SPECIALIZATION OF MORDELL-WEIL RANKS
OF ABELIAN SCHEMES OVER SURFACES TO CURVES

TIMO KELLER

ABSTRACT. Using the Shioda-Tate theorem and an adaptation of Sil-
verman’s specialization theorem, we reduce the specialization of Mordell-
WEeil ranks for abelian varieties over fields finitely generated over infinite
finitely generated fields k to the the specialization theorem for Néron-
Severi ranks recently proved by Ambrosi in positive characteristic. More
precisely, we prove that after a blow-up of the base surface S, for all ver-
tical curves S; of a fibration S — U C P,lC with = from the complement
of a sparse subset of |U|, the Mordell-Weil rank of an abelian scheme
over S stays the same when restricted to S;.

1. INTRODUCTION

The Birch-Swinnerton-Dyer (BSD) conjecture relates in a surprising way
properties of the L-function L(A/K, s) of an abelian variety A over a finitely
generated field K to arithmetic and geometric properties of A/K itself.
Originally formulated for K a number field or a function field in one variable
over a finite field F,, it has been extended to function field of arbitrary
transcendence degree over finite and finitely generated fields of positive
characteristic in [Kell9] and [Qin20], respectively. In particular, it predicts
that the vanishing order of L(A/K,s) at s = 1 equals the rank of the
finitely generated group A(K). In the case where the characteristic p of K
is positive, the BSD conjecture for A/K is equivalent to the finiteness of an
{-primary part of its Shafarevich-Tate group by work of many people, most
recently [Qin20|, where ¢ # p. As the conjecture is more accessible when
the (absolute or relative over a finitely generated field) transcendence degree
of K is 1, it is desirable to investigate the behavior of BSD for A/K when
K is specialized to a finitely generated field of lower transcendence degree.
More geometrically, this corresponds to restricting the abelian scheme over a
surface model of the function field to curves on this surface.

In [Kell9, §7] we used a Lefschetz hyperplane argument to prove that
the BSD conjecture for all abelian schemes o7 over all surfaces S over finite
fields implies the BSD conjecture for all abelian schemes over all bases of
dimension greater than two. The crucial property used was that the rank
of the restriction of the Mordell-Weil group «7(X) to an ample smooth
irreducible hypersurface section Y of X of dimension > 2 remains invariant.
However, the reduction to the case where the base is a curve could not be
completed because we could not construct curves C' on the surface S such
that the ranks of &7 (S) and &7 (C) are equal. In the present article, we fill
this gap by showing that, possibly after blowing up S, there are infinitely
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many such curves. Note that the truth of the BSD conjecture is invariant
under blow-ups.

In section 2 we observe that Silverman’s specialization theorem [Sil83] holds
in our setting, too, because we have the usual height machine from [Con06].
Section 3 is the core of this article; here, we prove that after blowing up the
base surface S, there is a proper generically smooth fibration S — P! such
that infinitely many vertical curves S, have the property that «7(S) ® Q —
7 (S;) ® Q is an isomorphism:

Theorem 1.1 (Theorem 3.8). Let k be an infinite finitely generated field. Let
K|k be a finitely generated regular field extension and S/k a smooth separated
(not necessarily proper) geometrically connected surface with function field
K. Let A/K be an abelian variety with Trgp(A) = 0 or Trg,(A)(k) finite,
and o/ an extension of A to an abelian scheme over a dense open subscheme
U of S.

Then for infinitely many curves C' on U, one has a specialization isomor-
phism

AK) Q= 7 (C)®Q

of rationalized Mordell-Weil groups. More precisely, for all fibrations of S
over a curve U, there is a d > 1 such that one can take infinitely many
vertical curves Sy for x € |U| of degree [k(z) : k] < d.

Our proof combines the specialization theorem for Néron-Severi ranks
recently proved by Ambrosi [Amb21, Corollary 1.7.1.3] with the Shioda-Tate
formula. We the adapt Silverman’s specialization theorem to prove our result
for all abelian schemes.

We originally intended to use this theorem to verify the missing hypothesis
in [Kell9, Theorem 7.0.3]. However, the reduction of the BSD conjecture
for all abelian varieties over function fields of any transcendence degree over
k to that of 1-dimensional function fields is already contained in [Geil9,
Corollary 5.4].

Notation 1.2. The set of closed points of a scheme X is denoted by | X|. For
a point v of a scheme, we denote its residue field by x(v).

2. THE RANK DOES NOT DROP OUTSIDE A SET OF BOUNDED HEIGHT

We use the definition of a fibered surface from [Gor79, 2.1]:

Definition 2.1. A fibered surface € — S over a field k consists of the follow-
ing data: a smooth projective geometrically irreducible curve S/k, a proper
smooth surface ¢’/k and a proper flat morphism € — S cohomologically flat
in dimension 0 with fibers of dimension 1 and smooth projective geometrically
irreducible generic fiber.

Remark 2.2. That 7 : € — S is cohomologically flat in dimension 0 means
that one has Og = 7,0 universally. If the proper flat morphism 7 admits
a section, one can omit the word ‘universally’. See the remarks after the
definition in [Gor79, 2.1].

For the definition of the K|k-trace see |[Con06| and [Gor79, 4.2].
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Theorem 2.3. Let € — S be a fibered surface with generic fiber C/K.
Assume that the field extension K|k is regular (primary in [Gor79, 4.2]).
Then the K|k-trace of A = PicOC/K is an abelian variety over k purely

mseparably isogenous to Pic%/k, / Picg/k,.
Proof. See |Gor79, Proposition 4.4]. O

Remark 2.4. The K |k-trace somewhat captures the constant part of /X,
see [Con06, Example 2.2].

Theorem 2.5 (Mordell-Weil-Néron-Lang). Let K|k be a finitely generated
reqular field extension and A/ K an abelian variety. Then A(K)/ Trgp(A)(k)
is a finitely generated abelian group.

Proof. See [Con06, Theorem 7.1]. O

As in [Waz06, text before Proposition 1|, the height of an effective divisor
on a smooth projective variety with respect to an embedding in projective
space is its degree as a closed subvariety of projective space.

Theorem 2.6. Let K|k be a finitely generated regular field extension with
smooth projective model S/k, A/K an abelian variety with Trg;,(A) =0 or
Trii(A)(k) finite (e.g., k finite), and </ an extension of A to an abelian
scheme over a dense open subscheme U of S. For all M > 0, all but finitely
many curves C — U of degree < M have the property that the specialization
morphism A(K) ® Q — o7/ (C) ® Q is injective.

Proof. The theorem for k of characteristic 0 is [Waz06, Theorem 1 and
the text before Proposition 1|. We merely describe the necessary changes
when k is of positive characteristic: We only have to see that we have the
‘height machine’ for the arithmetic and geometric height in [Waz06| (which
generalizes Silverman’s specialization theorem [Sil83]).

The properties [Waz06, Proposition 2| of the ‘arithmetic height machine’
can be found for Conrad’s generalized global fields in [Con06, text af-
ter Theorem 9.3] (note that (vi) is an immediate consequence of ‘quasi-
equivalence’ since a curve has Néron-Severi group Z). The ‘canonical
height machine’ [Waz06, Proposition 3| for abelian varieties can be found
in [Con06, text after Example 9.5].

The required properties of the ‘geometric’ height are proved in [Lan83,
Chapter 6, Theorem 5.4] with the Northcott property in [Lan83, Chapter 3,
Theorem 3.6] or [Con06, Lemma 10.3].

We sketch the proof: As almost all curves on A can be realized as horizontal
curves with respect to finitely many fibrations of A over curves (possibly after
blowing up A) [Waz06, Proposition 1], suppose we are in such a situation:
Assume A is fibered as p : A — C over a curve C. Fix a line bundle L
on A and denote by D, its restriction to the generic fiber A, of p. As
a consequence of these properties, one gets formally in the same way as
in [Waz06, Theorem 3| with the notation from there the equation

7 arith
w — 7 geom (P )
telCL g ()00 RE () (Ap,Dp) " P
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for a section P of A/C, independently of the choice of the arithmetic height
on C. The theorem follows from this and the Northcott property: For
Rt (£) > 0, h?ﬁf?Lt)(Pt) must be > 0 if h%ZTIDP)(Pp) > 0, but points of
non-zero height are non-torsion. O

3. THE RANK DOES NOT GROW OUTSIDE A SPARSE SET

In this section, S/k is a smooth, not necessarily proper, geometrically con-
nected surface over a finitely generated field k of positive transcendence degree
over its prime field if it has positive characteristic, and %'/S a proper smooth
morphism with fibers geometrically connected curves (“relative curve”). We
prove our main result on the specialization of Mordell-Wei ranks first for Ja-
cobians in Corollary 3.7 and then for general abelian varieties in Theorem 3.8
using the inequality from the previous section.

Using the following lemma, we can assume that there is a smooth fibration
of our surface S/k to a non-empty open subscheme U of P,lﬁz

Lemma 3.1. Let k be an infinite field and S/k a smooth separated geometri-
cally connected surface (not necessarily proper). There is a blow-up S—S
with S < S a proper compactification of S such that S admits a proper flat
morphism to P,lC with smooth projective geometrically connected generic fiber.

Proof. Since S'is a smooth separated geometrically connected surface, it has
a smooth projective compactification S < S by Nagata compactification and
resolution of singularities of surfaces, which can be achieved using successive
blow-ups of smooth centers. Now the theory of Lefschetz pencils [SGA
711, Exposée XVII, Theoréme 2.5.2] (in characteristic 0; over finite fields,
use [JS12, Theorem 2.2|) gives a blow-up of S together with a proper morphism
to P,1€ with smooth generic fiber. (]

(A stronger version of Lemma 3.1 appears in [Waz06, Proposition 1],
which holds for all infinite fields. Note that it is not true that one can
realize almost all smooth irreducible curves on S as fibers of a fibration: For
example, suppose S smooth and projective with a smooth projective fibration
m S — U such that C = S xy {z}. Then one has Kg|c = K¢ for the
canonical divisor classes by the adjunction formula.)

Now restrict to a non-empty open subscheme U of P,1c over which S — P,l€
is smooth. The proper smooth relative curve %~—> S can be extended to
a proper smooth relative curve € = ¥ xg S — S by functoriality of blow-
ups [T'S21, Lemma 085S]; this does not change the generic fiber. Remove
from U the closed subscheme of points x such that € xy {z} =: €, — S, :=
S Xy {x} is not smooth. This subset is not equal to U because ¢ — S — U
is generically smooth.

In the following, assume S/k is a smooth geometrically connected surface
admitting a proper flat morphism to a non-empty open subscheme U of
P,lC with smooth and geometrically connected generic fiber. Consider the
following situation, where all vertical arrows are smooth proper morphisms
of relative dimension 1 and the squares are fiber product squares:
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Sk(U) > S < > Sx
Speck(U) < U > {x}
Speck

As above, U C P,lC is a non-empty open subscheme such that S|y — U
is smooth; such an U exists because S — P,lC is generically smooth. In the
following, we denote the restriction S|y again by S and the function field of
U by k(U). The right hand side of the diagram is constructed below; S, is
going to be the fiber of S/U over a closed point = € |U|, and hence a smooth
projective vertical curve in S over U.

We denote the rank of the Néron-Severi group of a variety X by p(X); it
is finite by [SGA 6, Exp. XIII, §5].

Lemma 3.2 (specialization of Néron-Severi rank). Assume k is a finitely
generated field of transcendence degree > 1 over F), or of characteristic 0
(i.e., an infinite finitely generated field).

Then there exists a d > 1 such that for infinitely many closed points x of U
with [k(x) : k] < d (the complement of a sparse subset of U ), the Néron-Severi
rank of the special fiber €, := € Xy Spec k(x) equals the Néron-Severi rank
of the generic fiber Gy == € Xy Speck(U) of the smooth proper relative
surface € — U: p(€r) = p(Cuw))-

Proof. This follows from [Amb21, Corollary 1.7.1.3 (1)] (for k finitely gener-
ated of positive transcendence degree over Fp) and [Cadl3, Corollary 5.4
(for k of characteristic 0) applied to the smooth proper morphism ¢ — U
with U a smooth and geometrically connected k-curve (a non-empty open
subscheme of P}). O

We now use the Shioda-Tate formula for the fibered surfaces ¢, /{z} and
Cr(uy/ Speck(U) (note that these are indeed fibered surfaces!) to translate
this equality of the Néron-Severi ranks of the generic and special fibers to
an (in)equality of (between) the Mordell-Weil rank of the Jacobian of the
relative curve ¢/S and the Mordell-Weil rank of €’|s, /Sy with S; < S the
vertical smooth projective curve constructed as the closed fiber of S — U
over z € |U].

Theorem 3.3 (Shioda-Tate formula). Let k be any field and € — S a fibered
surface over k. Call its generic fiber C'/K, its Jacobian o7 := Pic%/X and
B/k the K|k-trace of A = Jac(€k). Then tkNS(¥¢) =2+ 1k A(K)/B(k) +
>y (hy — 1) where hy is the number of k(v)-rational components of its fiber.
Proof. See |Gor79, Proposition 4.5 and its Corollary]. O

We first apply the Shioda-Tate formula Theorem 3.3 to the smooth proper
surface €,/ Spec k(x) fibered over the curve S,:
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Lemma 3.4. Let S, be the smooth projective geometrically connected curve
constructed as the closed fiber of S — U over x € |U].
Then one has p(%;) = 2+ 1k o/ (S3)/B(k) + 3,15, ((hw — 1) with hy, the
number of k(v)-rational components of the fiber €, of €; — Sy over v € |Sy|.
If € — S is a proper smooth relative curve, the error term E’UG‘Sz|(hU —1)
15 0.

Proof. The hypotheses of the Shioda-Tate formula Theorem 3.3 are satisfied
for the surface €, /{x} fibered over the curve S,. If ¥ — S is a proper
smooth relative curve, the error term vanishes trivially. O

We now apply the Shioda-Tate formula Theorem 3.3 to the smooth proper
surface €y,(ry/ Spec k(U) fibered over the curve Sy

Lemma 3.5. Denote the function field of S (equivalently, of Syn)) by K.
One has p(Cw)) = 2 + 1k o/ (K)/B(k).

Proof. The Shioda-Tate formula Theorem 3.3 applied to the fibered surface
Cr(vy/ Spec k(U) fibered over the curve Sy)/ Spec k(U) shows that

p(Gowy) =2+ 1k (K)/B(k)+ > (hy—1),
VE[Sk()]

where h,, denotes the number of x(v)-rational irreducible components of the
fiber (gv of (gk(U)/Sk(U)

But a closed point v € Sy of the generic fiber of S/U gives rise to a
horizontal curve S,/U by taking its closure in S D Sy). Now if €, =
Crv) X Sy {v} were reducible, infinitely many of the closed fibers of the
family %’|s, — S, had reducible fibers, a contradiction to € /.S being a fibered
surface. Hence the error term vanishes. U

We now compare the Mordell-Weil group of the Jacobian & of the fibered
curve €/S to the Mordell-Weil group of the Jacobian A of its generic fiber:

Lemma 3.6. Restricting a section of the abelian scheme &/ — S to the
generic point of S gives an isomorphism o/ (S) — A(K).

Proof. Since S is regular and </ /S is proper, by the valuative criterion
for properness every element of A(K) extends to a rational map S --» &7
defined outside a closed subset of codimension > 2 in S, i.e., the locus of
indeterminacy consists of a finite set of closed points. After a blow-up in a
finite set of closed points of S, this becomes a morphism. But since S and
the closed set is regular, the exceptional divisors are projective spaces, which
admit only constant morphisms to abelian varieties. Hence S --» 7 extends
uniquely to a section of &7/, i.e., one has a homomorphism A(K) — <7(S)
inverse to the restriction o/ (5) — A(K). O

We now combine the previous results to the main result of this note, an
equality between the Mordell-Weil ranks of <7 /S and #7|g,/Sq:

Corollary 3.7. Assume that the Klk-trace B is trivial. After blowing
up S and possibly shrinking it, such that there is a morphism S — U as

in Lemma 3.1, there exists a d > 1 such that for infinitely many closed points
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x of U with [k(z) : k] < d (the complement of a sparse subset of |U|), one
has tk A(K) > rk 7 (Sy).

If € — S is a proper smooth relative curve, one has equality tk A(K) =
rk o7 (Sg).

(The definition of a sparse subset in this setting can be found in [Amb21,
Definition 1.7.1.1].)

Proof. One has
rk o/ (S) =1k A(K) > rk o7/ (S,),

where the equality holds by Lemma 3.6 and the inequality is a combination
of by Lemmata 3.2, 3.4 and 3.5 for all « € |U| except from the complement
of a sparse subset of |U|. O

Since every abelian variety over an infinite field is a quotient of a Jacobian,
this easily generalizes to:

Theorem 3.8. Let k be an infinite finitely generated field. Let K|k be a
finitely generated regular field extension and S/k a smooth separated (not
necessarily proper) geometrically connected surface with function field K. Let
A/K be an abelian variety with Tri,(A) = 0 or Trg,(A)(k) finite, and <
an extension of A to an abelian scheme over a dense open subscheme U of S.

Then for infinitely many curves C' on U, one has a specialization isomor-
phism

AK) Q= Z(C)®Q

of rationalized Mordell-Weil groups. More precisely, for all fibrations of S
over a curve U, there is a d > 1 such that one can take infinitely many
vertical curves Sy for x € |U| of degree [k(x) : k] < d.

Proof. By [Mil86, Theorem 10.1| (note that K is infinite), there exists a
smooth projective geometrically connected curve C over K and a surjective
homomorphism Pic% /K A. Since the isogeny category of abelian varieties
is semisimple (Poincaré’s complete reducibility theorem), Picoc /K is isogenous
to a product A x g B of abelian varieties.

We use that the intersection of the set of vertical divisors S, in Corollary 3.7
and the divisors in Theorem 2.6 is infinite: For x € |U| with degree [k(x) : k]
bounded, infinitely many of the S, satisfy the statement in Corollary 3.7, so
almost all of them are covered by Theorem 2.6.

In the following use that the Mordell-Weil rank does not change under
isogenies. By spreading out and possibly shrinking .S, one obtains an isogeny
Pic%/s — of xg AB. By Corollary 3.7 for /S and the S, there and because
the rank is additive,

rk o7 (Sy) + 1k B(S,
tk o/ (S) + 1k B(S
rkPic%/S(S

rk Picy, ¢(Ss

rk o7 (Sz) + rk B(Sz).

> by Theorem 2.6

~— ~— ~— —

> by Corollary 3.7
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Hence one must have equality rk <7 (S) + rk #B(S) = rk &/ (S;) + rk B(S,)
throughout. Since rk &7 (S) < rk.«7(S;) and analogously for 4, it follows the
equality rk &7 (S) = rk .o/ (S;) of Mordell-Weil ranks.

The injectivity of the rationalized specialization morphisms together with
the equality of ranks implies that the rationalized specialization morphisms
are isomorphisms. O
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