an infinitesimal

section of the rod lead to the differential expression for the

change of forces and moments

ns = ρAR (S(ω)q + qt)− f (5)

ms = ρR (Jωt + S(ω)Jω) + S(n)rs − l (6)

with external distributed loads f(s, t), moments l(s, t), inner

forces n(s, t) and moments m(s, t). Further, ρ is the material

density, A is the area of the cross-section and J is the

rotational inertia associated with each cross-section.

The linear elastic material behaviour is described by the

constitutive equations

n = R [Kse (v − v∗) +Bsevt] (7)

m = R [Kbt (u− u∗) +Bbtut] , (8)

where Kse and Kbt are diagonal matrices describing the

stiffness for shear, extension, bending and torsion respec-

tively. The corresponding diagonal damping matrices are

Bse = diag (bs, bs, be) and Bbt = diag (bb, bb, bt). In this

work only initially straight rods are considered leading to

v∗(s) = [0, 0, 1]T and pre-curvature u(s) = [0, 0, 0]T.

B. Shooting Method

To solve the given PDE (2)–(6) quickly, the proposed

method in [10] is applied. First, the implicit discretisation

of the time domain leads to a semi-discretised set of ODEs.

The time derivatives are then given by

vt = c0v+
h
v, ut = c0u+

h
u, (9)

qt = c0q+
h
q, ωt = c0ω+

h
ω, (10)

where quantities from previous time steps are summed up

and denoted with
h
∗ and c0 is dependent on the choice of

BDF-α method and time step ∆t.

The boundary-value problem of the spatial domain at each

time step is then reformulated to an optimization problem of

a set of initial values. Numerical integration is performed

on a unit quaternion representation of the orientation and by

using a second-order Runge-Kutta method. For the residual

of a serially-connected structure of rods with a clamped base

and a loose end follows

xT(n0,m0) =
(

(n∗ − nN )T (m∗ −mN )T
)

(11)

with n∗ and m∗ being external forces at the last node N of

the discrete rod.

C. Constitutive Equations

In this paper, the energy-density function of [16] and its

identified parameters are reused and extended by a linear

viscosity resulting in a visco-hyperelastic relationship for

extensional and bending deformations. The partial derivatives

of the hyperelastic strain-density function

W =
2EA ce

3α2

(

λ(v)α +
2

λ(v)
α/2

− 3

)

(12)

w.r.t. the kinematic strain variables v = [v1, v2, v3]
T are the

constitutive equations to calculate inner forces

RTn =



















ks v1 +
2EA ce v1

(

(v12+v2
2+v3

2)
3α

4 −1

)

3α (v12+v22+v32)
α

4
+1

ks v2 +
2EA ce v2

(

(v12+v2
2+v3

2)
3α

4 −1

)

3α (v12+v22+v32)
α

4
+1

2EA ce v3

(

(v1
2+v2

2+v3
2)

3α

4 −1

)

3α (v12+v22+v32)
α

4
+1



















(13)

in local reference frame. Parameters ks and EA are the

shear and extensional stiffness calculated with literature and

geometric parameters, while stiffness scaling ce and α are

to be identified. Bending and torsional deformations are

described with a Kelvin-Voigt material behaviour and thereby

linear elastic. Extending (13) to dynamics yields

RTn = Nhyp(v) +Bsevt (14)

with the nonlinear expression Nhyp describing the right-

hand side of (13). Applying the proposed implicit time

discretisation in [10] results in

RTn = Nhyp(v) +Bse(c0v+
h
v) . (15)

Following the numerical scheme of [10], the history terms
h
v (si) and local forces RTn are known quantities, when

it comes to solving this equation for deformation quantities

v(s) at any discrete node si. The next section introduces a

simple method to solve this nonlinear equation computation-

ally efficiently to maintain the simulation’s high real-time

ratio using the shooting method.

D. Inverse Constitutive Equations

The inverse function of (13) has to be solved at every

integration step of the spatial domain. Due to the high com-

putational burden of using an iterative solver like the multi-

dimensional Newton-Raphson method, instead, the function

is evaluated for a relevant data subset Vd ⊂ R
3 and a

simple four-layer feedforward neural network (NN) is used to

approximate the relationship between the respective function

values nd and function arguments vd ∈ Vd. Note that as
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foreach(cross-section)

REF
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Respective
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Subset of FE simulation 
(DEF & REF)
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Fig. 2. Data conversion for Identification. a) The circular subsets XCS are shown. The subsets are parsed to b), where an iterative registration between
the point clouds in REF and DEF is performed. Finally, in c) the slender representation is reconstructed and deformation quantities are gained by numerical
differentiation.

Fig. 3. a) Computed deformations and computation of local moments. b,c)
local forces R

T
n and moments R

T
m over material coordinate s for a

load case of 10N in x-direction.

long as all rod deformation states v in the simulation are

within the closed boundaries of Vd, the capability of the NN

to extrapolate is not of concern. The only purpose of the

NN here is to give fast solutions of a known domain so that

it is sufficient to show its performance in interpolating the

provided data.

III. PARAMETER IDENTIFICATION

Performing experiments to find valid parameters for rod

models, as it was done in [16], is time-consuming and

not efficient regarding the design and development of soft-

material manipulators. Therefore, the goal of the presented

methods in this section is to find parameters for beam

material models from accurate, validated FE simulation in

an efficient matter.

A. Finite Element Method

The finite element method (FEM) used to identify the

material parameters is set up in the software ABAQUS. This

FEM models the SPA on a detailed level and includes three

silicone parts and six fibres used to reinforce each chamber.

TABLE II

NUMERIC VALUES OF PARAMETERS FOUND IN IDENTIFICATION OR

HEURISTICALLY (DAMPING)

EA α ce csGA

91.87N 1.3308 2.2703 88.566N

be bs bb bt

10N s 10N s 0.0855mNms 0.04Nms

EIxx EIyy GIT

0.0257Nm2 0.0257Nm2 0.0291Nm2

For the silicone body part as well as the caps the hyperelastic

OM is used. The main body part consists of the soft silicone

Ecoflex 0050 while the caps are made of Dragonskin 30

[15], which is noticeably stiffer. For the simulation, the SPA

is clamped at its base. A reference point is placed on the tip

surface and coupled to the nodes on the inner circumference

of the tip. Hence the deformation of these nodes is prevented.

For parameter identification, two separated external forces

acting in z- and x-direction are applied to the reference point.

The forces are incrementally raised to 98N in z-direction and

18N in x-direction (cf. Fig. 3 for definition). No pressure

or gravitational loads were applied in the simulations. The

FE simulation output for the SPA was validated against data

from experiments showing slightly softer behaviour when

elongating in the axial direction and slightly stiffer behaviour

in bending experiments with pressure actuation [21].

B. Data Conversion

Finding parameters α and ce in (12) requires data on local

strains v(s), u(s), local forces RTn(s) and local moments

RTm(s). Given by the FE simulations is the reference

configuration (REF) X ∈ R
N×3 and deformed configuration

(DEF) ϕ(X) ∈ R
N×3 with N spatial points respectively.

Therefore, a numerical reduction to a spatial curve r0(s)
with cross-sections represented by R0(s) in REF and the

analogue quantities in DEF are required.

To perform the numerical dimensional reduction, depicted

in Fig. 2, with the goal to compute local strains v(s) and
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Fig. 4. Comparison of results of identification for Ogden material
(left column Eugster et al., right column identification with FE data).
a) and b) showing vector fields n(v) for max. load of Fext 10N
and 0.05m<s<0.10m. c) and d) show a comparison of both sets of
parameters on low deformation and e) and f) on high deformation for
0.03m<s<0.10m.

u(s), the mantle of the cylindrical actuator (radius R), i.e. a

subset

XR = {xi ∈ X |x2
i1 + x2

i2 = R2} i ∈ 1, ..., N . (16)

in REF, is used to find further subsets of N cross-sections,

given by

XCS,i = {xR,i ∈ XR |xR,i3 = si} i ∈ 1, ..., N . (17)

At this point, it is assumed that cross-sections are rigid.

The homogeneous rigid transformations T (si) ∈ SE(3) with

XCS,i =
REFTDEF(si)ϕ(XCS,i) (18)

are found via rigid point-cloud registration [22] (Fig. 2b).

Fig. 5. Results (orange) of identification of bending stiffness using FE
simulation data (blue).

Local change in orientation u is then computed as

S(ui) =
1

si
logm

(

RT(si)R(si+1)
)

(19)

with R(·) ∈ SO(3) being the rotational part of T (si) and

logm (∗) denoting the matrix logarithm. The centre line r in

DEF is computed by

ri = R(si)r0(si) + ti (20)

with the translation ti found from point-cloud registration.

Local deformations vi are computed via finite differences by

vi = RT(si)
∆ri

∆si
. (21)

For simple load cases such as external tip forces/moments,

the local forces are simply computed by assuming constant

force along the structure and projecting it into the respective

frame defined by R(si). Moments in the global frame are

calculated as depicted in Fig. 3 by

m(si) = mext + (rN − ri)× F ext (22)

accordingly.

C. Identification Results

By using the LEVENBERG-MARQUARDT optimisation al-

gorithm implemented in MATLAB and the data exported from

the FEM, parameters listed in Table II are identified. The

parameters found in experiments and originally presented in

[16] as well as parameters found by identification from FE

simulations are used to produce the results in Fig. 4. In the

simulations including vertical loads, shear deformation in the

Ecoflex 0050 section of the manipulator reaches up to 9%.

Shearing stiffness is scaled by 2.891 leading to stiffer results

than Eugster et al. (Fig. 4 a)–b)). For parameters α and ce,

both approaches lead to similar values. The deviation from

FE models to the real system partially explains the difference

and is in accordance with the findings in the validation of

Fig. 6. Results of the regression of the inverse function via FFNN. In a)
the color map indicates the prediction error on a test set evenly distributed in
between the training data. Both b) and c) show the component-wise absolute
error between deformations vOM and vNN (see Eq. 23).
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the FE model. Fig. 4 c)–d) show the OM and FEM data

for small elongations (0–2%) and e)–f) for elongation up to

100%. In the absence of large deformations, the stress-strain

relationship is visibly linear. For strains within the range of

0 to 100% in Fig. 4 e) and f), a noticeable reduction of the

stiffness is observed, which is in accordance with material

results presented in [15].

For identification of bending parameters, an external tip

moment of up to 350Nmm is applied for each rotational

DoF. The bending data used for identification shows a linear

relationship (see Fig. 5) with a scaling factor of 2.061.

D. Neural Network Training

With the analytical model and identified parameters, a set

of input-output values as described in Sec. II-D is generated.

The feed-forward neural network (FFNN) interpolates the

data to learn the inverse function since analytical inversion

is not possible and numerical solving computationally expen-

sive. MATLAB’s deep-learning toolbox is used to configure

a four-layer network with 20 neurons each. The hyperbolic

tangent function is used as the activation function. Training

is conducted using a data set VOM,Tr of 2000 samples vOM,i

evenly distributed in the intervals v1, v2 ∈ [−0.3, 0.3] and

v3 ∈ [0.8, 3.0], including compressional load.

Fig. 6 shows the result on training and test data. The output

of the analytical OM for training data VOM,Tr and test data

VOM,Te is input argument to the FFNN fNN such that the

prediction results to

vNN = fNN(Nhyp(vOM)) . (23)

VOM,Te is defined for the same intervals as VOM,Tr but

contains 4394 evenly distributed samples. Therefore, the

samples lie in between the training data and reflect on how

well the FFNN interpolates.

The absolute deviation between inverse OM and FFNN

shows a median of less than 10×10−4 % on training (Fig. 6

a) and test data (Fig. 6 b). Outliers in test data reach up to

approx. 0.05% deformation. For an integration step in spatial

domain with a typical step size around 0.01m this leads to an

approximate positioning error of 0.5 µm. Fig. 6 a) indicates,

that most outliers occur systematically for compression (v3 <

1). Further investigations on hyperparameters and training

are required to encounter this phenomenon but are of this

publication’s scope.

The inverse function evaluation can now be performed in

less than 20 ns and the results are sufficiently precise.

IV. EXPERIMENTAL VALIDATION

To demonstrate the general capability of reproducing ex-

periments performed at the test bench introduced in [13],

the soft pneumatic actuator is implemented in the C++

environment. It has to be kept in mind, that at this point,

dynamics parameters are still tuned manually so this is but

a preliminary showcase of the framework’s capabilities.

The test bench contains a soft pneumatic actuator with

three fibre-reinforced air chambers, each connected to source

pressure or environmental pressure over a solenoid valve.

Fig. 7. Simulation results for data from experiments. In this experiment,
a single chamber is directly connected to source pressure (60 kPa) or the
environment by opening/closing the valves as fast as possible. Shown are the
two responses of the end effector position for 1 s<t<4 s and 14 s<t<17 s.

Pressure is measured at the tube connectors directly behind

the valve, leading to a slight delay between measured and

actual pressure in the chambers. The SPA is made of three

sections of which two are referred to as caps. These form

the upper and lower end of a beam and are made of Dragon-

skin 30. The middle part is the actual actuator, contains the

three air chambers, and is made of Ecoflex 0050. Position

and orientation for validation are tracked via an OptiTrack

Prime Camera-Marker system and base reaction forces and

moments are measured with an ATI mini40 sensor between

a 3D-printed rigid adapter and the socket.

The SMR model is implemented by stacking three rods se-

rially and setting material and geometrical properties accord-

ingly. Displacements in the actuator are computed with the

identified neural network. For more details such as geometric

parameters refer to [13]. Material parameters chosen for the

actuator are listed in Table III. The mass of the marker plate

at the tip is included in the model by appending an additional

mass of 60 g to the SMR object. Damping coefficients were

found heuristically by examining two experiments. At first,

all chambers were synchronously connected to the source

which leads to a quick rise in pressure in each chamber.

Since no vibration was observed in experiments, the damping

coefficient was increased until the model showed the same

behaviour and the rise time matched with the experiments. In

the second, bending motion is excited by a step in pressure

of chamber one around 40 kPa, and parameters are adapted

accordingly.

This is the author’s version of an article that has been published in the IEEE RoboSoft proceedings.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1109/RoboSoft55895.2023.10122047

Copyright (c) 2023 IEEE. Personal use of this material is permitted. For any other purposes,
permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Fig. 8. Rebuilding the benchmark simulation in [23]. Coloured, dotted
lines are the output from the simulation environment placed on top of the
lines from the original figure from [23].

The pressure input is computed as a step in local forces

RTn(s+) = RTn(s−) +
3∑

i=1

piαlAch ez (24)

acting on the cross-section of the air chamber Ach at inter-

sections between the caps denoted by material coordinate s−

and the actuator denoted s+. The lateral compression factor

αl is accounting for elongation effect caused by compression

of material between fibre and air [15]. A corresponding jump

in local moments is computed accordingly as

RTm(s+) = RTm(s−) +

3∑

i=1

piαlAch (dch,i × ez) (25)

with lever dch,i from centre of the actuator’s cross-section

to centre of the chamber’s cross-section. Note that the last

term in (24) and (25) has to be negative if s+ is the cap and

s− the actuator [13], [10].

The experiment, depicted in Fig. 7 shows dynamic re-

sponse to steps from 60 kPa to 0 kPa for pressure p1 and

0 kPa to 60 kPa for pressure p2. This is a medium-sized

excitation compared to a maximum pressure of 100 kPa at

which the risk of damaging the actuator rises drastically.

The simulation shows good accordance between tip position

from measurements and position with an MSE < 7% for

all DoFs regarding the total trajectory. After the second

jump in pressure, the settling time of the oscillation differs

for measured and simulated quantities. For a more detailed

analysis and improvement, we intend to find more suitable

parameters from dynamic FE simulation with the procedure

introduced in Sec. III-B.

As for the static equilibrium points, the general relation-

ship between FE model and experiments observed in [21]

(being the stiffer bending and softer extensional behaviour)

also shows for the rod simulation.

V. SIMULATION AND NUMERICAL EXAMPLES

In this section numerical examples and benchmarks are

briefly demonstrated including

• a clamped rod experiment from [23] in Sec. V-A,

• a manipulator composed of three actuators in Sec. V-B.

TABLE III

GEOMETRIC AND NUMERICAL PROPERTIES OF SOFT MATERIAL

MANIPULATOR (SMR)

Length of chambers / caps 50mm / 5mm

Total length of SMR 180mm

Cross-sectional / chamber radius 12mm / 3mm

Centre chamber to centre actuator 7mm

Total number of nodes 80

BDF-α coefficient αBDF [10] −0.3

Spatial integration method second-order RUNGE-KUTTA

Time step ∆t 0.01 s

A. Clamped-Rod Benchmark

An example of dynamics simulation from [23] is re-

implemented using the shooting method. This includes a

single, initially straight steel rod with a total length of

0.5m, a radius of 1mm, Young’s modulus of E = 210GPa
and Poisson’s ratio of 0.3. A follower tip wrench as time-

dependent load is configured and applied as boundary con-

dition n∗,m∗. Numerical parameters have to be adapted in

the back-end of the simulation and are set to αBDF = −0.3
and ∆t = 10ms. A total number of 500 nodes is used. Input

time series are configured using the SIMULINK environment.

This is used to verify the simulation in general, excluding

any mistakes made in implementation. Fig. 8 shows the

successfully performed test.

B. Multi-Segment Actuator

The object-oriented implementation allows for a quick

connection of serial rods in C++ with varying material

properties. As a demonstration, a soft-material robot (SMR)

consisting of three serially connected actuators is set up.

The material properties are configured according to the

described visco-hyperelasticy in Table III, but for this nu-

merical demonstration material density is reduced by 40%

to achieve larger deflections. Numerical results depicted in

the title image Fig. 1 do not represent any real system and

is instead used for show-casing the presented tool.

VI. DISCUSSION, CONCLUSION & OUTLOOK

A modular, computationally efficient simulation of visco-

hyperelastic Cosserat rods is integrated into the well-

established SIMULINK environment. Material parameters of

the nonlinear stiffness are identified utilizing an accurate

FE simulation. A preliminary validation for dynamic experi-

ments is presented. This extends the works done by Eugster

et al. in [16] and combines them with those by Till et al. in

[10]. The MSE between experimental data and the model for

tip position over time lies around 7%. The proposed method

enables the systematic design of soft robotic actuators in

simulation with valid parametrization.

A. Computational Time and Implementation

The current implementation has not yet shown the compu-

tational performance of [10]. The reason for this is a lack of

optimization in memory allocation in the ODE/PDE, which is
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currently a target of re-factorisation. For dynamics, a single

time step of the steel rod simulation on an Intel Core i5-

8600K CPU @ 3.60GHz has an average duration of 7.1ms
per 10ms of simulated time, which is faster than real-time.

The SMR depicted on Fig. 1 however required a total of

200 s for a total simulation time of 6 s, which is around

340ms per 10ms time step, leaving room for optimisation.

No difference in the computational time of the linear or

nonlinear material model is noticeable, which highlights the

efficiency of the approach. The integration in SIMULINK

allows for a rapid workflow and safes the work of creating

and maintaining a graphical user interface.

B. Non-Linear Hyperelasticity

As for the often discussed necessity of nonlinearity in

hyperelastic models, at least for material used in this paper,

and even with external forces up to 50N, the authors find

it neglectable. The relevance of the degressive behaviour

of Ecoflex 0050 within the range of 0–100% strain is

questionable, which is lining up with the statements in [20],

[5].

Still, other applications with different designs and mate-

rials require nonlinear material models according to [24].

Conceptually, the proposed methods for identification can

easily be transferred to the dynamic material model by com-

puting local strain velocities from dynamic FE simulation in

the same numerical manner, which will be performed and

validated in future works. Note, that a consistent derivation

of damping parameters presented in [25] is, at least according

to [26], only possible as long as small local strains are

considered. A detailed discussion is out of this paper’s scope.

C. Future Work

This study is an intermediate result for a coherent chain

of methods for soft pneumatic actuator design including

detailed FEM and fast dynamic simulations for controller

design. Extensions regarding the identification procedure for

damping parameters and building a simulation of the full

plant including source pressure, valves and tubes are the

current focus.
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