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The nonlocal bosonic theory obtained from integrating out all anticommuting and auxiliary variables in a
globally supersymmetric theory is characterized by the Nicolai map. The latter is generated by a coupling
flow functional differential operator, which can be canonically constructed when the supersymmetry is
realized off shell. Given any scalar superfield theory, we present a universal formula for both the Nicolai
map and its inverse in terms of an ordered exponential of the integrated coupling flow operator.
We demonstrate that our formula also holds for supersymmetric gauge theories.
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I. DEFINITION OF THE NICOLAI MAP

Supersymmetric theories are normally formulated with
bosonic and fermionic (and sometimes ghost) degrees of
freedom or, better, using commuting fields ϕ and anti-
commuting fields ψ . Since the latter usually occur only
quadratically in the action, they are easily integrated out to
produce a functional determinant. This leaves one with a
purely bosonic but nonlocal theory, given by an action

Sg½ϕ� ¼ Sbg ½ϕ� þ ℏSfg ½ϕ�; ð1Þ

where g is any coupling constant, and Sbg and S
f
g denote the

local and nonlocal parts of the new action, respectively. The
latter is proportional to the logarithm of the functional
determinant and is down by a factor of ℏ compared to Sbg , as
it generates the fermionic loop contributions to expectation
values1

hX½ϕ�ig ¼
Z

Dϕ exp

�
i
ℏ
Sg½ϕ�

�
X½ϕ� ð2Þ

of bosonic observables X½ϕ�. We assume supersymmetry to
be unbroken and nonanomalous, so that the vacuum energy
vanishes, meaning that h1ig ¼ 1 and our expectation values
are already properly normalized. We leave the spacetime
dimension d arbitrary and simply write dx for its volume
element.

In 1980 Hermann Nicolai raised and answered the
question of how the nonlocal theory Sg remembers its
supersymmetric heritage [1–3] (see also [4] for a peda-
gogical introduction). Among all such nonlocal bosonic
theories, the ones originating with a supersymmetric past
are characterized by the existence of a (nonlinear and
nonlocal) field transformation (the Nicolai map)

Tg∶ϕðxÞ ↦ ϕ0ðx; g;ϕÞ ð3Þ
invertible at least as a formal power series in g, which
admits the key identity2

hX½ϕ�ig ¼ hX½T−1
g ϕ�i0 ∀X; ð4Þ

relating the interacting theory (at coupling g) to the free one
(at coupling g ¼ 0). Writing out the path integrals, this
requirement is equivalent to

Dϕ exp

�
i
ℏ
Sg½ϕ�

�
¼ DðTgϕÞ exp

�
i
ℏ
S0½Tgϕ�

�

¼ Dϕ exp

�
i
ℏ
S0½Tgϕ� þ tr ln

δTgϕ

δϕ

�
:

ð5Þ
Collecting powers of ℏ, one obtains two conditions,

Sb0½Tgϕ� ¼ Sbg ½ϕ� and Sf0 ½Tgϕ� − i tr ln
δTgϕ

δϕ
¼ Sfg ½ϕ�;

ð6Þ

which originally defined the Nicolai map: the local bosonic
action is mapped to the free one, and the nonlocal part ofPublished by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1We work in Minkowski space, but it is also possible to repeat
the whole analysis in Euclidean space.

2This is not the original definition but an equivalent one as we
will show shortly.
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the action equals the Jacobi determinant of the trans-
formation. We shall henceforth set ℏ ¼ 1 and only use
the relation (4) to construct the Nicolai map below.

II. COUPLING FLOW OPERATOR

Except for the rare instances where stochastic variables
exist [5–10] the Nicolai map can only be constructed
perturbatively. Therefore, it is reasonable to investigate
its infinitesimal version. This method was developed in
[11–15]. Differentiating (4) with respect to the coupling g
yields

∂ghX½ϕ�ig ¼ hð∂g þ Rg½ϕ�ÞX½ϕ�ig ð7Þ
with a functional differential operator

Rg½ϕ� ¼
Z

dxð∂gT−1
g ∘TgÞϕðxÞ

δ

δϕðxÞ ð8Þ

that we will refer to as the “coupling flow operator.” Its
knowledge not only guarantees the existence of the
(inverse) Nicolai map but also provides its perturbative
construction,

ðT−1
g ϕÞðxÞ ¼ expfgð∂g0 þ Rg0 ½ϕ�ÞgϕðxÞjg0¼0

¼
X∞
n¼0

gn

n!
ð∂g0 þ Rg0 ½ϕ�ÞnϕðxÞ

���
g0¼0

: ð9Þ

The derivation property of Rg is essential to obtain the
distributivity of the (inverse) Nicolai map,

T−1
g X½ϕ� ¼ X½T−1

g ϕ�: ð10Þ

Alternatively, the map Tg itself may be found iteratively
from the relation [15]

ð∂g þ Rg½ϕ�ÞTgϕ ¼ 0; ð11Þ

which immediately follows from (4) for X ¼ ϕ.

III. SCALAR THEORIES

How to find the coupling flow operator or at least to
show its existence, before knowing Tg? If the original local
theory in terms of ϕ and ψ admits an off-shell super-
symmetric formulation,3 then its action SSUSY is the highest
component of a superfield, hence can be expressed as a
supervariation δα of the penultimate component. For scalar
supermultiplet theories, the same is true for derivatives with
respect to the coupling [11],

∂gSSUSY½ϕ;ψ � ¼ δαΔα½ϕ;ψ �; ð12Þ

where α is a Majorana spinor index and Δα is a certain
anticommuting functional.4 Employing (12) and the super-
symmetric Ward identity in

∂g

Z
Dϕ

Z
Dψ expfiSSUSY½ϕ;ψ �gX½ϕ�

¼ i
Z

Dϕ

Z
Dψ expfiSSUSY½ϕ;ψ �gð∂gþΔα½ϕ;ψ �δαÞX½ϕ�;

ð13Þ

we integrate out the anticommuting variables to read off the
coupling flow operator

Rg½ϕ� ¼ iΔα½ϕ�δα ¼ i
Z

dxΔα½ϕ�δαϕðxÞ
δ

δϕðxÞ ; ð14Þ

where the contraction indicates the presence of a fermionic
propagator obtained from a fermionic bilinear.
The main challenge then is to exponentiate this operator

in the construction (9). The key new insight here is that the
g0 derivatives on the right-hand side of (9) may actually be
performed in closed form, by solving a standard differential
equation,

∂gZg½ϕ� ¼ Zg½ϕ�ð∂g þ Rg½ϕ�Þ

⇔ Zg½ϕ� ¼ Z0½ϕ�P⃖ exp
Z

g

0

dhRh½ϕ�; ð15Þ

where P⃖ denotes reverse ordering, to be detailed shortly.
With the help of the solution Zg½ϕ�, we obtain

T−1
g ϕ¼

X∞
n¼0

gn

n!
ðZg0 ½ϕ�−1∂g0Zg0 ½ϕ�Þnϕ

���
g0¼0

¼
X∞
n¼0

gn

n!
Zg0 ½ϕ�−1∂n

g0Zg0 ½ϕ�ϕ
���
g0¼0

¼Zg0 ½ϕ�−1eg∂g0Zg0 ½ϕ�ϕjg0¼0

¼Zg0 ½ϕ�−1Zg0þg½ϕ�ϕjg0¼0¼Z0½ϕ�−1Zg½ϕ�ϕ; ð16Þ

and therefore

T−1
g ϕ ¼ P⃖ exp

�Z
g

0

dhRh½ϕ�
�
ϕ

¼
X∞
s¼0

Z
g

0

dh1

Z
h1

0

dh2…Z
hs−1

0

dhsRhs ½ϕ�…Rh2 ½ϕ�Rh1 ½ϕ�ϕ: ð17Þ

3Auxiliary fields may be kept as part of ϕ but it is convenient to
integrate them out as well.

4For gauge theories, which contain vector supermultiplets, the
situation is more complicated and will be discussed below.
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Apparently, the g0 derivatives have been traded for integrations, but this representation is more suggestive than (9).
Moreover, it allows for an immediate formal inversion to write the Nicolai map itself as

Tgϕ ¼ P⃗ exp

�
−
Z

g

0

dhRh½ϕ�
�
ϕ ¼

X∞
s¼0

ð−1Þs
Z

g

0

dhs…
Z

h3

0

dh2

Z
h2

0

dh1Rhs ½ϕ�…Rh2 ½ϕ�Rh1 ½ϕ�ϕ; ð18Þ

with P⃗ indicating standard ordering, This universal form is
the main result of our work.
It is instructive to express the power series expansions of

T−1
g ϕ and of Tgϕ with the one for the flow operator,

Rg½ϕ� ¼
X∞
k¼1

gk−1Rk½ϕ� ¼ R1½ϕ� þ gR2½ϕ� þ g2R3½ϕ� þ…

ð19Þ

(the shift in the g power is a practical convention here).
With this, the integrals in (17) and (18) can be evaluated to
yield

T−1
g ϕ ¼

X
n

gndnRns ½ϕ�…Rn2 ½ϕ�Rn1 ½ϕ�ϕ ð20Þ

and

Tgϕ ¼
X
n

gncnRns ½ϕ�…Rn2 ½ϕ�Rn1 ½ϕ�ϕ; ð21Þ

respectively, where the boldface letter denotes the
multi-index

n ¼ ðn1; n2;…; nsÞ with ni ∈ N and
X
i

ni ¼ n;

ð22Þ

where 1 ≤ s ≤ n and the n ¼ 0 term is the identity. The
numerical coefficients are computed as

dn ¼
Z

1

0

dx1x
n1−1
1

Z
x1

0

dx2x
n2−1
2 …

Z
xs−1

0

dxsx
ns−1
s

¼ ½ns · ðns þ ns−1Þ � � � ðns þ ns−1 þ � � � þ n1Þ�−1; ð23Þ

cn ¼ ð−1Þs
Z

1

0

dxsx
ns−1
s …

Z
x3

0

dx2x
n2−1
2

Z
x2

0

dx1x
n1−1
1

¼ ð−1Þs½n1 · ðn1 þ n2Þ � � � ðn1 þ n2 þ � � � þ nsÞ�−1;
ð24Þ

the latter being in agreement with the earlier result in [15]
derived from (11). Writing out the first few terms, the
perturbative Nicolai map reads

Tgϕ ¼ ϕ − gR1ϕ −
1

2
g2ðR2 − R2

1Þϕ

−
1

6
g3ð2R3 − R1R2 − 2R2R1 þ R3

1Þϕ

−
1

24
g4ð6R4 − 2R1R3 − 3R2R2 þ R2

1R2

− 6R3R1 þ 2R1R2R1 þ 3R2R2
1 − R4

1ÞϕþOðg5Þ:
ð25Þ

IV. GAUGE THEORIES

Supersymmetric Yang-Mills theory is a cornerstone of
modern mathematical physics and therefore of prime
interest. The Nicolai map promises an alternative approach
to its quantization and has regained some attention recently
[16–19]. Let us hence consider unbroken N ¼ 1 super-
symmetric gauge theories in the Wess-Zumino gauge, with
the field content ðA; λ; DÞ in the adjoint representation of
the gauge group and the Yang-Mills field strength

F ¼ dAþ gA ∧ A ¼ 1

2
Fμνdxμ ∧ dxν: ð26Þ

Choosing a linear gauge fixing5

0 ¼ GðAÞ ¼ ∂μAμ or nμAμ ð27Þ

adds, via the Faddeev-Popov trick and the ’t Hooft
averaging, a gauge-fixing term depending on ghost fields
C and C̄ and a gauge parameter ξ to the action. This
explicitly breaks supersymmetry and reduces the gauge
symmetry to Becchi-Rouet-Stora-Tyutin (BRST) invari-
ance. The construction of the Nicolai map now presents an
additional challenge, because the g derivative of

SSUSY½A; λ; D; C; C̄�

¼
Z

dxtr

�
−
1

4
FμνFμν −

1

2ξ
GðAÞ2 þ fermions

þ ghostsþ auxiliaries

�
ð28Þ

5For convenience, nonlinear gauges are easily accommodated
with GðAÞ ¼ G̃ðgAÞ=g for an arbitrary function G̃.
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is no longer a supervariation, even not up to a Slavnov variation (which generates the BRST transformations). The way out
is a rescaling of all fields with a suitable power of g, with the total Jacobian being unity. In particular, for the commuting
fields we define

Ã ¼ gA ⇒ F̃ ¼ gF ¼ dÃþ Ã ∧ Ã ¼ 1

2
F̃μνdxμ ∧ dxν and D̃ ¼ gD ð29Þ

and arrive at

SSUSY½Ã; λ̃; D̃; C̃; ˜̄C� ¼ 1

g2

Z
dxtr

�
−
1

4
F̃μνF̃μν −

1

2ξ
GðAÞ2 þ fermionsþ ghostsþ auxiliaries

�
; ð30Þ

where the only g dependence resides in front of the integral
and in a factor of g multiplying the ghost term. It is then
easy to show that [12,13]

∂gSSUSY ¼ −
1

g3
fδαΔα½Ã; λ̃; D̃� − ffiffiffi

g
p

sΔgh½ ˜̄C; Ã�
�

with Δgh ¼
Z

trf ˜̄CGðÃÞg ð31Þ

where Δα is a particular gauge-invariant fermionic func-
tional and “s” denotes the (anticommuting) Slavnov
variation. With this information, we can employ the
Ward identities for BRST and broken supersymmetry to
compute the effect of a g derivative on the expectation
value hX½Ã�ig after integrating out gaugini, ghosts, and
auxiliaries,

∂ghX½Ã�ig ¼
��

∂g þ
1

g
R̃½Ã�

�
X½Ã�

	
g

ð32Þ

where the coupling flow operator is given by [12,13]

R̃½Ã� ¼ −iΔα½Ã�δα þ
iffiffiffi
g

p Δgh½Ã�s −
1ffiffiffi
g

p Δα½Ã�ðδαΔgh½Ã�Þs

with sÃμ ¼
ffiffiffi
g

p
D̃μ

eC; ð33Þ

and contractions indicating either gaugino or ghost propa-
gators. It is just a complicated linear functional differential
operator. Remarkably, in the variable Ã it is independent of
the gauge coupling g.
Observing that Δgh½Ã�sGðÃÞ ¼ −i ffiffiffi

g
p

GðÃÞ, it follows
that

R̃½Ã�GðÃÞ ¼ GðÃÞ ⇒

�
∂g þ

1

g
R̃½Ã�

�
1

g
GðÃÞ ¼ 0;

ð34Þ
which implies that the chosen gauge class GðAÞ ¼ 1

g GðÃÞ is
invariant under the coupling constant flow generated by R̃
and hence a fixed point of the Nicolai map. This property is
an additional requirement in the usual definition of the
Nicolai map [3], but it is automatic here from the
construction of R̃.
In order to integrate the coupling flow and obtain the

analog of (9) it is necessary to revert the rescaling (29),

T−1
g A ¼ 1

g
exp

�
g

�
∂g0 þ

1

g0
R̃½Ã�

��
Ã
���
Ã¼g0A

���
g0¼0

: ð35Þ

It is not manifest but true that the final step g0 → 0 is
nonsingular. The g0 derivatives in the exponent can be
executed,

T−1
g A ¼ 1

g

X∞
n¼0

gn

n!

�
∂g0 þ

1

g0
R̃½Ã�

�
n
Ã
���
Ã¼g0A

���
g0¼0

;

¼ 1

g

X∞
n¼0

gn

n!

�
ðg0Þ−R̃½Ã�∂g0 ðg0ÞR̃½Ã�

�
n
Ã
���
Ã¼g0A

���
g0¼0

;

¼ 1

g

X∞
n¼0

gn

n!
ðg0Þ−R̃½Ã�∂n

g0 ðg0ÞR̃½Ã�Ã
���
Ã¼g0A

���
g0¼0

;

¼ 1

g
ðg0Þ−R̃½Ã� expfg∂g0 gðg0ÞR̃½Ã�Ã

���
Ã¼g0A

���
g0¼0

;

¼ 1

g
ðg0Þ−R̃½Ã�ðg0 þ gÞR̃½Ã�Ã

���
Ã¼g0A

���
g0¼0

¼ g0

g

�
1þ g

g0

�
R̃½g0A�

A
���
g0¼0

;

¼
X∞
n¼1

1

n!

�
g
g0

�
n−1

R̃½g0A�ðR̃½g0A� − 1Þ � � � ðR̃½g0A� − nþ 1ÞA
���
g0¼0

; ð36Þ
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but regularity at g0 ¼ 0 is still not obvious. In order to
clarify this property, it is convenient to break up R̃ into
homogeneous pieces and split off the degree-zero part
(remember Ã ¼ gA),

R̃½Ã� ¼
X∞
k¼0

Rk½Ã�≕R0½A� þ gRg½A�

with ERk½Ã�≡
Z

Ã
δ

δÃ
Rk½Ã� ¼ kRk½Ã�; ð37Þ

where we defined the functional Euler operator E. When
scaling back from Ã to A, it is useful to recall for any
functional F the obvious equivalence

g∂gF½Ã� ¼ 0 ⇔ ðg∂g − EÞF½gA� ¼ 0: ð38Þ

Applying this in the fourth line below and twice employing
½g∂g;

1
g� ¼ − 1

g, we obtain

T−1
g A ¼ 1

g

X∞
n¼0

gn

n!



1

g0
ðg0∂g0 þ R̃½Ã�Þ

�
n
Ã
���
Ã¼g0A

���
g0¼0

;

¼ 1

g

X∞
n¼1

1

n!

�
g
g0

�
n
ðR̃½Ã� − nþ 1Þ � � � ðR̃½Ã� − 1ÞR̃½Ã�Ã

���
Ã¼g0A

���
g0¼0

;

¼ 1

g

X∞
n¼1

1

n!

�
g
g0

�
n
ðR̃½g0A� − nþ 1Þ � � � ðR̃½g0A� − 1ÞR̃½g0A�g0A

���
g0¼0

;

¼ 1

g

X∞
n¼1

1

n!

�
g
g0

�
n
ðg0∂g0 − Eþ R̃½g0A� − nþ 1Þ � � � ðg0∂g0 − Eþ R̃½g0A�Þg0A

���
g0¼0

;

¼ 1

g

X∞
n¼1

gn

n!



1

g0
ðg0∂g0 − Eþ R̃½g0A�Þ

�
n
g0A

���
g0¼0

;

¼ 1

g

X∞
n¼1

gn

n!

�
∂g0 þ

1

g0
ðR0½A� − EÞ þ Rg0 ½A�

�
n
g0A

���
g0¼0

;

¼ 1

g

X∞
n¼1

gn

n!
ð∂g0 þ Rg0 ½A�Þng0A

���
g0¼0

¼ 1

g

X∞
n¼1

gn

n!
nð∂g0 þ Rg0 ½A�Þn−1A

���
g0¼0

; ð39Þ

where we noticed and used the necessity

R0½A� ¼E¼
Z

A
δ

δA
⇔ T−1

g A¼ Aþ gR1½A�AþOðg2Þ;

ð40Þ

which is borne out by explicit computation as well [15,18].
Therefore, with the coupling flow operators in the two field
scalings being related by

Rg½A� ¼
1

g
ðR̃½gA� − EÞ; ð41Þ

the final inverse Nicolai map reads

T−1
g A ¼

X∞
n¼0

gn

n!
ð∂g0 þ Rg0 ½A�ÞnA

���
g0¼0

¼ expfgð∂g0 þ Rg0 ½A�ÞgAjg0¼0: ð42Þ

This form has been employed directly already in [2,3]
for d ¼ 4 and again in [18] for the critical dimensions

d ¼ 3, 4, 6 and 10. Appendix A of [18] generalized the
earlier proof of existence to all critical dimensions without
the need for off shell supersymmetry but only in the Landau
gauge.
Obviously, (42) is of the same form as (9) for scalar

theories. Therefore, the universal forms (17) and (18) apply
for gauge theories as well,

TgA ¼ P⃗ exp

�
−
Z

g

0

dhRh½A�
�
A

¼
X
n

gncnRns ½A�…Rn2 ½A�Rn1 ½A�A: ð43Þ

This, together with (41), is our second main result.

V. CONCLUSIONS AND OUTLOOK

The property hX½ϕ�ig ¼ hX½T−1
g ϕ�i0 suffices to define

the inverse Nicolai map T−1
g . We briefly reviewed how

off shell supersymmetry admits the construction of a
coupling flow operator Rg½ϕ�, which generates the inverse
Nicolai map via exponentiation of ∂g þ Rg½ϕ�. The g
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derivatives can be integrated to find a universal formula for
the Nicolai map as Tg ¼ P⃗ expf− R g

0 dhRh½ϕ�g given by an
ordered exponential. This formula applies both to scalar
and gauge superfield theories, and it recovers the correct
power series expansion of Tg. For gauge theories the
coupling flow automatically respects the gauge choice.
Various applications are in sight, namely the gauge

dependence and uniqueness of the Nicolai map, the
absence of off shell supersymmetry in higher dimensions,
nonlinear sigma models, extended supersymmetry, or

supersymmetry breaking (which may be triggered by an
external field, as for the matrix models in [20]). Since
Lorentz invariance is not necessary for our construction,
our scope includes non-Lorentzian theories with off shell
supersymmetry, such as [21]. We hope to come back to
these issues.
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