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Abstract— This work presents a non-parametric spatio-
temporal model for mapping human activity by mobile au-
tonomous robots in a long-term context. Based on Variational
Gaussian Process Regression, the model incorporates prior
information of spatial and temporal-periodic dependencies to
create a continuous representation of human occurrences. The
inhomogeneous data distribution resulting from movements
of the robot is included in the model via a heteroscedastic
likelihood function and can be accounted for as predictive
uncertainty. Using a sparse formulation, data sets over multiple
weeks and several hundred square meters can be used for
model creation. The experimental evaluation, based on multi-
week data sets, demonstrates that the proposed approach
outperforms the state of the art both in terms of predictive
quality and subsequent path planning.

I. INTRODUCTION

The ability to create environmental models is a crucial
requirement for the autonomy of mobile robots. Especially
in long-term applications, the consideration of environmental
dynamics has proven to be useful for localization or nav-
igation purposes [1]. Human behavior represents a major
influencing factor on environmental dynamics, particularly
for applications in service robotics or autonomous driving. To
ensure that robots are accepted by humans and not perceived
as a disturbance, they should adapt to human behavior,
e.g. in terms of where they move or the timing of their
tasks. Accurate models of human activity, i.e. spatio-temporal
occurrences and movements of pedestrians, can help robots
to achieve this purpose, e.g. by improving navigation [2], task
planning [3] or human-centered task execution [4]. As cur-
rent research shows [5], [6], continuous representations can
better reflect human activity than approaches that use spatial
or temporal discretization, as interdependencies between
data points can be accounted for. Following this idea, we
present CoPA-Map (Continuous Pedestrian Activity Map),
a non-parametric model for long-term prediction of human
presence. We focus on the use in mobile robotics, which
is characterized by varying dwell times at different locations
and thus leads to an inhomogeneous, or sparse, distribution of
measurement data. The model is implemented using multi-
latent Gaussian Process Regression (GPR), allowing time-
and location-dependent variances to be incorporated using
a heteroscedastic likelihood function. Locations with high
variability of observed human activity, for example, due
to short dwell times, as well as outliers are thereby given
lower weight by adjusting the likelihood variance during
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Fig. 1: Upper images: Exemplary 1D dataset with gaps and noise,
fitted with a Gaussian process model with Gaussian likelihood (a)
and a Gaussian process with a heteroscedastic Gaussian likelihood
(b). Mobile robots detect a varying number of pedestrians (blue
dots), depending on the observation duration at different locations
(c). Our model aims to infer a continuous rate function of human
activity, which compensates for these effects (d). Locations with
fewer or irregular detections are indicated by the predictive variance
(e), based on the heteroscedastic likelihood.

hyperparameter optimization. This can also be accounted for
in the resulting predictive uncertainty to indicate areas of
the input space which require further exploration or data
collection (see Fig. 1 for an example). Gaussian Processes
(GPs) are also particularly suitable for the given application
in that spatial correlations or temporal characteristics can be
taken into account as prior information. Based on a data-
driven initialization procedure, we therefore create a multi-
dimensional kernel that encodes long-term periodic patterns
resulting from people’s routines. The code of our method is
available online [7].

The remainder of this paper is structured as follows: the
next section II gives an overview of related work. Sec. III
introduces GPR and corresponding preliminaries. Sec. IV
presents our method CoPA-Map, which is evaluated in Sec.
V and a conclusion is given in Sec. VI.

II. RELATED WORK

Approaches to modeling human activity generally consider
spatial or temporal variations or a combination of both. For
an indication of local variability, many models discretize the
spatial coordinates, e.g. using a grid, so that different loca-
tions are considered separately. In [8] a directional grid map
is presented, that probabilistically models long-term human
motion through angular directions. Angular representations,
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that also incorporate motion speed and partial observability
are presented in [9]. Instead of separating the environment
into discrete locations, other approaches create continuous
representations for short-term trajectory predictions as in
[10] or [11]. In [2] spatially continuous navigational maps
by observation of human trajectories are created, with a
particular focus on integrating a prior path enabled by
a Gaussian Process framework. Apart from the modeling
of human activity, spatially continuous models have been
successfully used for occupancy mapping of static objects
[12]. Later works [13], [14] also incorporate environmental
dynamics to create long-term maps of occupancy. These non-
parametric methods are typically kernel-based and therefore
can distinguish well between empty and occupied space, and
can also capture nonlinear or obstructed patterns. However,
the aforementioned works [2], [8]–[14] focus on spatial
relations and neglect temporal variations, especially with
respect to long-term changes. Models which consider long-
term temporal patterns usually focus on periodic changes,
which can be modeled kernel-based [15] or with spectral
analysis, e.g. by the FreMEn method [1]. FreMEn is a
method for non-uniform frequency transforms with an ap-
plication to mobile robotics and was originally developed
to model the evolution of binary states over time, such as
cells of an occupancy grid. Therefore, extensions have been
made to model human activity quantitatively using spatially
discrete Poisson processes with respect to intensities [16]
or predominant directions of human flow [17]. As these
methods either only consider temporal variations [15] or ne-
glect interdependencies of separate spatial regions [16], [17],
authors of [5] proposed a spatio-temporal continuous model
of human presence. The model is based on a projection of
data points to a circular space with subsequent clustering by
Gaussian Mixture Models (GMMs) and was later extended
to incorporate human flow [6]. However, since clustering is
performed directly on the data points (people detections),
it is prone to erroneous predictions when the robotic system
moves through the environment and collects varying amounts
of data at different locations.

In summary, the long-term prediction of human activity,
which is suitable for mobile robotic applications, requires
further research. The contributions of this paper are therefore:
1) A model for long-term predictions of human presence that
compensates for inhomogeneous data distribution resulting
from a moving robot and incorporates spatio-temporal inter-
dependencies due to its continuous representation, 2) a data-
specific routine for initializing hyperparameters representing
periodic changes in human activity which significantly en-
hances model convergence, 3) experiments of the method on
real-world datasets.

III. PRELIMINARIES

A. Gaussian Process Regression (GPR)

For a dataset of n training inputs X =
{
xi ∈ Rd

}n
i=1

and
observations y = {yi ∈ R}ni=1 the standard formulation of
GPR aims at inferring a latent function f : Rd → R via a

noisy observation model

yi = f(xi) + εi, εi ∼ N (0, σ2). (1)

The Gaussian Process is defined as a distribution over
functions f = f(x) ∼ GP(µf (x), kf (x,x′)) with mean
function µf (x) and covariance function kf (x,x′).

B. Prior Approximation via Inducing Inputs

The most prominent weakness of standard GPs is their
cubic complexity in the number of training inputs O(n3)
due to the inversion of the n × n kernel matrix Kf f =
kf (X,X). This limits their usability, especially for applica-
tions in robotics and on large datasets. A common approach
to overcome this problem is to sparsely approximate the
kernel matrix Kf f using the Nyström low-rank representa-
tion Kf f ≈ Kfuf

K−1
ufuf

KT
fuf

. Therefore, a number of m
inducing points (or pseudo-inputs), where m � n, must
be chosen at locations Z = {zi}mi=1 to optimally represent
the training data. The corresponding function values are
denoted as uf = f (Z). This decreases the computational
cost to O(m2n), which can further be reduced by variational
approximations utilizing Stochastic Gradient Descent (SGD)
(see IV-D). As the quality of the approximation largely
depends on the number and location of inducing inputs, it
is suitable to treat the inducing points as hyperparameters,
and optimize their locations Z with respect to the marginal
likelihood.

C. Variational Inference for Multiple Latent Functions

In the case of heteroscedastic GPR, parameters of the
likelihood function can vary with the input. For Gaussian
likelihoods this changes the original GP model (eq. 1) to yi ∼
N (f(xi), ζ (g(xi))), where g(x) ∼ GP(µg(x), kg(x,x

′))
is a second latent function that can also be modeled by a
GP. The function ζ (.) : Rd → Rd+ is a link function to
guarantee positive values for the noise parameter [18].

In a model with multiple latent functions the marginal
likelihood p(y) is not analytically tractable and poste-
rior approximations are required. Instead of calculating the
intractable posterior p(f ,g|y), it can be lower bounded
with variational distributions q(f) and q(g), a technique
called variational inference. The main principle of this
technique is the estimation of the parameters of q(f) and
q(g) by minimizing their distance to the true posterior
distribution measured by the Kullback-Leibler-divergence
KL (q(f)q(g)‖p(f ,g|y)). Assuming that the latent functions
f and g are a priori independent for each data point, Saul et
al. [19] derive the variational lower bound

L =
n∑

i=1

∫
q (fi) q (gi) log p (yi | fi,gi) dfi dgi

−KL (q (uf ) ‖p (uf ))−KL (q (ug) ‖p (ug)) .

(2)

This bound leverages the aforementioned sparse formulation
and aims at calculating sparse approximate posteriors as
normal distributions q(uf ) = N

(
uf |µf ,Sf

)
and q(ug) =

N
(
ug|µg,Sg

)
over inducing functions uf and ug . For
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q(f) = N (f |mf ,Σf ) follows

mf = Kfuf
K−1

ufuf
µf , (3)

Σf = Kf f + Kfuf
K−1

ufuf
(Sf −Kufuf

)K−1
ufuf

Kuf f . (4)

The equations for q(g) = N (g|mg,Σg) follow accordingly.
Training the model is then realized by minimizing −L with
respect to the variational parameters µf,g and Sf,g as well
as the hyperparameters in the covariance matrices K∗∗.
The latter follow from problem-specific covariance functions,
which are chosen to account for prior information (see IV-B).

IV. METHODS

To form our model, we consider a mobile robot acting in
an environment with a known map, sufficiently accurate self-
localization within this environment and a sensor for people
detection. A detected pedestrian is represented as a 2D-point
pk = (x1,k, x2,k, tk)T in world coordinates corresponding
to a measurement taken at time tk. The goal then is to
model human activity as an intensity function of space and
time, by first defining a count of people ci within a spatio-
temporal domain Si ⊂ R3 so that ci = |{pk ∈ Si}|. By
partitioning the environment into an evenly spaced grid of
n cells, we create each domain Si as a cell with square
spatial shape with edge length rs and temporal resolution
τ . Since the robot is moving through the environment, each
cell is visible to the robot for a different time period. This
time period is calculated based on the field of view (FOV)
of the sensor, which can be approximated by a geometrical
shape. For example, the projected 2D-detection area of a
3D-Lidar-based detector can be approximated by a circle,
which is pruned at known obstacles in the environmental
map based on a ray casting model. A people count ci ≥ 0
and observation duration 0 < ∆i ≤ τ is then assigned to
each visible cell. Consequently, the robot’s deployments over
time generate the set of input data X = {(x1,i, x2,i, ti)}ni=0,
which consists of the spatio-temporal centers of the cells. The
corresponding target are the observed rates y = {ci/∆i}ni=0

of people in each cell. Considering the rates instead of counts
is based on the following idea: Since a target value yi can
both be large due to a large ci or a small ∆i, it varies
more smoothly at edges between areas with shorter and
larger observation periods ∆i. As people move through the
environment in a continuous fashion, areas with consistent
values yi then indicate homogeneous activity which merits
greater weighting when optimizing the marginal likelihood.
However, irregular spatial patterns of the values in y indicate
either short observation durations or irregular occurrences of
people, which in contrast should be captured by a larger input
noise in the likelihood function. In Fig. 2, an overview of the
input data and resulting rate y is given, along with a ground
truth which was created without any constraints on the FOV
or observation duration.

A. Likelihood Function

To fit a model in the GP-framework, a likelihood function
must be chosen that best represents the distribution of
observations y. Count data, such as person occurrences, can

e.g. be viewed as events from an inhomogeneous Poisson
process [16]. However, this requires strong assumptions on
the independence of events (e.g. people cannot arrive in
groups), considers discrete data instead of a continuous rate
yi and the variance of the Poisson distribution is directly
coupled to its rate parameter. Instead, we consider the rate
yi ∼ N (f(xi), σ

2
i ), to be normally distributed with input-

dependent noise σ2
i , which can be defined independently

from the latent mean function f(xi) and makes training less
prone to outliers. When standardizing the target values yi to
zero-mean and a standard deviation of one, this consistently
leads to better results than strictly positive likelihoods, such
as the Gamma distribution. The latter would additionally
require manually tuned normalization for different input
datasets to achieve consistent results. As the variance is
defined by a latent function σ2

i = ζ (g(xi)), we chose the
softplus function as link function ζ to ensure for positive
values. Although the latent function f(xi) can result in neg-
ative values, the rescaled predictive output of a tuned model
contained very few zero-crossings on all tested datasets,
making it sufficient to use the absolute value of the model
output for predictions.

B. Definition of Covariance Functions

Covariance functions allow encoding prior beliefs about
the latent function of interest and can be viewed as a measure
of how similar two functions are. Different suitable covari-
ance functions can also be connected as compositions. For
the present use case of representing human activity, each data
point is separated into its spatial component xs ∈ R2 and
temporal component xt ∈ R and the following covariance
function is defined

kf (xs, xt,x
′
s, x
′
t) = ks (‖xs − x′s‖2) kt (|xt − x′t|) . (5)

This multidimensional product kernel connects a spatial
component ks with a temporal component kt and results in a
prior over functions that varies across all three dimensions.
As the spatial kernel, the Matérn-5/2 covariance function

ks(r) = σ2
s

(
1 +

√
5r

ls
+

5r2

3l2s

)
exp

(
−
√

5r

ls

)
(6)

is chosen, where ls and σ2
s are hyperparameters. This type of

covariance function is a common choice to model structural
correlations, as it provides a good balance between smooth-
ness and capturing sudden changes [20].

Oftentimes, human activity can be considered periodic in
time. The number of people at different locations is subject
to a regularity that is determined, for example, by the time
of day, working hours or store opening hours. Therefore,
as prior information for the time-dependent person rate, we
specify the rate to be subject to periodicities. This can be
encoded by a periodic kernel [21], which is defined as a
sum of trigonometric functions

kt (r) =

ψ∑

i=0

σ2
t,i exp

(
−1

2

sin2
(
γ−1
i r

)

l2t,i

)
(7)
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where the variances σ2
t,i, periods γi and lengthscales lt,i are

hyperparameters. The variances σ2
t,i determine the overall

influence of the specific component and lt,i controls the
smoothness.

Regarding human activity, the kernel kf thus represents
two important properties: 1.) Spatial continuity, i.e. if people
are seen at a specific location it is more likely to also
see people at locations that are very close. Since humans
move through space in a continuous manner, this property
is desirable to model. 2.) Temporal periodicity, i.e. when
people are seen repeatedly at a specific location (e.g. every
morning at an entrance) it is likely to see people there
in the future at that specific point in time. The kernel kg
corresponding to the latent function g is simply realized by
a radial basis function (RBF) kernel. This is sufficient since
then the predictive variances of different areas align for larger
prediction horizons.

C. Initialization of Hyperparameters

Due to the dependence on many data points as well as
hyperparameters, optimization of the lower bound (eq. 2)
is prone to get stuck in local minima. A major influencing
factor is the initial guess of the hyperparameters. In the
present scenario, this applies in particular to the periods γi
and variances σ2

t,i of the temporal kernel kt (eq. 7). With
algorithm 1, we therefore propose a method to obtain the
characteristic temporal periods of a spatial domain based on
non-uniform frequency analysis and a subsequent clustering
step. The algorithm builds on the idea [1] of transferring
the time-dependent activities at different locations into the
frequency spectrum and making an approximation via a
Fourier series with a reduced number of components. By
squashing the cells Si of the spatio-temporal grid along the
temporal dimension, a spatial grid with a time series of
rates ys ⊂ y for each spatial cell s results. A subset T ,
containing a number of l spatial cells, is then taken from
this spatial grid by sampling, where each cell is given a
weight of its total counts over all timesteps. This results in
the selection of cells that are more likely to have high activity
but does not completely exclude cells with lower activity.
Due to the movement of the robot, the rates within ys are
non-equidistant with respect to the time of their detection.
The conversion to the frequency domain is therefore made
by means of the Non-uniform discrete Fourier transform
(NUDFT) [22] (line 5). This requires a set of candidate
periods O, which is defined to contain equally spaced periods
within an interval (e.g. between one hour and seven days).
Additionally, the algorithm needs an upper limit ψmax of
periods to check and a scaling factor σ2

max as the maximum
variance. The optimal number of periods for each cell is
determined by five-fold cross-validation, by comparing the
test data with the signal that was reconstructed from a
reduced number of frequency components (lines 3 to 11).
The total number of periods ψ of the whole domain is then
calculated as the mean of the number of periods of the cells
in T (line 16). The periods are calculated by weighted k-
means clustering, where the complex magnitudes serve as

Algorithm 1: Init. hyperparameters of periodic kernel
Input : y, O, T , ψmax, σ2

max

Output: ψ, γ̂1..ψ , σ̂2
1..ψ

1 foreach s ∈ T do
2 Let ys be the rates at times ts of spatial cell s;
3 Repeat lines 4 – 11 as cross validation for i = 1..5;
4 Split ys into contiguous train/test sets ytr

s /y
ts
s ;

5 ξi ← NUDFT(ttrs ,y
tr
s , O); // To cplx. components

6 for p = 0 to ψmax do
7 ξi,p ← p largest complex numbers in ξi w.r.t.

magnitude;
8 Oi,p ← Set of periods, corresponding to ξi,p;
9 ŷp ← InverseDFT(ξi,p, Oi,p);

10 ei,p ← RMSE(ŷp,y
ts
s );

11 end
12 is, ps ← arg mini,p(e1,0, ..., e5,ψmax) ;
13 As ← Save element-wise magnitudes of ξis,ps ;
14 Os ← Set of periods, corresponding to ξis,ps ;
15 end
16 ψ ← bMean(

{
p1, ..., p|T |

}
)c;

17 γ̂1..ψ ← obtain k-means centroids with k = ψ using
{Os | s ∈ T } with weights As;

18 σ̂2
1...ψ ← Sum weights As in clusters and normalize to[
0, σ2

max

]
;

weights (line 17). This ensures that locations with a large
recurring number of people are more influential than cells
that have less activity.

As the full covariance matrix Kf f is not computed, but
approximated by covariances over inducing points, their
positioning is an additional factor influencing the model
quality. Although the inducing points are treated as hyperpa-
rameters and therefore modified during optimization, proper
initialization reduces the time to find sufficient solutions.
Given a ratio α ∈ (0, 1], the number of inducing points
is selected as m = bαnc. The location is then determined
via k-means clustering (k = m) of the spatio-temporal
training inputs X , where each input point is weighted by
its individual observation time ∆i. By weighting the inputs,
the initial inducing points Ẑ resulting from the algorithm
are primarily placed at locations that have been observed
for longer periods and hence provide more reliable data.
An exemplary arrangement of inducing points is shown in
Fig. 2 (b).

D. Model Optimization

As indicated in section III-B, the optimization of the
hyperparameters does not scale cubically when latent in-
ducing locations Z are used. When the covariance matrices
of the variational distributions are parametrized as Cholesky
Sf = LfL

T
f and Sg = LgL

T
g , optimizing the lower bound

L (eq. 2) scales with O(nm2 + 2nm) [19]. By choosing
a ratio parameter of α so that m � n, model inference is
significantly sped up compared to the standard GPR case. We
empirically chose a parameter of α = 0.02 to obtain a good
balance between computational speed and prediction quality
on the evaluated datasets. Model optimization is executed
for three types of parameters: 1.) Variational parameters
corresponding to q(uf ) = N

(
uf |µf ,Sf

)
and q(ug) =
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Fig. 2: Input and output data (ATC dataset) of the model at midday (top) and evening (bottom). People detections pk (blue) and observation
durations ∆i are shown in (a). Resulting rates y for a bin duration of τ = 60 min and initial inducing points (white plusses) are shown
in (b). A ground truth with fully observed cells is given for reference in (c). The resulting model outputs are shown in (d) and (e) with a
white border indicating the areas that were never observed.

N
(
ug|µg,Sg

)
, 2.) the lengthscale, variance and periodicity

hyperparameters of the covariance functions kf and kg ,
and 3.) the location of inducing inputs Z. For this, two
separate optimization techniques based on SGD are utilized.
The variational parameters are optimized using the natural
gradient method since the inherent minimization of KL-
divergence as part of this method integrates well with the
variational framework and leads to fast convergence [23].
The kernel hyperparameters and inducing point locations
are optimized with the Adam optimizer [24]. Steps of both
optimizers are executed in an alternating fashion, with a
linearly decaying learning rate for the first 100 optimization
steps. The n integrals as part of the lower bound L are solved
by two-dimensional Gaussian quadratures. As the methods
utilize SGD, the optimization can efficiently be separated
into mini-batches.

E. Predicting with the Model

After maximization of the variational lower bound and
optimization of hyperparameters, the model can be queried
via its predictive distribution. For arbitrary new data in-
puts X∗ = {x∗i }n

∗

i=1 the predictive distribution is given
as
∫
p (y∗i | f∗i ,g∗i ) q (f∗i ) q (g∗i ) df∗i dg∗i . This analytically

intractable integral can be computed using Gauss-Hermite
quadrature to obtain the predictive mean my and variance
σ2
y . The specific values of the predictive mean depend on

the chosen spatial resolution rs and temporal resolution τ of
the input grid. For a subset X ′ ⊂ X∗ of finite extend (e.g.
the FOV of the robot and a given duration) the expected
number of people can then be calculated as a point estimate

1
r2s τ

∫
my dX ′. Exemplary model outputs of the mean my

and standard deviation σy for two points in time are shown in
Fig. 2 (d) and (e). The uncertainty increases both outside the
visited area and in locations where high variability of human
activity occurs. In addition to the predictive uncertainty, this
indicates in which areas further model exploration could be
useful.

V. EXPERIMENTS

All the following experiments were performed with the
same parameterization: l = 10, ψmax = 10, σ2

max =
0.95, α = 0.02. The initialization routine (Algorithm 1)
was done with a fixed grid resolution of 5.0 m × 60 min,
whereas the grid resolution resulting in X was varied for
different experiments (respectively specified). The method is
implemented in Python based on the GPflow library [25] to
perform the training and inference GPU-based.

A. Datasets

We evaluated the model on two freely available long-term
datasets containing real-world pedestrian detections. Both
datasets represent typical settings for mobile robots but vary
in terms of human activity and the number of pedestrians.

ATC Dataset [26]: This dataset contains measurements
of tracked pedestrians in a shopping center in Osaka, Japan,
covering an area of ca. 900 m2. Data collection was done
with multiple 3D range sensors, every week on Wednesdays
and Sundays, resulting in 92 days in total. We downsampled
the data to a detection rate of 0.5 Hz, resulting in an
average of about 1700 entries per square meter and day. For
evaluation, we used a subset of 10 Wednesdays for training
and 4 days for testing.

Office Dataset [27]: The second dataset contains tracks
of people based on measurements by a single stationary 3D-
Lidar in an office environment of the University of Lincoln,
England, covering an area of ca. 85 m2 with averagely about
300 entries per square meter and day. The dataset covers 22
consecutive days, of which we used 10 weekdays for training
and 5 weekdays for testing.

As both datasets contain measurements taken by stationary
sensors, data collection by a moving robotic system must be
simulated. For this purpose, robot trajectories with an aver-
age moving speed of 0.5 m s−1 and intermediate stationary
stops were specified manually. Then, only the measurements
within the FOV of the robot are processed. The FOV is
defined by a circle with a fixed radius and is pruned based
on the known occupancy maps of the environments to filter
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out pedestrians that would be obstructed by static obstacles.
Exemplary sets of measurements and robotic paths are shown
in Fig. 2 (a).

B. Evaluation Metrics and Baselines

The predictive quality of the model is measured with three
criteria. As the evaluation is conducted based on multiple
paths, each with different length and area coverage, the first
criterion is normalized root mean square error (NRMSE)
between model predictions ŷi and ground truth ygt,i

NRMSE =

√√√√ 1

ȳ2
gt ntest

ntest∑

i=1

(ŷi − ygt,i)
2
, (8)

normalized by the mean test data value ȳgt. The ground
truth value is obtained in a similar way as the creation of
training data y, but ignoring the occupancy map and setting
the observation durations ∆i = τ . It therefore represents
the people count cgt,i during testing time in the cells of
the spatio-temporal grid that were visited during training,
using the same spatial and temporal resolution. The second
criterion is the Chi-square distance

χ2−distance =

ntest∑

i=1

(ŷi − ygt,i)
2

(ŷi + ygt,i)
, (9)

where larger values indicate less accurate prediction com-
pared with the test data. These two metrics can be regarded
as the standard metrics when comparing human activity or
flow models [3], [6], [16], [27]. However, these criteria have
limited expressiveness in terms of the usefulness of the model
e.g. for supporting unobstructed navigation or task planning.
Vintr et al. [3] therefore proposed new criteria to evaluate
these models based on their ability to support human-aware
navigation. The benchmark’s main idea is to rate models
better which avoid disturbance of people by executing move-
ments of the robot outside of their immediate walking paths.
The criterion considers a number of p imaginary navigation
scenarios, where a robot should navigate between a set of
goal locations at different points in time. The navigational
path is planned based on the output of the respective model,
where higher activity corresponds to higher path costs. All
resulting paths are then ordered ascending by their total cost
and the service disturbance

E(bprc) =

bprc∑

k=1

ek (10)

is defined as a sum of robot-human encounters ek during test
time. Robot-human encounters ek are the person detections
that occur within a 1 m radius to the robot while it is
simulatively traveling the path at a speed of 0.5 m s−1. The
value r ∈ [0, 1] is referred to as servicing ratio and defines
the number of navigation actions that should be performed.
A lower servicing ratio gives more freedom to the robot to
discard paths that have high costs, e.g. when the number of
expected people is large.

Besides CoPA-Map, the following methods are compared

in the evaluation.

The Maximum-Likelihood (ML) model calculates the mean
of all observed rates in each cell. As a result, the rates are
assumed to be constant over time.

Poisson spectral model [16] (Fr-AAM) is a state-of-the-
art approach, modeling human activity as an inhomogeneous
Poisson process by a spatial grid with a temporally continu-
ous rate function. For each cell of the grid, a spectral analysis
based on the FreMEn method [1] is performed repeatedly to
obtain the most influential spectral components, from which
the predictive signal is then reconstructed.

Warped-Hypertime [6] (WHyTe) is a state-of-the-art ap-
proach for continuous activity and flow modeling. It is based
on a frequency analysis by the FreMEn method and subse-
quent projection into a circular space. As training data, it
directly uses people detections pk and outputs the probability
of occurrence given an input point. Because of this, we do
not directly compare the model output to the quantitative
value cgt,i, but only include this method in the evaluation
of service disturbance. As the method uses a pre-defined
number of clusters, we separately trained models with up
to seven clusters and only include the variant with the best
result. The method is also capable of estimating movement
direction and speed, although this is not used in the present
evaluation to ensure direct comparability to the other models.

The Gaussian Process model (GP-Hom) is based on the
same parameters as the proposed method but realized as a
Log Gaussian Cox process. The method uses a homoscedas-
tic Poisson likelihood for inference by using a single latent
function, transformed with an exponential function to only
output positive values which is required for the rate param-
eter of the Poisson distribution.

C. Validating Hyperparameter Initialization

The first experiment demonstrates the importance of
proper initialization of the hyperparameters of the temporal
kernel kt. Given the data from an 185 m2 area of the ATC
dataset, the model was trained with different periodic kernels
and an RBF-kernel for comparison. Besides our proposed
initialization procedure (Alg. 1), we used ten different pe-
riodic kernels with variances chosen uniformly randomly
in (0, 1) and one to two random periods as multiples of
30 minutes and smaller than 30 hours. Our initialization
procedure results in two periods of 12 and 6 hours with
variances of 0.9 and 0.42 respectively. Figure 3 shows the
negative log-likelihood (NLL) loss during training and the
RMSE relative to the ML model on the four independent
test days. Due to the high variance of the training data, NLL
shows little variation for the periodicity parameter. However,
suitable parameters of the periodicities lead to significantly
better extrapolations, which is reflected in the values of the
RMSE. A complete disregard of periodicities (RBF kernel)
further results in unsatisfactory predictive results, since long-
term changes cannot be captured and the predictive horizon
is limited by the kernel’s lengthscale parameter.
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Fig. 3: NLL and relative RMSE (lower is better) for an RBF
kernel, a periodic kernel with the proposed initialization routine
and periodic kernels with randomly initialized parameters. Both
the ML and CoPA-Map model were trained with a 0.5 m × 60 min
resolution.

D. Spatio-Temporal Prediction

In order to evaluate the predictive quality of CoPA-Map,
we consider the two different scenarios of a static and moving
robot. In the first, a permanently motionless robot is assumed,
and a total of five different positions of the robot are
considered separately leading to a constant observation time
of ∆i = τ for every cell. For the moving case, we created 9
different paths with varying spatial coverage of the robot’s
FOV (between 40 m2–70 m2 for Office and 100 m2–200 m2

for ATC datasets) and different waiting times along the paths.
Thus, different cases are covered, where some locations may
be permanently in the robot’s FOV and others may be visited
only a few times a day. Table I shows the results for NRMSE
and χ2-distance. Since these metrics depend on the chosen
spatial and temporal resolution (rs and τ ), four different
combinations are shown. For the static case of the Office
dataset, CoPA-Map generally leads to better results than the
comparative methods. In the ATC experiments, there is a
location in the static case with many people staying for a long
time in a small area. Such phenomena can partly be better
represented by the discrete models or the homogeneous GP.
The advantage of heteroscedastic modeling of CoPA-Map
becomes clear in the moving case, where the method gives
significantly better results. Singularly occurring high target
values (e.g. due to very short observation durations) are given
less weight by CoPA-Map by adjusting the variance during
training. Fr-AAM, on the other hand, strongly approximates
areas with high numbers of people, but as a discrete model

suffers in terms of error metrics when people appear in
slightly different locations in the test data.

The path with the largest area coverage at the smallest
resolution (ATC, 0.5 m × 30 min) resulted in 147,500 in-
put points and ca. 2860 inducing points. Training took a
maximum of 28 minutes to converge in this case (Nvidia
GTX1070, i7-8700 CPU, 16 GB RAM). A duration of this
magnitude thus makes it possible to repeat the training
periodically (e.g. during the charging process) with current
data.

E. Service Disturbance

The ability of the model to provide for active avoidance
of areas with high human activity during navigation is also
considered in two scenarios. Both the hallway and shops
scenarios are created based on the ATC dataset, the former
involving a strong flow of people and the latter a splitting
of people movement and longer stationary stays. The input
data was again created by a simulated robot movement
and the edge weights of the resulting cost map are not
directional. Navigation scenarios are created between four
positions (A�B�C�D, depicted in Fig. 5), five times per hour
between 9 a.m. and 9 p.m. leading to p = 240 scenarios for
all four test days. As a baseline, the Occupancy Map model
indicates how many encounters would occur, if the robot
would always drive the shortest route by metric distance.
Fig. 4 shows the number of encounters (service disturbance)
over the servicing ratio r and Fig. 5 gives exemplary model
outputs and navigational paths. CoPA-Map and WHyTe as
spatially continuous models capture the modality of human
activity in the hallway scenario significantly better than the
discrete models. These models, such as Fr-AAM, often lead
to sinuous paths, increasing the number of human encounters.
CoPA-Map and WHyTe perform well for smaller service
ratios (< 40 %), since only the navigation tasks in the
morning and evening hours are carried out, during which
fewer people are expected. Compared to WHyTe, CoPA-
Map has advantages when multimodal pedestrian movements
occur, as can be seen in the shops scenario. As WHyTe
does incorporate the detections pk directly, areas with shorter
detection times, and thus fewer detections, might be under-
represented in the data. The underlying GMM is then more
likely to underfit. In contrast, e.g. in Fig. 5 (lower) CoPA-
Map more accurately represents areas with many pedestrians,
resulting in better paths for people avoidance. For a servicing

TABLE I: Predictive performance of the evaluated models for a static and moving robot. NRMSE is given as mean and χ2-distance as a
sum over the results from different paths/locations. χ2-distance is given as multipliers of 104 for brevity of notation.

Office ATC
0.5 m×30 min 0.5 m×60 min 0.75 m×30 min 0.75 m×60 min 0.5 m×30 min 0.5 m×60 min 0.75 m×30 min 0.75 m×60 min
NRMSE χ2dst NRMSE χ2dst NRMSE χ2dst NRMSE χ2dst NRMSE χ2dst NRMSE χ2dst NRMSE χ2dst NRMSE χ2dst

St
at

ic

ML 2.66 8.80 2.34 8.01 2.63 8.66 2.25 7.73 1.71 415.33 1.76 504.95 1.73 515.34 1.7 517.45
Fr-AAM 2.71 8.57 2.4 7.82 2.76 9.12 2.33 8.07 1.71 412.19 1.9 506.18 1.75 512.83 1.79 516.97
GP-Hom 2.75 8.05 2.48 8.88 2.79 8.69 2.42 9.02 2.17 528.62 1.7 524.94 1.68 516.96 1.66 525.44
CoPA-Map 2.59 6.74 2.33 6.50 2.65 6.95 2.32 6.94 1.78 524.29 1.69 578.23 1.8 655.80 1.7 603.43

M
ov

in
g ML 2.61 35.27 2.34 32.03 2.57 35.75 2.77 38.89 1.79 456.92 1.94 460.32 1.84 477.26 2.0 481.37

Fr-AAM 2.6 33.72 2.38 30.76 2.61 33.89 2.67 34.89 1.36 345.00 1.31 438.58 1.32 420.39 1.28 429.97
GP-Hom 2.58 31.35 2.34 33.49 2.56 33.60 2.32 34.74 1.57 649.01 1.5 639.74 1.41 567.46 1.37 576.19
CoPA-Map 2.61 50.52 2.13 24.91 2.33 25.28 2.19 25.20 1.44 606.58 0.82 172.07 0.8 164.56 0.69 127.15
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Fig. 4: Service disturbance (encounters) for two navigation scenar-
ios on the ATC dataset (lower is better). Smaller servicing ratios
give more freedom to avoid peak hours of human activity and
indicate if a model accurately captures temporal variations.

Fig. 5: Exemplary model predictions (intensity of red color scaled to
respective maximum model output) and resulting paths (green) from
the service disturbance experiment. The upper images represent the
hallway, the lower images represent the shops scenario. Pedestrian
data is shown as blue dots. Obstacles and areas outside the FOV
are masked in white. Models requiring a grid representation were
trained with resolution 0.5 m × 60 min.

ratio of r = 1 CoPA-Map leads to ca. 32 % less encounters
over all paths compared to the Occupancy Map model for
both the hallway and shops scenarios.

VI. CONCLUSION

We present CoPA-Map, a non-parametric method for
spatio-temporal continuous modeling of human activity.
Compared to other methods, CoPA-Map has advantages with
respect to the quality of predictions and path planning, es-
pecially when pedestrian data is collected by moving robots.
The model provides the basis for an extendable framework,
that could also e.g. incorporate temporal trends through non-
stationary covariance functions. As CoPA-Map is a single-
output model, extensions need to be investigated to also
incorporate movement direction and speed of pedestrians,
e.g. by multi-output Gaussian Processes.
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