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We consider the twistor space P° = R* x CP! of R* with a nonintegrable almost complex structure J
such that the canonical bundle of the almost complex manifold (7%, 7) is trivial. It is shown that J-
holomorphic Chern-Simons theory on a real (6|2)-dimensional graded extension P of the twistor space
PS is equivalent to self-dual Yang-Mills theory on Euclidean space R* with Lorentz invariant action. It is
also shown that adding a local term to a Chern-Simons-type action on P°, one can extend it to a twistor

action describing full Yang-Mills theory.
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I. INTRODUCTION

Let M* be an oriented real four-manifold with a
Riemannian metric and P(M*, SO(4)) the principal bundle
of orthonormal frames over M*. The twistor space Tw(M*)
of M* can be defined as an associated bundle [1]

Tw(M*) = P Xs0(4

) SO(4)/U(2) (1.1)

with the canonical projection

z: Tw(M*) — M*. (1.2)
Fibers of this bundle are two-spheres S2 = SO(4)/U(2)
which parametrize complex structures J, on the tangent
space T, M* at x € M* compatible with a Euclidean metric
and orientation of M*. It means that J, € End(7,M*) with
J2=-Id and J, is an isometry of T ,M* preserving
orientation.

An almost complex structure J on M* is a global section
of the bundle (1.2). Note that while a manifold M* admits
in general no almost complex structure (e.g., four-sphere
§4), its twistor space Tw(M*) can always be equipped with
two natural almost complex structures. The first, 7 = J .,
introduced in [1], is integrable if and only if the Weyl
tensor of Riemannian metric on M* is self-dual, while the
second, J = J_, introduced in [2], is nonintegrable (and
never integrable), i.e., the Nijenhuis tensor of 7 does not
vanish.
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Twistor space P° = Tw(R*) = R* x §? of R* with an
almost complex structure J is a particular case of almost
complex six-manifolds to be discussed in this paper.
Twistor space (P°,J) is a complex manifold P2 for
integrable 7 and it is an almost complex manifold with
an SU(3)-structure and nonvanishing torsion for nonintegr-
able 7. Twistor literature focuses on complex twistor space
P2 (see, e.g., [3-5]) and very rarely on the nonintegrable
case (see, e.g., [2,6,7]).

The goal of twistor theory is to take some unconstraint
analytic object on Tw(M*) (e.g., Dolbeault cohomology
classes) and transform them to objects on M* which will be
constrained by some differential equations [3,4]. In par-
ticular, the self-dual Yang-Mills (SDYM) equations on
Euclidean space R* can be described as field equations of
holomorphic Chern-Simons theory defining holomorphic
bundles on the complex twistor space 73% via the Penrose-
Ward correspondence [3-5]. This correspondence can be
extended to the nonintegrable case (see, e.g., [6,7]).

The field equations of 7-holomorphic Chern-Simons
(J-hCS) theory on (P°, J) read

FO2 = pOIpOIE — (dA+ AN A02=0, (1.3)

where P*! = 1(Id 4 i7) is the projector onto (0,1)-part of
one-forms, A is a connection one-form on a complex vector
bundle & over (P4, J) and F =dA+AA A is the
curvature of A. One can expect that Egs. (1.3) are obtained
by variation of the action functional

_i 0,321
S—S/pﬁQ/\CS(A) 8/7)6
7 03
Q/\tr<A/\dA+§A/\A/\A> . (1.4)
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where Q is a (3,0)-form with respect to 7 on (P, J), i.e.,
Q is a global section of the canonical bundle of (776, J).
However, the canonical bundle of P% =~ CP3\CP! is the
nontrivial holomorphic line bundle O(—4) with the first
Chern class -4. Hence, there is no nonsingular holomorphic
volume form Q on PE. Thus, the functional (1.4) is not
defined on P3.

The tr1v1al1ty of the canonical bundle can be restored if
instead of P2 one considers the supertwistor space PCl ~
CcP\CP! o with four holomorphic fermionic dimensions,
each of type I1O(1) bundle, where the operator IT inverts
the Grassmann parity of fibre coordinates. The canonical
bundle of PC is tr1v1al and hence there is a holomorphic
volume form Q on PC This fact was used by Witten for
introducing twistor string theory and holomorphic Chern-
Simons theory (hCS) on PC [8]. The action of hCS theory
on 73?:4 can be written in the form (1 4) after substituting Q
instead of  and integrating over PC| The field equations
will be (1.3) with A% = P%' A depending on four
Grassmann variables taking values in the bundle ITO(1) ®
C* over P. This hCS theory on 774:| in turn is equivalent
[8] to self- dual subsector of A/ = 4 supersymmetric Yang-
Mills theory on R* (see, e.g., [9-11] for reviews and
references) in the form of Chalmers and Siegel [12]. The
N =4 SDYM equations can be truncated to the bosonic
SDYM equations [12] and on the twistor level this was
discussed, e.g., in [13—15].

Despite the success of the supertwistor description of
supersymmetric Yang-Mills theories, there was a desire to
get a twistor description of pure bosonic SDYM theory.
Recently, it was proposed by Costello to work with hCS
theory on the bosonic twistor space P2 by allowing Q in
(1.4) to be meromorphic instead of holomorphic [16]. After
choosing a meromorphic form Q on P2, and imposing some
boundary conditions on fields at poles of €2, one can reduce
the action (1.4) to the 4d action for SDYM theory as it was
demonstrated in [16,17]. Depending on the gauge choice,
the twistor action is reduced to the action for group-valued
fields [18,19] or to the action for Lie-algebra valued fields
[20,21], both of which are well known in the literature.
However, the choice of (3,0)-form  and of its singularities
is not unique and different choices lead to a range of actions
on R*, not all of which have equations of motion equivalent
to the SDYM equations [17].

All the above-mentioned actions break Lorentz invari-
ance. The actions [18-21] for the SDYM equations were
discussed long time ago by Chalmers and Siegel in [12],
where it was shown that these 4d actions at more than one
loop generate diagrams that do not relate to quantum Yang-
Mills theory. These flaws are absent for the Chalmers-
Siegel 4d action which is a truncation (a limit of small
coupling constant) of the standard Yang-Mills action. We
want to obtain this 4d action in the framework of twistor
approach. We show that this is possible by using a non-
integrable almost complex structure 7 on the twistor space

PS such that the canonical bundle becomes trivial and
hence there exists a globally defined (3,0)-form Q on
(P°, J) which can be used in (1.4).

The action [12] contains gauge field coupled with a
propagating anti-self-dual auxiliary field G, ip = € G(m B
with @, f = 1, 2. The field G; corresponds to additional
degrees of freedom parametnzed by some cohomology
groups on the complex twistor space P2 [11,22] and can be
obtained from the component A%! along CP' & P i
hCS theory on the supertwistor space (see, e.g., [l 1]
and references therein). This G, ; enters into the N =4
SDYM supermultiplet (f . ;(‘" ¢1 Xii»Ggj), where the
fields have helicities (41, +2,0, 2,—1), i=1,...,4.
Truncations of the self-dual N' =4 super-Yang- M1lls to
the case N < 4, including the bosonic case N' = 0, can be
obtained by considering weighted projective supertwistor
space [10,14] or exotic supertwistor space [9,15]. The
approach similar to that in [ 14,15] can be used in the case of
twistor space (P°, ) with nonintegrable almost complex
structure 7 on P°. We will show that the 4d Chalmers-
Siegel action [12] can be obtained from an action functional
for [7-hCS theory on a graded twistor space P°? with two
real fermionic directions, each parametrizing trivial real
line bundle over (P°, 7). The Chern-Simons type action on
PO is introduced by using globally defined form Q =
Q A dyy A dny on PO, where Q is a global section of the
trivial canonical bundle of P%. Components of gauge
potential A in this theory take values in the Grassmann
algebra A(R?) generated by two real scalars 77, 17,. We also
show that this action can be extended to a twistor action
describing full Yang-Mills theory on R* after adding some
local terms to 7-hCS Lagrangian on the twistor space P°.

II. SELF-DUAL YANG-MILLS AND TWISTORS

A. Almost complex structures on Tw(M?*)

We defined the twistor space Tw(M*) of a Riemannian
manifold M* as the associated bundle (1.1) of complex
structures J, on tangent spaces T, M*. Global sections of the
projection (1.2) are identified, if such sections exist, with
almost complex structures J on M*, i.e., with tensors J =
(J4) € End(TM*) such that J5J4 = =&, p,v =1,....4.

While a manifold M* has i 1n general no almost complex
structures, its twistor space Q° := Tw(M*) can be always
provided in a natural way with an almost complex structure
J, a tensor on Q° with 72 = —Id. In fact, the Levi-Civita
connection on M* generates the splitting of the tangent
bundle 7Q° into the direct sum

TQS=V&H (2.1)
of vertical and horizontal subbundles of 7Q°. The space V,
in ¢ € QF is tangent to the fibre 77! (z(g)) over x = x(q) e
M?* of the projection z: Q® — M*. Recall that the fiber over
x = n(q) is identified with $2 = SO(4)/U(2) and so it has
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a natural complex structure J”. Hence, we can define an
almost complex structure 7 on Q° using the decomposition
(2.1) by setting

J=J"=7J"&J", (2.2)
where J" is an almost complex structure equal in the
point g€ Q° to the complex structure J% on
H, =T, M*=T,M* Thus, the twistor space Q° has
a natural almost complex structure J.

It was shown in [1] that if the Weyl tensor of M* is self-
dual then the almost complex structure (2.2) on Q° is
integrable and (Q°, J™) inherits the structure of a complex
analytic 3-manifold Q%. It was also shown in [2] that

J — L7non — jv @ (—jh) (23)
is an almost complex structure on Q° which is never
integrable. These structures differ in sign along M*.

B. Twistor correspondence

Let E be a rank k complex vector bundle over M* and A a
connection one-form (gauge potential) on E with the
curvature F' = dA + A A A (gauge field). The gauge field
F is called self-dual if it satisfies the equations

1
*F=F & Egm,,FM =F. (2.4)
where * denotes the Hodge star operator, €,,,, is the

completely antisymmetric tensor on M* with £/534 = 1 in
the Riemannian metric ds®> = §,,e#e” for an orthonormal
basis {e#} on T*M*.

Bundles E with self-dual connections A are called self-
dual. It was proven in [1] that the self-dual bundle E over
self-dual manifold M* lifts to a holomorphic bundle £ over
the complex twistor space Q3. = (Tw(M*), 7) and & is
holomorphically trivial on fibers CP! of projections
7:Q% = M* for each x € M*. The bundle £ = 7*E is
defined by the connection .4 = 7*A such that its curvature
F =dA+ A A A satisfies the Egs. (1.3) and F = 7*F is
the pull-back to & of self-dual gauge field F on E - M*.
Vice versa, solutions to the holomorphic Chern-Simons
field equations (1.3) on the twistor space Q3, with F icpt =
0 for any x € M*, give solutions to the SDYM equa-
tions (2.4) on M*. The map between solutions to the SDYM
equations on M* and solutions to the hCS field equations
on Q) = (Tw(M*),J™) is called the Penrose-Ward
transform.

For nonintegrable almost complex structure (2.3) on Q%
the manifold (Q° J™") is not complex. However, on
(0, 7™ one can introduce bundles with [7-holomorphic
structure (pseudo-holomorphic bundles) [23]. Let £ be a
complex rank k vector bundle over Q° endowed with a
connection 4. According to Bryant [23], a connection .4 on

£ is said to define a J-holomorphic structure if it has
curvature F of type (1,1) with respect to 7, i.e.,

Fo2=0. (2.5)
It is not difficult to show that twistor correspondence
between solutions of SDYM equations (2.4) on M* and
solutions of [7-hCS equations (2.5) on the almost complex
twistor space (Q°, J) still persists (see, e.g., [7]). This will
be discussed in more details later for the case of flat
Euclidean space M* = R*.

III. TWISTOR SPACE OF R*

According to the definition (1.1), twistor space of R* is
PO = Tw(R*) 2 R* x $2. Due to diffeomorphism with
R* x §2, the manifold P° is fibered not only over R*,

7 PR, (3.1)
but also over S2,
P6 82, (3.2)

with spaces R* as fibres.

A. Almost complex structures 7

In Sec. II we described generic construction of an almost
complex structure 7 on a twistor space Tw(M*). Here, we
give explicit form of 7 for the case M* = R*.

Recall that a complex structure J on R* is a tensor J =
(J3,) such that J§J; = —&},. All constant complex structures
on R* are parametrized by the two-sphere S
SO(4)/U(2) = SU(2)/U(1) defined by the equation

Sapss? =1 (3.3)
for s € R3,a,b = 1, 2, 3. One can choose generic J in the
form

Jy = 841,607 (3.4)
where
M =€l u=bv=c,=6,v=405.u=4} (3.5)
are antisymmetric 't Hooft tensors, y,v =1, ...,4. Using
the identities
Mholloy = =68, — €Iy, (3.6)
one can show that J> = —Id. Here, we consider R* as a

space with the metric ds?R4 = 0, dx"dx", where x* are
coordinates on R*.

026015-3



ALEXANDER D. POPOV

PHYS. REV. D 104, 026015 (2021)

Let {e®} represents an orthonormal coframe on 2, i.e.,
ds3, = 6,pe%el (3.7)

for @, f = 1, 2. The canonical form of complex structure j
on S? is

=) with =-ii=1=if=-d. (38)
It is obvious that both
J=J"=(.}) (3.9)
and
J = J" = (=J,7) (3.10)

are almost complex structures on the twistor space P% of
R*. Complex twistor space P2 = (P°, J) with integrable
almost complex structure J = J int has been studied a lot
in the literature and in the following we will focus on
nonintegrable almost complex structure J = J"".

B. Complex coordinates for J =7 int
The two-sphere S?, global coordinates s¢ on which are
used in (3.4), is conformally equivalent to R?. One can
cover S? by two patches U, = R? with local coordinates
a sa
onU, and % =

@ U.. (.11
TR =g (3.11)

in which the metric on S? is conformally flat,

dsga,. = Oupelely = % with
PL = Sapvir,., (3.12)
On the intersection of two patches we have
v% = pAo?, (3.13)

where a, f =1, 2.
On S? one can introduce vector fields of type (1,0) and
(0,1) with respect to j from (3.8),

9 4 2
DAt Ay’ (3.14)
i(0,,) =10;,, and (9;,) = —i0;,,
where
de=vL+ivZ and A, =2 on U . nU_ (3.15)

are complex coordinates on U, C S. One-forms, dual to
the vector fields (3.14), are di, and di.. Sphere (S?,7)
with the coordinates (3.15) can be identified with the
Riemann sphere CP'.

By using the complex structure (3.4) on R*, one can
introduce a CP'-family of complex coordinates on R*
given by formulas

2

where

y=xl i, v =% —ixt,

yl=x! —ix?, and 3% = x> +ix*

The coordinates (3.15) together with (3.16) provide com-
plex coordinates on P° given by

1 2

wh,  wi on U, =U, xR*cPs

(3.17)

3 _
and w3l =41,

and

wh = 1_y' + 7%
w2 =A_y>*—3' and
wi=1_onlU_=U_xR*cP°.

On the intersection U, NU_ of patches U, C P° these
coordinates are related by formulas

1
and w3 =5 on U . nU_. (3.18)

Hence, the transition functions relating w¢ and w? are
holomorphic functions on U, NU_,a =1, 2, 3. This
means that 7™ is an integrable almost complex structure
and Pl = (P°, 7" is a complex 3-manifold. From
(3.16)—(3.18) it follows that the manifold Pf,’: can be

identified with the total space of the holomorphic vector
bundle over CP!,

P =0(1)® O(1) - CP', (3.19)

with coordinates w% on fibers C3 over points J € CP!
parametrized by A, C U, C CP..

C. Complex coordinates for J =J""

By using the almost complex structure (3.10), we can
introduce complex coordinates

L=w

1
+
2 =wl =21, onlU, CP®
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and
Z=w
2 —w

On the intersection U/, NU_ of two coordinate patches

U CPS=U, UU_ we have
a 3 a 3 1
f=2z3z% and z3 = = (3.22)

From (3.22) we see that the transition functions on U, N
U_ are not holomorphic. This reflects nonintegrability of
the almost complex structure (3.10). From (3.22) it follows
that the manifold (P°, 7) with 7 = J"" can be identified
with the total space of the antiholomorphic vector bundle

O(1) ® O(1) - CP! (3.23)
over CP'. Both base and fibers C,? of this bundle are

complex spaces but they do not glue into a complex
manifold for J given by (3.10).

D. Spinor notation

The rotation group SO(4) of space R* is locally
isomorphic to the group SU(2) x SU(2), where both
groups SU(2) have two-dimensional fundamental (spinor)
representations

p= (k) and 1= (14). (3.24)
Commuting components A, of the spinor A are homo-
geneous coordinates on the Riemannian sphere CP' such
that

~
n
~

L2 onlU_ccCP.

—Z =], onU,cCP' and -
4

—

(3.25)

Obviously, 4, =A=' if A; # 0 and 4; # 0.

Isomorphism SO(4) 2 SU(2) x SU(2) allows also to
introduce spinor notation for complex coordinates on R*
by formula

(x) = (xl% xlé) — (yl _y_z)
x21 x22 y2 )71

i (3 +ix?
:( b )). (3.26)
o —ixt xl—ix?
From (3.26) it follows that
=52 and 2=z, (3.27)

where the overbar denotes complex conjugation. By using
(3.26), one can rewrite (3.16) and (3.20) as follows

Wi =x3; and 2% =—jgxis, (3.28)

where

. 0 -1\ - -

) = ) = +>. 3.29

an=(\ 5 )a=(77) e
By definition, we have A7 = 7'} and 13 = 17'2].

E. Vector fields and one-forms

On the twistor space (776 J) with J from (3.10) we
have the natural basis {-2 7a7 } for the space of (1,0) vector
fields. On the intersection we have

o 0 o
gt = T W g =)

3 sa

S
0z2 T o

(3.30)

Using formulas (3.28), we can express these vector fields in
terms of coordinates (x?!, A, ) and their complex conjugates
according to

0

3Zi:_yila M Iﬂ Vi,

3f+ 3? +7+Iax %8

3(3_ - Iax”‘ZV (3.31)
where we have used
o= ey with el?=—¢l=1 and
“—1+L@—@% (3:32)
together with the convention &;; = —&;; = —1, which

implies ¢, ﬂgﬁy — &7 Thus, the vector fields

Vi =y %0, Vi=y7%0;, and V5 =I172V§

(3.33)
can be chosen as a basis of vector fields of type (1,0) on

U, CP° in the coordinates (x*%, 1., 1. ). Complex con-
jugate of (3.33) provide us with the vector fields
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} - _ - e
Vi =yifell0y. Vi =r720;, and Vi =172V

(3.34)
which form a basis of vector fields of type (0,1)
on U, C P°.

It is easy to check that the basis of (1,0)- and (0,1)-forms
on U, which are dual to the vector fields (3.33) and (3.34),
is given by forms

B = ()27,
E3 =yidA, and

E3 =17EL,  EY = —jj(d”),
E3 =y2dl, and E3 =17’E3. (3.35)
One can easily verify that
9 9 a Y7+ a\+
dy, = dZic’) Z —l—dzia_a =E{V;+ELV;. (3.36)

F. Geometry of (P%.7)

We consider the twistor space (PS,J) with J from
(3.10) and coordinates {z%} on U C P° given by (3.20)—
(3.22). In the following we often omit the signs =+ in
coordinates, vector fields, one-forms etc. by considering all
formula on the patch U C PS.

By direct calculations we obtain that nonzero commu-
tators of vector fields (3.33) and (3.34) are

V3, Vo] = —y“jﬁVﬁ, V3. Vo = A7V,
[V3, V3] = 27(2V5 = AV3), (3.37)
[‘73’ ‘7 ] -7 IlXV/)' and [VS’ ] = _ly_lvav
(3.38)

where we used the formulas

0,(yA%) =y22* and 0;(yA%) = —y22%.  (3.39)
To prove integrability of an almost complex structure J
one has to show that commutators of vector fields of type
(0,1) with respect to 7 will again be vector fields of type
(0,1) [24]. From (3.37) we see that this is not the case and

therefore 7 is not integrable. For one-forms (3.35) we have
dE' = Wy 'EB A E' + v E? A BR,
dE? =y 'E3 ANE?2 4y 'EP A EY,

dE® = —24y\E3 A BB, (3.40)

and complex conjugate formulas. The first terms in (3.40)
define a torsionful connection on P% with values in u(1) C
su(3) and the last terms define the Nijenhuis tensor
(torsion) with nonvanishing components

1 -1
N2-3-—y s N

W

plus their complex conjugate N1; = N3, =y~!. From
(3.40) we again see that (73", J) is not a complex manifold
but the total space (3.23) of the anti-holomorphic bundle
over CP'. Furthermore, from (3.40) we see that (P, )
has an SU(3)-structure and the globally defined (3,0)-form
Q with

Q=E\ANEXANES =E'ANE2AE  onU, nU_
(3.42)

since

EY =2,E* and E3 =17°E%. (3.43)
Hence, the canonical bundle of (P°,7) is trivial. From
(3.40) it follows that

d(ImQ) = 0, (3.44)

d(ReQ) = —y"W(E' A E' + E> A E2) A E3 A EP, (3.45)
i.e., the real part of Q is not closed. For the volume form on

P we have

i - i dA Adl
Vol =-QAQ=——d*x A ————, 3.46
R 2N a2 (3.46)
where d*x =dx! A dx2 Adx® Adx* in the coordi-

nates (3.26).

G. Twistor correspondence

To conclude this section we describe a twistor corre-
spondence between the SDYM model on R* and [7-hCS
theory on (P°, 7).

Consider a complex vector bundle E over R* with a
connection A = A,,dx*® and the covariant derivative
V = dx® (0,4 + Age). Using the projection z:P° — R*
from (3.1), we can pull back the bundle E to a bundle
& = n"E with the pulled back connection A = z*A and
thle covariant derivative V = z*V, whose (0,1)-component
is

VO = EX(V, + rjad Agy) + EVs. (3.47)

'"We are working on the patch U, = U, xR* C P and omit
subscript and superscript “+” in formulas.
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Equations (2.5) of J-holomorphic Chern-Simons theory
on (P°, J) read

[62,17 @(b)l] _ @0,1 _ 0’

V0 7)] (3.48)

where a = (@, 3) = 1, 2, 3. Substituting (3.47) into (3.48)
with

A, =0,
and A; =0,

./Zla = }/j'(ﬂlj,ﬂAﬁ/} N

A, = yAiA (3.49)

we see that (3.48) are equivalent to the equations

265 . 1 5438 L
22270 g —f—Aaa,@ﬂﬂ +Aﬁﬁ] = A% Fao'z,[iﬁ =0, (3.50)
where F = dA + A A A is the curvature of A. Recall that

in the spinor notation F has the components

Fadﬁﬁ = €g',ﬁfa/)’ + eaﬁfdb’ (3.51)

where symmetric tensors
_ 1 ('1/3 d _ 1 aff 3.52
fa/f—f Foapp an fa/'i‘f Foapp  (3.52)

represent self-dual F* and anti-self-dual F~ parts of the
curvature F = F + F~. Hence, B the J-hCS equa-
tions (3.48) on (P%, J) with F(V3, V3) = 0 are equivalent
to the SDYM equations on R*,
F~=0® e?F . =0, (3.53)
and any solution A of the SDYM equations (3.53) defines
a solution of the 7-hCS equations (3.48) and vice versa.

IV. TWISTOR ACTIONS FOR YANG-MILLS
THEORY

A. Graded twistor space P%I2

Recall that on P° there are globally defined (3,0)-form
given by (3.42) and its complex conjugate (0,3)-form Q.
Hence, the J-hCS action functional (1.4) is well defined on
(736, J). However, if we substitute (3.49) into (1.4) then we
obtain § = 0 since (0,3)-part of Chern-Simons form CS(.A)
on (P, J) vanishes if A3 = A; = 0. To obtain a nontrivial
Lagrangian, one can perform a gauge transformation,
which will give some nonvanishing terms” as it was done
in [16,17]. We will not follow this path here because this
way we can at best get the actions [18-21] which have
various limitations in comparison with the Chalmers-Siegel
action [12].

*Chern-Simons term CS(A) is not invariant under gauge
transformations.

The action [12] cannot be obtained without introducing
additional degrees of freedom since it contains an extra
propagating field G, ;. One of the possibilities for intro-
ducing additional fields is to consider vector bundles £ over
PO that are not trivial after restriction to CP! & P° [25].
Another possibility is to consider a graded extension of the
twistor space (776, J) similar to the cases considered by
Wolf [10,14] and Sémann [9,15] for the complex twistor
space P2. We will use the second option and introduce a
graded twistor space P°I2,

The space P° is parametrized by bosonic coordinates on
P° and by two anticommuting (fermionic) coordinates 7;,

mi + mmn =0, (4.1)
generating the Grassmann algebra
A(R?) = A°%(R?) @ A'(R?) @ A%(R?), (4.2)
where
1-Re A°R?), n,eA'(R?), i=1,2 and
1=, € A (R?). (4.3)
In the algebra (4.2) one may introduce Z,-grading,
A(R?) = Ag(R?) @ A (R?), (4.4)

where

Ao(R2) = A°%(R?) @ A%(R?) and A, (R?) = Al(R?).

(4.5)

We set grf = 0 if f € Ag(R?) and grf = 1 if f € A;(R?),
grf is the Grassmann parity of f.

On the space P° we consider the space Grps of locally
defined functions (a sheaf) with values in the Grassmann
algebra A(R?). A manifold P° with the sheaf Grps is a
graded manifold P°? = (P°, Grps) [26,27] that can be
viewed as the trivial bundle P° x A;(R?) — PS. Tangent
spaces of P are defined by the even vector fields (3.33),
(3.34) together with the odd vector fields

such that ii+ 0 9 =0,

0
—_— = 4.6
on; Ony Oy Ony O, ( )

commuting with the even vector fields on P°. Respectively,
the space of differential forms on P°? has the local basis
{E“, E*,dn;} with commutation relations
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digy A dny = digy A diy,
E* N d”], = d}’], N E? and Ea VAN d]’ll = d”], A\ E_'ll

(4.7)

where {E“, E} are given in (3.35).

Recall that on (P9, 7) there are globally defined forms
Q and Q. Hence, on P°> we can introduce a closed (3]2)-
form

and the volume form
i - i di Adl
—QAQAdp=—=d**" A ———— A dy, 4.9

where dy = di; A dn,.

B. Chern-Simons type theory on P%?

Let £ be a trivial rank k complex vector bundle over P°?
and A a connection one-form on £ We choose the
connection A depending on all coordinates on P°” and
having no components along the Grassmann directions.
The curvature F of such A is

F=FB4+FF=aBA+AANA+dA, (4.10)

where d® is the bosonic part (3.36) of the exterior derivative
d =dB 4 df and

. . 0
df = dp,0" for O =— (4.11)
on;
is the fermionic part of d.
Consider the action functional
s— / ImQ A dp A CS(A),  (4.12)
PG\Z

where
CS(A) :tr<AAdBA+§A/\A/\A) (4.13)

is the Chern-Simons 3-form. Field equations following
from (4.12) read

ImQ A FB =0, (4.14)
where F® is defined in (4.10). From (4.14) it follows that
ReQ A FB =0, (4.15)

since Q is a (3,0)-form with respect to 7,

JQ =iQ & JImQ = ReQ. (4.16)
Combining (4.14) and (4.15), we obtain
QAFR =0 Fy* =0. (4.17)

Note that from (3.45) and (4.17) it follows that [28,29]
FB(V, V) + FB(V,,V,) =0.

The action functional (4.12) and solution to the equa-
tions (4.14)—(4.17) were considered in [7,28,29].

C. Field equations on P°?2

Having given necessary ingredients, we may now con-
sider J-hCS field equations (4.17). These equations on the
patch U, = U, x A{(R?) of P read

Va-A[)’ - ‘7/}’-'1(1 + [-’Ztav -’Zl/}] =0,

en e e (4.18)
V3-'4a - VaA3 + [A37 -Aa] - [V3, Va] | A= 0,

[TAR1]

where “ | denotes the interior product of vector fields with
differential forms. Here we used components of A4 in the
expansion

A= AE + AE* = A E* + AE® + A E* + A E°.
(4.19)

As usual in the twistor approach, we work in a gauge in
which A3 # 0 but the bosonic part of A5 is zero. Note that
in general the gauge potential A in (4.18) and (4.19) can be
expanded in the odd coordinates #; as
A=A+ +mnG. (4.20)
For simplicity and more clarity we first consider the

truncated case ' =0 and discuss the case w'#0
afterwards.

D. Remark

The connection (4.20) on the vector bundle £ over
POR =~ PO x A (R?) takes values in the Lie algebra g of
a semisimple Lie group G. Note that maps from the space
A (R?) in (4.5) to the group G form a supergroup super-7G
[30], where TG = G X g is the semidirect product of G
and g. That is why the field .4 in (4.20) can be considered as
a connection on a super-7G bundle &£ over the bosonic
twistor space P°. This kind of correspondence was found
by Witten when studying Chern-Simons theories on 3-
manifolds [30]. _

From (3.33)—(3.35) one concludes that components .4,
and Aj; take values in the bundles O(—1) and O(2) over
CP! and A, and A; take values in the complex conjugate
bundles. This fixes the dependence of .4 on A and A up to a
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gauge transformations (cf. [9-11,14,15]). Namely, we
obtain

Ay = 7{2%A 5 + 1(A%G oy + Wldjﬁ/#Gaa/}y)}

= {4 (A + 1Boi) + mr 2 XG5}
Ay = rib{ P Ay + (PG + 7PN 1 Gy )}

= ng{ﬁb(AﬁB + nBﬂ/;) + nyﬁ(ﬁﬂ?i‘.’) GWM))},

Ay =X Gy, and Ay = - i Gy, (4.21)

where

G (4.22)

ad[}’;? - {1/3;'/(})

Ba('l = Ga& - %gﬁf’(G
and the coefficient fields A4, G4, ... do only depend on
x% € R4, Here A% 1% are given in (3.29) and (3.32),
n = N1, and parentheses denote normalized symmetriza-
tion with respect to the enclosed indices.

Substituting (4.21) into (4.18), we obtain the equations

Gutapy) = Va@Gp)» (4.23)
showing that Goapy) are composite fields describing no

independent degrees of freedom. Other nontrivial equations
following from (4.18) after substituting (4.21) read

aff . I 7/ L
€ Ois + Auir Oy + Agy] = €PF 1 55 =0, (4.24)
eV By = 0, (4.25)
£V 4Gy, = 0. (4.26)

We see that (4.24) coincide with the SDYM equations on
R* and (4.25) are the linearized SDYM equations for

8A; = By,

” (4.27)

Hence, B, is a tangent vector at A, to the solution space
of the SDYM equations. It is a secondary field (a sym-
metry) depending on A, and for simplicity we neglect it by
choosing B,;, = 0. The rest equations (4.24) and (4.26) are
the Chalmers-Siegel equations describing the self-dual
gauge potential A,, and the anti-self-dual field Gaa,ﬁ/} =
€45G; propagating in the self-dual background.
The action functional associated with (4.24) and (4.26) is
given by
S = ZAA d4xtr(Gf”/’f(.lﬁ-) (4.28)

with f, i given by (3.52). This action can be obtained from
(4.12) after splitting,

A=X+ny, (4.29)

into ordinary bosonic and even nilpotent parts, using the
formula®

CS(X +nY) = CS(X) + 2ntr(Y A F(X)) —ndB(tr(X A Y))
(4.30)

and integrating over the nilpotent coordinate # and
over CP' & PO,

E. Extra terms

As we mentioned earlier, the general expansion (4.20) of
connection 4 in odd coordinates #; contains fermionic
fields w'(x**) which we consider now. Expansion (4.20)
can be written in components as

Ag = 72 (n1,my)  and - As = /AI&/AI/}G;,/}(mv’?z)»

(4.31)
where
Aci(12) = A+ Wl + P2y )
i (Bag + 1PN Gyyy).  (432)
Gaj(n,m2) = i + mmGj. (4.33)

For A, and A; we have

-'Zla = ng;lﬂA/}/-}(nl, n,) and AB = _ﬂdﬂﬂGa/}(’?h 772)-
(4.34)

Substituting (4.31)—(4.34) into the Egs. (4.18), we obtain
the Egs. (4.23)—(4.27) and additional equations

AvaRYY 2 _
£ Vmwﬁ/} 0 and vy 0, (4.35)
YA vANY | I ]
£ V(mz//w 0 and Y aairi) va(awﬁy)’ (4.36)
2 2 — =
v, = 0 and Voapi) = V(Z(al//ﬂy) 0. (4.37)

From (4.25) and (4.35) we see that B, and ‘//;a are even
and odd solutions of the linearized SDYM equations and
w! in (4.36) is an odd solution to the linearized form of
eqﬁation (4.26) for 5G/} " Thus, the general form (4.20) of
A reduces the J-hCS equations (4.18) to the Chalmers-

*Recall that in all formulas here dB is the ordinary bosonic
exterior derivative.
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Siegel equations (4.24) and (4.26) together with their
linearized form, solutions of which describe even and
odd tangent vectors to the solution space.

F. Full Yang-Mills
So far, we have shown that the Chalmers-Siegel action
(4.28) for SDYM theory can be obtained from the Chern-
Simons type action (4.12) on the graded twistor space P02,
It is known that the action (4.28) is a limit of the full Yang-
Mills action for small coupling constant gyy;. Namely, let
us modify the action (4.28) by adding the term

S, = —& A d(G9G, ). (4.38)

so that

St = S + S, =2/

L 1 .
4 ap L _p2nap .
R4d xtr(G f&ﬂ 2€G Ga;s)-

(4.39)

Here ¢ is some small parameter. Variation of Sy, with
respect to G, ; gives

1
Giap =2l ujr (4.40)

Substituting (4.40) back into (4.39), we obtain

1 |
= — 4 . ap = — - -
Stot 824} xtr(f 5 *") 282%@&@ A F7)
1

1
- RAtr(F/\*F)+MA4tr(F/\F). (4.41)

Hence, the action (4.41) is equivalent to the standard Yang-
Mills action

SYM - - 5 (442)

1
tr(F A *F),
49y Jr*

with the coupling constant gyvy = €, plus the topological
term. Therefore, for obtaining the Yang-Mills action (4.42)
we should derive the term (4.38) from the twistor space.

G. Twistor action for full Yang-Mills

Recall that y = #,1,, where i7; and #, are real Grassmann
variables. Consider a connection A depending on 7 as
written in (4.21).4 It does not have components along the

*We do not consider the more general dependence (4.31)—
(4.34) since we only want to show that one can obtain the action
(4.42) from the twistor space. Consideration of (4.31)—(4.34) will
give the Yang-Mills theory with its infinitesimal symmetries as
we saw in the case of the SDYM equations.

Grassmann directions but the mixed components of the
curvature,

Ffr=d"A= (aiAa)d”li N E* + (ai-'zta)d”li N EC

= Fidy; A E* + Fidy, A E°, (4.43)

do not vanish. In particular, for restriction of FF to
CP'1> < PO we have

fF

‘CP”Z = fﬁd?’]l A\ dl“‘f%df’]l A dj._,

(4.44)
where

F = =einP il Gy and  Fl = el 20 Gy
(4.45)

Using (4.45), we can introduce the gauge invariant func-
tional

ie?

8 Jo N QA dny A dnyeg u(FLF]),  (4.46)
where
ds2, =guE' @ E' < gy =y and g* =y (4.47)

Integrating tr(FiF fl) in (4.46) over fermionic coordinates
and over CP' < P°2, we obtain the functional S, given by
(4.38). Hence, adding the local term given by (4.46) to the
Chern-Simons type Lagrangian in (4.12), we obtain the full
Yang-Mills action (4.42).

V. CONCLUSIONS

In this paper we considered graded twistor space P with
a nonintegrable almost complex structure 7 and .7-hol-
omorphic Chern-Simons theory on P°2. It was shown that
under some assumptions this theory is equivalent to self-dual
Yang-Mills theory on R*. In our discussion we tried to be
close to the consideration of the papers [14,15], where
N <4 SDYM theories were derived from holomorphic
Chern-Simons theory on complex supertwistor spaces. We
have also shown that the full Yang-Mills action in R* can be
obtained from a twistor action on P°/ with a locally defined
Lagrangian. We did not pursue the goal of studying all these
tasks in full generality. We wanted to show the principal
possibility of obtaining actions for Yang-Mills and its self-
dual subsector from a twistor action. Examining all aspects
of the model requires additional efforts.
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