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We consider the twistor space P6 ≅ R4 × CP1 of R4 with a nonintegrable almost complex structure J
such that the canonical bundle of the almost complex manifold ðP6;J Þ is trivial. It is shown that J -
holomorphic Chern-Simons theory on a real ð6j2Þ-dimensional graded extension P6j2 of the twistor space
P6 is equivalent to self-dual Yang-Mills theory on Euclidean space R4 with Lorentz invariant action. It is
also shown that adding a local term to a Chern-Simons-type action on P6j2, one can extend it to a twistor
action describing full Yang-Mills theory.
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I. INTRODUCTION

Let M4 be an oriented real four-manifold with a
Riemannian metric and PðM4;SOð4ÞÞ the principal bundle
of orthonormal frames overM4. The twistor space TwðM4Þ
of M4 can be defined as an associated bundle [1]

TwðM4Þ ¼ P ×SOð4Þ SOð4Þ=Uð2Þ ð1:1Þ

with the canonical projection

π∶ TwðM4Þ → M4: ð1:2Þ

Fibers of this bundle are two-spheres S2x ≅ SOð4Þ=Uð2Þ
which parametrize complex structures Jx on the tangent
space TxM4 at x ∈ M4 compatible with a Euclidean metric
and orientation of M4. It means that Jx ∈ EndðTxM4Þ with
J2x ¼ −Id and Jx is an isometry of TxM4 preserving
orientation.
An almost complex structure J onM4 is a global section

of the bundle (1.2). Note that while a manifold M4 admits
in general no almost complex structure (e.g., four-sphere
S4), its twistor space TwðM4Þ can always be equipped with
two natural almost complex structures. The first, J ¼ J þ,
introduced in [1], is integrable if and only if the Weyl
tensor of Riemannian metric on M4 is self-dual, while the
second, J ¼ J −, introduced in [2], is nonintegrable (and
never integrable), i.e., the Nijenhuis tensor of J does not
vanish.

Twistor space P6 ¼ TwðR4Þ ≅ R4 × S2 of R4 with an
almost complex structure J is a particular case of almost
complex six-manifolds to be discussed in this paper.
Twistor space ðP6;J Þ is a complex manifold P3

C for
integrable J and it is an almost complex manifold with
an SU(3)-structure and nonvanishing torsion for nonintegr-
able J . Twistor literature focuses on complex twistor space
P3

C (see, e.g., [3–5]) and very rarely on the nonintegrable
case (see, e.g., [2,6,7]).
The goal of twistor theory is to take some unconstraint

analytic object on TwðM4Þ (e.g., Dolbeault cohomology
classes) and transform them to objects onM4 which will be
constrained by some differential equations [3,4]. In par-
ticular, the self-dual Yang-Mills (SDYM) equations on
Euclidean space R4 can be described as field equations of
holomorphic Chern-Simons theory defining holomorphic
bundles on the complex twistor space P3

C via the Penrose-
Ward correspondence [3–5]. This correspondence can be
extended to the nonintegrable case (see, e.g., [6,7]).
The field equations of J -holomorphic Chern-Simons

(J -hCS) theory on ðP6;J Þ read

F 0;2 ¼ P0;1P0;1F ¼ ðdAþA ∧ AÞ0;2 ¼ 0; ð1:3Þ

where P0;1 ¼ 1
2
ðIdþ iJ Þ is the projector onto (0,1)-part of

one-forms,A is a connection one-form on a complex vector
bundle E over ðP6;J Þ and F ¼ dAþA ∧ A is the
curvature of A. One can expect that Eqs. (1.3) are obtained
by variation of the action functional

S ¼ i
8

Z
P6

Ω ∧ CSðAÞ0;3 ¼ i
8

Z
P6

Ω ∧ tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
0;3
; ð1:4Þ
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where Ω is a (3,0)-form with respect to J on ðP6;J Þ, i.e.,
Ω is a global section of the canonical bundle of ðP6;J Þ.
However, the canonical bundle of P3

C ≅ CP3nCP1 is the
nontrivial holomorphic line bundle Oð−4Þ with the first
Chern class -4. Hence, there is no nonsingular holomorphic
volume form Ω on P3

C. Thus, the functional (1.4) is not
defined on P3

C.
The triviality of the canonical bundle can be restored if

instead of P3
C one considers the supertwistor space P3j4

C ≅
CP3j4nCP1j4 with four holomorphic fermionic dimensions,
each of type ΠOð1Þ bundle, where the operator Π inverts
the Grassmann parity of fibre coordinates. The canonical
bundle of P3j4

C is trivial and hence there is a holomorphic
volume form Ω̃ on P3j4

C . This fact was used by Witten for
introducing twistor string theory and holomorphic Chern-
Simons theory (hCS) on P3j4

C [8]. The action of hCS theory
on P3j4

C can be written in the form (1.4) after substituting Ω̃
instead of Ω and integrating over P3j4

C . The field equations
will be (1.3) with A0;1 ¼ P0;1A depending on four
Grassmann variables taking values in the bundle ΠOð1Þ ⊗
C4 over P3

C. This hCS theory on P3j4
C in turn is equivalent

[8] to self-dual subsector of N ¼ 4 supersymmetric Yang-
Mills theory on R4 (see, e.g., [9–11] for reviews and
references) in the form of Chalmers and Siegel [12]. The
N ¼ 4 SDYM equations can be truncated to the bosonic
SDYM equations [12] and on the twistor level this was
discussed, e.g., in [13–15].
Despite the success of the supertwistor description of

supersymmetric Yang-Mills theories, there was a desire to
get a twistor description of pure bosonic SDYM theory.
Recently, it was proposed by Costello to work with hCS
theory on the bosonic twistor space P3

C by allowing Ω in
(1.4) to be meromorphic instead of holomorphic [16]. After
choosing a meromorphic formΩ onP3

C and imposing some
boundary conditions on fields at poles of Ω, one can reduce
the action (1.4) to the 4d action for SDYM theory as it was
demonstrated in [16,17]. Depending on the gauge choice,
the twistor action is reduced to the action for group-valued
fields [18,19] or to the action for Lie-algebra valued fields
[20,21], both of which are well known in the literature.
However, the choice of (3,0)-form Ω and of its singularities
is not unique and different choices lead to a range of actions
onR4, not all of which have equations of motion equivalent
to the SDYM equations [17].
All the above-mentioned actions break Lorentz invari-

ance. The actions [18–21] for the SDYM equations were
discussed long time ago by Chalmers and Siegel in [12],
where it was shown that these 4d actions at more than one
loop generate diagrams that do not relate to quantum Yang-
Mills theory. These flaws are absent for the Chalmers-
Siegel 4d action which is a truncation (a limit of small
coupling constant) of the standard Yang-Mills action. We
want to obtain this 4d action in the framework of twistor
approach. We show that this is possible by using a non-
integrable almost complex structure J on the twistor space

P6 such that the canonical bundle becomes trivial and
hence there exists a globally defined (3,0)-form Ω on
ðP6;J Þ which can be used in (1.4).
The action [12] contains gauge field coupled with a

propagating anti-self-dual auxiliary field G _α _β ¼ εαβGα _α;β _β
with _α; _β ¼ 1, 2. The field G _α _β corresponds to additional
degrees of freedom parametrized by some cohomology
groups on the complex twistor space P3

C [11,22] and can be
obtained from the component A0;1 along CP1 ↪ P3j4

C in
hCS theory on the supertwistor space (see, e.g., [11]
and references therein). This G _α _β enters into the N ¼ 4
SDYM supermultiplet ðfαβ; χαi;ϕij; χ̃ _αi; G _α _βÞ, where the
fields have helicities ðþ1;þ 1

2
; 0;− 1

2
;−1Þ, i ¼ 1;…; 4.

Truncations of the self-dual N ¼ 4 super-Yang-Mills to
the case N < 4, including the bosonic case N ¼ 0, can be
obtained by considering weighted projective supertwistor
space [10,14] or exotic supertwistor space [9,15]. The
approach similar to that in [14,15] can be used in the case of
twistor space ðP6;J Þ with nonintegrable almost complex
structure J on P6. We will show that the 4d Chalmers-
Siegel action [12] can be obtained from an action functional
for J -hCS theory on a graded twistor space P6j2 with two
real fermionic directions, each parametrizing trivial real
line bundle over ðP6;J Þ. The Chern-Simons type action on
P6j2 is introduced by using globally defined form Ω̃ ¼
Ω ∧ dη1 ∧ dη2 on P6j2, where Ω is a global section of the
trivial canonical bundle of P6. Components of gauge
potential A in this theory take values in the Grassmann
algebra ΛðR2Þ generated by two real scalars η1, η2. We also
show that this action can be extended to a twistor action
describing full Yang-Mills theory on R4 after adding some
local terms to J -hCS Lagrangian on the twistor space P6j2.

II. SELF-DUAL YANG-MILLS AND TWISTORS

A. Almost complex structures on TwðM4Þ
We defined the twistor space TwðM4Þ of a Riemannian

manifold M4 as the associated bundle (1.1) of complex
structures Jx on tangent spaces TxM4. Global sections of the
projection (1.2) are identified, if such sections exist, with
almost complex structures J on M4, i.e., with tensors J ¼
ðJνμÞ ∈ EndðTM4Þ such that JσμJνσ ¼ −δνμ; μ; ν ¼ 1;…; 4.
While a manifold M4 has in general no almost complex

structures, its twistor space Q6 ≔ TwðM4Þ can be always
provided in a natural way with an almost complex structure
J , a tensor on Q6 with J 2 ¼ −Id. In fact, the Levi-Civita
connection on M4 generates the splitting of the tangent
bundle TQ6 into the direct sum

TQ6 ¼ V ⊕ H ð2:1Þ

of vertical and horizontal subbundles of TQ6. The space Vq
in q ∈ Q6 is tangent to the fibre π−1ðπðqÞÞ over x ¼ πðqÞ ∈
M4 of the projection π∶Q6 → M4. Recall that the fiber over
x ¼ πðqÞ is identified with S2x ≅ SOð4Þ=Uð2Þ and so it has
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a natural complex structure Jv. Hence, we can define an
almost complex structure J onQ6 using the decomposition
(2.1) by setting

J ¼ J int ¼ J v ⊕ J h; ð2:2Þ

where J h is an almost complex structure equal in the
point q ∈ Q6 to the complex structure J h

q on
Hq ≅ TπðqÞM4 ¼ TxM4. Thus, the twistor space Q6 has
a natural almost complex structure J .
It was shown in [1] that if the Weyl tensor of M4 is self-

dual then the almost complex structure (2.2) on Q6 is
integrable and ðQ6;J intÞ inherits the structure of a complex
analytic 3-manifold Q3

C. It was also shown in [2] that

J ¼ J non ¼ J v ⊕ ð−J hÞ ð2:3Þ

is an almost complex structure on Q6 which is never
integrable. These structures differ in sign along M4.

B. Twistor correspondence

Let E be a rank k complex vector bundle overM4 and A a
connection one-form (gauge potential) on E with the
curvature F ¼ dAþ A ∧ A (gauge field). The gauge field
F is called self-dual if it satisfies the equations

�F ¼ F ⇔
1

2
εμνλσFλσ ¼ Fμν; ð2:4Þ

where � denotes the Hodge star operator, εμνλσ is the
completely antisymmetric tensor on M4 with ε1234 ¼ 1 in
the Riemannian metric ds2 ¼ δμνeμeν for an orthonormal
basis feμg on T�M4.
Bundles E with self-dual connections A are called self-

dual. It was proven in [1] that the self-dual bundle E over
self-dual manifoldM4 lifts to a holomorphic bundle E over
the complex twistor space Q3

C ¼ ðTwðM4Þ;J intÞ and E is
holomorphically trivial on fibers CP1

x of projections
π∶Q6 → M4 for each x ∈ M4. The bundle E ¼ π�E is
defined by the connection A ¼ π�A such that its curvature
F ¼ dAþA ∧ A satisfies the Eqs. (1.3) and F ¼ π�F is
the pull-back to E of self-dual gauge field F on E → M4.
Vice versa, solutions to the holomorphic Chern-Simons
field equations (1.3) on the twistor spaceQ3

C, with F jCP1
x
¼

0 for any x ∈ M4, give solutions to the SDYM equa-
tions (2.4) onM4. The map between solutions to the SDYM
equations on M4 and solutions to the hCS field equations
on Q3

C ¼ ðTwðM4Þ;J intÞ is called the Penrose-Ward
transform.
For nonintegrable almost complex structure (2.3) on Q6

the manifold ðQ6;J nonÞ is not complex. However, on
ðQ6;J nonÞ one can introduce bundles with J -holomorphic
structure (pseudo-holomorphic bundles) [23]. Let E be a
complex rank k vector bundle over Q6 endowed with a
connectionA. According to Bryant [23], a connectionA on

E is said to define a J -holomorphic structure if it has
curvature F of type (1,1) with respect to J , i.e.,

F 0;2 ¼ 0: ð2:5Þ

It is not difficult to show that twistor correspondence
between solutions of SDYM equations (2.4) on M4 and
solutions of J -hCS equations (2.5) on the almost complex
twistor space ðQ6;J Þ still persists (see, e.g., [7]). This will
be discussed in more details later for the case of flat
Euclidean space M4 ¼ R4.

III. TWISTOR SPACE OF R4

According to the definition (1.1), twistor space of R4 is
P6 ≔ TwðR4Þ ≅ R4 × S2. Due to diffeomorphism with
R4 × S2, the manifold P6 is fibered not only over R4,

π∶ P6⟶
S2

R4; ð3:1Þ

but also over S2,

P6⟶
R4

S2; ð3:2Þ

with spaces R4 as fibres.

A. Almost complex structures J

In Sec. II we described generic construction of an almost
complex structure J on a twistor space TwðM4Þ. Here, we
give explicit form of J for the case M4 ¼ R4.
Recall that a complex structure J on R4 is a tensor J ¼

ðJνμÞ such that JσμJνσ ¼ −δνμ. All constant complex structures
on R4 are parametrized by the two-sphere S2 ≅
SOð4Þ=Uð2Þ ≅ SUð2Þ=Uð1Þ defined by the equation

δabsasb ¼ 1 ð3:3Þ

for sa ∈ R3; a; b ¼ 1, 2, 3. One can choose generic J in the
form

Jνμ ¼ saη̄aμσδσν; ð3:4Þ

where

η̄aμν ¼ fεabc; μ ¼ b; ν ¼ c;−δaμ; ν ¼ 4; δaν ; μ ¼ 4g ð3:5Þ

are antisymmetric ’t Hooft tensors, μ; ν ¼ 1;…; 4. Using
the identities

η̄aμση̄
b
σν ¼ −δabδμν − εabcη̄cμν; ð3:6Þ

one can show that J2 ¼ −Id. Here, we consider R4 as a
space with the metric ds2R4 ¼ δμνdxμdxν, where xμ are
coordinates on R4.
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Let feαg represents an orthonormal coframe on S2, i.e.,

ds2S2 ¼ δαβeαeβ ð3:7Þ

for α, β ¼ 1, 2. The canonical form of complex structure j
on S2 is

j ¼ ðjβαÞ with j21 ¼ −j12 ¼ 1 ⇒ jσαj
β
σ ¼ −δβα: ð3:8Þ

It is obvious that both

J ¼ J int ¼ ðJ; jÞ ð3:9Þ

and

J ¼ J non ¼ ð−J; jÞ ð3:10Þ

are almost complex structures on the twistor space P6 of
R4. Complex twistor space P3

C ¼ ðP6;J Þ with integrable
almost complex structure J ¼ J int has been studied a lot
in the literature and in the following we will focus on
nonintegrable almost complex structure J ¼ J non.

B. Complex coordinates for J =J int

The two-sphere S2, global coordinates sa on which are
used in (3.4), is conformally equivalent to R2. One can
cover S2 by two patches U� ≅ R2 with local coordinates

vαþ ¼ sα

1þ s3
on Uþ and vα− ¼ sα

1 − s3
on U−; ð3:11Þ

in which the metric on S2 is conformally flat,

ds2S2jU�
¼ δαβeα�e

β
� ¼ 4δαβdvα�dv

β
�

ð1þ ρ2�Þ2
with

ρ2� ¼ δαβvα�v
β
�: ð3:12Þ

On the intersection of two patches we have

vαþ ¼ ρ2þvα−; ð3:13Þ

where α, β ¼ 1, 2.
On S2 one can introduce vector fields of type (1,0) and

(0,1) with respect to j from (3.8),

∂
∂λ� and

∂
∂λ̄� ;

jð∂λ�Þ ¼ i∂λ� and jð∂ λ̄�Þ ¼ −i∂ λ̄� ;

ð3:14Þ

where

λ� ¼ v1�þ iv2� and λþ ¼ λ−1− on Uþ ∩U− ð3:15Þ

are complex coordinates on U� ⊂ S2. One-forms, dual to
the vector fields (3.14), are dλ� and dλ̄�. Sphere ðS2; jÞ
with the coordinates (3.15) can be identified with the
Riemann sphere CP1.
By using the complex structure (3.4) on R4, one can

introduce a CP1-family of complex coordinates on R4

given by formulas

w1þ ¼ y1 þ λþȳ2 and w2þ ¼ y2 − λþȳ1; ð3:16Þ

where

y1 ¼ x1 þ ix2; y2 ¼ x3 − ix4;

ȳ1 ¼ x1 − ix2; and ȳ2 ¼ x3 þ ix4:

The coordinates (3.15) together with (3.16) provide com-
plex coordinates on P6 given by

w1þ; w2þ and w3þ ¼ λþ on Uþ ¼ Uþ ×R4 ⊂ P6

ð3:17Þ

and

w1
− ¼ λ−y1 þ ȳ2;

w2
− ¼ λ−y2 − ȳ1 and

w3
− ¼ λ− on U− ¼ U− ×R4 ⊂ P6:

On the intersection Uþ ∩ U− of patches U� ⊂ P6 these
coordinates are related by formulas

wαþ ¼ w3þwα
− and w3þ ¼ 1

w3
−

on Uþ ∩ U−: ð3:18Þ

Hence, the transition functions relating waþ and wa
− are

holomorphic functions on Uþ ∩ U−; a ¼ 1, 2, 3. This
means that J int is an integrable almost complex structure
and P3

C ¼ ðP6;J intÞ is a complex 3-manifold. From
(3.16)–(3.18) it follows that the manifold P3

C can be
identified with the total space of the holomorphic vector
bundle over CP1,

P3
C ¼ Oð1Þ ⊕ Oð1Þ → CP1; ð3:19Þ

with coordinates wα
� on fibers C2

J over points J ∈ CP1

parametrized by λ� ⊂ U� ⊂ CP1.

C. Complex coordinates for J =J non

By using the almost complex structure (3.10), we can
introduce complex coordinates

z1þ ¼ w̄1þ ¼ ȳ1 þ λ̄þy2; z2þ ¼ w̄2þ ¼ ȳ2 − λ̄þy1;

z3þ ¼ w3þ ¼ λþ on Uþ ⊂ P6 ð3:20Þ
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and

z1− ¼ w̄1
− ¼ λ̄−ȳ1 þ y2; z2− ¼ w̄2

− ¼ λ̄−ȳ2 − y1;

z3− ¼ w3
− ¼ λ− on U− ⊂ P6: ð3:21Þ

On the intersection Uþ ∩ U− of two coordinate patches
U� ⊂ P6 ¼ Uþ ∪ U− we have

zαþ ¼ z̄3þzα− and z3þ ¼ 1

z3−
: ð3:22Þ

From (3.22) we see that the transition functions on Uþ ∩
U− are not holomorphic. This reflects nonintegrability of
the almost complex structure (3.10). From (3.22) it follows
that the manifold ðP6;J Þ with J ¼ J non can be identified
with the total space of the antiholomorphic vector bundle

Ōð1Þ ⊕ Ōð1Þ → CP1 ð3:23Þ

over CP1. Both base and fibers C̄J
2 of this bundle are

complex spaces but they do not glue into a complex
manifold for J given by (3.10).

D. Spinor notation

The rotation group SO(4) of space R4 is locally
isomorphic to the group SUð2Þ × SUð2Þ, where both
groups SU(2) have two-dimensional fundamental (spinor)
representations

μ ¼ ðμαÞ and λ ¼ ðλ _αÞ: ð3:24Þ

Commuting components λ _α of the spinor λ are homo-
geneous coordinates on the Riemannian sphere CP1 such
that

λ_2
λ_1

≕ λþ on Uþ ⊂ CP1 and
λ_1
λ_2

≕ λ− on U− ⊂ CP1:

ð3:25Þ

Obviously, λþ ¼ λ−1− if λ_1 ≠ 0 and λ_2 ≠ 0.
Isomorphism SOð4Þ ≅ SUð2Þ × SUð2Þ allows also to

introduce spinor notation for complex coordinates on R4

by formula

ðxα _αÞ ¼
�
x1_1 x1_2

x2_1 x2_2

�
¼

�
y1 −ȳ2

y2 ȳ1

�

¼
�
x1 þ ix2 −ðx3 þ ix4Þ
x3 − ix4 x1 − ix2

�
: ð3:26Þ

From (3.26) it follows that

x1_1 ¼ x̄2_2 and x1_2 ¼ −x̄2_1; ð3:27Þ

where the overbar denotes complex conjugation. By using
(3.26), one can rewrite (3.16) and (3.20) as follows

wαþ ¼ xα _αλþ_α and zαþ ¼ −jαβxβ
_βλ̂þ_β ; ð3:28Þ

where

ðλþ_α Þ ¼
1

λ_1
ðλ _αÞ ¼

�
1

λþ

�
and

ðλ̂þ_α Þ ¼
�
0 −1
1 0

�
ðλ̄þ_α Þ ¼

�
−λ̄þ
1

�
: ð3:29Þ

By definition, we have λ−_α ¼ λ−1þ λþ_α . and λ̂−_α ¼ λ̄−1þ λ̂þ_α .

E. Vector fields and one-forms

On the twistor space ðP6;J Þ with J from (3.10) we
have the natural basis f ∂

∂za�g for the space of (1,0) vector
fields. On the intersection we have

∂
∂zαþ ¼ z̄3−

∂
∂zα− and

∂
∂z3þ ¼ −ðz3−Þ2

∂
∂z3− − z3−z̄α−

∂
∂z̄α− :
ð3:30Þ

Using formulas (3.28), we can express these vector fields in
terms of coordinates ðxα_1; λ�Þ and their complex conjugates
according to

∂
∂zα� ¼ −γ�j

β
αλ

_β
�

∂
∂xβ _β ≕ − jβαV�

β ;

∂
∂z3þ ¼ ∂

∂λþ þ γþj
β
αxα

_1Vþ
β ;

∂
∂z3− ¼ ∂

∂λ− − γ−j
β
αxα

_2V−
_β
; ð3:31Þ

where we have used

λ _α� ¼ ε _α _βλ�_β with ε_1 _2 ¼ −ε_2 _1 ¼ 1 and

γ� ¼ 1

1þ λ�λ̄�
¼ 1

λ̂ _α�λ�_α
ð3:32Þ

together with the convention ε_1 _2 ¼ −ε_2 _1 ¼ −1, which
implies ε _α _βε

_β _γ ¼ δ_γ_α. Thus, the vector fields

V�
α ¼ γ�λ _α�∂α _α; Vþ

3 ¼ γ−2þ ∂λþ and V−
3 ¼ λ̄−2þ Vþ

3

ð3:33Þ

can be chosen as a basis of vector fields of type (1,0) on
U� ⊂ P6 in the coordinates ðxα _α; λ�; λ̄�Þ. Complex con-
jugate of (3.33) provide us with the vector fields
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V̄�
α ¼ γ�j

β
αλ̂

_β
�∂β _β; V̄þ

3 ¼ γ−2þ ∂ λ̄þ and V̄−
3 ¼ λ−2þ V̄þ

3

ð3:34Þ

which form a basis of vector fields of type (0,1)
on U� ⊂ P6.
It is easy to check that the basis of (1,0)- and (0,1)-forms

on U�, which are dual to the vector fields (3.33) and (3.34),
is given by forms

Eα
� ¼ −ðdxα _αÞλ̂�_α ;

E3þ ¼ γ2þdλþ and

E3
− ¼ λ̄−2þ E3þ; Ēα

� ¼ −jαβðdxβ _βÞλ _β;
Ē3þ ¼ γ2þdλ̄þ and Ē3

− ¼ λ−2þ Ē3þ: ð3:35Þ

One can easily verify that

djU� ¼ dza�
∂

∂za� þ dz̄a�
∂

∂z̄a� ¼ Ea
�V

�
a þ Ēa

�V̄
�
a : ð3:36Þ

F. Geometry of ðP6;J Þ
We consider the twistor space ðP6;J Þ with J from

(3.10) and coordinates fza�g on U� ⊂ P6 given by (3.20)–
(3.22). In the following we often omit the signs � in
coordinates, vector fields, one-forms etc. by considering all
formula on the patch Uþ ⊂ P6.
By direct calculations we obtain that nonzero commu-

tators of vector fields (3.33) and (3.34) are

½V3; Vα� ¼ −γ−1jβαV̄β; ½V3; V̄α� ¼ −λ̄γ−1V̄α;

½V3; V̄3� ¼ 2γðλ̄V̄3 − λV3Þ; ð3:37Þ

½V̄3; V̄α� ¼ −γ−1jβαVβ and ½V̄3; Vα� ¼ −λγ−1Vα;

ð3:38Þ

where we used the formulas

∂λðγλ _αÞ ¼ γ2λ̂ _α and ∂ λ̄ðγλ̂ _αÞ ¼ −γ2λ _α: ð3:39Þ

To prove integrability of an almost complex structure J
one has to show that commutators of vector fields of type
(0,1) with respect to J will again be vector fields of type
(0,1) [24]. From (3.37) we see that this is not the case and
therefore J is not integrable. For one-forms (3.35) we have

dE1 ¼ λγ−1Ē3 ∧ E1 þ γ−1Ē2 ∧ Ē3;

dE2 ¼ λγ−1Ē3 ∧ E2 þ γ−1Ē3 ∧ Ē1;

dE3 ¼ −2λγ−1Ē3 ∧ E3; ð3:40Þ

and complex conjugate formulas. The first terms in (3.40)
define a torsionful connection on P6 with values in uð1Þ ⊂
suð3Þ and the last terms define the Nijenhuis tensor
(torsion) with nonvanishing components

N1
2̄ 3̄

¼ γ−1; N2
3̄ 1̄

¼ γ−1 ð3:41Þ

plus their complex conjugate N 1̄
23 ¼ N 2̄

31 ¼ γ−1. From
(3.40) we again see that ðP6;J Þ is not a complex manifold
but the total space (3.23) of the anti-holomorphic bundle
over CP1. Furthermore, from (3.40) we see that ðP6;J Þ
has an SU(3)-structure and the globally defined (3,0)-form
Ω with

Ω ¼ E1þ ∧ E2þ ∧ E3þ ¼ E1
− ∧ E2

− ∧ E3
− on Uþ ∩ U−

ð3:42Þ

since

Eαþ ¼ λ̄þEα
− and E3þ ¼ λ̄−2þ E3

−: ð3:43Þ

Hence, the canonical bundle of ðP6;J Þ is trivial. From
(3.40) it follows that

dðImΩÞ ¼ 0; ð3:44Þ

dðReΩÞ ¼ −γ−1ðE1 ∧ Ē1 þ E2 ∧ Ē2Þ ∧ E3 ∧ Ē3; ð3:45Þ

i.e., the real part of Ω is not closed. For the volume form on
P6 we have

Vol6 ¼
i
8
Ω ∧ Ω̄ ¼ −

i
2
d4x ∧ dλ ∧ dλ̄

ð1þ λλ̄Þ2 ; ð3:46Þ

where d4x ¼ dx1 ∧ dx2 ∧ dx3 ∧ dx4 in the coordi-
nates (3.26).

G. Twistor correspondence

To conclude this section we describe a twistor corre-
spondence between the SDYM model on R4 and J -hCS
theory on ðP6;J Þ.
Consider a complex vector bundle E over R4 with a

connection A ¼ Aα _αdxα _α and the covariant derivative
∇ ¼ dxα _αð∂α _α þ Aα _αÞ. Using the projection π∶P6 → R4

from (3.1), we can pull back the bundle E to a bundle
E ¼ π�E with the pulled back connection A ¼ π�A and
the covariant derivative ∇̃ ¼ π�∇, whose (0,1)-component
is1

∇̃0;1 ¼ ĒαðV̄α þ γjβαλ̂
_βAβ _βÞ þ Ē3V̄3: ð3:47Þ

1We are working on the patch Uþ ¼ Uþ × R4 ⊂ P6 and omit
subscript and superscript “+” in formulas.
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Equations (2.5) of J -holomorphic Chern-Simons theory
on ðP6;J Þ read

½∇̃0;1
a ; ∇̃0;1

b � − ∇̃0;1
½V̄a;V̄b� ¼ 0; ð3:48Þ

where a ¼ ðα; 3Þ ¼ 1, 2, 3. Substituting (3.47) into (3.48)
with

Āα ¼ γjβαλ̂
_βAβ _β; Āα ¼ 0;

Aα ¼ γλ _αAα _α and A3 ¼ 0; ð3:49Þ

we see that (3.48) are equivalent to the equations

λ̂ _αλ̂
_β½∂α _α þ Aα _α; ∂β _β þ Aβ _β� ¼ λ̂ _αλ̂

_βFα _α;β _β ¼ 0; ð3:50Þ

where F ¼ dAþ A ∧ A is the curvature of A. Recall that
in the spinor notation F has the components

Fα _α;β _β ¼ ε _α _βfαβ þ εαβf _α _β; ð3:51Þ

where symmetric tensors

fαβ ¼
1

2
ε _α _βFα _α;β _β and f _α _β ¼

1

2
εαβFα _α;β _β ð3:52Þ

represent self-dual Fþ and anti-self-dual F− parts of the
curvature F ¼ Fþ þ F−. Hence, the J -hCS equa-
tions (3.48) on ðP6;J Þwith F ðV3; V̄3Þ ¼ 0 are equivalent
to the SDYM equations on R4,

F− ¼ 0 ⇔ εαβFα _α;β _β ¼ 0; ð3:53Þ

and any solution A of the SDYM equations (3.53) defines
a solution of the J -hCS equations (3.48) and vice versa.

IV. TWISTOR ACTIONS FOR YANG-MILLS
THEORY

A. Graded twistor space P6j2

Recall that on P6 there are globally defined (3,0)-formΩ
given by (3.42) and its complex conjugate (0,3)-form Ω̄.
Hence, the J -hCS action functional (1.4) is well defined on
ðP6;J Þ. However, if we substitute (3.49) into (1.4) then we
obtain S ¼ 0 since (0,3)-part of Chern-Simons form CS(A)
on ðP6;J Þ vanishes ifA3 ¼ Ā3 ¼ 0. To obtain a nontrivial
Lagrangian, one can perform a gauge transformation,
which will give some nonvanishing terms2 as it was done
in [16,17]. We will not follow this path here because this
way we can at best get the actions [18–21] which have
various limitations in comparison with the Chalmers-Siegel
action [12].

The action [12] cannot be obtained without introducing
additional degrees of freedom since it contains an extra
propagating field G _α _β. One of the possibilities for intro-
ducing additional fields is to consider vector bundles E over
P6 that are not trivial after restriction to CP1 ↪ P6 [25].
Another possibility is to consider a graded extension of the
twistor space ðP6;J Þ similar to the cases considered by
Wolf [10,14] and Sämann [9,15] for the complex twistor
space P3

C. We will use the second option and introduce a
graded twistor space P6j2.
The space P6j2 is parametrized by bosonic coordinates on

P6 and by two anticommuting (fermionic) coordinates ηi,

η1η2 þ η2η1 ¼ 0; ð4:1Þ

generating the Grassmann algebra

ΛðR2Þ ¼ Λ0ðR2Þ ⊕ Λ1ðR2Þ ⊕ Λ2ðR2Þ; ð4:2Þ

where

1 · R ∈ Λ0ðR2Þ; ηi ∈ Λ1ðR2Þ; i ¼ 1; 2 and

η ≔ η1η2 ∈ Λ2ðR2Þ: ð4:3Þ

In the algebra (4.2) one may introduce Z2-grading,

ΛðR2Þ ¼ Λ0ðR2Þ ⊕ Λ1ðR2Þ; ð4:4Þ

where

Λ0ðR2Þ ¼ Λ0ðR2Þ ⊕ Λ2ðR2Þ and Λ1ðR2Þ ¼ Λ1ðR2Þ:
ð4:5Þ

We set grf ¼ 0 if f ∈ Λ0ðR2Þ and grf ¼ 1 if f ∈ Λ1ðR2Þ,
grf is the Grassmann parity of f.
On the space P6 we consider the space GrP6 of locally

defined functions (a sheaf) with values in the Grassmann
algebra ΛðR2Þ. A manifold P6 with the sheaf GrP6 is a
graded manifold P6j2 ¼ ðP6;GrP6Þ [26,27] that can be
viewed as the trivial bundle P6 × Λ1ðR2Þ → P6. Tangent
spaces of P6j2 are defined by the even vector fields (3.33),
(3.34) together with the odd vector fields

∂i ≔
∂
∂ηi such that

∂
∂η1

∂
∂η2 þ

∂
∂η2

∂
∂η1 ¼ 0; ð4:6Þ

commuting with the even vector fields on P6. Respectively,
the space of differential forms on P6j2 has the local basis
fEa; Ēa; dηig with commutation relations

2Chern-Simons term CSðAÞ is not invariant under gauge
transformations.
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dη1 ∧ dη2 ¼ dη2 ∧ dη1;

Ea ∧ dηi ¼ dηi ∧ Ea and Ēa ∧ dηi ¼ dηi ∧ Ēa

ð4:7Þ

where fEa; Ēag are given in (3.35).
Recall that on ðP6;J Þ there are globally defined forms

Ω and Ω̄. Hence, on P6j2 we can introduce a closed ð3j2Þ-
form

ImΩ ∧ dη1 ∧ dη2 ð4:8Þ

and the volume form

i
8
Ω ∧ Ω̄ ∧ dη ¼ −

i
2
d4x ∧ dλ ∧ dλ̄

ð1þ λλ̄Þ2 ∧ dη; ð4:9Þ

where dη ¼ dη1 ∧ dη2.

B. Chern-Simons type theory on P6j2

Let E be a trivial rank k complex vector bundle over P6j2
and A a connection one-form on E. We choose the
connection A depending on all coordinates on P6j2 and
having no components along the Grassmann directions.
The curvature F of such A is

F ¼ FB þ F F ¼ dBAþA ∧ Aþ dFA; ð4:10Þ

where dB is the bosonic part (3.36) of the exterior derivative
d ¼ dB þ dF and

dF ¼ dηi∂i for ∂i ¼ ∂
∂ηi ð4:11Þ

is the fermionic part of d.
Consider the action functional

S ¼
Z
P6j2

ImΩ ∧ dη ∧ CSðAÞ; ð4:12Þ

where

CSðAÞ ¼ tr

�
A ∧ dBAþ 2

3
A ∧ A ∧ A

�
ð4:13Þ

is the Chern-Simons 3-form. Field equations following
from (4.12) read

ImΩ ∧ FB ¼ 0; ð4:14Þ

where FB is defined in (4.10). From (4.14) it follows that

ReΩ ∧ FB ¼ 0; ð4:15Þ

since Ω is a (3,0)-form with respect to J ,

JΩ ¼ iΩ ⇔ J ImΩ ¼ ReΩ: ð4:16Þ

Combining (4.14) and (4.15), we obtain

Ω ∧ F 0;2
B ¼ 0 ⇔ F 0;2

B ¼ 0: ð4:17Þ

Note that from (3.45) and (4.17) it follows that [28,29]

FBðV1; V̄1Þ þ FBðV2; V̄2Þ ¼ 0:

The action functional (4.12) and solution to the equa-
tions (4.14)–(4.17) were considered in [7,28,29].

C. Field equations on P6j2

Having given necessary ingredients, we may now con-
sider J -hCS field equations (4.17). These equations on the
patch Ûþ ¼ Uþ × Λ1ðR2Þ of P6j2 read

V̄αĀβ − V̄βĀα þ ½Āα; Āβ� ¼ 0;

V̄3Āα − V̄αĀ3 þ ½Ā3; Āα� − ½V̄3; V̄α� ⌟ A ¼ 0;
ð4:18Þ

where “⌟” denotes the interior product of vector fields with
differential forms. Here we used components of A in the
expansion

A ¼ AaEa þ ĀaĒa ¼ AαEα þA3E3 þ ĀαĒα þ Ā3Ē3:

ð4:19Þ

As usual in the twistor approach, we work in a gauge in
which Ā3 ≠ 0 but the bosonic part of Ā3 is zero. Note that
in general the gauge potentialA in (4.18) and (4.19) can be
expanded in the odd coordinates ηi as

A ¼ Aþ ηiψ
i þ η1η2G: ð4:20Þ

For simplicity and more clarity we first consider the
truncated case ψ i ¼ 0 and discuss the case ψ i ≠ 0
afterwards.

D. Remark

The connection (4.20) on the vector bundle E over
P6j2 ≅ P6 × Λ1ðR2Þ takes values in the Lie algebra g of
a semisimple Lie group G. Note that maps from the space
Λ1ðR2Þ in (4.5) to the groupG form a supergroup super-TG
[30], where TG ¼ G ⋉ g is the semidirect product of G
and g. That is why the fieldA in (4.20) can be considered as
a connection on a super-TG bundle E0 over the bosonic
twistor space P6. This kind of correspondence was found
by Witten when studying Chern-Simons theories on 3-
manifolds [30].
From (3.33)–(3.35) one concludes that components Āα

and Ā3 take values in the bundles Oð−1Þ and Oð2Þ over
CP1 and Aα and A3 take values in the complex conjugate
bundles. This fixes the dependence of A on λ and λ̄ up to a
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gauge transformations (cf. [9–11,14,15]). Namely, we
obtain

Aα ¼ γfλ _αAα _α þ ηðλ _αGα _α þ γλ _αλ̂
_βλ_γGα _α _β _γÞg

¼ γfλ _αðAα _α þ ηBα _αÞ þ ηγλð _αλ̂ _βλ_γÞGαð _α _β _γÞg;
Āα ¼ γjβαfλ̂_βAβ _β þ ηðλ̂ _βGβ _β þ γλ̂

_βλ_γλ̂ _σGβ _β _γ _σÞg
¼ γjβαfλ̂_βðAβ _β þ ηBβ _βÞ þ ηγλ̂ð _βλ_γ λ̂ _σÞGβð _β _γ _σÞÞg;

A3 ¼ ηλ̂
_βλ̂_γG _β _γ and Ā3 ¼ −ηλ _βλ_γG _β _γ; ð4:21Þ

where

Bα _α ≔ Gα _α −
1

3
ε _β _γðGα _α _β _γ −Gα _β _γ _αÞ ð4:22Þ

and the coefficient fields Aα _α; Gα _α;… do only depend on
xα _α ∈ R4. Here λ _α; λ̂ _α are given in (3.29) and (3.32),
η ¼ η1η2, and parentheses denote normalized symmetriza-
tion with respect to the enclosed indices.
Substituting (4.21) into (4.18), we obtain the equations

Gαð _α _β _γÞ ¼ ∇αð _αG_β _γÞ; ð4:23Þ

showing that Gαð _α _β _γÞ are composite fields describing no
independent degrees of freedom. Other nontrivial equations
following from (4.18) after substituting (4.21) read

εαβ½∂α _α þ Aα _α; ∂β _β þ Aβ _β� ¼ εαβFα _α;β _β ¼ 0; ð4:24Þ

εαβ∇α _αBβ _β ¼ 0; ð4:25Þ

ε _α _β∇α _αG_β _γ ¼ 0: ð4:26Þ

We see that (4.24) coincide with the SDYM equations on
R4 and (4.25) are the linearized SDYM equations for

δAβ _β ¼ Bβ _β: ð4:27Þ

Hence, Bα _α is a tangent vector at Aα _α to the solution space
of the SDYM equations. It is a secondary field (a sym-
metry) depending on Aα _α and for simplicity we neglect it by
choosing Bα _α ¼ 0. The rest equations (4.24) and (4.26) are
the Chalmers-Siegel equations describing the self-dual
gauge potential Aα _α and the anti-self-dual field Gα _α;β _β ¼
εαβG _α _β propagating in the self-dual background.
The action functional associated with (4.24) and (4.26) is

given by

Ssd ¼ 2

Z
R4

d4xtrðG _α _βf _α _βÞ ð4:28Þ

with f _α _β given by (3.52). This action can be obtained from
(4.12) after splitting,

A ¼ X þ ηY; ð4:29Þ

into ordinary bosonic and even nilpotent parts, using the
formula3

CSðX þ ηYÞ ¼ CSðXÞ þ 2ηtrðY ∧ F ðXÞÞ − ηdBðtrðX ∧ YÞÞ
ð4:30Þ

and integrating over the nilpotent coordinate η and
over CP1 ↪ P6j2.

E. Extra terms

As we mentioned earlier, the general expansion (4.20) of
connection A in odd coordinates ηi contains fermionic
fields ψ iðxα _αÞ which we consider now. Expansion (4.20)
can be written in components as

Aα ¼ γλ _αAα _αðη1; η2Þ and A3 ¼ λ̂ _αλ̂
_βG _α _βðη1; η2Þ;

ð4:31Þ

where

Aα _αðη1; η2Þ ¼ Aα _α þ ηiðψ i
α _α þ γλ̂

_βλ_γψ i
αð _α _β _γÞÞ

þ η1η2ðBα _α þ γλ̂
_βλ_γGαð _α _β _γÞÞ; ð4:32Þ

G _α _βðη1; η2Þ ¼ ηiψ
i
_α _β

þ η1η2G _α _β: ð4:33Þ

For Āα and Ā3 we have

Āα ¼ γjβαλ̂
_βAβ _βðη1; η2Þ and Ā3 ¼ −λ _αλ_βG _α _βðη1; η2Þ:

ð4:34Þ

Substituting (4.31)–(4.34) into the Eqs. (4.18), we obtain
the Eqs. (4.23)–(4.27) and additional equations

εαβ∇α _αψ
1
β _β

¼ 0 and ψ2
β _β

¼ 0; ð4:35Þ

ε _α _β∇α _αψ
1
_β _γ

¼ 0 and ψ1
αð _α _β _γÞ ¼ ∇αð _αψ1

_β _γÞ; ð4:36Þ

ψ2
_β _γ

¼ 0 and ψ2
αð _α _β _γÞ ¼ ∇αð _αψ2

_β _γÞ ¼ 0: ð4:37Þ

From (4.25) and (4.35) we see that Bα _α and ψ1
α _α are even

and odd solutions of the linearized SDYM equations and
ψ1

_β _γ
in (4.36) is an odd solution to the linearized form of

equation (4.26) for δG _β _γ. Thus, the general form (4.20) of
A reduces the J -hCS equations (4.18) to the Chalmers-

3Recall that in all formulas here dB is the ordinary bosonic
exterior derivative.
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Siegel equations (4.24) and (4.26) together with their
linearized form, solutions of which describe even and
odd tangent vectors to the solution space.

F. Full Yang-Mills

So far, we have shown that the Chalmers-Siegel action
(4.28) for SDYM theory can be obtained from the Chern-
Simons type action (4.12) on the graded twistor space P6j2.
It is known that the action (4.28) is a limit of the full Yang-
Mills action for small coupling constant gYM. Namely, let
us modify the action (4.28) by adding the term

Sε ¼ −ε2
Z
R4

d4xtrðG _α _βG _α _βÞ; ð4:38Þ

so that

Stot ¼ Ssd þ Sε ¼ 2

Z
R4

d4xtr

�
G _α _βf _α _β −

1

2
ε2G _α _βG _α _β

�
:

ð4:39Þ

Here ε is some small parameter. Variation of Stot with
respect to G _α _β gives

G _α _β ¼
1

ε2
f _α _β: ð4:40Þ

Substituting (4.40) back into (4.39), we obtain

Stot ¼
1

ε2

Z
R4

d4xtrðf _α _βf
_α _βÞ ¼ 1

2ε2

Z
R4

trðF− ∧ F−Þ

¼ −
1

4ε2

Z
R4

trðF ∧ �FÞ þ 1

4ε2

Z
R4

trðF ∧ FÞ: ð4:41Þ

Hence, the action (4.41) is equivalent to the standard Yang-
Mills action

SYM ¼ −
1

4g2YM

Z
R4

trðF ∧ �FÞ; ð4:42Þ

with the coupling constant gYM ¼ ε, plus the topological
term. Therefore, for obtaining the Yang-Mills action (4.42)
we should derive the term (4.38) from the twistor space.

G. Twistor action for full Yang-Mills

Recall that η ¼ η1η2, where η1 and η2 are real Grassmann
variables. Consider a connection A depending on η as
written in (4.21).4 It does not have components along the

Grassmann directions but the mixed components of the
curvature,

F F ¼ dFA ¼ ð∂iAaÞdηi ∧ Ea þ ð∂iĀaÞdηi ∧ Ēa

¼ F i
adηi ∧ Ea þ F̄ i

adηi ∧ Ēa; ð4:43Þ

do not vanish. In particular, for restriction of F F to
CP1j2 ↪ P6j2 we have

F F
jCP1j2 ¼ F i

λdηi ∧ dλþ F i
λ̄
dηi ∧ dλ̄; ð4:44Þ

where

F i
λ ¼ −εijηjγ2λ̂ _αλ̂

_βG _α _β and F i
λ̄
¼ εijηjγ

2λ _αλ_βG _α _β:

ð4:45Þ

Using (4.45), we can introduce the gauge invariant func-
tional

iε2

8

Z
P6j2

Ω ∧ Ω̄ ∧ dη1 ∧ dη2εijgλλ̄trðF i
λF

j
λ̄
Þ; ð4:46Þ

where

ds2CP1 ¼gλλ̄E
λ⊗Eλ̄⇔gλλ̄¼ γ2 and gλλ̄¼ γ−2: ð4:47Þ

Integrating trðF i
λF

j
λ̄
Þ in (4.46) over fermionic coordinates

and over CP1 ↪ P6j2, we obtain the functional Sε given by
(4.38). Hence, adding the local term given by (4.46) to the
Chern-Simons type Lagrangian in (4.12), we obtain the full
Yang-Mills action (4.42).

V. CONCLUSIONS

In this paper we considered graded twistor spaceP6j2 with
a nonintegrable almost complex structure J and J -hol-
omorphic Chern-Simons theory on P6j2. It was shown that
under some assumptions this theory is equivalent to self-dual
Yang-Mills theory on R4. In our discussion we tried to be
close to the consideration of the papers [14,15], where
N < 4 SDYM theories were derived from holomorphic
Chern-Simons theory on complex supertwistor spaces. We
have also shown that the full Yang-Mills action in R4 can be
obtained from a twistor action on P6j2 with a locally defined
Lagrangian. We did not pursue the goal of studying all these
tasks in full generality. We wanted to show the principal
possibility of obtaining actions for Yang-Mills and its self-
dual subsector from a twistor action. Examining all aspects
of the model requires additional efforts.
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