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Kurzzusammenfassung

Die genaue Berechnung optischer Eigenschaften in komplexen Systemen stellt aufgrund

der quantenmechanischen Natur optischer Prozesse eine herausfordernde Aufgabe

dar. Subsystembasierte Methoden bieten einen vielversprechenden Ansatz, um diese

Herausforderungen zu bewältigen, indem das gesamte System in kleinere, rechnerisch

effizientere Teilsysteme aufgeteilt wird. Diese Dissertation beschäftigt sich mit zwei un-

terschiedlichen subsystembasierten Ansätzen zur Berechnung optischer Eigenschaften:

lokale Einbettungsmethoden und globale Fragmentierungsschemata.

Für die lokalen Einbettungsmethoden wurden verschiedene polarisierbare Einbettungss-

chemata analysiert, um optische Anregungen von in Wasser gelöstem para-Nitroanilin

und pentamerer Formylthiophenessigsäure zu berechnen. Durch die Aufschlüsselung

der einzelnen Wechselwirkungseffekte in einem gemeinsamen theoretischen Rahmen

und die umfassende Implementierung wurde ein direkter Vergleich zwischen polarizable

embedding und frozen-density embedding ermöglicht. Wertvolle Erkenntnisse über die

Bedeutung einzelner Wechselwirkungseffekte und die Stärken und Grenzen der Ansätze

wurden verdeutlicht. Die Ergebnisse zeigen die wesentliche Bedeutung der gegen-

seitigen Grundzustandspolarisierung in den Einbettungsschemata sowie die teilweise

bedeutsamen dynamischen Umgebungseffekte. Insbesondere eine starke Abhängigkeit

von den zugrunde liegenden strukturellen Geometrien konnte beobachtet werden.

Darüber hinaus ermöglichten Fragmentierungsschemata die Berechnung globaler optis-

cher Eigenschaften für verschiedene zeolitic imidazolate frameworks (ZIFs). In einer

umfassenden Studie wurde ein rechnerisches Protokoll etabliert, um Geometrien zu

erhalten und die Brechungsindices für ZIF-8 mit reduziertem Rechenaufwand zu berech-

nen. Die implementierten Fragmentierungsschemata wurden nachfolgend angewendet,

um optische Eigenschaften für ZIFs mit derselben Topologie, aber substituierten or-

ganischen Linkern vorherzusagen. Die Ergebnisse verdeutlichen das hohe Potenzial

dieses Ansatzes für die Charakterisierung und Vorhersage optischer Eigenschaften in

leeren ZIFs. Darüber hinaus wurde das Fragmentierungsschema angewendet, um Gast-

moleküle in die poröse Struktur der ZIFs integrieren zu können und erste Schätzungen

für die bevorzugten Positionen und Anzahl der in die Poren eingelagerten Moleküle zu

liefern.

Insgesamt stellt diese Arbeit neuartige theoretische und rechnerische Rahmenwerke

für die genaue Berechnung optischer Eigenschaften in komplexen Systemen vor. Die

vorgestellten Ansätze bieten eine vielversprechende Möglichkeit für die zukünftige

Forschung im Bereich der optischen Eigenschaften. Sie ermöglichen eine tiefere Erken-

ntnis der Wechselwirkungen und ihrer Auswirkungen auf die optische Antwort ver-

schiedener Moleküle. Sie ebnen den Weg für eine verbesserte Charakterisierung und

Gestaltung fortschrittlicher Materialien mit genauen optischen Funktionen.
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Abstract

The accurate calculation of optical properties in complex systems is a challenging task

due to the quantum-mechanical nature of optical processes and the computational

demands involved. Subsystem-based methods offer a promising approach to tackle

these challenges by partitioning the full system into smaller, computationally more effi-

cient subsystems while maintaining the necessary accuracy. In this thesis, two distinct

subsystem-based approaches for calculating optical properties are investigated: local

embedding methods and global fragmentation schemes.

In the local embedding methods, different polarizable embedding schemes were em-

ployed to calculate optical excitations on solvated para-nitroaniline and pentameric

formyl thiophene acetic acid. By dissecting the individual interaction effects in a common

theoretical framework and developing an extensive computational setup, a one-to-one

comparison between polarizable embedding and frozen-density embedding was per-

formed. This comparison provided valuable insights into the importance of separate

interaction effects and highlighted the strengths and limitations of each approach. The

results revealed the major significance of mutual ground-state polarization in the embed-

ding schemes and the partial importance of dynamical environment effects. Specifically,

a strong dependence on the underlying structural geometries could be observed.

The global fragmentation schemes allow the calculation of optical properties for various

zeolitic imidazolate frameworks (ZIFs). In an extensive study, a general computational

protocol was established in order to obtain geometries and calculate refractive indices

for ZIF-8, yielding accurate results with reduced computational demands. The imple-

mented fragmentation schemes were then extended to predict optical properties for ZIFs

with the same topology but substituted organic linkers. The results indicated the high

potential of this approach for the rationalization and prediction of optical properties in

empty ZIFs. Moreover, the framework was adapted to incorporate guest molecules into

the porous structure of the ZIFs, providing rough estimates of the number of molecules

incorporated per pore.

Overall, this thesis introduces novel theoretical and computational frameworks for the

accurate calculation of optical properties in complex systems. The presented approaches

offer a promising direction for future research in the field of optical properties, enabling

a deeper understanding of the interactions and their effects on the optical response of

various molecules. This paves the way for an improved characterization and design of

advanced materials with precise optical functionalities.
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1 Introduction

1.1. Optical Properties via Subsystem-Based Approaches

Optical properties refer to the fundamental characteristics and behaviour of materials in

response to light-matter interactions. A wide array of phenomena, including absorption,

emission, reflection, refraction, and scattering of light emerges from these interactions.

To comprehend the intricate responses of materials to light-matter interactions and

accurately predict their behaviour in this variety of applications, computational meth-

ods play a crucial role by enabling the calculation of optical properties.[1, 2] However,

the calculation comes with its challenges, as light-matter interactions are inherently

quantum-mechanical phenomena.[3, 4] The calculation of optical spectra is in many cases

based on a density-functional theory (DFT) framework, that quickly reaches its limit

concerning computational applicability when introducing extended system sizes.

For instance, smaller chromophores such as para-nitroaniline (pNA) (Fig. 1.1.1),

can change their electronic structure significantly upon solvation and exhibit charge-

transfer phenomena during excitation.[5, 6] The solvation process favours and stabilizes

the zwitterionic structure (Fig. 1.1.1) in the excitation highlighting the importance of the

solvent environment for the optical properties of complex systems.[5] Furthermore, chro-

mophores that exhibit substantial changes in their optical properties upon solvation and

specifically when docking to proteins have piqued interest in scientific research.[7–12]

Luminescent conjugated oligothiophenes (LCOs) serve as fluorescent biomarkers for

amyloid proteins in the detection of Alzheimer’s and Parkinson’s disease.[13, 14] There-

fore, the underlying mechanisms governing the changes upon solvation are of utmost

importance for the further improvement and design of these biomarkers, however, are

not fully understood yet. They are known to originate from molecular conformation as

well as the interaction with the solvent.[15–17] Previous studies have shown that environ-

ments of chromophores of up to 10–15 Å can contribute to solvation effects.[18, 19]

N
+⃝

O O
–⃝

N
HH

N
+⃝

O–⃝ O –⃝

N
+⃝ HH

Figure 1.1.1.: Resonant Lewis structures of para-nitroaniline.
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1. Introduction

Moreover, extended periodic systems, such as porous metal-organic frameworks

(MOFs), that are built from an inorganic building unit (IBU) linked by organic ligands,

are difficult to describe due to their system size.[20, 21] The possibility to tune these

properties by substitution of the IBUs or organic linkers is closely intertwined with the

emergence of a plethora of experimentally accessible MOFs.[22–25] The interest in MOFs

for optical properties[26–29] and particularly interest in the refractive index has grown

recently.[22, 30–35] This is specifically due to the tunability of the refractive index when

incorporating guest molecules into the porous structure.[35–37] The plain supermolecular

calculation of these extended systems, specifically when introducing guest molecules,

is extremely demanding for DFT-based methods, such as periodic density-functional

theory (pDFT). Moreover, considering only isolated small extracted clusters, which

are computationally feasible, neglects important interactions when determining global

optical properties.

a) b)

Main

Env. Env.

Env. Env.

Env. Env. Subsystem Subsystem

S
ub
sy
st
em

S
ub
sy
st
em

S
ubsystem

S
ubsystem

Figure 1.1.2.: Schematic representation of a) local and b) global subsystem-based methods. a) Main

and Env. refers to the main and environmental subsystems, respectively.

Subsystem-based methods offer a solution for the aforementioned limitations by

reformulating the theoretical basis to account for the partitioning of the supermolecular

system into smaller, manageable parts.[38] The division allows the individual calculation

of these subsystems exploiting their computationally efficient size. In these schemes, two

major approaches are commonly distinguished. The local approach makes a distinction

between a main subsystem and its environment (Fig. 1.1.2 a)). Here, optical processes

can be attributed to that main subsystem, while the surrounding environment is assumed

to have a less pronounced influence on the optical behaviour.[39–42] The global approach

(Fig. 1.1.2 b)) involves the calculation of subsystem properties that can be recombined

to describe the property of the entire system.[43, 44]

14



1.2. Local Subsystem-Based Methods

1.2. Local Subsystem-Based Methods

Local subsystem-based methods (Fig. 1.1.2 a)), often referred to as embedding meth-

ods, rely on the quantum-mechanical (QM) description of the main system, while the

environment is described more approximately. In a solvated system, it is possible to

consider the environment implicitly by introducing a solvent continuum.[45, 46] However,

directed solute–solvent interactions requiring explicit solvent representation or more

heterogeneous environments are not covered by this approach. Therefore, two more

extensive main methodologies are distinguished in the calculation of optical properties

for embedded systems. QM/classical approaches describe the environment in a classical

manner. Conversely, quantum-mechanical/quantum-mechanical (QM/QM) approaches

introduce a QM treatment for the environmental subsystems.

The most well-known representative of the former is quantum-mechanical/molecular-

mechanical (QM/MM)modelling, a hybrid approach originating from the ground-breaking

work by Warshel and Levitt.[39, 42, 47, 48] Often this is done by employing point charges

on environmental moieties in order to partially recover electrostatic interactions but

can present in a variety of forms and complexities.[12, 49–53] Regardless of their success,

it could be shown that the more accurate description of the environmental systems

(e.g. polarization effects) strongly improves the accuracy of QM/MM models necessary

for optical properties.[39, 54–56]Consequently, more advanced approaches have been

developed to address the aforementioned limitations.

These include subsystem-based approaches with arbitrary environmental subsystems

(e.g. solvent or protein). QM/classical polarizable embedding (PE) approaches describe

the interactions between the subsystems via distributed multipoles and classical polar-

ization contributions in the environment. Density-based QM/QM methods go beyond

the classical description of the environment.[57–61] These approaches and combinations

thereof[62–64] differ in the calculation of the main subsystem’s and environmental energy

and the definition of their interaction energy. In the calculation of optical properties,

the different methodologies are combined either with state-specific methods, where the

individual excited states are optimized[65, 66], or with linear-response methods, where

the influence of a time-dependent external field is treated perturbatively,[67–71] –⃝OOC
S S

COO –⃝
S

COO –⃝

S

COO–⃝

S



4−

Figure 1.2.1.: Lewis structures of pentameric formyl thiophene acetic acid anion.

Due to their different descriptions, methods within the extended QM/MM and approxi-

mate QM/QM methods have been extensively compared, however, comparisons have

rarely been done between them.[72] Exploring the distinct interaction contributions

and behaviours of these two different classes of embedding methods can offer valuable
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1. Introduction

insights into the strengths and limitations of each approach and provide guidance for

selecting the most appropriate method. Moreover, the interaction contributions most

important for the calculations of a specific system can be dissected.

The above-mentioned pNA has been widely studied with multiple embedding schemes,

but not directly compared for the advanced QM/MM-based and approximate QM/QM

methods.[65, 73–77] Pentameric formyl thiophene acetic acid (pFTAA) (Fig. 1.2.1), a

representative for the LCO has been studied with QM/MM methods[78, 79], but not with

QM/QM. Due to its highly anionic charge (4–), the classical description of the environment

might be more error-prone. Thus, the dissection of the polarization and quantum effects

on these systems could support the efforts to comprehend the underlying polarization

contributions in the excitation and in the case of pFTAA support the further design of

fluorescent amyloid biomarkers.

1.3. Global Subsystem-Based Methods

Subsystem-basedmethods for global optical properties determine the full supermolecular

property by recombining the property of the additive individual subsystems (Fig. 1.1.2),

which is in contrast to local embedding methods. This procedure is often referred to

as molecular fragmentation[80–82] and involves the calculation of individual subsystem

properties, that are subsequently combined to the (ideally exact) supermolecular sys-

tem property.[43, 44, 80] Generally, two main types of fragmentation schemes can be

distinguished. Density-based and energy-based fragmentation schemes.[83] The former

involves the construction of the supermolecular electron density from the subsystem

densities from where full system properties can be derived. In contrast, the latter

concentrates on the calculation of subsystem energies that are combined to the super-

molecular system energy, from which further properties can be derived.[83–85] Many

energy-based fragmentation approaches were introduced, that mainly differ by the way

the total energy expression is obtained (disjunct or overlapping initial fragments), the

employment of capping substituents for the saturation of cut covalent bonds and the

treatment of long-range interactions.[80, 83, 86–93]

Specifically for systems that show periodic molecular patterns, (energy-based) frag-

mentation approaches alleviate a majority of the computational demand.[33, 89, 94, 95]

For instance, the aforementioned porous MOFs are built from a repetitive pattern of

an IBU linked by organic ligands[20, 21], which makes them particularly attractive to

study with these approaches. Specifically, zeolitic imidazolate frameworks (ZIFs), a

class of MOFs built from transition metal ions coordinated with imidazolate linkers and

resembling zeolite topology, have been found to show promising optical properties due

to their wide range of refractive indices and the feasible synthesis of thin films of optical

quality.[35, 96–101]

The composition of the most popular representative, ZIF-8, is displayed in Fig. 1.3.1 a).

Zn2+ cations are tetrahedrally coordinated by 2-methyl-imidazolate (MIM) linkers and

occur in sodalite topology. By the employment of different linkers, ZIFs in the same

topology but with adapted optical properties can be formed (Fig. 1.3.2).[96, 102–106] The

16



1.3. Global Subsystem-Based Methods

a) b)

a

b
c

c) d)

Figure 1.3.1.: Representation of a a) ZIF-8 cubic unit cell at 110 plane and b) general structure with

sodalite topology. a) Grey molecules represent MIM linkers tetrahedrally coordinating blue

Zn2+ ions. c) and d): Schematic representation of the sodalite 𝛽-cage highlighting the c)
four-membered ring (4MR) and d) a six-membered ring (6MR), that form the different

pore windows. The yellow sphere highlights the empty pore inside the 𝛽-cage.

a) ZIF-8 b) ZIF-90 c) ZIF-318p d) ZIF-71

CH3

N NH

O

N NH

CF3

N NH

H

N

Cl Cl

NH

Figure 1.3.2.: Lewis structures of different organic linkers for constructing ZIFs. a) 2-methyl-imidazolate

(MIM) for ZIF-8, b) imidazolate-2-carboxyaldehyde (ICA) for ZIF-90, c) 2-trifluoromethyl-

imidazolate (CF3IM) for ZIF-318p and d) 4,5-dichloroimidazolate (DCIM) for ZIF-71.

17



1. Introduction

topology contains 𝛽-cages that exhibit pores with a volume of approximately 2500 Å3
(Fig. 1.3.1 b)).[107] These large pores are connected by the so-called pore windows,

six four-membered rings (4MRs) and eight six-membered rings (6MRs) marked in the

sodalite cell in Fig. 1.3.1 c) and d), respectively. In gas-separation experiments it has

been shown, that molecules can enter the pores via the pore windows.[108–111] It was

found, that not only very small molecules but also larger molecules, such as methane

could be incorporated.[35, 112] This implies some flexibility of the structure dependent on

the membrane thickness [112] although showing high chemical stability.[96] Reversible

gas adsorption enables the tailoring of optical properties.[35, 113] Keppler et al. studied

optical-quality thin films of ZIF-8, tuning the refractive index by introducing para-methyl

anisate, dimethylsulfoxide, tetrahydrofuran, toluene, iodobenzene or dimethylformamide

as guest molecules. A refractive index range of Δ𝑛 = 0.2 could be obtained in the
ellipsometric measurements.[35]

Previous computational characterization of properties for MOFs has been performed

with full or partial molecular-mechanical (MM)methods (cf. Section 1.2)[114–119], smaller

clusters and DFT[24, 120–123] or DFT with periodic boundary conditions (pDFT)[124–129].

These lack applicability for optical properties either in terms of accuracy due to the

neglect of QM effects, due to a not fully representative cluster size or in terms of com-

putational demand.[119, 126–128] Treger et al. introduced an approximate fragmentation

scheme to different MOFs including ZIFs.[129] The scheme enabled the calculation of the

polarizability and the determination of the static refractive index by the Lorenz–Lorentz

equation[130, 131], however, interactions between subsystems were not regarded.

1.4. Outline of this Work

This thesis progresses with an outline of the theoretical background for the calculation

of optical properties as well as the theoretical basis of the examined subsystem-based

methods (Chapter 2). In the framework of this thesis, a dissection and analysis of

polarization contributions as well as quantum effects for the calculation of optical

properties with both an advanced polarizable QM/MM and a QM/QM embedding scheme

are investigated on the example of pNA and pFTAA. In order to achieve this, a theoretical

framework for the presented methodologies of local embedding schemes is derived.

This framework facilitates the direct comparison of QM-classical and density-based

embedding schemes. Additionally, a computational setup is implemented to numerically

compare the embedding methods and enable a stepwise introduction of interaction

effects. The numerical comparison involves the calculation of local optical properties for

pNA and pFTAA systems solvated in varying sizes of a water environment. This study is

presented in Chapter 4.

Subsequently, in Chapter 5, a set of different-order fragmentation schemes for refrac-

tive indices of MOFs is developed and evaluated in a comprehensive study. The developed

computational protocol is then applied to other ZIFs in a sodalite topology (ZIF-8, ZIF-71,

ZIF-90, and ZIF-318, Fig. 1.3.2). The impact of guest molecules, incorporated into the

pores of ZIFs, on the refractive index is investigated.
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1.4. Outline of this Work

This thesis targets the clarification of the importance of specific interaction contri-

butions in local subsystem-based methods for the calculation of absorption properties.

Embedding schemes with a classical and density-based environmental description are

directly compared to highlight their strengths and limitations. Furthermore, the calcu-

lation of refractive indices with fragmentation schemes is developed and evaluated in

order to allow for novel insights on the refractive indices of isomorphic and loaded ZIFs.

The findings from these studies and the further research questions arising from these

are summarized in Chapter 6.
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2 Theoretical Background for Optical

Properties

2.1. Introduction

The fundamental basis of quantum chemistry is the time-dependent Schrödinger equation.

It can be written as,

�̂�totΨ = 𝐸Ψtot = 𝑖ℏ 𝜕
𝜕𝑡
Ψtot(R, r, 𝑡), (2.1.1)

where the Hamilton operator �̂�tot acts on the total wave function Ψtot(R, r, 𝑡), that
completely defines the system, yielding the total energy 𝐸 as the eigenvalue. It depends
on a set of coordinates for all nuclei (R) and electrons (r) and the time 𝑡. The imaginary
unit and the reduced Planck constant are given as 𝑖 and ℏ, respectively. For a molecule,
the total Hamiltonian is comprised of the kinetic-energy operator ( ̂𝑇) for electrons (el)
and nuclei (nuc) and the potential-energy operators (�̂�) referring to the electrostatic
interaction of electrons and nuclei with and among each other

�̂�tot = ̂𝑇nuc(R) + ̂𝑇el(r) + �̂�nuc,el(r,R) + �̂�el,el(r) + �̂�nuc,nuc(R). (2.1.2)

Expressing the kinetic energy through momenta and the potential energy through the

Coulomb potentials of the involved particles, the molecular Hamiltonian reads

�̂�tot = −
𝑁
∑
𝐼

1
2
∇2𝐼 −

𝑛
∑
𝑖

1
2
∇2𝑖 −

𝑛
∑
𝑖

𝑁
∑
𝐼

𝑍𝐼
|R𝐼 − r𝑖|

+
𝑛
∑
𝑖<𝑗

1
|r𝑖 − r𝑗|

+
𝑁
∑
𝐼<𝐽

𝑍𝐼𝑍𝐽
|R𝐼 − R𝐽|

, (2.1.3)

where the total number of electrons 𝑖 and nuclei 𝐼 are denoted as 𝑛 and 𝑁 so that 𝑍𝐼
is the nuclear charge and r𝑖 and R𝐼 denotes the electronic and nuclear coordinates,
respectively.

In order to find a solution to the Schördinger equation, if no time-dependent pertur-

bation is applied to the system, a separation of the time-dependence from the total

wave function via a product ansatz can be performed due to the assumption of (time-

independent) stationary states. Following from this, the time-independent Schrödinger

equation is obtained as,

�̂�totΨ̃(R, r) = 𝐸totΨ̃(R, r), (2.1.4)
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2. Theoretical Background for Optical Properties

with the time-independent wave function Ψ̃(R, r) and the total energy of the stationary
state 𝐸tot. Following from the immense computational complexity of solving this equation,
commonly a further separation is aspired. The nuclei and electrons show a large disparity

in their mass, i.e. the electronic movement can be assumed to instantaneously adapt to

a change in the set of nuclear coordinates. In result, starting from a product ansatz,

in the “clamped-nuclei” approximation the nuclear position and momentum are fixed.

The nuclear kinetic energy term is omitted in the Hamiltonian (see Eq. (2.1.2)), thus,

yielding a purely electronic Schödinger equation

�̂�el𝜓𝑖(r;R) = 𝐸el,𝑖(R)𝜓𝑖(r;R) (2.1.5)

with the electronic Hamiltonian �̂�el. The electronic wave functions 𝜓𝑖 and electronic en-
ergy 𝐸el,𝑖 are eigenfunctions and eigenvalues of the electronic Hamiltonian, respectively.
Since the nuclear potential energy �̂�nuc,nuc only depends on the set of nuclear coordi-
nates, it can be regarded as an additive constant, to the electronic energy eigenvalue of

the system. Although the nuclear motion is neglected in this approach, the electronic

wave functions show a parametric dependence on the set of nuclear coordinates R, This

is due to the existence of an electronic Hamiltonian for every possible nuclear configu-

ration, thus, the corresponding eigenfunctions and eigenvalues so that a set of coupled

potential-energy surfaces arises. Performing the Born–Oppenheimer approximation[132],

the “non-adiabatic coupling” is neglected, yielding separate potential-energy surfaces

on which the nuclei move. These allow for the description of molecular structures

corresponding to a set of nuclear coordinates that show the minima of the electronic

energy on the potential-energy surface.

In order to solve the electronic Schrödinger equation for a given set of nuclear coordi-

nates (a point on the potential-energy surface), approximations have to be introduced,

since it is only exactly solvable for a single electron. When introducing more than

one electron the antisymmetry of the wave function with respect to an interchange of

electrons has to be ensured. This is often taken into account by expressing the many-

electron wave function in terms of a Slater determinant (SD) of single-electron wave

functions.[133] Assuming that it can be approximated by a single SD, methods like the

Hartree–Fock (HF) method, where the electron moves in a mean-field potential of the

remaining electrons, were developed.[134, 135] Although showing a favourable scaling in

computational demand, the major drawback is the lack of electron correlation (part of

the electron-electron potential energy).[136] In an attempt to improve for this inaccu-

racy, post–HF methods have been proposed, such as configuration interaction[133, 137],

coupled-cluster[138–140], or Møller Plesset perturbation theory[141]. In a dilemma be-

tween accuracy and computational complexity (e.g. CI is only solvable for extremely

small systems), alternative ansatzes, that do not rely on expressing the wave function,

have been formulated. One very popular representative is the so-called density-functional

theory (DFT), which has been a workhorse in quantum chemistry due to its combination

of accuracy and comparably low computational demands.[142]

In the following chapter, this approach will be laid out in detail (Section 2.2). Subse-

quently, an extension to the time-dependent case, the time-dependent density-functional
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2.2. Density-Functional Theory

theory (TD-DFT) (Section 2.3), will be illustrated, which allows for the calculation of

(optical) properties in an external potential. Furthermore, in Section 2.4, subsystem

methods will be introduced and the application of DFT and time-dependent density-

functional theory (TD-DFT) in order to calculate optical properties in these frameworks

will be elaborated.

2.2. Density-Functional Theory

The general hypothesis in DFT is that the complexity of the many-electron problem

can be reduced from the wave function object Ψ(r, 𝜎) depending on the spatial and
spin coordinates of all electrons to the electron density 𝜌 depending on three spatial
coordinates. As early as 1928, the Thomas–Fermi model for the uniform electron gas

emerged from statistical considerations proposing a purely electron-density-dependent

energy expression[143–145]

𝐸TF[𝜌] = 𝑇TF[𝜌] + 𝑉nuc,el[𝜌] + 𝐽 [𝜌]. (2.2.1)

Here, 𝐽 [𝜌] denotes the classical Coulomb part of the electronic distribution, thus,
neglecting the non-classical part of the 𝑉el,el term (Eq. (2.1.2)). The kinetic Thomas–

Fermi energy functional 𝑇TF[𝜌] is derived from the uniform electron gas and was further
improved by considering the inhomogeneity of the electron density by integrating over

small volume elements with an approximately constant electron density

𝑇TF[𝜌] = ∫
3
10

(3𝜋2)
2
3𝜌(r)

5
3 . (2.2.2)

Although conceptually important, the model does not hold for the formation of stable

bonds, since the energy is steadily decreasing for increasing interatomic distances.[146, 147]

Corrections to the Thomas–Fermi theory by Dirac[148] and von Weizsäcker[149] did im-

prove the model but likewise did not allow a sufficiently accurate description of stable

bonds.[150–153]

More than 30 years later Hohenberg and Kohn laid the formal basis for DFT prov-

ing that for an interacting electron gas in an external potential 𝑣(r), there exists a
functional of the electron density 𝐹HK[𝜌], that – independent of 𝑣(r) – minimizes to the
ground-state energy. For this, they followed via reductio ad absurdum that the external

potential uniquely corresponds to the ground-state electron density (first Hohenberg–

Kohn theorem).[154] The number of electrons is readily obtained via

𝑛 = ∫𝜌(r)dr. (2.2.3)
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2. Theoretical Background for Optical Properties

Consequently, the Hamiltonian of the system and, therefore, the electronic ground state

of the system and its properties can be fully and uniquely expressed by the electron

density 𝜌 within one additive constant 𝑉nuc,nuc. For the electronic energy, it follows

𝐸el = 𝑇el[𝜌] + 𝑉el,el[𝜌] + 𝑉nuc,el[𝜌] (2.2.4)

= ⟨Ψ[𝜌] | ̂𝑇el[𝜌] + �̂�el,el[𝜌] | Ψ[𝜌]⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐹HK[𝜌]

+∫ 𝑣(r)𝜌(r)dr (2.2.5)

Replacing the external potential 𝑣(r) with an external potential 𝑉0 of a system with

ground-state density 𝜌0 and ground-state energy 𝐸0, it follows from the variational

principle,

𝐸v0[𝜌] = 𝐸v0[Ψ[𝜌]] > 𝐸0 with 𝜌 ≠ 𝜌0 (2.2.6)

𝐸0 = 𝐸v0[Ψ[𝜌0]] = 𝐸v0[𝜌0]

and therefore conclude that the ground-state energy can be obtained by minimization

of 𝐸v0[𝜌]. This leaves us with the Hohenberg–Kohn variational principle, which is
considered the second theorem, however, without knowledge of the exact form of

𝐹HK[𝜌].
Furthermore, in the Hohenberg–Kohn theorems, it is assumed that the electron density

is 𝑣-representable: It can be obtained from a single antisymmetric wave function corre-

sponding to a ground-state Hamiltonian that contains terms for the electron-electron

interaction and a local external potential. However, this is not the case for all non-

negative trial densities and the general conditions for v-representability are unknown.
To extend 𝐹HK to arbitrary non-negative densities, Levy[155] and Lieb[151, 152] developed
the so-called Levy–Lieb functional

𝐹LL[𝜌] = min
Ψ→𝜌

⟨Ψ | ̂𝑇 + �̂�el,el | Ψ⟩ , (2.2.7)

where the density 𝜌(r) is obtained for the minimum of all antisymmetrized 𝑁-particle
wave functions, thus, is 𝑁-representable. For any v-representable electron density 𝜌(r),
the Levy–Lieb functional is equal to the Hohenberg–Kohn functional. Performing the

constrained search in Eq. (2.2.7) and subsequently minimizing

𝐸0 = min
𝜌

𝐸𝑣[𝜌] (2.2.8)

= min
𝜌

(𝐹LL[𝜌] + ∫ 𝑣(r)𝜌(r)dr) (2.2.9)

is called the Levy–Lieb constrained search formalism. The potential term is taken

out the constraint minimization in Eq. (2.2.7) since only those wave functions are

considered that yield the same electron density. By this two-step procedure, the search
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2.2. Density-Functional Theory

in Eq. (2.2.5) over all v-representable electron densities is circumvented and solely
requires 𝑁-representability of the electron density. This condition is satisfied if[156]

𝜌(r) ≥ 0, ∫ 𝜌(r)dr = 𝑛 and ∫ |∇𝜌(r)
1
2 |2dr < ∞. (2.2.10)

2.2.1. Kohn–Sham Density-Functional Theory

The energy functional (Eq. (2.2.9)) can be minimized via the Euler–Lagrange equation

for stationary energies by introducing a Lagrangian multiplier 𝜇

𝜇 =
𝛿𝐸𝑣[𝜌]
𝛿𝜌(r)

(2.2.11)

=
𝛿𝐹[𝜌]
𝛿𝜌(r)

+ 𝑣(r). (2.2.12)

Here, for 𝐹[𝜌] the functional derivative can employ the Hohenberg–Kohn form 𝐹HK[𝜌] or
an extended form, for instance, the Levy–Lieb form 𝐹LL[𝜌]. Aforementioned approaches
such as the Thomas–Fermi model and extended forms early on attempted the minimiza-

tion of energy functionals in the form of the Hohenberg–Kohn functional by expressing

all terms solely as explicit functionals of the electron density. Their lack of referencing

the 𝑁-particle wave function, however, leads to insufficient accuracy in expressing the
kinetic and exchange energy.[146, 148]

In 1965, Kohn and Sham proposed an approach that combines the advantages of

density-dependent and wave function approaches.[157] In Kohn–Sham (KS)-DFT besides

the real, interacting system with the ground-state electron density 𝜌0, there exists a
non-interacting reference system 𝑆 with that same ground-state electron density 𝜌𝑠0 = 𝜌0.
For the ground state of a non-interacting system with a local external potential, the

wave function can be expressed in terms of a Slater determinant (SD) of one-electron

functions 𝜓𝑖

Ψ𝑠 = ΨSD = 1
√𝑛!

|𝜓 𝑠1…𝜓 𝑠𝑛|. (2.2.13)

with the number of electrons 𝑛. By reintroducing this wave function, additionally, the
expression for the kinetic energy is known exactly for the non-interacting system,

𝑇 𝑠[𝜌] =
𝑁
∑
𝑖
⟨𝜓 𝑠𝑖 | −

1
2
∇2 | 𝜓 𝑠𝑖 ⟩ . (2.2.14)

If the proposed non-interacting system with the same ground-state energy exists, this

means, that derived from the non-interactive system, accordingly the interactive system
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can be expressed in terms of one-electron functions 𝜓𝑖 (the KS orbitals). Subsequently,
the electronic energy (Eq. (2.2.4)) can then be rewritten as

𝐸KS[𝜌] = 𝑇 𝑠[𝜌] + 𝐽 [𝜌] + 𝑉nuc,el[𝜌] + (𝑉el,el[𝜌] − 𝐽 [𝜌] + 𝑇 [𝜌] − 𝑇 𝑠[𝜌])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐸xc

, (2.2.15)

where the so-called exchange–correlation (XC) energy functional was introduced, which

includes a correction term to the electron-electron interaction effects, that are not

considered in the Coulomb term (𝑉el,el[𝜌] − 𝐽 [𝜌]) as well as the correction term for the

kinetic energy due to being described in a non-interacting reference system in contrast

to the real system (𝑇 [𝜌] − 𝑇 𝑠[𝜌]). Returning to the Euler–Lagrange expression, for the
constraint of orthonormal orbitals, the Lagrange multipliers are obtained as

𝜇 =
𝛿𝐸KS[𝜌]
𝛿𝜌(r)

(2.2.16)

=
𝛿𝑇 𝑠[𝜌]
𝛿𝜌(r)

+
𝛿𝐽 [𝜌]
𝛿𝜌(r)

+
𝛿𝑉nuc,el[𝜌]

𝛿𝜌(r)
+
𝛿𝐸xc[𝜌]
𝛿𝜌(r)

(2.2.17)

=
𝛿𝑇 𝑠[𝜌]
𝛿𝜌(r)

+ ∫
𝜌(r′)
|r − r′|

dr′ −
𝑍𝐼

|r − R𝐼|
+
𝛿𝐸xc[𝜌]
𝛿𝜌(r)

(2.2.18)

= −1
2
∇2 + vnuc(r) + vcoul(r) + vxc(r)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

veff

(2.2.19)

where all terms except vxc(r) can be determined analytically and veff denotes the effective
potential. In contrast to the approximated terms in “orbital-free” approaches (e.g. the

Thomas–Fermi model), however, this term is commonly rather small.

Since the ground-state density is also known in terms of KS orbitals

𝜌(r) =
𝑁
∑
𝑖=1

|𝜓𝑖(r)|2, (2.2.20)

the KS equations can be derived, as the following effective one-electron eigenvalue

equations[156]

(−1
2
∇2 + veff(r)) 𝜓𝑖 = 𝜀𝑖𝜓𝑖. (2.2.21)

(2.2.22)

This minimization reflects the projection of the real system onto a non-interacting single-

determinant system. Since all approximations were corrected with the XC functional 𝐸xc
and therefore in the XC potential vxc, KS-DFT is in principle exact. The central question
remains the analytical form of the XC functional.
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2.2. Density-Functional Theory

Over the years many different approximations have been developed that can be

divided into a few main classes. Firstly, the XC functional based on the local density

approximation (LDA) was introduced. With the following expression for the XC functional

𝐸LDAxc = ∫ 𝜀LDAxc [𝜌]𝜌(r)𝑑r = ∫ 𝜀LDAx [𝜌]𝜌(r)𝑑r + ∫ 𝜀LDAc [𝜌]𝜌(r)𝑑r (2.2.23)

the energy density 𝜀xc is further divided into the exchange 𝜀x and correlation part 𝜀c.
The former, which is commonly contributing more can be expressed by the exchange

terms of the uniform electron gas.[148] In this Thomas–Fermi–Dirac model small volume

elements of locally homogenous density form the full electron density (cf. Eq. (2.2.2)),

so that 𝜀x = −3
4 (

3
𝜋)

1
3 𝜌

1
3 .[148] The correlation energy density can be obtained by fitting a

functional expression to Monte-Carlo simulations of the uniform electron gas.[158–160]

Extending this class to the so-called generalized gradient approximation (GGA), the

XC functional becomes[161]

𝐸GGAxc = ∫ 𝜀GGAxc [𝜌(r), ∇𝜌(r)]𝜌(r)𝑑r. (2.2.24)

Here, the energy density shows a dependence on both the electron density and its

gradient, due to a Taylor expansion of the energy to second order. Due to the better

description of the XC hole, GGA functionals yield improved results in comparison to

LDA functionals.[161] The GGA is often referred to as semi-local in contrast to the

local LDA and commonly reduces the error from LDA by approximately one order of

magnitude.[162] Popular representatives are Becke’s exchange functional B88[163], the

correlation functional LYP by Lee, Yang and Parr[164] or the XC functional PBE by Perdew,

Burke and Ernzerhof[165]. Including the terms of the second-order Taylor expanded

energy systematically improves the description in the so-called meta-GGA functionals

but to a minor degree.[162]

Being derived from the other classes, the hybrid functionals are combining the density-

dependent KS exchange and correlation part with a non-local exchange term from HF

theory. Due to the lack of accuracy when approximating the exchange, DFT suffers

from a self-interaction error of the electron that results from the Coulomb term, while

in the HF theory this is explicitly cancelled out by the exchange terms. Therefore, the

latter offers an exact expression for the exchange energy, although, being based on a

different type of orbitals. Thus, non-local “exact exchange” is introduced as 𝐸HFx using

the adiabatic connection to relate the XC functional to the non-interacting electron

density so that the XC functional becomes

𝐸Hxc = (1 − 𝑐HF)𝐸KSx [𝜌, ∇𝜌] + 𝑐HF𝐸HFx [𝜓𝑖] + 𝐸KSc [𝜌, ∇𝜌], (2.2.25)

where 𝜓𝑖 are the occupied KS orbitals.[162] The amount of necessary exact exchange can
differ greatly between different properties and systems so that a scaling coefficient 𝑐HF
is introduced. There exists a plethora of representatives, however, the most popular

and widely used hybrid XC functional is B3LYP that is combined of the GGA-type B88
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exchange functional and LYP correlation functional.[159, 166, 167] In this special case,

Eq. (2.2.25) is adapted to

𝐸B3LYPxc = (1 − 𝑐HF)𝐸LDAx + 𝑐HF𝐸HFx + 𝑏𝐸B88x + (1 − 𝑐)𝐸LDAc + 𝑐𝐸LYPc (2.2.26)

with 𝑐HF = 0.2, 𝑏 = 0.72 and 𝑐 = 0.81.[168]
Since for long-range electron interactions the HF exchange displays better asymptotic

behaviour (also due to the self-interaction error), in so-called range-separated/Coulomb-

attenuated functionals for this kind of interactions HF exchange is employed.[169–173]

To obtain this range-dependent blending in of exact exchange, the Coulomb operator is

split into a KS and a HF part, as shown here on the example of the popular CAM-B3LYP

functional

1
𝑟1 − 𝑟2

=
1 − [𝛼 + 𝛽 ⋅ erf(𝜇(𝑟1 − 𝑟2))]

𝑟1 − 𝑟2
+
𝛼 + 𝛽 ⋅ erf(𝜇(𝑟2 − 𝑟2)

𝑟1 − 𝑟2
(2.2.27)

with 𝛼 = 0.19, 𝛽 = 0.46,𝜇 = 0.33 and the error function erf.[174] Here, 𝛼 and 𝛽 determine
the amount of short-range and long-range exact exchange, respectively. It builds on the

popular B3LYP functional and was one of the first functionals to introduce the interaction

switching parameter 𝜇 that determines when to switch between short- and long-range
parts.[161]

In principle, the introduction of more accurate terms, as done for the exchange part

in hybrid functionals, is also possible for the correlation part. This is commonly done

by combining the density-dependent KS term and a scaled term obtained with the

second-order Møller–Plesset perturbation theory equation

𝐸DH = (1 − 𝑐HF)𝐸KSx + 𝑐HF𝐸HFx + (1 − 𝑐MP2)𝐸KSc [𝜌, ∇𝜌] + 𝑐MP2𝐸MP2
c [𝜓𝑖, 𝜓𝑎] (2.2.28)

that depends on the occupied (𝜓𝑖) and virtual orbitals (𝜓𝑎).[161, 175] An early representa-
tive is the B2PLYP functional by Grimme.[175]

Additionally, there exist, semiempirical “3c” methods, that are derived from other

usually GGA functionals, including three correction terms originating from the HF-

3c and PBEh-3c methods.[176, 177] B97-3c[178] is a popular representative, that stems

from the regular B97 XC functional[179] but involves correction terms for the basis set

superposition error by a geometrical counterpoise correction, a Grimme D3 dispersion

correction as well as a correction for short-range correction for estimated bond lengths.

The method is applied with a special modified Ahlrichs basis set has been found to be

robust while showing high efficiency.

2.3. Time-Dependent Density-Functional Theory

In order to describe optical properties such as excitation energies, it is necessary to be

able to describe the system in response to external radiation. Following the semi-classical

approach, the interaction between this radiation and the system is assumed to origi-
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nate from a classical electromagnetic field interacting with the quantum-mechanically

treated system. In the case of a molecule, this concerns the interaction of the field

with the molecule’s dipole moment 𝜇𝜇𝜇(r) and consequently a change in the molecular
electron density.[180] The frequency-dependence of this change in the electron density is

particularly interesting and is connected to the time-dependent frame via Fourier trans-

formation. For instance, the frequency-dependent polarizability is an essential quantity

that describes the change of the dipole moment in interaction with an electromagnetic

field and therefore enables to, inter alia, determine excitation energies. The calculation

of these properties in response to an external electromagnetic potential can be realized

with so-called TD-DFT. In this framework that is described below (closely the following

the derivation in ref. [181]), KS-DFT is extended in order to describe the time-dependent

change of the electron density.

In the previous chapter, the Hohenberg–Kohn theorems were introduced (Section 2.2).

Although a one-to-one correspondence between the ground-state electron density and

the wave function of the system was established, and thus, also for excited states, the

introduction of the external potential does not necessarily follow a unique correspon-

dence to excited-state electron densities. This formal basis was established in the

Runge–Gross theorem[182], which extends the Hohenberg–Kohn theorems to a one-to-

one correspondence between the time-dependent electron density and external potential.

Subsequently, a time-dependent version of the Kohn–Sham equations is obtained as,

(−1
2
∇2 + veff(r, 𝑡))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̂𝑓 KS

𝜓𝑖(r, 𝑡) = 𝑖 𝜕
𝜕𝑡
𝜓𝑖(r, 𝑡). (2.3.1)

Linearly expanding the one-electron wave functions 𝜓𝑖(r, 𝑡) = ∑𝑛
𝜇 = 𝑐𝑖𝜇(𝑡)𝜒𝜇(r) with time-

independent single-particle wave functions 𝜒𝜇(r) the electron density can be defined in
terms of expansion coefficients

𝜌(r, 𝑡) =
𝑛
∑
𝑖
|𝜓𝑖(r, 𝑡)|2 = ∑

𝑖
(∑

𝜇
𝑐𝑖𝜇(𝑡)𝜒𝜇(r)∑

𝜈
𝑐∗𝑖𝜈(𝑡)𝜒𝜈(r)) (2.3.2)

= ∑
𝜇𝜈

𝑃𝜇𝜈𝜒𝜇(r)𝜒∗
𝜈 (r). (2.3.3)

with the density matrix element 𝑃𝜇𝜈 = ∑𝑛
𝑖 𝑐𝑖𝜇𝑐

∗
𝑖𝜈. With this expression and the Liouville–von

Neumann equation equation

𝑖 𝜕
𝜕𝑡
P = [F,P] (2.3.4)

the time-dependent Schrödinger equation (Eq. (2.1.1)) can be rewritten as

𝑖 𝜕
𝜕𝑡
𝑃𝑝𝑟 = ∑

𝑞
(𝐹𝑝𝑞𝑃𝑞𝑟 − 𝑃𝑝𝑞𝐹𝑞𝑟) , (2.3.5)
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where 𝑝, 𝑞, … are defined as general orbitals and 𝐹𝑝𝑞 as Fock matrix elements.
Occupied and virtual orbitals will in the following be denoted as 𝑖, 𝑗, … and 𝑎, 𝑏, … ,

respectively. From here, linear-response TD-DFT is applied, where the time-dependent

external electric field is applied to a time-independent unperturbed ground-state electron

density.

When applying this field, the density matrix and Fock matrix experience a linear (up

to first-order) perturbation

𝑃𝑝𝑞 = 𝑃 (0)𝑝𝑞 + 𝑃 (1)𝑝𝑞 (2.3.6)

𝐹𝑝𝑞 = 𝐹 (0)𝑝𝑞 + 𝐹 (1)𝑝𝑞 . (2.3.7)

with the unperturbed and first-order perturbed Fock matrix elements 𝐹 (0) and 𝐹 (1)
and the unperturbed and first-order perturbed density matrix elements 𝑃 (0) and 𝑃 (1),
respectively. When these expressions are inserted into Eq. (2.3.5) with zeroth-order

terms vanishing due to them being unperturbed in the ground state and collecting

the linear terms, the first-order change of the time-dependent Kohn–Sham equations

becomes

∑
𝑞
(𝐹 (0)𝑝𝑞 𝑃

(1)
𝑞𝑟 − 𝑃 (1)𝑝𝑞 𝐹

(0)
𝑞𝑟 + 𝐹 (1)𝑝𝑞 𝑃

(0)
𝑞𝑟 − 𝑃 (0)𝑝𝑞 𝐹

(1)
𝑞𝑟 ) = 𝑖 𝜕

𝜕𝑡
𝑃 (1)𝑝𝑟 . (2.3.8)

The time-dependent change of the density matrix to first order is defined as

𝑃 (1)𝑝𝑞 = 1
2
(𝑑𝑝𝑞𝑒−𝑖𝜔𝑡 + 𝑑∗𝑞𝑝𝑒𝑖𝜔𝑡) , (2.3.9)

with the oscillation amplitudes 𝑑𝑝𝑞. The first-order change of the Fockmatrix is comprised
of the applied perturbation by the time-dependent electric field and the changes of the

two-electron part due to the changes of the density matrix,

𝐹 (1)𝑝𝑞 = 𝑉𝑝𝑞(𝑡) +∑
𝑠𝑡

𝜕𝐹 (0)𝑝𝑞

𝜕𝑃𝑠𝑡
𝑃 (1)𝑠𝑡 . (2.3.10)

Using Eq. (2.3.6) and Eq. (2.3.7) in the time-dependent Schrödinger equation in Dirac

form Eq. (2.3.8) and assuming the external time-dependent potential to be of the form

�̂� (𝑡) = 1
2 (𝑉0𝑒

−𝑖𝜔𝑡 + 𝑉 ∗
0 𝑒𝑖𝜔𝑡), the following expression is obtained for the terms that are

multiplied with 𝑒−𝑖𝜔𝑡

∑
𝑞
[𝐹 (0)𝑝𝑞 𝑑𝑞𝑟 − 𝑑𝑝𝑞𝐹

(0)
𝑞𝑟 + 𝑉0,𝑝𝑞𝑃

(0)
𝑞𝑟 +∑

𝑠𝑡

𝜕𝐹 (0)𝑝𝑞

𝜕𝑃𝑠𝑡
𝑑𝑠𝑡𝑃

(0)
𝑞𝑟 − 𝑃 (0)𝑝𝑞 𝑉0,𝑞𝑟 − 𝑃 (0)𝑝𝑞 ∑

𝑠𝑡

𝜕𝐹 (0)𝑞𝑟

𝜕𝑃𝑠𝑡
𝑑𝑠𝑡] = 𝜔𝑑𝑞𝑟.

(2.3.11)
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The terms multiplied by 𝑒𝑖𝜔𝑡 give the complex conjugated of Eq. (2.3.11). Further
simplifications can be made due to the fact that the unperturbed Fock matrix and

density matrix are diagonal and solely oscillation amplitudes between occupied and

virtual orbitals contribute (𝑑𝑖𝑖 = 𝑑𝑎𝑎 = 0). With the property of canonical orbitals being
orthonormal, the unperturbed Fock matrix elements and density matrix elements can be

reduced to 𝐹 (0)𝑝𝑞 = 𝛿𝑝𝑞𝜀𝑝 and 𝑃
(0)
𝑖𝑗 = 𝛿𝑖𝑗, respectively, with the orbital energies 𝜀𝑝. Density

matrix elements involving virtual orbitals do not contribute (𝑃 (0)𝑖𝑎 = 𝑃 (0)𝑎𝑖 = 𝑃 (0)𝑎𝑏 = 0).
Introducing these expressions into Eq. (2.3.11) and its complex conjugate the following

non-Hermitian eigenvalue equation is obtained

[( A B

B∗ A∗
) − 𝜔 ( 1 0

0 −1 )] (X
Y
) = −(K

L
) . (2.3.12)

with

𝐴𝑎𝑖,𝑏𝑗 = 𝛿𝑖𝑗𝛿𝑎𝑏(𝜀𝑎 − 𝜀𝑖) +
𝜕𝐹 (0)𝑎𝑖
𝜕𝑃𝑏𝑗

𝐵𝑎𝑖,𝑏𝑗 =
𝜕𝐹 (0)𝑎𝑖
𝜕𝑃𝑗𝑏

𝑋𝑎𝑖 = 𝑑𝑎𝑖
𝐾𝑎𝑖 = 𝑉0,𝑎𝑖

𝐴∗
𝑎𝑖,𝑏𝑗 = 𝛿𝑖𝑗𝛿𝑎𝑏(𝜀𝑎 − 𝜀𝑖) +

𝜕𝐹 (0)𝑖𝑎
𝜕𝑃𝑏𝑗

𝐵∗𝑎𝑖,𝑏𝑗 =
𝜕𝐹 (0)𝑖𝑎
𝜕𝑃𝑗𝑏

𝑌𝑎𝑖 = 𝑑𝑖𝑎
𝐿𝑎𝑖 = 𝑉0,𝑖𝑎,

the so-called the TD-DFT equations. Assuming resonance conditions and thus, an

infinitesimal perturbation 𝑉0,𝑝𝑞 = 0, Eq. (2.3.12) can be further reduced to the non-
Hermitian eigenvalue equation,

[( A B

B∗ A∗
) − 𝜔 ( 1 0

0 −1 )] (X
Y
) = 0. (2.3.13)

In these definitions, the only unknown ingredient is the derivatives of the unperturbed

Fock matrix elements with respect to the density matrix elements
𝜕𝐹 (0)𝑝𝑞

𝜕𝑃𝑟 𝑠
. It is assumed,

that the electron density very slowly changes with time so that in this adiabatic local

density approximation (ALDA) the time-dependent non-local XC kernel is replaced with

a time-independent local counterpart and determined with XC functionals developed for

time-independent calculations. In this case, the derivative reads,

𝜕𝐹 (0)𝑝𝑞

𝜕𝑃𝑟 𝑠
=

𝜕 ⟨𝜓𝑝| ̂𝑓 KS|𝜓𝑞⟩
𝜕𝑃𝑟 𝑠

=
𝜕 ⟨𝜓𝑝| ̂𝑇 + 𝑉eff[𝜌]|𝜓𝑞⟩

𝜕𝑃𝑟 𝑠
=

𝜕 ⟨𝜓𝑝|vcoul[𝜌] + vxc[𝜌]|𝜓𝑞⟩
𝜕𝑃𝑟 𝑠

, (2.3.14)
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where only the Coulomb and XC potential show a dependence on the electron density,

thus, the kinetic energy and nuclear potential terms vanish in the derivative. Using

functional derivative laws Eq. (2.3.14) is further reduced to

𝜕𝐹 (0)𝑝𝑞

𝜕𝑃𝑟 𝑠
= ⟨𝜓𝑝| ∫

𝛿(vcoul[𝜌] + vxc[𝜌])
𝛿𝜌(r2)

⋅
𝛿𝜌(r2)
𝜕𝑃𝑟 𝑠⏟⏟⏟⏟⏟⏟⏟
𝜌t𝑟 𝑠(r2)

dr2 |𝜓𝑞⟩ (2.3.15)

= ∫∫𝜌t𝑝𝑞(r1) (
1

|r1 − r2|
+

𝛿2𝐸xc[𝜌]
𝛿𝜌(r1)𝛿𝜌(r2)

) 𝜌t𝑟 𝑠(r2)dr1dr2, (2.3.16)

with the transition density 𝜌t𝑝𝑞 = 𝜓𝑝(r)𝜓𝑞(r).
To determine the frequency-dependent polarizability, the TD-DFT equations out of

resonance have to be applied (Eq. (2.3.12)). Generally, the polarizability is defined as

the derivative of the induced dipole moment with respect to the frequency-dependent

electric field

𝛼(𝜔) =
𝜕(𝛿𝜇𝜇𝜇ind)
𝜕E(𝜔)

. (2.3.17)

It can be shown, that the polarizability tensor is defined by the Kramer–Heisenberg

relation as

(𝛼𝑢𝑣)𝑘𝑚 = 1
ℏ
∑
𝑛
[
⟨𝜓𝑘|𝜇𝑢𝜓𝑛⟩ ⟨𝜓𝑚|𝜇𝑣𝜓𝑛⟩

𝜔 + 𝜔𝑛𝑚
−
⟨𝜓𝑛|𝜇𝑢𝜓𝑚⟩ ⟨𝜓𝑘|𝜇𝑣𝜓𝑛⟩

𝜔 − 𝜔𝑛𝑘
] (2.3.18)

with the dipole operator 𝜇𝜇𝜇 for the directions in space 𝑢, 𝑣 ∈ {𝑥, 𝑦 , 𝑧} and the orbitals for a
transition from 𝜓𝑘 to 𝜓𝑛.[180, 183]𝜔 and 𝜔𝑛𝑘 denote the frequency of the perturbing field
and the resonance frequency, respectively. It can be alternatively expressed as[184]

𝛼𝑢𝑣(𝜔) = 4∑
𝑛

DT
𝑢p𝑛p

T
𝑛D𝑣

𝜔2
𝑛 − 𝜔2 (2.3.19)

with p𝑛 = 1
√2

(X + Y), the excitation frequencies 𝜔𝑛 and the dipole matrix elements
(𝐷𝑢)𝑎𝑖 = ∫ 𝜓𝑎𝑟𝑢𝜓𝑖𝑑r. This expression holds for both, the resonant and the non-resonant
case, however, involving a different set of eigenvectors in p (cf. Eqs. (2.3.12) and (2.3.13)).

Comparing to the Kramer–Heisenberg equation (Eq. (2.3.18)) allows to express the

transition dipole moments as

⟨0|𝜇𝑢|𝑛⟩ =
1

√𝜔0𝑛
DT
𝑢p𝑛, (2.3.20)

that allow the solution of the TD-DFT equations.
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The polarizability is also commonly expressed as the isotropic mean polarizability,

̄𝛼(𝜔) = 1
3
∑
𝑖
𝛼𝑖𝑖(𝜔), (2.3.21)

also defined as the averaged trace of the polarizability tensor. It can be rewritten as

̄𝛼(𝜔) = ∑
𝑛

2
3

𝜔𝑛𝑚𝜇𝜇𝜇2𝑛𝑚
𝜔2
𝑛𝑚 − 𝜔2 = ∑

𝑛

𝑓𝑛
𝜔2
𝑛 − 𝜔2 , (2.3.22)

where 𝑓𝑛 is the oscillator strengths, the residues of the mean polarizability, while the
excitation energies can be identified as its poles.[185–187] With the help of Eq. (2.3.20)

they can be determined from the eigenvectors of Eq. (2.3.12).

Following from this, at resonance (Eq. (2.3.13)), where 𝜔 is the resonance frequency,
the excitation energies are readily determined and the oscillator strengths can be

calculated from the eigenvectors X and Y.

2.4. Subsystem-Based Approaches for Optical Properties

In the previous chapter, a background for obtaining optical properties was given. How-

ever, it referred to methods solely dealing with a single system that possibly is composed

of a large number of molecules. The scaling for supermolecular systems increases

prohibitively with the system size, specifically the number of electrons. Thus, dealing

with large supermolecular systems such as chromophores embedded in proteins or

metal-organic frameworks on a pure QM level becomes impossible. For the calculation

of optical properties, however, QM approaches are indispensable.[12, 39, 42, 188–191] Here,

subsystem-based approaches promise a circumvention of the scaling problem. The key

idea is to partition the supermolecular system into smaller subsystems or fragments

(used interchangeably) in physical space whose computation is less computationally-

demanding.[38, 39] For this, full molecules but also parts of a molecule can be considered

as subsystems.[43, 192] The challenge is to develop these approaches in a way, that in

the best case, the system gives the relevant property to be calculated as accurately as

for the unpartitioned system.

In this thesis, two main classes of such subsystem-based approaches will be distin-

guished. Firstly, in Section 2.4.1, methods that focus on the local optical properties of

one QM-described main subsystem embedded in the remaining “environmental” subsys-

tems that may also be described on a different footing. Secondly, approaches that target

the calculation of global, i.e. supermolecular, optical properties via the combination of

properties calculated for subsystems, that are introduced in Section 2.4.2.
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2.4.1. Local Optical Properties

As mentioned above, obtaining optical properties becomes more challenging with the

number of electrons in the system. Thus, the calculation of one supermolecular system

can be divided into the more affordable calculations for several, individual subsystems.

Describing absorption and emission phenomena, oftentimes the excitation is dominated

by one main subsystem, that experiences changed properties due to the environmental

influence. Compared to the isolated case, the main molecule can show strongly changed

absorption/emission properties when embedded in the environment.[7–12] In contrast,

the environmental subsystems will have similar (but not identical) properties in both

cases. Two classes of local embedding schemes are presented in this chapter: advanced

polarizable QM/MM and approximate QM/QM embedding schemes. Although starting

from different starting points, the target of these schemes coincides and they attempt

to describe the same effects. In this chapter these local embedding schemes will

be presented, incorporating an accurate description of environmental molecules and

polarization effects. At first, the density-based QM/QM embedding scheme is introduced,

which relies on a subsystem DFT approach and includes QM effects in the environmental

description (Section 2.4.1.1). Subsequently, the a QM/classical PE model is introduced,

that treats the environment via localized multipoles and includes anisotropic dipole-

dipole polarizabilities obtained from QM electron densities (Section 2.4.1.3).[193]

2.4.1.1. Density-Based Embedding

In this thesis, density-based local embedding schemes are referring to models based on

a subsystem density-functional theory (sDFT) formalism. Similarly, to the PE formulation

(Section 2.4.1.3), in this approach, the main subsystem is described in a QM fashion.

In contrast to the PE model, the environment is described via QM as well, however,

not necessarily of the same type as for the main system. In the following, the sDFT

formalism, which is formally exact within the limit of exact energy functional description,

and a practical approximate approach, the so-called frozen-density embedding (FDE),

are introduced.[194]

In sDFT the partitioning of the system is carried out as a partitioning of supermolecular

electron density

𝜌tot(r) = ∑
𝑋

𝜌𝑋 (2.4.1)

where 𝜌𝑋 is the corresponding subsystem’s electron density in the supermolecule.[195–197]
Assuming the subsystem to be a non-interacting particle system as well as v-representa-
bility of the subsystem electron densities, these can be expressed via subsystem orbitals

𝜓𝑖,

𝜌𝑋(r) = ∑
𝑖∈𝑋

|𝜓𝑖(r)|2, (2.4.2)
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where 𝑖 is an electron in subsystem 𝑋. When deriving the KS equations (Eq. (2.2.21)) for
sDFT, both the nuclear and Coulomb potential are linear in the electron density, thus,

can be expressed additively as,

vnuc = ∑
𝑋

vnuc,𝑋 = ∑
𝑋

∑
𝐼 ∈𝑋

−
𝑍𝐼

|r − R𝐼|
(2.4.3)

and

vcoul[𝜌](r) = ∫
𝜌(r′)
|r − r′|

dr′ = ∑
𝑋

∫
𝜌𝑋(r′)
|r − r′|

dr′ = ∑
𝑋

vcoul,𝑋[𝜌𝑋](r). (2.4.4)

with the 𝐼th nucleus assigned to subsystem 𝑋. In comparison to isolated subsystems,
where only intrafragmental Coulomb interactions occur, these expressions were extended

to account for all electrostatic interactions of all possible subsystem combinations. The

kinetic energy term 𝑇 𝑠[𝜌] (Eq. (2.2.14)), however, shows a dependence on the orbitals of
the total system. Therefore, it is non-additive in the electron density. The additive part

of the subsystem kinetic energy in terms of subsystem orbitals can be introduced as,

𝑇 𝑠𝑋[𝜌𝑋] = ∑
𝑖∈𝑋

⟨𝜓 𝑠𝑖 | −
1
2
∇2𝑖 |𝜓

𝑠
𝑖 ⟩ . (2.4.5)

If there is any interaction in between subsystems, non-orthogonality between different

subsystems can arise, and in consequence, a QM correction term for the non-additivity

is introduced,

𝑇 𝑠,nadd[𝜌tot, 𝜌𝑋] = 𝑇 𝑠[𝜌tot] −∑
𝑋

𝑇 𝑠𝑋[𝜌𝑋], (2.4.6)

that is added to the energy functional expression. Accordingly, for the XC functional a

QM non-additive correction term arises

𝐸naddxc [𝜌tot, 𝜌𝑋] = 𝐸xc[𝜌tot] −∑
𝑋

𝐸xc,𝑋[𝜌𝑋], (2.4.7)
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that incorporates higher-order intermolecular short-range XC interactions, for instance,

dispersion effects. In total, the energy functional in sDFT reads[198]

𝐸[𝜌tot] =∑
𝑋

[ 𝑇 𝑠𝑋[𝜌𝑋] + ∫ vnuc,𝑋(r)𝜌𝑋(r)dr + ∫ vcoul,𝑋(r)𝜌𝑋(r)dr + 𝐸xc[𝜌𝑋]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐸iso𝑋 [𝜌𝑋]

(2.4.8)

+ ∑
𝑌≠𝑋

(∫ vnuc,𝑌(r)𝜌𝑋(r)dr +
1
2 ∫

vcoul,𝑋(r)𝜌𝑌(r)dr)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐸emb,elstat𝑋

+ 𝑇 𝑠,nadd[𝜌tot, 𝜌𝑋] + 𝐸naddxc [𝜌tot, 𝜌𝑋]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐸emb,nadd𝑋

] ,

where the full expression was decomposed into the isolated components 𝐸iso𝑋 [𝜌𝑋] of
subsystem 𝑋, the electrostatic embedding components 𝐸emb,elstat𝑋 , that involve the elec-

trostatic interactions between subsystem 𝑋 and all other subsystems and finally, the
non-additive embedding components 𝐸emb,nadd𝑋 as previously introduced in Eq. (2.4.6)

and Eq. (2.4.7), that depend on the total electron density. Performing an Euler–Lagrange

minimization of the energy functional with respect to the individual subsystem KS or-

bitals while keeping the other subsystems’ electron densities fixed, yields the sDFT

equivalent of the KS equations (Eq. (2.2.21)) as[194, 199]

(−1
2
∇2 + veff𝑋 [𝜌𝑋] + vemb𝑋 [𝜌𝑋, 𝜌tot]) 𝜓KSCED𝑋,𝑖 = 𝜀𝑋,𝑖𝜓KSCED𝑋,𝑖 . (2.4.9)

the so-called Kohn–Sham equations with constrained electron densities (KSCED) that

include the effective potential for the isolated subsystem veff𝑋 and the embedding potential

vemb𝑋
[58]

vemb𝑋 [𝜌𝑋, 𝜌tot] =( ∑
𝑌 ,𝑌≠𝑋

vnuc,𝑌(r)) + vcoul[𝜌tot − 𝜌𝑋](r) (2.4.10)

+ vkin,nadd[𝜌𝑋, 𝜌tot](r) + vxc,nadd[𝜌𝑋, 𝜌tot](r).

which is comprised of all interactions by other subsystems with subsystem 𝑋. Up to
this point the formulation is in principle exact and leads to the exact electron density in

the case of exact functionals and simultaneous or self-consistent solution of the KSCED

(Eq. (2.4.9)) (as a consequence of the dependence on the total electron density).[198, 199]

Although the non-additive contributions are commonly rather small[58], their exact form

is unknown. In contrast to other embedding schemes, such as QM/MM[39, 42], however,

the major contributions emerging from the interactions with nuclei and electrons in the

environment are treated exactly.
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2.4.1.2. Frozen-Density Embedding

Next to other approaches[200, 201] Wesołowski and Warshel proposed the frozen-density

embedding (FDE) scheme. It enables the solution of the KSCED and is also the approach

focussed on in this work.[194] As suggested by the name, the main or active system (𝐴)
is embedded in the frozen environment density, that might however be comprised of

several subsystems (𝑋)

𝜌tot(r) = 𝜌A + 𝜌env = 𝜌A + ∑
𝑋≠A

𝜌𝑋. (2.4.11)

Initially, the environment density, which is interacting with the active system via the

embedding potential, is set to a feasible guessed electron density. In reality, this of-

ten refers to a determination of the electron density from isolated subsystem KS DFT

calculations. The density of the active subsystem is then calculated (“relaxed”) in the

presence of this frozen environmental density by the obtained embedding potential.

If the focus lies on the properties of the active system, it could be expected that this

process already serves as a sufficient approximation. However, the inductive compo-

nents of and with the environment have been neglected by the frozen treatment of the

environmental densities which can introduce major changes to the interactions with the

main system.[202] Therefore, it is possible to yield the environmental information from

other models’ calculations.[203] Another approach to this problem is the circumvention

by iteratively exchanging the active role in between all subsystems in order to relax all

subsystems’ electron densities. When changing the role to a new subsystem the other

subsystem’s electron densities, including the newly obtained density from the previously

active subsystem, in turn induce a change on the next active system. When performing

these so-called “Freeze-and-Thaw” cycles until self-consistency, the sDFT solutions can

be recovered.[204]

Since the non-additive terms of the embedding potential are unknown, approximations

for the XC part as well as for the kinetic energy have to be introduced. In the XC

part, the usual approximations (Section 2.2), that are also employed for the isolated

subsystem calculations, are extended to the non-additive part.[57, 58] Since for these

approximations, that involve inter-subsystem interactions no supermolecular orbitals

are available, the use of hybrid functionals, that calculate the exact change via orbitals,

cannot be employed.

For the kinetic energy the same problems occur, however, this contribution vanishes

if orthogonality between the subsystems is ensured.[201, 205] This can be obtained by

different techniques, such as projection embedding[200] or the einsatz of additional

Lagrangian multipliers.[201] In FDE this orthogonality is not necessarily given so that

approximations have to be employed. Although the Thomas–Fermi approximation or

other similar purely density-dependent approaches are usually too crude approxima-

tions for accurately determining the kinetic energy (Section 2.2), since the non-additive

kinetic energy term is generally small, relatively good results can be obtained for weakly

interacting systems with the PW91k functional.[204, 206–208] For more strongly interact-
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ing systems, for instance, in covalently-bound systems, the description is qualitatively

wrong.[209, 210]

In order to obtain optical properties, equal to the ground-state DFT calculations,

the common Fock operator is used for the isolated subsystems (Eq. (2.3.1)), so that
̂𝑓 KS = ̂𝑓 iso, and is extended to the embedded Fock operator in Eq. (2.4.9) ( ̂𝑓 emb) due to
the last term, the embedding potential vemb, so that

̂𝑓 emb = ̂𝑓 iso + vemb. (2.4.12)

This operator can be employed in the derivation of the TD-DFT equations (Section 2.3)

and is leading to changes due to including the embedding effects with the embedding

potential in the unperturbed system. This affects the orbital energies in the A term that

are determined for the unperturbed system as well as the derivatives of the unperturbed

Fock matrix elements with respect to the density matrix in both the A and B terms

(Eq. (2.3.12)). This type of TD-DFT treatment in FDE is called uncoupled FDE[211] since

the excitonic coupling between the subsystems is neglected and solely the properties

of the embedded active system are determined.[212] The lack of describing this cou-

pling leads to a lack of the dynamical response of the environmental excitation effects

that act on the embedded chromophore. There have been several works on coupled

FDE to include the dynamical response into the FDE scheme, however, exceeding the

local properties discussed here and therefore will not be addressed further in this

context.[213–221]

2.4.1.3. Polarizable Embedding

As a representative of QM/classical embedding schemes, in PE the main system is

described via QM methods, while, contrasting to QM/QM embedding schemes (Sec-

tion 2.4.1.1), the environment is described in a more approximate nature. Closely

following refs. [193, 222, 223], the derivation in second quantization will be summarized

in the following chapter, starting from the supermolecular Hamiltonian in terms of

subsystems,

�̂� = ∑
𝑋

�̂�𝑋 + ∑
𝑋<𝑌

�̂�𝑋𝑌, (2.4.13)

summing over the different subsystems 𝑋 and 𝑌. 𝐻𝑋 denotes the Hamiltonian of the
isolated subsystem 𝑋, while �̂�𝑋𝑌 determines the Coulomb interactions between different
subsystems 𝑋 and 𝑌. The former is assumed to give the energy of the isolated systems
as the eigenvalue for the individually orthonormal, non-overlapping subsystem wave

functions. Consequently, the supermolecular energy is additively separable and the

wave function can be expressed as a product of subsystem wave functions. The latter

term in Eq. (2.4.13), the interaction Hamiltonian, is comprised of the interactions of

nuclei in system 𝑋 or 𝑌 with electrons in different subsystems, respectively, as well as
the electron–electron and nuclear–nuclear interactions in between different subsystems.
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Performing Rayleigh–Schrödinger perturbation theory on the supermolecular sys-

tem comprised of isolated subsystems defining the inter-subsystem interactions as the

perturbation of the system, the energy up to second order includes

𝐸 =𝐸(0) + 𝐸(1) + 𝐸(2) (2.4.14)

=∑
𝑋

⟨Ψ𝑋,0|�̂�𝑋|Ψ𝑋,0⟩ + ∑
𝑋<𝑌

⟨Ψ𝑋,0Ψ𝑌 ,0|�̂�𝑋𝑌|Ψ𝑋,0Ψ𝑌 ,0⟩ (2.4.15)

− ∑
𝑋<𝑌

∑
𝑖𝑗

𝑖+𝑗≠0

⟨Ψ𝑋,0Ψ𝑌 ,0|�̂�𝑋𝑌|Ψ𝑋,𝑖Ψ𝑌 ,𝑗⟩ ⟨Ψ𝑋,𝑖Ψ𝑌 ,𝑖|�̂�𝑋𝑌|Ψ𝑋,0Ψ𝑌 ,0⟩
(𝐸𝑋,𝑖 + 𝐸𝑌 ,𝑗) − (𝐸𝑋,0 + 𝐸𝑌 ,0)

,

where the superscript (0), (1) or (2) refers to the zeroth-, first- or second-order pertur-
bation terms. The wave function of subsystem 𝑋 is denoted as 𝜓𝑋 with the subscript
0 or 𝑖 referring to the ground state or excited state, respectively. The individual sub-
system wave functions are assumed to be known and orthonormalized. Accordingly,

the subsystem energy of the ground state or excited state 𝑖 is determined as 𝐸𝑋,0 or
𝐸𝑋,𝑖, respectively. The first term in Eq. (2.4.14) is defined by the energy of the isolated

subsystems. The second term describes the electrostatic interaction in between subsys-

tems. In the last term it was used, that the wave functions of different subsystems are

assumed to fulfil orthogonality so that the summation over excited states can be given as

fragment contributions.[223] It represents the induced energy and the dispersion energy

resulting from the contributions involving the simultaneous excitation of one and two

fragments, respectively.

In the PE model as a local embedding model, the focus lies on the description of the

main system’s energy due to the interactions with the PE potential resulting from the

surrounding fragments,

𝐸QM−PE = 𝐸QM + 𝐸PE, (2.4.16)

where 𝐸QM is the energy of the isolated main system and 𝐸PE is the energy resulting
from the interactions with the PE potential comprised of the electrostatic, induction and

dispersion term,

𝐸PE = 𝐸esPE + 𝐸indPE + 𝐸dispPE . (2.4.17)

For this, the description of the environmental subsystems in the interaction Hamiltonian

is adjusted to be classical via a multipole expansion leading to an alternative formu-
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lation of the interaction Hamiltonian of the main subsystem A and the environmental

subsystems as,

�̂�A𝑌 =
∞
∑
|𝑘|∈0

(−1)|𝑘|

𝑘!
( ̂𝐹 (𝑘)A,nuc + ̂𝐹 (𝑘)A,el)𝑄

(𝑘)
𝑌 (2.4.18)

=
∞
∑
|𝑘|∈0

(−1)|𝑘|

𝑘!
[∑
𝐼 ∈A

𝑍𝐼𝑇
(𝑘)
A𝑌 (R𝐼) − ∑

𝑝𝑞∈A
(∫ 𝜌𝑝𝑞(r)𝑇

(𝑘)
A𝑌 (r)𝑑𝑟) �̂�𝑝𝑞] 𝑄

(𝑘)
𝑌 ,

with the singlet excitation operators �̂�𝑝𝑞 describing the excitation from an orbital 𝜓𝑝
to an orbital 𝜓𝑞.[224] The multi-index 𝑘 = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) has the norm |𝑘| = 𝑘𝑥 + 𝑘𝑦 + 𝑘𝑧, that
denotes the order of the expansion. Here, 𝑄(𝑘)

𝑌 is the multipole moment of order 𝑘 for
subsystem 𝑌 so that the multipole moment of order 𝑘 = 0, 1, 2 equals charges, dipoles
and quadrupoles, respectively. The field operators ̂𝐹𝐴,nuc and ̂𝐹𝐴,el yield the electrostatic
potential, electric field and field gradient for the order 𝑘 = 0, 1, 2, respectively, for the
electrons and nuclei in the main subsystem 𝐴. Both terms of the field operator contain
the so-called interaction tensor elements

T
(𝑘)
𝑖𝑗 = ∇𝑘𝑗

1
|R𝑗 − R𝑖|

(2.4.19)

where 𝑘 refers to the power of the partial derivative operator ∇𝑘𝑗 =
𝜕𝑘𝑥+𝑘𝑦+𝑘𝑧

𝜕𝑥𝑘𝑥𝜕𝑦𝑘𝑦𝜕𝑧𝑘𝑧
as well as

the rank of the tensor which is obtained by a Taylor expansion at the expansion point 𝑅O,
the center of mass of a subsystem.[193, 225]. The convergence of the multipole expansion

is dependent on the distance between the expansion point 𝑅O and R𝑗, where short

distances have been shown to lead to convergence problems.[222] The distribution of

the multipole from the center of mass of a subsystem to atomic sites (and possibly bond-

midpoints) in the subsystem improves this behaviour.[222, 226] The resulting electrostatic

energy 𝐸es (Eq. (2.4.18)) referring to the electrostatic interactions of the main subsystem
A and the environmental subsystems can therefore be expressed in terms of these sites

𝑠 as follows,

𝐸es = ∑
|𝑘|

∑
𝑠=1

(−1)|𝑘|

𝑘!
( ̂𝐹 (𝑘)𝑠,nuc + ⟨0| ̂𝐹 (𝑘)𝑠,el|0⟩) 𝑄

(𝑘)
𝑠 , (2.4.20)

where |0⟩ is the ground state and the sum is over the order of the expansion |𝑘|, that
denotes the order of the expansion and allows for a truncation.[223]

Employing the multipole expansion to further express the induction energy of the

environmental multipoles on the active system, it is obtained as,

𝐸ind = −1
2
∑
𝑠=1

(𝐹nuc,𝑠 + 𝐹el,𝑠 + 𝐹mul,𝑠) + 𝜇𝜇𝜇ind𝑠 (Ftot) (2.4.21)
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with the field originating from the active subsystems nuclei Fnuc and electrons Fel or

other multipoles in the environment Fmul. The induced dipole moment 𝜇𝜇𝜇ind is dependent
on the total field that additionally to the aforementioned contributions includes the

electric field from other induced dipoles[222]

𝜇𝜇𝜇ind = ∑
𝑠
𝜇𝜇𝜇ind𝑠 = ∑

𝑠
𝛼𝛼𝛼𝑠Ftot = 𝛼𝛼𝛼𝑠(Fnuc + Fel + Fmul + Find(𝜇𝜇𝜇ind𝑠′ )) = RF (2.4.22)

with the polarizability 𝛼𝛼𝛼𝑠 at site 𝑠. The response matrix R is defined as

R =
⎛
⎜
⎜
⎜
⎝

𝛼𝛼𝛼−11 −T(2)12 … −T(2)1𝑆
−T(2)21 𝛼𝛼𝛼−12 … −T(2)2𝑆

⋮ ⋮ ⋱ ⋮
−T(2)𝑆1 −T(2)𝑆2 … 𝛼𝛼𝛼−1𝑆

⎞
⎟
⎟
⎟
⎠

−1

(2.4.23)

with the inverse polarizabilities as diagonal elements and interaction tensors between

sites as off-diagonal elements. Since the induced electric field depends on the induced

dipole moment from other sites 𝑠′ the equation has to be solved iteratively, e.g. via the
Jacobi method.[222]

The minimization of the obtained energy with respect to the electron density gives an

effective Fock operator

̂𝑓 emb = ̂𝑓 iso + vemb (2.4.24)

with the KS Fock operator for the isolated active subsystem and an embedding potential,

that reflects the changes due to embedding the active subsystem in the environment. In

order to obtain local optical properties for the active system a linear-response TD-DFT

ansatz (see Section 2.3) is performed. Inserting the effective Fock operator instead of the

isolated KS Fock operator into the systems the density-dependent terms in the embedding

potential lead to extra contributions changing the matrices of the unperturbed system.

These terms include the linear response of the static environment, and additionally, the

dynamical response of the environment to the perturbation.

2.4.2. Global Optical Properties

The above-mentioned reduction of computational effort in embedding schemes is rooted

in the partitioning of the supermolecular system into smaller subsystems. In contrast to

the previously presented local embedding schemes, where the focus lies on a main sub-

system influenced by the environment, subsystem-based methods can also be employed

to determine a global system property. Focussing on the energy-based fragmentation

formalism, the supermolecular energy can be expressed in terms of individual subsys-

tems or “monomers” and overlapping subsystems. It is composed of isolated monomer

energies 𝐸𝐴 and their interactions. The interaction in the energy expression can be
further structured into different orders, that originate from the interactions obtained
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Figure 2.4.1.: Schematic representation of subsystems 𝑋, 𝑌, 𝑍 and their intersections as used in
Eq. (2.4.26).

for two combined subsystems (dimers), for three combined subsystems (trimers) and

so forth. These terms are denoted as two-body, three-body terms and higher-order

terms so that in an infinite “many-body expansion (MBE)” the exact supermolecular

energy can be recovered due to the full consideration of interactions. In this ansatz, the

so-called bottom-up (BU) approach, the first term consists of the sum of non-interacting

subsystem energies.[44] Interactions are added sequentially, starting with the two-body

terms so that the full energy expression can be formulated as,[227–229]

𝐸 =∑
𝐴

𝐸𝐴 + ∑
𝐴<𝐵

[𝐸𝐴𝐵 − (𝐸𝐴 + 𝐸𝐵)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Δ𝐴𝐵

] (2.4.25)

+ ∑
𝐴<𝐵<𝐶

[𝐸𝐴𝐵𝐶 − (Δ𝐴𝐵 + Δ𝐴𝐶 + Δ𝐵𝐶) − (𝐸𝐴 + 𝐸𝐵 + 𝐸𝐶)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Δ𝐴𝐵𝐶

+…

=∑
𝐴

𝐸𝐴 + ∑
𝐴<𝐵

Δ𝐴𝐵 + ∑
𝐴<𝐵<𝐶

Δ𝐴𝐵𝐶 + … ,

where 𝐸𝐴, 𝐸𝐵 and 𝐸𝐶 represents the energy of a specific monomeric subsystem 𝐴, 𝐵
or 𝐶. 𝐸𝐴𝐵 and 𝐸𝐴𝐵𝐶 denote the energy of 𝐴 and 𝐵 and 𝐴, 𝐵 and 𝐶 calculated from the

combined subsystems as a dimer and trimer, respectively. The differences between

those higher-body terms (e.g. 𝐸𝐴𝐵) and the lower-body terms (e.g. 𝐸𝐴), that are denoted
Δ, therefore, annihilate the double-counting of previously introduced terms and serve
as the incremental addition of interactions towards the supermolecular energy.

Additionally, so-called top-down (TD) approaches exist, where the initial terms are

built from a combination of subsystems presenting an inter-subsystem overlap, which is

subtracted in the energy expression.[44, 92] An exemplary system of three overlapping

subsystems is schematically presented in Fig. 2.4.1. Formally, these terms can be

44



2.4. Subsystem-Based Approaches for Optical Properties

expressed in the general MBE expression of disjunct fragments in Eq. (2.4.25).[80]

Alternatively, the energy expression can be formulated as[93, 230–233]

𝐸 = ∑
𝑋

𝐸𝑋 − ∑
𝑋<𝑌

𝐸𝑋∩𝑌 + ∑
𝑋<𝑌<𝑍

𝐸𝑋∩𝑌∩𝑍 − … (2.4.26)

with the energy of the overlap of two subsystems 𝑋 and 𝑌, 𝐸𝑋∩𝑌 and energy of the
overlap of three subsystems 𝑋, 𝑌, 𝑍 denoted 𝐸𝑋∩𝑌∩𝑍 (Fig. 2.4.1). This expression can
coincide with the expression resulting from the BU approach depending on the selection

of fragments.[82] Although the total energy expressions are ultimately the same for

the full interactions considered, this does not transfer to the calculation behaviour for

the truncated terms. The important difference for these “intersecting-fragment” (TD)

methods is, that due to the employment of overlapping subsystems in the first terms, a

faster convergence is obtained.[92, 93, 234]

These TD approaches, as well as the MBE-based BU approaches, are easier to imple-

ment for systems that do not show covalent bonding due to the occurrence of dangling

bonds in the fragmentation process. Methods accounting for these ends have been

suggested (for proteins and peptides), such as the molecular fractionation with conju-

gated caps (MFCC) approach[235, 236], but are disregarded here due to the focus on

fragmentation of coordinative systems. Heterolytic cutting of coordinative bonds is

also critically evaluated[80, 236, 237], specifically in metal–ligand bonds. This can be

circumvented by keeping metal–ligand bonds intact[238], although proving impractical

for efficiently-sized fragments. Moreover, the performance of the fragmentation with cut

coordinative bonds was found to perform well for optical properties for linker-dominated

MOFs as well as for TD approaches that at least partially include fragments with intact

bonds.[129, 239]

2.4.2.1. Optical Properties from Energy-Based Fragmentation Schemes

So far fragmentation methods have been introduced allowing the recombination of the

subsystem energies to the supermolecular energy. As previously mentioned (Chapter 1

and Section 2.3), the electric polarizability 𝛼𝛼𝛼, a central optical property, allows the
derivation of further properties, such as the refractive index. It can also be defined as

the second-order derivative of the energy with respect to an electric field F,

𝛼𝑢𝑣 = − 𝜕2𝐸
𝜕𝐹𝑢𝜕𝐹𝑣

. (2.4.27)

For weak electric fields, i.e. close to F=0, if the energy of the supermolecular system can

be obtained from subsystem energies via fragmentation due to the sum rule of deriva-

tives, additivity is assumed for derivatives of the energy. For fragmentation schemes

that do not include any molecular interactions, this additivity hypothesis can be made,

that was applied to molecular[240] and non-molecular crystals[241, 242]. Furthermore,

the examination of hydrogen-bonded urea clusters proved a rather small influence of

intermolecular interactions on the linear polarizability in contrast to intramolecular
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chemical bonds[243]. The additivity of the polarizability was also applied to derive related

properties of minerals.[244, 245] Thus, Eqs. (2.4.25) and (2.4.26) can be adapted to ex-

trapolate the isotropic polarizability (Eq. (2.3.22)) for both, the BU and TD fragmentation

approach. For the most simple BU approach, composed of monomer terms, it follows,
[129]

𝛼BU =∑
𝐴

𝛼𝐴. (2.4.28)

This approach does, however, not include anymany-body effects as presented in Eq. (2.4.25).

The individual subsystem polarizabilities are accessible via DFT, where two main

approaches can be distinguished: the linear-response and coupled-perturbed approach-

es.[246–249] The former was presented in Section 2.3, where the frequency-dependent,

i.e. dynamic polarizability is determined from the non-resonant case (Eq. (2.3.19)) since

the resonant case refers to frequencies, where the polarizability shows singularities (cf.

Section 2.3). The coupled-perturbed approach is based on the analytic calculation of

the second-order energy derivatives based on the perturbation of the wave function.

The term “coupled-perturbed” refers to the Fock matrix and the density matrix, since

the derivative Fock matrix depends on the density matrix via the molecular orbital

coefficients. After the construction of the derivative Fock matrix, the density matrix is

updated so that a new derivative Fock matrix can be constructed, leading to the iterative

coupled-perturbed self-consistent field (CP-SCF) approach.[246, 248, 249]

Having obtained the total polarizability from DFT calculations and fragmentation

schemes, the frequency-dependent refractive index can be simply determined by the

Lorenz–Lorentz equation[130, 131],

𝑛2 − 1
𝑛2 + 2

= 𝑁𝛼
3𝜀0

⇔ 𝑛 =

√√√√√√√
√

1 + 2𝑁𝛼
3𝜀0

1 − 𝑁𝛼
3𝜀0

, (2.4.29)

with the number density 𝑁 and the dielectric constant 𝜀0. This procedure has been
widely used in order to determine the refractive index from the polarizability obtained

with DFT calculations.[129, 250–258] Using that the polarizability volume is defined as

𝛼′ = 𝛼
4𝜋𝜀0

, the equation can be rewritten to

𝑛 =
√

1 + 2𝑁𝛼 ′4𝜋
3

1 − 𝑁𝛼 ′4𝜋
3

. (2.4.30)

The polarizability volume can directly be obtained from the fragmentation scheme and

the above-mentioned DFT calculations.
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3 Computational Details

In this chapter, the general computational procedures and technical details employed in

this work are presented in two main sections. First, the computational details for the

calculation of local optical properties are presented. Subsequently, the computational

details for the calculation of global optical properties are shown.

3.1. Computational Details for Calculations of Local

Optical Properties†

Model generation

The target systems (pNA and pFTAA) were solvated in water and molecular dynamics

(MD) simulations were performed in order to obtain different structural configurations.

From the available number of structures seven and eight snapshots for pNA and pFTAA,

respectively, were extracted, so-called “snapshots”. The simulation of pNA was kindly

performed by Peter Reinholdt[259] but is described here for the sake of completeness.

For the simulation of pNA, the molecule was parametrized with the General AMBER

force field[260] and RESP charges[261] calculated with B3LYP[163, 164, 166] 6-31+G* ba-

sis set [262–264] (with PCM[45] using the dielectric constant of water) in the AMBER

software.[265] In the tleap module of the AMBER software the molecule was solvated in

3160 OPC-model represented water molecules.[266] At first, a steepest-descent minimiza-

tion with 10000 steps was performed, followed by a conjugate-gradient minimization

with 10000 steps. Subsequently, the system was equilibrated for 1 ns in the NPT en-

semble (at 1 atm. pressure), where in the first 20 ps the system was heated from 0

to 298 K. In the following 100 ns production run in the NPT ensemble (at 298 K), a

Langevin thermostat and Monte–Carlo barostat were employed. The Particle Mesh

Ewald method was employed for the electrostatic treatment.[267] The cut-off threshold

for non-bonded interactions was set to 12 Å and hydrogen bonds were constrained via

the SHAKE algorithm.[268, 269] This simulation yielded one hundred snapshots, of which

the seven snapshots were chosen arbitrarily and for further calculation adapted to solely

include environmental water molecules within a 3, 4, 5, and 12 Å environment of pNA.

The simulation of pFTAA in water was performed in the GROMACS 2019.3 soft-

ware[270–277] with an adapted CHARMM force field.[15, 16, 278, 279] The solvation in

4028 water molecules was represented by the TIP3P model.[280] At first, a steepest-

† This section is adapted with permission from Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys.

Chem. A 2023, 127, 5689–5703. Copyright 2023 American Chemical Society.
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3. Computational Details

descent minimization with 50000 steps was performed. Subsequently, the system was

equilibrated for 10 ns in the NPT ensemble (at 1 atm. pressure), where in the first 0.2 ps

the system was heated from 0 to 300 K. In the following 100 ns production run in the NVT

ensemble (at 300 K), a velocity-rescaling thermostat[281] and a Berendsen barostat[282]

were employed. The Particle Mesh Ewald method was employed for the electrostatic

treatment.[267, 283] The cut-off threshold for non-bonded interactions was set to 10 Å and

non-bonded interactions were constrained via the LINCS algorithm.[284] This simulation

yielded 61 snapshots, of which the eight snapshots were chosen arbitrarily and for

further calculation adapted to solely include environmental water molecules within a

3 Å environment of pFTAA. For half of these adapted snapshots, one or two sodium

counterions were found at an average distance of 2.3 Å to pFTAA, while for the other

half no sodium atoms entered the system.

The supermolecular reference TD-DFT calculations were performed with Dalton

2020.1[285] employing the range-separated CAM-B3LYP XC functional.[174] Due to com-

putational expense the calculations for pFTAA could only be performed for a 3 Å envi-

ronment and an aug-cc-pVDZ basis set.[286]

Polarizable Embedding

The workflow for the PE scheme is shown in Fig. A.1. The polarizable embedding assis-

tance script (PEAS)[287] was employed to read in the adapted snapshots and perform

the partitioning of the system. For the pNA or pFTAA subsystem a Dalton input file was

produced, then for the environmental subsystems, the Openmolcas 2.1[288] implementa-

tion of LoProp[289] was called. Here, the calculations were performed with a B3LYP XC

functional[163, 164, 166] and ANO-type recontractions of the aug- cc-pVDZ and aug-cc-

pVTZ basis set for water[286, 290–292] and an ANO-L basis set for sodium ions.[293] PEAS

then constructed a PE potential containing the obtained multipoles and polarizabilities.

This potential could then be read-in via the PElib module[294] in Dalton and was used in

ground-state as well as linear response calculations. Atomic pseudopotentials for the

sodium ions were added to the QM system to counteract electron-spill-out effects.[295]

Frozen-Density Embedding

The workflow for the FDE scheme all programs were called with the PyADF 0.98 scripting

environment, that called all other modules and programs.[61, 296] A supermolecular

quadrature grid with a “good” Becke grid quality[297] was calculated with the ADF

code of the AMS suite[298] and was used to write all following results on this grid.

After partitioning the supermolecule into subsystems, PyADF called Dalton in order to

perform individual subsystem ground-state DFT calculations. Here, for pNA and pFTAA

a CAM-B3LYP XC functional was employed. For pNA, the calculations were performed

with an aug-cc-pVDZ and an aug-cc-pVTZ basis set, whereas for pFTAA solely an aug-

cc-pVDZ basis set was performed. The results were given to the DensityEvaluator

extracting the electron densities and electrostatic potentials from the results. The

PyEmbed module was then called, using these objects, determining the non-additive
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kinetic energy with a PW91k functional[160, 208] and the non-additive XC energy with

a BP86 functional[163, 299]. The Coulomb and non-additive potential were then added

and given out as an embedding potential, that was further used in ground-state and

linear-response calculations with Dalton where the active molecule was calculated with

the CAM-B3LYP XC functional in presence of the embedding potential. Three freeze-

and-thaw cycles have been used throughout as this setting had been found to generally

yield sufficient results.[300] After calculating the five lowest excitations for the reference

as well as for the embedding calculations (and up to 25 solely for pFTAA and PE), they

were sorted by the oscillator strength of the transition. The strongest 𝜋 → 𝜋∗ transition
(ensured via inspection of response vectors and orbitals) was compared with other

results. The oscillator strengths are presented in length form. Orbital representations

were obtained with Molden 6.9 and an isocontour value of 0.05 for pNA and of 0.02 for

pFTAA.[301] Molecular representations were attained with VMD 1.9.3.[302]

3.2. Computational Details for Calculations of Global

Optical Properties

The employed crystal structures were obtained from publications in the crystal infor-

mation file format as periodic structures.[96, 102–104] The VMD 1.9.3[302] software was

employed in order to extract substructures from these for further calculations and for all

molecular presentations shown. For the calculation of polarizabilities a general protocol

was followed either in ORCA 5.0.1[303, 304] or TURBOMOLE V7.5.1 and V7.6.0[305–307],

where V7.5.1 version was employed for the initial evaluation calculations and V7.6.0 for

all other calculations, respectively.

• In ORCA, SHARK[308], libint2[309] and libXC[310] are employed in the calculations.

All calculations were performed in a DFT framework with the Grimme D3 disper-

sion correction with Becke–Johnson damping[311, 312], and the resolution of identity

approximation for Coulomb integrals (RI-J)[313, 314], Fock exchange integrals (RI-

COSX)[315] and MP2 correlation integrals (RI-MP2)[316, 317], where applicable and

automatic generation of auxiliary basis sets where necessary (AutoAux)[318]. The

default auxiliary basis sets were applied for all calculations. For the calculation of

the static polarizability tensor, the CP-SCF algorithm with the Pople solver was

employed.[246]

• In TURBOMOLE, optimizations were performed with the jobex script[319, 320],

self-consistent field (SCF) calculations with DFT were performed with the ridft

script[313, 321] and TD-DFT calculations for the attainment of the frequency-de-

pendent polarizability tensor were performed with the escf script[322–325]. If not

stated otherwise a default m3 grid[326] and the resolution of identity approximation

was applied where available[317] employing the default auxiliary basis sets.

For the ORCA calculations a XC functional benchmark was performed with the fol-

lowing functionals used: BP86[160, 163], PBE[165], TPSS[327], B3LYP[163, 164, 166], CAM-
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B3LYP[163, 164, 166, 174], PBE0[165, 328], B2-PLYP[163, 164, 175], B2GP-PLYP[163, 164, 329]

and DSD-PBEPBE-D3BJ[165, 330]. The Gaussian-type split-valence atomic-orbital ba-

sis sets in these calculations were employed in double-𝜁 quality to quintuple-𝜁 quality
(𝑋 =D,T,Q,5) for Dunning-type basis sets without diffuse basis functions[286, 331, 332]
(cc-pV𝑋Z) and up to triple-𝜁 quality (𝑋=D,T) with diffuse basis functions[291, 333] (aug-
cc-pV𝑋Z) as well as for the Ahlrichs-type basis sets with (def2-𝑋ZVPD) and without
(def2-𝑋ZVP) diffuse functions (𝑋=S,T,Q).[334]
In TURBOMOLE for the geometry optimizations two different protocols were used,

where a m4 grid was employed.[326] In the first protocol, the DFT XC functional PBE[165]

was employed with a def2-SVP and a def2-TZVP basis set[313, 314, 326, 335] for the pre-

optimization and main optimization, respectively, both with a Grimme D3 dispersion

correction with Becke–Johnson damping[311, 312]. In the second protocol, the B97-3c

method was employed with the def2-mTZVP basis set.[178]

In the DFT and TD-DFT calculation in order to determine the polarizability tensor

the PBE[165] or CAM-B3LYP XC functional[163, 164, 166, 174] were employed. The ba-

sis sets employed in these calculations are the Dunning-type basis sets with (aug-cc-

pVXZ)[291, 333] and without diffuse basis functions (cc-pVXZ)[286, 331, 332] for double-𝜁
to quadruple-𝜁 quality and double-𝜁 to quintuple-𝜁 quality, respectively. Additionally,
the Ahlrichs-type basis sets with (def2-XZVP) and without diffuse basis functions (def2-

XZVPD) basis sets were employed in double-, triple- and quadruple-𝜁 quality.[334–336]
In all cases, where the auxiliary basis set was not set for Zn by default (quintuple-𝜁
calculations), a universal basis set was employed.[314]

In some cases, the TD-DFT calculations in TURBOMOLE failed due to non-real un-

stable reference states so that the SCF convergence criteria in the ridft ground-state

calculations were increased from the default energy difference of 10−8𝐸h between steps,
to 10−9𝐸h. Subsequently, if the TD-DFT calculation still proved difficult, the grid was
increased from the default m3 grid to an m4 grid. If the problems persisted further, the

SCF convergence criteria were even further tightened to 10−10𝐸h, 10−11𝐸h and 10−12𝐸h.
In some cases, these calculations did not converge or still resulted in problems for

the TD-DFT calculations. In order to converge the reference calculation better, the

conductor-like screening model (COSMO)[337] was utilized in order to simulate the

environment of the molecule as a dielectric continuum. A permittivity of 𝜀 = 2.263𝑒2/𝑎0𝐸h,
𝜀𝑟 = 1.825 𝑒2/𝑎0𝐸h, 𝜀𝑟 = 1.787 𝑒2/𝑎0𝐸h and 𝜀𝑟 = 2.119 𝑒2/𝑎0𝐸h for ZIF-8, ZIF-90, ZIF-318 and
ZIF-71, respectively, was employed in the ground-state ridft calculation, but not in the

TD-DFT calculation.

When problems occurred in the ORCA calculations some TD-DFT test calculations for

Zn were performed with the ADF code of the AMS suite[298] and the DZP, TZP or QZ4P

basis set[338–341] in order to determine the polarizability tensor.

Optimization of structures with PBEsol and reference calculation of the refractive

indices with HSE06 in pDFT were kindly performed by Marvin Treger[129] with primitive

cells for the MOFs. Geometry optimizations were performed with a PBEsol XC functional

with ultra-soft pseudopotentials.[342] Single-point calculations of these geometries were

then performed with the HSE06 XC functional.[343] For further details, the reader is

referred to the computational protocol by Treger et al..[129]
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4 Dissection of Interaction

Contributions for Local Optical

Properties

The two presented classes of local embedding methods (Sections 2.4.1.1 and 2.4.1.3)

target the same effects in order to describe environmental effects on a main system,

however, follow different philosophies to obtain this goal. In contrast to QM/QM em-

beddings models, that are commonly introduced in a first quantization formalism such

as the density-based embedding schemes (Section 2.4.1.1), the QM/MM PE embedding

scheme is formulated in second quantization (Section 2.4.1.3). In order to dissect and

directly compare the interaction contributions described by these methods, a common

framework is indispensable. The derivation of this framework, that is held in first

quantization, allows for this direct comparison of the effects accounted for and will be

introduced in the following (Section 4.1).

For a further numerical comparison of the embedding methods, the previously es-

tablished framework is implemented in a computational setup enabling a one-to-one

comparison between the embedding schemes and the stepwise introduction of interac-

tion effects. This setup as well as the following numerical comparison are described

in Sections 4.2.1 and 4.2.2. The latter is performed by applying the calculation of

local optical properties to the pNA and pFTAA systems solvated in different sizes of

a water environment. The results for the dissected interactions are then discussed in

Section 4.2.2.

4.1. Common framework for quantum-derived embedding

schemes†

One mutuality between QM/MM embedding models and QM/QM embedding schemes is

the attempt to recreate the Hamiltonian in Eq. (2.4.13). In the interaction Hamiltonian

† This section is largely adapted from Jansen, M.; Thi Minh, N. N.; Hedegård, E. D.; König, C. In Chemical

Modelling: Volume 17, 2022. Partially adapted with permission from Jansen, M.; Reinholdt, P.; Hedegård,

E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703. Copyright 2023 American Chemical Society. This

particularly holds true for the outline of the derivation of the framework and the introduced polarization

models.
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�̂�𝑋𝑌, only those terms from Eq. (2.1.2) are left, that refer to interactions for particles in

different subsystems 𝑋 and 𝑌,

�̂�𝑋𝑌 =∑
𝑖∈𝑋

∑
𝑗∈𝑌

1
|r𝑖 − r𝑗|

−∑
𝑖∈𝑋

∑
𝐽∈𝑌

𝑍𝐽
|r𝑖 − R𝐽|

−∑
𝐼 ∈𝑋

∑
𝑗∈𝑌

𝑍𝐼
|R𝐼 − r𝑗|

+∑
𝐼 ∈𝑋

∑
𝐽∈𝑌

𝑍𝐼𝑍𝐽
|r𝐼 − r𝐽|

(4.1.1)

with a set of electronic coordinates r𝑖, nuclear coordinates R𝐼 and charges 𝑍𝐼 assigned
to a subsystem 𝑋 and accordingly for the electrons 𝑗 and nuclei 𝐽, that are assigned to
a subsystem 𝑌. Since density-based embedding schemes such as the here presented
QM/QM model are often formulated in terms of real-space electron densities rather than

operators acting on a set of electronic coordinates, the density operator is introduced

̂𝜌𝑋(rx) = ∑
𝑖∈𝑋

𝛿(r𝑖 − rx), (4.1.2)

where 𝑖 and x refer to a single-electron and real-space coordinate, respectively. This re-
lation can then be used to obtain the equivalent definition of the interaction Hamiltonian

as follows,

�̂�𝑋𝑌 =∫∫
̂𝜌𝑋(ri) ̂𝜌𝑌(rj)
|ri − rj|

dridrj −∑
𝐼 ∈X

∫
̂𝜌𝑌(rj)𝑍𝐼

|R𝐼 − rj|
drj (4.1.3)

−∑
𝐽∈𝑌

∫
̂𝜌𝑋(ri)𝑍𝐽
|R𝐽 − ri|

dri +∑
𝐼 ∈𝑋

∑
𝐽∈𝑌

𝑍𝐼𝑍𝐽
|R𝐼 − R𝐽|

.

Emerging from this operator, the interaction energy 𝐸int can also be expressed in
terms of energy functionals as follows,

𝐸int[𝜌tot] = 𝐸tot[𝜌tot] −∑
𝑋

𝐸𝑋[𝜌𝑋], (4.1.4)

where 𝐸𝑋 is the energy of the isolated subsystem with the corresponding subsystem

density 𝜌𝑋 and 𝐸tot is the total energy of the supermolecular system with the total

electron density 𝜌tot. The interaction energy can be further decomposed into a QM part

𝐸QMint and a Coulomb part 𝐸Cint,

𝐸int[𝜌tot] = 𝐸Cint[𝜌tot] + 𝐸QMint [𝜌tot]. (4.1.5)

The former, containing the classical and additive Coulomb interaction terms, is obtained

in all discussed embedding schemes, whereas the latter vanishes for non-overlapping

subsystems. Since this is assumed for the PE model (Section 2.4.1.3), these are only

included in the density-based embedding model, where non-additive terms can occur

(Section 2.4.1.1).

Introducing an exemplary supermolecule with a main subsystem A and one environ-

mental subsystem B, displayed in Fig. 4.1.1 a), or two environmental subsystems B and
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a)

B1A 2

1

0

Active system Environment

b)

C2

B1

A 2 2b1b 1b0b 0b

1

0

Active system Environment

Figure 4.1.1.: Schematic representation of the supermolecules discussed in this chapter. The active

system A and the interactions with the environment are displayed. The electrostatic

interactions, single subsystem polarization and mutual polarization are denoted (0), (1)

and (2), respectively. In a) there is one environmental subsystem B, in b) there are two
environmental subsystems B and C, that show further intra-environmental interactions
with the subscript 𝑏.

C, displayed in Fig. 4.1.1 b), the total electron density of this system is assumed to be

the sum of the subsystem densities (cf. Eq. (2.4.1))

𝜌tot = 𝜌A + 𝜌env
a)
=𝜌A + 𝜌B (4.1.6)

b)
=𝜌A + 𝜌B + 𝜌C . (4.1.7)

For these systems the separate Coulomb and QM interaction energy (Eq. (4.1.4) and

Eq. (4.1.5)) become

𝐸Cint[𝜌A, 𝜌env]
a)
= 𝐸Ctot[𝜌tot] − 𝐸CA[𝜌A] − 𝐸CB[𝜌B] (4.1.8)

b)
= 𝐸Ctot[𝜌tot] − 𝐸CA[𝜌A] − 𝐸CB[𝜌B] − 𝐸CC [𝜌C] (4.1.9)

𝐸QMint [𝜌A, 𝜌env]
a)
= 𝐸QMtot [𝜌tot] − 𝐸QMA [𝜌A] − 𝐸QMB [𝜌B] (4.1.10)

b)
= 𝐸QMtot [𝜌tot] − 𝐸QMA [𝜌A] − 𝐸QMB [𝜌B] − 𝐸QMC [𝜌C] (4.1.11)

(4.1.12)

where 𝐸A[𝜌A], 𝐸B[𝜌B] and 𝐸C[𝜌C] are the energies of the individual subsystems A, B
and C, respectively.
Furthermore, the Coulomb interaction energy for the ground state (Eq. (4.1.9)) and

its further decomposition is presented in Fig. 4.1.1. The electrostatic contributions

between the main system and the environment are denoted (0) [Fig. 4.1.1 a) and

b)], whereas the electrostatic contributions in between environmental subsystems

are denoted (0b) [Fig. 4.1.1 b)]. Electron densities and subsystem wave functions,

that are solely prone to these interactions, but are frozen in the process, i.e. are
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unpolarized, will in the following be denoted 𝜌(0) and Ψ(0), respectively. In case of
a further polarization of the subsystem A denoted (1)[Fig. 4.1.1 a) and b)] or the

subsystems in the environment B and C denoted (1b) [Fig. 4.1.1 b)], the electron density
is denoted 𝜌(1). A further mutual (self-consistent) polarization between the main system
and the environment (2) or between the environmental subsystems (2b), respectively,

leads to the mutually polarized electron density 𝜌(2). Accordingly, the subsystem wave

function for the polarized and mutually polarized systems are denoted Ψ(1) and Ψ(2),
respectively. Additionally, in the process of an excitation, there naturally occurs a

dynamical response of the system to the perturbation. This change is, however, not

expressed in this ground state decomposition and will be discussed separately in the

following chapters. Resulting from this decomposition, the Coulombic interaction energy

of system a) for frozen densities (0) can according to Eq. (4.1.3) be expressed as,

𝐸Cint[𝜌
(0)
tot] = ⟨Ψ(0)

tot|∑
𝑋

∑
𝑌≠𝑋

[1
2 ∫∫

̂𝜌𝑋(ri) ̂𝜌𝑌(rj)
|ri − rj|

dridrj −∑
𝐼 ∈𝑋

∫
𝑍𝐼 ̂𝜌𝑌(rj)
|R𝐼 − rj|

drj (4.1.13)

−∑
𝐽∈𝑌

∫
𝑍𝐽 ̂𝜌𝑋(ri)
|R𝐽 − ri|

dri +∑
𝐼 ∈𝑋

∑
𝐽∈𝑌

𝑍𝐼𝑍𝐽
|R𝐼 − R𝐽|

] |Ψ(0)
tot⟩ ,

where, Ψ(0)
tot denotes the unpolarized wave function of the total system, that can also be

expressed by a product of the non-overlapping subsystem wave functions Ψ(0)
A and Ψ(0)

B .

Here, the Coulomb interactions contribute but do not polarize the involved electron

densities 𝜌(0). Introducing the polarization of subsystem A, the total electron density
becomes 𝜌(1)tot = 𝜌(1)A + 𝜌(0)env, and only the terms, that involve the electron density of

subsystem A change from the unpolarized density to the polarized electron density 𝜌(1)A ,

so that the interaction energy is then a function of the polarized density of subsystem A,
𝐸Cint[𝜌

(1)
A , 𝜌(0)env]. The expression for the mutually polarized densities with superscript (2)

is more complicated and will be discussed in more detail for the respective methods.

Along the lines of local embedding schemes, the obtained expressions can be used to

formulate an effective Hamiltonian for the active subsystem, that yields the energy of

subsystemA polarized by the potential resulting from embedding it in the environmental

subsystems.

�̂�eff = �̂�A + ̂vembA (4.1.14)

= �̂�A + ∫ ̂𝜌AvembA (ri)dri (4.1.15)

with the embedding potential operator ̂vembA acting on subsystemA. With the embedding
potential resulting from the interactions of the environmental system on the main

subsystem A, the embedding energy is obtained as

𝐸emb[𝜌tot] = 𝐸tot[𝜌tot] − 𝐸A[𝜌A]. (4.1.16)
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with 𝜌tot defined in Eq. (4.1.6). Decomposing into the Coulomb and QM part (Eq. (4.1.5)),

the embedding potential is given as,

vembA =
𝛿𝐸Ctot[𝜌tot] − 𝐸CA[𝜌A]

𝛿𝜌A
+
𝛿𝐸QMtot [𝜌tot] − 𝐸QMA [𝜌A]

𝛿𝜌A
. (4.1.17)

In the following chapters, the recreation of the interaction between the main system

and the environment will be derived based on the presented common fundament for

density-based embedding schemes (Section 4.1.1) and PE (Section 4.1.2).

4.1.1. Density-Based Embedding

In the density-based embedding schemes all terms in the interaction Hamiltonian are

treated by real-space electron densities connected via the delta function (Eq. (4.1.2)).

Focussing on system a) and the case of unpolarized systems, that follow the (0) model

in Fig. 4.1.1 a), the Coulombic interaction energy is given as,

𝐸Cint[𝜌
(0)
A , 𝜌(0)B ] =∫∫

𝜌A(ri)𝜌B(rj)
|ri − rj|

dridrj − ∑
𝐼 ∈A

∫
𝑍𝐼𝜌B(rj)
|R𝐼 − rj|

drj (4.1.18)

− ∑
𝐽∈B

∫
𝑍𝐽𝜌A(ri)
|R𝐽 − ri|

dri + ∑
𝐼 ∈A

∑
𝐽∈B

𝑍𝐼𝑍𝐽
|R𝐼 − R𝐽|

where the unpolarized subsystem densities 𝜌(0)A and 𝜌(0)B stay unchanged. Allowing

the polarization of the active subsystem in the frozen environment, a polarization of

the electron density occurs so that the electron density of the total system becomes

𝜌(1)tot = 𝜌(1)A + 𝜌(0)B . The Coulombic interaction energy then adapts to,

𝐸Cint[𝜌
(1)
A , 𝜌(0)B ] =𝐸Ctot[𝜌

(1)
tot] − 𝐸CA[𝜌

(1)
A ] − 𝐸CB[𝜌

(0)
B ], (4.1.19)

with the polarized subsystem A, yielding the polarized subsystem electron density 𝜌(1)A .

This polarization of the main subsystem in the environment potential with frozen electron

densities is denoted FDE (Section 2.4.1.1). The polarization of subsystem A will in turn

induce a change on the environmental subsystem B, that causes a further change of
subsystem A and so on. According to the aforementioned description in Section 2.4.1.1,

this mutual polarization of the electron densities can be described by exchanging the

active role in the FDE calculation with all other systems. In this procedure, the electron

density is polarized for the respective active subsystem and by cycling the active role in

freeze-and-thaw cycles, after a sufficient number of cycles self-consistency and therefore

mutual polarization [Fig. 4.1.1, (2) and (2b] is achieved.
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Formulating the effective Hamiltonian for the active subsystem in the supermolecule

with 𝐸FDEtot [𝜌A, 𝜌B] = 𝐸CA[𝜌A]+𝐸
QM
A [𝜌A]+𝐸CB[𝜌B]+𝐸

QM
B [𝜌B]+𝐸Cint[𝜌A, 𝜌B]+𝐸

QM
int [𝜌A, 𝜌B],

corresponding embedding potential (Eq. (4.1.17)) can be formulated as,

vFDEA (ri) =
𝛿𝐸Ctot[𝜌A, 𝜌B] − 𝐸CA[𝜌A]

𝛿𝜌A
+
𝛿𝐸QMtot [𝜌A, 𝜌B] − 𝐸QMA [𝜌A]

𝛿𝜌A
(4.1.20)

=
𝛿𝐸Cint[𝜌A, 𝜌B]

𝛿𝜌A
+
𝛿𝐸CB[𝜌B]
𝛿𝜌A

+
𝛿𝐸QMint [𝜌A, 𝜌B]

𝛿𝜌A
+
𝛿𝐸QMB [𝜌B]

𝛿𝜌A
. (4.1.21)

The functional derivative for the energy of subsystem B vanishes for both, the Coulomb
and QM term, since the electron density of the system 𝜌B is considered frozen, i.e.
constant. The functional derivative for the Coulomb part of the interaction energy is

obtained straightforwardly from Eq. (4.1.18). The derivative of the quantum mechanical

interaction energy, however, is not additive (Section 2.4.1.1). It can be decomposed in a

kinetic and XC term so that the FDE embedding potential (cf. Eq. (2.4.10)) reads,

vFDEA (ri) =
𝛿𝐸Cint[𝜌A, 𝜌B]

𝛿𝜌A
+
𝛿𝐸QMint [𝜌A, 𝜌B]

𝛿𝜌A
(4.1.22)

= − ∑
𝐽∈B

𝑍𝐽
|ri − R𝐽|

+ ∫
𝜌B(rj)
|ri − rj|

drj +
𝛿𝐸kinint [𝜌A, 𝜌B]

𝛿𝜌A
+
𝛿𝐸xcint[𝜌A, 𝜌B]

𝛿𝜌A

=vCA[𝜌B](ri) + vnadd,kinA [𝜌A, 𝜌B](ri) + vnadd,xcA [𝜌A, 𝜌B](ri), (4.1.23)

where the Coulomb potential vCA[𝜌B] denotes the result from the functional deriva-

tive of the Coulombic interaction energy with subsystem A and vnadd,kinA [𝜌A, 𝜌B] and
vnadd,xcA [𝜌A, 𝜌B] denote the non-additive kinetic and XC potential, respectively, resulting
from the functional derivative of the QM interaction energy. In order to extend to a

multiplicity of environmental subsystems, the potential has to be adapted to include

interactions with more than one subsystem. For the QM terms, this is denoted by a

change of the interaction terms from the density of subsystem B to the environmental
density 𝜌env, vnadd,kinA [𝜌A, 𝜌env] + vnadd,xcA [𝜌A, 𝜌env]. For the Coulomb potential, a sum
over all environmental subsystems 𝑋 is introduced,

vCA[𝜌env](ri) = − ∑
𝑋≠A

∑
𝐽∈𝑋

𝑍𝐽
|ri − R𝐽|

+ ∑
𝑋≠A

∫
𝜌𝑋(rj)
|ri − rj|

(4.1.24)

= − ∑
𝑋≠A

∑
𝐽∈𝑋

𝑍𝐽
|ri − R𝐽|

+ ∫
𝜌env(rj)
|ri − rj|

drj. (4.1.25)

For the polarization of the main subsystem A, this involves the frozen densities of the
environment only. When performing freeze-and-thaw cycles the environmental densities

stay frozen, however, for every step in the cycle, when exchanging the role of the

active system to a different subsystem, a new potential has to be formed for every active
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subsystem, incorporating the newly obtained densities from the last step. This way, when

changing to an environmental subsystem as the active system, the interaction among

environmental subsystems is incorporated (Fig. 4.1.1 b)). The obtained formalism can

be used in order to describe the local excitation of the active subsystem, the so-called

uncoupled FDE approach.

Starting from the already introduced expression Eq. (2.3.14), but employing the

effective Fock operator ̂𝑓 eff = ̂𝑓 iso + vemb, the Fock matrix element derivative becomes,

𝜕𝐹 (0)𝑝𝑞

𝜕𝑃𝑟 𝑠
=

𝜕 ⟨𝜓𝑝| ̂𝑓 iso + vemb,FDE|𝜓𝑞⟩
𝜕𝑃𝑟 𝑠

=
𝜕 ⟨𝜓𝑝| ̂𝑓 iso|𝜓𝑞⟩

𝜕𝑃𝑟 𝑠
+
𝜕 ⟨𝜓𝑝|vemb,FDE|𝜓𝑞⟩

𝜕𝑃𝑟 𝑠
, (4.1.26)

where the terms for the isolated Fock operator stay unchanged and can be separated

from the embedding term[214, 345],

𝜕 ⟨𝜓𝑝|v
emb,FDE
A |𝜓𝑞⟩
𝜕𝑃𝑟 𝑠

=⟨𝜓𝑝(ri)𝜓𝑠(r′i ) |
𝛿vemb,FDEA [𝜌A(r′i )](ri)

𝛿𝜌A(r′i )
| 𝜓𝑞(ri)𝜓𝑟(r′i )⟩ . (4.1.27)

=∫ dri ∫ dr′i 𝜌𝑡𝑝𝑞(ri)
𝛿vemb,FDEA (ri)

𝛿𝜌A(r′i )
𝜌𝑡𝑟 𝑠(r′i ), (4.1.28)

with the matrix elements for the transition density 𝜌𝑡𝑝𝑞(r) = 𝜓 ∗𝑝 (r)𝜓𝑞(r). Inserting
equation Eq. (4.1.23) in the functional derivative of the embedding potential, the Coulomb

terms vanish due to the environmental electron densities being frozen. Therefore, the

derivative is solely comprised of the contribution from the non-additive kinetic and XC

terms[213, 345]

𝛿vFDEA (ri)
𝛿𝜌A(r′i )

=
𝛿2𝐸xc[𝜌tot]

𝛿𝜌tot(ri)𝛿𝜌tot(r′i )
−

𝛿2𝐸xc[𝜌A]
𝛿𝜌A(ri)𝛿𝜌A(r′i )

+
𝛿2𝑇s[𝜌tot]

𝛿𝜌tot(ri)𝛿𝜌tot(r′i )
−

𝛿2𝑇s[𝜌A]
𝛿𝜌A(ri)𝛿𝜌A(r′i )

,

(4.1.29)

following Eqs. (2.4.6) and (2.4.7). These terms have, however, been shown to be rather

small.[346, 347]
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4.1.2. Polarizable Embedding

In the polarizable embedding scheme, that was presented in Section 2.4.1.3 in the second

quantization formalism, the starting point for system a) (see Fig. 4.1.1) is the same

as in the FDE scheme, the interaction energy of unpolarized subsystems, Eq. (4.1.18).

As previously mentioned (see Section 2.4.1.3), a multipole expansion is introduced in

order to express the environmental electron densities classically. For this, the inverse

distances are expanded around an origin 𝑅B at the centre of mass of subsystem B,
exemplary derived for the electron-electron distance, as follows

|ri − rj|−1 =
1

|ri − RB |
−∑

𝛼
( 𝜕
𝜕𝑟i,𝛼

1
|ri − RB |

) (𝑟j,𝛼 − 𝑅B,𝛼) + ⋯

= 𝑇 (0)Bi −∑
𝛼
𝑇 (1)Bi,𝛼(𝑟j,𝛼 − 𝑅B,𝛼) + ⋯ (4.1.30)

= ∑
|𝑘|=0

(−1)|𝑘|

𝑘!
T
(𝑘)
Bi (rj − RB)𝑘 (4.1.31)

|ri − R𝐽|−1 = ∑
|𝑘|=0

(−1)|𝑘|

𝑘!
T
(𝑘)
Bi (R𝐽 − RB)𝑘 (4.1.32)

|R𝐼 − R𝐽|−1 = ∑
|𝑘|=0

(−1)|𝑘|

𝑘!
T
(𝑘)
B𝐼 (R𝐽 − RB)𝑘 (4.1.33)

with the interaction tensors defined in Eq. (2.4.19) and the variable for the spatial

coordinate 𝛼 = 𝑥, 𝑦 , 𝑧. Here, the interaction tensor contains an implicit dependence
on the particle coordinate ri or R𝐼.

[225] Choosing to describe the electron density of

subsystem B via multipoles employing interaction tensors, the interaction energy can

therefore be simplified to

𝐸Cint[𝜌
(0)
A , 𝜌(0)B ] ≈ (4.1.34)

𝐸Cmul[𝜌
(0)
A , 𝜌(0)B ] = (− ⟨Ψ(0)

A | ∫ ̂𝜌A(ri)𝑇
(0)
Bi dri |Ψ

(0)
A ⟩ + ∑

𝐼 ∈A
𝑍𝐼𝑇

(0)
BI ) ⟨Ψ

(0)
B |�̂�B |Ψ

(0)
B ⟩ (4.1.35)

−∑
𝛼
(− ⟨Ψ(0)

A | ∫ ̂𝜌A(ri)𝑇
(1)
Bi, dri |Ψ

(0)
A ⟩ + ∑

𝐼 ∈A
𝑍𝐼𝑇

(1)
BI,) ⟨Ψ

(0)
B |�̂�B,𝛼|Ψ

(0)
B ⟩ + …

with the multipole moment operators

�̂�B = −∫ ̂𝜌B(rj)drj + ∑
𝐽∈B

𝑍𝐽 (4.1.36)

�̂�B,𝛼 = −∫ ̂𝜌B(rj)(𝑟j,𝛼 − 𝑅B,𝛼)drj + ∑
𝐽∈B

𝑍𝐽 (𝑅𝐽 ,𝛼 − 𝑅B,𝛼) (4.1.37)
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that were defined with respect to the charge density of subsystem B. Introducing the
multi-index 𝑘 also for the multipole moments, one multi-order multipole moment operator
emerges,

Q̂
(𝑘)
B = −∫ ̂𝜌B(rj)(𝑟j,𝛼 − 𝑅B,𝛼)𝑘drj + ∑

𝐽∈B
𝑍𝐽 (𝑅𝐽 ,𝛼 − 𝑅B,𝛼)𝑘. (4.1.38)

Due to the convergence problems of the expansion for short distances (cf. Section 2.4.1.3),

distributed multipoles are introduced, i.e., they are located on so-called “sites” on the

environmental subsystem’s atoms (occasionally also bond-midpoints are used as sites).

Resulting from this, for a single environmental subsystem B, the interaction energy can
be expressed in terms of sites as,

𝐸Cmul[𝜌
(0)
A , 𝜌(0)B ] = ∑

𝑠
∑
|𝑘|

(−1)|𝑘|

𝑘!
(− ⟨Ψ(0)

A | ∫ ̂𝜌A(ri)T
(𝑘)
𝑠i dri |Ψ

(0)
A ⟩ + ∑

𝐼 ∈A
𝑍𝐼T

(𝑘)
𝑠𝐼 )Q

(𝑘)
𝑠 .

For now, only the electrostatic contributions were examined, however, with this same

expression, the interaction energy for one polarized main subsystem A can be captured

by introducing 𝜌(1)A and Ψ(1)A,

𝐸Cmul[𝜌
(1)
A , 𝜌(0)B ] = ∑

𝑠
∑
|𝑘|

(−1)|𝑘|

𝑘!
(− ⟨Ψ(1)

A | ∫ ̂𝜌A(ri)T
(𝑘)
𝑠i dri |Ψ

(1)
A ⟩ + ∑

𝐼 ∈A
𝑍𝐼T

(𝑘)
𝑠𝐼 )Q

(𝑘)
𝑠

(4.1.39)

= ∑
𝑠
∑
|𝑘|

(−1)|𝑘|

𝑘!
(−∫𝜌(1)A (ri)T

(𝑘)
𝑠i dri + ∑

𝐼 ∈A
𝑍𝐼T

(𝑘)
𝑠𝐼 )Q

(𝑘)
𝑠 , (4.1.40)

where the the multipole-moment vector is defined as Q
(𝑘)
𝑠 [𝜌(0)B ] = Q

(𝑘)
𝑠 = ⟨Ψ(0)

B | ̂Q
(𝑘)
𝑠 |Ψ(0)

B ⟩.
Additionally, when determining the energy of the isolated QM subsystem, it is obtained

from the polarized subsystem 𝐸CA[𝜌
(1)
A ].

In order to take the mutual polarization into account, the second-order perturbed

contribution 𝐸(2) (the last term in Eq. (2.4.14)) has to be considered, since it contains the
higher polarization contribution as well as the dispersion effects. For the two subsystem

case discussed here, the second-order perturbation term becomes

𝐸(2) = 𝐸indPE =𝐸polA + 𝐸polB + 𝐸disp (4.1.41)

=∑
𝑛≠0

⟨Ψ(0)
B,0| ⟨Ψ

(0)
A,0| �̂�AB |Ψ(0)

A,𝑛⟩ |Ψ
(0)
B,0⟩ ⟨Ψ

(0)
B,0| ⟨Ψ

(0)
A,𝑛| �̂�AB |Ψ(0)

A,0⟩ |Ψ
(0)
B,0⟩

𝐸(0)A,0 − 𝐸(0)A,𝑛

(4.1.42)

+∑
𝑛≠0

⟨Ψ(0)
B,0| ⟨Ψ

(0)
A,0| �̂�AB |Ψ(0)

A,0⟩ |Ψ
(0)
B,𝑛⟩ ⟨Ψ

(0)
B,𝑛| ⟨Ψ

(0)
A,0| �̂�AB |Ψ(0)

A,0⟩ |Ψ
(0)
B,0⟩

𝐸(0)B,0 − 𝐸(0)B,𝑛

+ 𝐸disp,
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where the first term refers to the polarization of subsystemA and the second term to the

polarization of subsystem B. The third term, that is comprised of terms with excitations
in both subsystems, is identified as the dispersion energy[225], that is not taken into

account here.

Inserting the expressions for the interaction Hamiltonian on the example of the po-

larization of subsystem B, including the terms for the previously introduced multipole
expansion, leads to

𝐸polB = ∑
𝛼𝛽

{ (− ⟨Ψ(0)
A,0| ∫ ̂𝜌A(ri)𝑇

(1)
Bi dri|Ψ

(0)
A,0⟩ + ∑

𝐼 ∈A
𝑍𝐼𝑇

(1)
B𝐼 ) (4.1.43)

⋅ ∑
𝑛≠0

⟨Ψ(0)
B,0|�̂�B,𝛼|Ψ

(0)
B,𝑛⟩⟨Ψ

(0)
B,𝑛|�̂�B,𝛽|Ψ

(0)
B,0⟩

𝐸(0)B,0 − 𝐸(0)B,𝑛

⋅ (− ⟨Ψ(0)
A,0| ∫ ̂𝜌A(ri)𝑇

(1)
Bi dri|Ψ

(0)
A,0⟩ + ∑

𝐼 ∈A
𝑍𝐼𝑇

(1)
B𝐼 ) },

where only first-order terms survive since the terms of zeroth order in 𝑘 vanish due to
the orthogonality of the ground and excited state ⟨Ψ(0)

B,0|Ψ
(0)
B,𝑛⟩ = 0. Since the expression

is truncated after first order |𝑘| = 1 here, this solely leaves the interaction terms with
the dipole moments of the environmental subsystems. The sum-over-states expression

in the second term can be further identified as the static polarizability of subsystem B
following the definition

𝛼0B,𝛼𝛽 = −2∑
𝑛≠0

⟨Ψ(0)
B,0|�̂�B,𝛼|Ψ

(0)
B,𝑛⟩⟨Ψ

(0)
B,𝑛|�̂�B,𝛽|Ψ

(0)
B,0⟩

𝐸(0)B,0 − 𝐸(0)B,𝑛

. (4.1.44)

The field that is introduced by the electrons and nuclei in subsystem A is denoted EEEe
and EEEn, respectively. The field as the negative derivative of the potential at RB arises as,

En𝛼 = −∑
𝐼

𝜕𝑉 (R𝐼)
𝜕𝑅𝐼 ,𝛼

= −∑
𝐼 ∈𝐴

𝑍𝐼𝑇
(1)
B𝐼 ,𝛼 (4.1.45)

Eel𝛼 [𝜌(0)A ] = − ∫𝜌(0)A (ri) (
𝜕𝑉 (ri)
𝜕𝑟i,𝛼

) dri = ⟨Ψ(0)
A | ∫ ̂𝜌A(ri)𝑇

(1)
Ba,𝛼dri|Ψ

(0)
A ⟩. (4.1.46)

resulting from the potential due to the presence of electrons and nuclei in subsystem A.
Inserting Eqs. (4.1.44) to (4.1.46), Eq. (4.1.43) can be reduced to,

𝐸polB [𝜌(0)B ] =1
2
(EEEelA[𝜌

(0)
A ] + EEEnucA )

T

𝜇𝜇𝜇indB [𝜌A] (4.1.47)

by additionally recognizing the induced dipole moment as 𝜇𝜇𝜇indB [𝜌A] = 𝛼𝛼𝛼0BEEE
tot
B , that

depends on the total field emerging from the nuclei and electrons in the main subsystem

A (EEE tot = EEEelA[𝜌
(0)
A ]+EEEnucA ). Furthermore, introducingmultiple environmental subsystems
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[Fig. 4.1.1 b)] along with atomic sites for the distributed multipoles, does not only lead

to site-dependent fields and polarizabilities, but it also gives rise to additional fields.

On the one hand, the sites of the multipoles of all other subsystems create a field EEEmul,
that reflects the interactions with subscript b in Fig. 4.1.1 b). On the other hand,

the existence of other sites 𝑠′ causes other induced dipoles to arise and therefore an
additional field EEE ind,

EEE tot𝑠 = EEEelA,𝑠[𝜌
(0)
A ] + EEEnucA,𝑠 + EEEmul𝑠 + ∑

𝑠≠𝑠′
T
(2)
𝑠𝑠′𝜇𝜇𝜇

ind
𝑠′ [𝜌tot]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
EEE ind
𝑠

. (4.1.48)

Here, the induced dipole moment of one site depends on the induced dipole moment of

all other sites, which requires a self-consistent treatment. For this, the matrix-vector

equation proposed by Applequist et al. can be employed[348]

𝜇𝜇𝜇ind =
𝑆
∑
𝑠
𝜇𝜇𝜇ind𝑠 =

𝑆
∑
𝑠
(𝛼𝛼𝛼𝑠EEE tot𝑠 ) =

𝑆
∑
𝑠
R𝑠𝑠′EEE tot𝑠 = REEE tot (4.1.49)

=
⎛
⎜
⎜
⎜
⎝

𝛼𝛼𝛼−11 −T(2)12 … −T(2)1𝑆
−T(2)21 𝛼𝛼𝛼−12 … −T(2)2𝑆

⋮ ⋮ ⋱ ⋮
−T(2)𝑆1 −T(2)𝑆2 … 𝛼𝛼𝛼−1𝑆

⎞
⎟
⎟
⎟
⎠

−1

⋅
⎛
⎜
⎜
⎝

EEE tot1
EEE tot2
⋮

EEE tot𝑆

⎞
⎟
⎟
⎠

. (4.1.50)

Shifting the focus from the interaction energies to the effective embedding potential, that

allows for the calculation of the main subsystem energy from an effective Hamiltonian

(Eq. (4.1.14)), the Coulomb part of the embedding potential (Eq. (4.1.17)) in the PE

framework with a total energy of

𝐸PEtot[𝜌A, 𝜌B] = 𝐸CA[𝜌A] + 𝐸CB[𝜌B] + 𝐸Cmul[𝜌A, 𝜌B] + 𝐸polA [𝜌B] + 𝐸polB [𝜌A] (4.1.51)

is given as,

vPEA (ri) =
𝛿𝐸Ctot[𝜌A, 𝜌

(0)
B ] − 𝐸CA[𝜌A]
𝛿𝜌A

=
𝛿𝐸CB[𝜌

(0)
B ]

𝛿𝜌A
+
𝛿𝐸Cmul[𝜌A, 𝜌

(0)
B ]

𝛿𝜌A
+
𝛿𝐸polB [𝜌A]

𝛿𝜌A
,

(4.1.52)

where the first term in the second equality vanishes when assuming the electron densities

of subsystem B to be constant. Simply performing the functional derivative of the second
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term and using the functional derivative product rule for the third term[156], the potential

becomes

vPEA = −∑
𝑠
( ∑
|𝑘|=0

(−1)|𝑘|

𝑘!
T
(𝑘)
𝑠𝑖 (ri)Q

(𝑘)
𝑠 [𝜌(0)B ]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
vmul𝑠 (ri)

− (EEE tot𝑠 )
𝑇
𝛼𝛼𝛼0𝑠

𝛿EEEeA,𝑠[𝜌A(ri)]
𝛿𝜌A(ri)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

v
pol
𝑠 ([𝜌A](ri))

), (4.1.53)

Having obtained the form of this effective operator (Eq. (4.1.14)), equally to the effective

operator for density-based embedding schemes, it can be inserted in the TD-DFT equa-

tions (Eq. (2.3.13)), in the effective Fock operator and the just obtained PE embedding

potential can be inserted in Eq. (4.1.26) to give,

𝜕 ⟨𝜓𝑝|v
emb,PE
A |𝜓𝑞⟩
𝜕𝑃𝑟 𝑠

=⟨𝜓𝑝(ri)𝜓𝑠(r′i ) |
𝛿vemb,PEA [𝜌A(r′i )](ri)

𝛿𝜌A(r′i )
| 𝜓𝑞(ri)𝜓𝑟(r′i )⟩ (4.1.54)

=∫ dri ∫ dr′i 𝜌𝑡𝑝𝑞(ri)
𝛿𝑣PEA [𝜌A(r′i )](ri)

𝛿𝜌A(r′i )
𝜌𝑡𝑟 𝑠(r′i ), (4.1.55)

=∫ dri ∫ dr′i 𝜌𝑡𝑝𝑞(ri) (−∑
𝑠
∑
𝑠′
T
(1)
i𝑠′ (r

′
i )R𝑠𝑠′T

(1)
i𝑠 (ri)) 𝜌𝑡𝑟 𝑠(r′i ), (4.1.56)

which is the extra term introduced via the A and B terms in the TD-DFT equations

(Eq. (2.3.13)). It accounts for the effects that occur due to the perturbation of the

system, i.e. the polarization of the environmental subsystems, often named the dynamical

response of the environment[193, 222]. Since this potential is acting on the active system

this so-called differential polarization is included in this approach.

4.1.3. Comparison of Embedding Schemes in the Common Framework

Having successfully established a framework for both the density-based and PE embed-

ding schemes, mutualities as well as differences in the description of interactions in

the two classes become more clear. For instance, the decomposition of the interaction

energy into Coulomb and QM parts has been performed. The former is reproduced in

both classes, however, in different ways: while FDE enables to retrieve formally exact

results with a density-based QM/QM treatment, in PE, the environmental subsystem

densities are approximated via a multipole expansion and polarizabilities introduced

in a perturbative approach of the interaction energy. The novel framework allows for

the setup of different models that reflect the order of included polarizability in the

interaction:

(i) The NOPOL model, where solely the active subsystem is polarized in the interaction.

This is reflected by a polarized subsystem A [Fig. 4.1.1 (1)] in the frozen environ-

ment and refers to Eq. (4.1.23) and Eq. (4.1.53) with only the multipole potential,

in the density-based embedding and PE, respectively. In FDE, the electron density
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is relaxed due to the interactions with the environmental subsystems’ densities,

while in PE it is relaxed in a potential that is obtained from the multipole expansion

of these environmental subsystem densities. These schemes are therefore compa-

rable. It should, however, be noted that in the FDE scheme, QM contributions are

accounted for in an approximate manner (for all models).

(ii) The GSPOL model, that refers to a mutually polarized system in the ground state

[Fig. 4.1.1 (2) and (2b)], which is reflected by the FDE approach including freeze-

and-thaw cycles up to self-consistency account for the polarizability in the density-

based embedding (Eq. (4.1.23)). In the PE scheme, the inclusion of the higher-order

polarization is obtained by introducing anisotropic dipole polarizabilities from the

perturbation of the Hamiltonian. Since the embedding potential is obtained by the

multipole expansion and the polarization of the environmental subsystems due

to the active system as well as the other multipoles and arising induced dipoles

in this process (Eq. (4.1.53)), it reproduces the ground-state polarization and is

comparable to the FDE approach with freeze-and-thaw cycles (Eq. (4.1.23)).

(iii) The DPOL model, refers to the inclusion of differential polarization, i.e. the approxi-

mate dynamical response of the system arising due to an external field. This model

is not reflected in Fig. 4.1.1, since it does not refer to ground state interactions.

As previously mentioned, DPOL is covered in the PE scheme due to the polarization

term that enters the TD-DFT equations and yields an additional term (Eq. (4.1.56)).

This term accounts for the polarization of the environment due to the excitation

in the active subsystem, that in turn then optimizes the active subsystem. In

the uncoupled FDE scheme, this fraction of the polarization is not accounted for.

There have, however, been approaches covering this part such as state-specific

approaches that involve the optimization of individual states and therefore nat-

urally include the dynamical response[65] or coupled FDE, where the response

equations are reformulated to cover excitonically coupled subsystems.[213–218]

In later approaches an effective contribution to Eq. (2.3.13) is employed, that

includes non-resonant effects.[213] In the present work, these approaches will be

disregarded.

(iv) The DPOL model, refers to the inclusion of differential polarization, however, this

does not take into account that the field of the dipole moments in the environment

of the active molecule also modifies the external field itself, interacting with the

active molecule. The resulting external effective field (EEF), that is therefore

indirectly introduced by the polarization of the environment due to these local

fields, can be further incorporated in the DPOL+EEF model. It is implemented

additionally to the common PE formalism. For a derivation, the reader is referred

to List et al.[349]

The (0) and (0b) interactions from Fig. 4.1.1 are not separately covered in these models,

since they are incorporated in all other models and the electrostatic contributions are

rarely employed separately apart from QM/MM point-charge models.[42]
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Apart from the presented main models further details of the embedding schemes

can be discussed. For PE schemes, the use of a multipole expansion can follow the

occurrence of electron spill-out (ESO) effects, where the lack of short-range repulsion

due to classical electrostatic interaction in the Coulomb terms with the active QM system

causes the electron density to unphysically distribute in the environmental space.[350]

The employment of adapted effective core potentials (pseudopotentials) in order to add

repulsive terms for specific environmental regions has been found to alleviate these

effects.[295] In FDE, ESO effects have also been observed, but are less common since

the approximate non-additive functionals calculated from orbital-free DFT have shown

to contain repulsion terms counteracting the electronic spill-out effect.[58, 209, 351, 352]

Since these functionals perform well, they have also been introduced to PE, which is

known as polarizable density embedding[353–356], but exceeds the scope of this work.

Furthermore, it is possible to counter occurring ESOs in FDE by the exertion of a

correction to the kinetic energy functional for long distances.[352]

4.2. Numerical Comparison of Quantum-Derived

Embedding Schemes‡

Subsequently to establishing a common theoretical framework for the PE and FDE

embedding schemes as well as specific models with different orders of polarization

effects included (NOPOL, GSPOL, DPOL and DPOL+EEF) in the previous chapter, the next step

involves a transfer to a fair one-to-one comparison in actual calculations. In order to

observe the numerical effects of these schemes and models, to fairly represent these

and maximize comparability between them, in the following a computational setup is

introduced in Section 4.2.1. Subsequently, the numerical comparison is performed by

calculations in the newly implemented framework for the previously presented systems

pNA and pFTAA (see Chapter 1) solvated in different sizes of a water environment

[Fig. 4.2.1 a)] and a 3 Å water environment [Fig. 4.2.1 b) and c)], respectively. The

obtained results are discussed in Section 4.2.2.

4.2.1. Computational Setup and Implementation

The general procedure in the common theoretical framework can be broken down into

a few main steps, that are shown in the middle of Fig. 4.2.2. The initial structure

of the supermolecule is the input for both models and acquired from performing MD

simulations (cf. Chapter 3), obtaining a variety of configurational structures and thus

ruling out any bias towards a specific solvent configuration.

The supermolecular structure needs to be partitioned into subsystems in the initializa-

tion step including the identification and assignment of the main system. The initializa-

tion also involves any initial subsystem ground-state calculations, that are necessary in

‡ This section is adapted with permission from Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys.

Chem. A 2023, 127, 5689–5703. Copyright 2023 American Chemical Society. This particularly holds true

for the outline of the computational setup and the presented results in the numerical comparison.

66



4.2. Numerical Comparison of Quantum-Derived Embedding Schemes

a) b)

c)

Figure 4.2.1.: a) Solvation of pNA (black) in a 3 Å (red), 4 Å (blue), 5 Å (green) and 12 Å (grey) water

environment on the example of snapshot 3. b) and c) Solvation of pFTAA in a 3 Å water

environment (blue). b) Snapshot 1, c) Snapshot 2, that exhibits sodium ions (red) in the

close vicinity to pFTAA.

order to determine properties that yield the initial embedding potential. Subsequently,

the polarization of the main subsystem can take place. In case of the NOPOL model,

this involves only a single ground-state calculation of the main molecule in presence

of the embedding potential. For the GSPOL model, further embedding-scheme-specific

steps are involved in the further self-consistent polarization. Finally, the polarized main

system is then employed in a response calculation in the presence of an embedding

potential, yielding the desired optical properties, in this case, excitation energies and

corresponding oscillator strengths. Here, possibly further polarization can be accounted

for in the response calculations in the PE scheme.

The PE scheme is available in a Dalton framework[285] via PEAS[287] and the Dalton-

implemented library PElib[294]. In the present work, the FDE scheme was implemented

in a scheme focussed on Dalton, largely complying with the PE implementation. Dalton

is in principle able to perform FDE calculations since the inclusion of a static embedding

potential in DFT and TD-DFT calculations is possible, however, a FDE freeze-and-thaw

formalism is not implemented in the present version, specifically, because the potential

construction has to be performed externally. A framework allowing the determination of

embedding potentials with the results from Dalton calculations therefore enables the

performance of the freeze-and-thaw procedure using a Dalton fundament is introduced

and implemented in this work. The embedding-scheme-specific workflows are summa-
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Figure 4.2.2.: Workflow diagram of the general computational setup. The elliptical nodes represent the

input and outputs of the calculation. The dark blue boxes represent the general work

steps in both embedding schemes. The white boxes represent the workflow for the specific

embedding scheme, with programs and ↳modules called.

rized in Fig. 4.2.2, however, will be presented in more detail in the following sections

(cf. Fig. A.1 for PE and Fig. 4.2.3 for PE).

4.2.1.1. Polarizable Embedding

In the PE scheme (see Fig. A.1), the supermolecular structure is read in by PEAS,

that is partitioning the structure into the multiple subsystems, and separating the

active system so that a Dalton input file can be produced for this subsystem. For the

environmental subsystems, ground-state DFT calculations in Openmolcas are performed

in order to obtain the unpolarized subsystem electron densities.[288] From these the

localized multipolesQ𝑠[𝜌
(0)
𝑋 ] (here truncated to second order, i.e. quadrupoles) and static

polarizabilities 𝛼𝛼𝛼0𝑠 are retrieved in LoProp calculations in Openmolcas (Eq. (4.1.53)),
which is automatically called.[289] PEAS subsequently creates a Dalton-readable potential

from the multipoles and polarizabilities.

Dalton is initialized with the main system input file from PEAS. The subsequent

calculations then closely follow the workflow presented by Olsen et al.[223]: Both the

ground-state and response calculations are performed with Dalton including the PE

embedding potential of the corresponding cycle. In this process in both calculation types,

PElib handles the self-consistent calculations of the induced dipole moment (Eq. (4.1.50))

in both types of calculations due to its dependence on the total field changing it in every
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SCF step.[294] For the NOPOL model, this means that it is represented by optimizing the

main subsystem in the obtained multipoles (first term in Eq. (4.1.53)), but overall no

polarization terms will be introduced in the calculations. In contrast, in the GSPOL model

additionally the self-consistent ground-state polarization is included in the embedding

potential via PElib (Eq. (4.1.53)) and the subsequent response calculation disregards

the differential polarization terms when solving the TD-DFT equations (Eqs. (2.3.12)

and (4.1.56)). When changing to the DPOLmodel, the inclusion of differential polarization

by including the corresponding term in the response calculations (Eq. (4.1.56)), is the

sole adaptation in comparison to the GSPOL model. Additionally, the effective external

field (EEF) effects for the DPOL+EEF model can be added in the response calculation by a

simple Dalton keyword.[285, 349]

4.2.1.2. Frozen-Density Embedding

In the FDE scheme (Fig. 4.2.3), the whole calculation is managed by the PyADF frame-

work, that is able to call other programs, such as Dalton, and read and convert their

results for further calculation steps.[61, 296] The implementation and an exemplary input

code for both examined systems, as well as the test case for the implementation, are

presented in listings A.1, A.2 and A.5 to A.16.

PyADF reads the supermolecular structure and performs a single step of an ADF

ground-state DFT calculation in order to obtain a supermolecular grid that is used in all

upcoming Dalton calculations. This ensures the homogeneous distribution of grid points

over all subsystems involved and circumvents the occurrence of grid artefacts.[297, 298]

Additionally, ADF calculation grids can be easily read by PyADF and therefore readily

be made available for further Dalton calculations, whereas grids obtained from Dalton

are not supported in the PyADF framework yet. PyADF then further partitions the

supermolecule into subsystems and calls Dalton for ground-state DFT calculations of all

obtained subsystems individually and saves the results on the supermolecular grid.

The PyADF module DensityEvaluator then uses the molecular orbital coefficients of

the Dalton result files to generate the electron densities, Coulomb and nuclear potentials

of all subsystems. These are then employed in the PyEmbed module of PyADF in order to

determine the embedding potential for a specific active system involving the evaluation

of the non-additive kinetic and XC terms (Eqs. (2.4.6) and (2.4.7)) on the same grid and

adding it to the electrostatic terms (Eq. (2.4.10)). In case of the NOPOL model, this initial

embedding potential is employed in a ground-state and response calculation of the main

system to yield the desired results. It should be noted, that in the response calculation

including the embedding potential, only electrostatic contributions enter the TD-DFT

equations and the non-additive terms (Eq. (4.1.29)) are disregarded in the response

kernel. They do, however, contribute in the performed ground-state calculations.

For a further mutual polarization according to the GSPOL model, the role of the active

system is further exchanged between all subsystems. The new static embedding potential

acting on the respective active subsystem of the current step is updated accordingly to

the results from the step performed previously via the DensityEvaluator and PyEmbed

modules. The embedding potential is then made available to Dalton for ground-state
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Figure 4.2.3.: Workflow diagram of the computational setup for the FDE scheme. The elliptical nodes

represent the input and output of the calculation. The nodes and bullet points in dashed

boxes denote processes performed and called by PyADF[61, 296]. The dark blue boxes

represent programs called in the process of the embedding calculation, whereas the

white boxes represent called modules of PyADF. The arrows denote data exchanged

in between modules and programs. Objects marked with ∗ are employed in all further

calculations in all programs and models.

DFT calculations of that subsystem in the presence of the embedding potential. When all

subsystems have taken an active role, and thus, have been optimized in the procedure,

this is considered as one freeze-and-thaw cycle. The procedure can be continued until

self-consistency of a desired property, however, a number of three freeze-and-thaw cycles

has shown to be sufficient in many cases.[300] The updated data of all systems is then

employed to perform a (uncoupled) response calculation of the main system with the

updated ground-state embedding potential in order to obtain the desired properties. The

further models DPOL and DPOL+EEF were not regarded in this implementation. However,

the implementation that was to a large degree performed in Dalton for the NOPOL and

GSPOL model enables a fair comparison with the PE scheme for these models.
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4.2.2. Numerical Comparison
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Figure 4.2.4.: Overview of solvation model definitions used in the results and their discussion. The upper

part in the table denotes full S/F -shifts (in difference to vacuum). The lower part in the
table denotes model-specific contributions of S/F -shifts (difference compared to a lower
model).

In the numerical comparison, the excitation energies and oscillator strengths for

FDE and PE with the different polarization models (NOPOL, GSPOL, DPOL and DPOL+EEF,

Section 4.1) were obtained in the new computational setup for pNA in different water

environment sizes (Fig. 4.2.1), different basis set sizes as well as pFTAA in a 3 Å water

environment with an aug-cc-pVDZ basis set. For pNA and pFTAA the results were

obtained for the seven and eight configurations (“snapshots”), respectively, extracted

from MD simulations.

The results are generally presented here in the form of shifts, i.e. the difference

between the excitation energy or oscillator strength of the solvated system in a specific

polarization model to that of another calculation e.g. the vacuum calculation. These

shifts are named S-shifts for the changes in the excitation energy and F -shifts for
changes in the oscillator strength. When the difference is taken between results for the

solvated system and the vacuum system, this is denoted Δ (Fig. 4.2.4). Accordingly, the
S and F -shifts of the reference calculations (ΔREF) represent the excitation energies and
oscillator strengths obtained by taking the difference between the respective calculated

values and the corresponding vacuum values. Individual contributions of these shifts

specific to a model are denoted as ΔΔ and refer to the difference between a value for a
polarization model and a lower model, e.g. the ΔΔGSPOL contribution is defined as the
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shift caused by the GSPOL model by subtracting the value of the NOPOL model, i.e., the

GSPOL-specific shift part of the S or F -shifts.

4.2.2.1. para-Nitroaniline

In the following, the results for the calculation pNA in a 3 Å water environment are

presented and the parameters of the XC functional, that are to be used in the further

calculations, are assessed. Subsequently, the results for the excitation energies and os-

cillator strengths are presented and discussed for different sizes of a water environment

and different basis set sizes.

Initially, in the calculation of the supermolecular reference for pNA in a 3 Å environ-

ment, two different parametrizations of the CAM-B3LYP XC functional were compared.

On the one hand, the default parametrization was employed (𝜇 = 0.33), on the other hand,
the slope of the error function introducing the Fock exchange in the range-separated XC

functional is set to 𝜇 = 1.0.[174, 357] The latter was examined to due the possibly better
description of charge-transfer effects when introducing a higher amount of non-local

Fock exchange since the default parameters do integrate 65% Fock exchange at long

ranges.[357, 358] In the following this parametrization will be denoted CAM-B3LYP∗. The
results for pNA in a 3 Å water environment for an aug-cc-pVDZ and aug-cc-pVTZ basis

set are presented in Table A.1 and Table A.2, respectively. The excitation energies that

were obtained with CAM-B3LYP∗ are on average 0.33 eV higher than those obtained
with CAM-B3LYP, independent of the basis set employed. The oscillator strengths of

CAM-B3LYP and CAM-B3LYP∗ on average differ by 0.019 and 0.018 for an aug-cc-pVDZ
and aug-cc-pVTZ basis set, respectively. In comparison to an experimental reference

value of the excitation energy for pNA of 3.26 eV[359, 360], the excitation energies ob-

tained with CAM-B3LYP deviate less than those obtained with CAM-B3LYP∗ so that in
the following calculations, the CAM-B3LYP XC functional is used further. Independent

of the XC functional employed in the reference calculations, the strongest transition

can be identified as the 𝜋 → 𝜋∗ (HOMO→LUMO) transition expected from literature

(Fig. 4.2.5).[76, 361]

Figure 4.2.5.: Orbitals involved in the transition with the highest oscillator strength obtained in a CAM-

B3LYP/aug-cc-pVTZ calculation for snapshot 3. The occupied orbital is presented on the

left (HOMO, 𝜋) and the target orbital on the right (LUMO, 𝜋∗).
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Figure 4.2.6.: S-shifts and individual polarization model contributions for pNA in a 3 Å water environment
(a) and b)) and a 4 Å water environment (c) and d)) for different snapshots and the average

values over all snapshots obtained with an aug-cc-pVDZ (a) and c)) and aug-cc-pVTZ basis

set (b) and d)). Reprinted with permission from Jansen, M.; Reinholdt, P.; Hedegård, E. D.;

König, C. J. Phys. Chem. A 2023, 127, 5689–5703. Copyright 2023 American Chemical

Society.

73



4. Dissection of Interaction Contributions for Local Optical Properties

The excitation energies of pNA for the seven snapshots were calculated for a 3 and 4 Å

environment for the PE and FDE scheme with an aug-cc-pVDZ and aug-cc-pVTZ basis

set for all polarization models. The resulting shifts are presented as S-shifts according
to Fig. 4.2.4 in Fig. 4.2.6 a)–d) and Chapter A.2.2.1. Since the S-shifts for FDE and PE
are very similar for ΔNOPOL and ΔGSPOL for all environment and basis set sizes, some
general observations can be made. ΔNOPOL makes up the highest contribution of ΔREF
of the full S-shift for all environment sizes and basis sets used, although the absolute
values of the individual snapshots vary greatly. ΔΔGSPOL and ΔΔDPOL are significantly
smaller, i.e. on average below 10% and 5% of ΔREF, respectively, for both, PE and FDE.
Comparing ΔNOPOL to ΔREF, the overall shift is underestimated with this polarization

model. In a 3 Å environment calculation with an aug-cc-pVDZ basis set, extending to

a ΔGSPOL model still underestimates the total shift and ΔDPOL is necessary in order to
achieve good agreement with ΔREF (especially for snapshot 7). Increasing the basis
set or the environment size, ΔNOPOL still underestimates the S-shift, but the inclusion
of ΔGSPOL recovers most polarization from ΔREF. ΔDPOL in many cases leads to a slight
overestimation of the S-shift, see e.g. snapshots 2, 3, 4 and 6 in Fig. 4.2.6 d), however,
for individual snapshots such as snapshot 7 it still shows to be indispensable for good

agreement with ΔREF. It should also be noted, that the ΔDPOL overshooting effect is
smaller than the effect expected from using B3LYP for the environmental fragments in

the embedding potential calculations, in contrast to full CAM-B3LYP calculations for the

supermolecular reference.

Focussing on the increase of the environment, a small difference between the embed-

ding schemes is observed. ΔΔGSPOL becomes bigger for the PE scheme (on average from
7% to 9%), while for the FDE scheme it remains at 7% on average for the aug-cc-pVTZ

basis set. It can also be seen, that the ΔΔGSPOL contribution is strongly dependent on the
individual snapshot, for PE and FDE ranging between 3% and 11% in a 3 Å environment

and between 4% and 9% in the 4 Å environment (all were obtained with an aug-cc-pVTZ

basis set). However, all these changes are below a threshold of −0.1 eV. Specifically
snapshot 7 is very distinct here due to its overall low S-shift confirming the overall
strong snapshot dependence of the pNA calculation.

Due to the low computational effort of the PE scheme, bigger environment sizes of 5

and 12 Å were examined, however, without the possibility to compare to a supermolecular

reference calculation. The results are shown in Fig. 4.2.7 (see Chapter A.2.2.1 for results

obtained with an aug-cc-pVDZ basis set). In the discussion of these results, the individual

relative contributions will be compared to the ΔDPOL shift.
Generally, ΔDPOL increases in the extension of the environment, where the increase of

ΔΔNOPOL and ΔΔGSPOL on average is systematic with the system size, but for ΔΔDPOL it
shows a small decrease changing from a 4 Å to a 5 Å environment and an increase from

a 5 Å to a 12 Å environment. The contribution of ΔΔGSPOL in some cases considerably
exceeds the average contribution. This specifically holds for snapshots, that show an

overall small S-shift, such as snapshots 5 or 7. For instance, for snapshot 5 in a 12 Å
environment, ΔNOPOL decreases to 55% of ΔDPOL (average: 81%), while ΔΔGSPOL takes
37% of ΔDPOL (average: 13%) and ΔΔDPOL takes 8% of ΔDPOL (average: 6%).
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Figure 4.2.7.: S-shifts and individual polarization model contributions of the PE scheme for pNA in
different environment sizes for different snapshots and the average values over all snap-

shots obtained with an aug-cc-pVTZ basis set. Reprinted with permission from Jansen,

M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.
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On the one hand, these effects once more confirm the snapshot-dependence of the

calculations, on the other hand, it is in line with other studies having shown that

environments of up to 10–15 Å can contribute to polarization effects.[18, 19, 362] Thus,

an increase in the S-shift with the environment size, specifically the ΔΔGSPOL can be
expected.

Another study with a PE scheme[77] and a high number of snapshots has shown

higher individual contributions of ΔΔGSPOL and ΔΔDPOL for a 12 Å environment, however,
this could also confirm the high snapshot-dependence, that is found in this study. In

comparison to an EOM-CCSD/EFP study, the relative contributions are in good agreement

with the results of this study and also showed an increase of ΔΔDPOL when increasing
the environment size, despite their use of microsolvation (2–6 water molecules in the

environment).[76] Finally, Daday et al.[65] employed an state-specific embedding potential

ansatz for the FDE scheme, yielding a description of ΔΔDPOL that yields similar ranges
to those achieved in this study with the PE scheme.

Subsequently to examining the S-shifts of excitation energies, in the following the
change of oscillator strengths, i.e. the F -shifts, are presented (Fig. 4.2.8, see Chap-
ter A.2.2.2 for aug-cc-pVDZ results showing similar trends) and discussed. Additionally,
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Figure 4.2.8.: F -shifts and individual polarization model contributions for pNA for different snapshots
and the average values over all snapshots obtained with an aug-cc-pVTZ basis set in a

a) 3 Å and b) 4 Å environment. From left to right every bar shows the results for a PE,

PE-EEF and FDE scheme for every snapshot. Reprinted with permission from Jansen,

M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

to a PE scheme, a PE-EEF scheme was introduced for the calculation of F -shifts (see
Section 4.1.3), since the introduction of an EEF influences the magnitude of the field,

and thus, the oscillator strengths, which is in contrast to excitation energies, that remain

unchanged in this treatment.

Compared to the results for S-shifts, the F -shifts show a higher sensitivity to differ-
ent snapshots as well as environmental effects. Specifically, the inclusion of higher
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4.2. Numerical Comparison of Quantum-Derived Embedding Schemes

models than NOPOL causes the change of sign in some snapshots and yield much higher

contributions than for the S-shifts, showing better agreement with ΔREF than ΔNOPOL.
The influence of ΔΔDPOL (and ΔΔEEF effects) is showing a much greater impact than for
the S-shifts. It can be seen, that the values for PE and FDE for ΔNOPOL and ΔGSPOL on
average are in very good agreement with each other for all environment sizes. While

ΔΔNOPOL was the highest contribution in every case for the S-shifts, here, this is often
the case and also holds for the average values, however, for individual snapshots, even

greater variations occur. Especially for ΔNOPOL, slightly higher differences between PE
and FDE can be found. For instance, snapshot 6 shows absolute values for ΔΔNOPOL of
-0.051 and -0.037 for FDE and PE, respectively, in a 3 Å environment (-0.025 for FDE

and -0.014 for PE in a 4 Å environment). For ΔΔGSPOL, the values are once more in
good agreement at 0.031 for FDE and 0.029 for PE for this snapshot. In comparison to

the reference, the ΔGSPOL values excellently reproduce ΔREF. ΔΔDPOL is showing high
contributions of 0.022 and 0.034 for a 3 and 4 Å environment for PE. The addition of

ΔΔDPOL or ΔΔEEF, do in fact improve the F -shift in the correct direction but ΔDPOL often
shows an overestimation of this effect. It should, however, be noted that ΔΔEEF slightly
decreases this overshoot of ΔΔDPOL. Additionally, this snapshot is an example for an
opposing sign of the ΔNOPOL and ΔΔGSPOL contributions, which occurs in four of the
snapshots for a 3 Å environment and three snapshots for a 4 Å environment.

Generally, it can be stated, that ΔΔGSPOL strongly improves agreement with ΔREF
but in most cases underestimates the F -shift. As observed for snapshot 6, ΔΔDPOL
corrects in the correct direction in all but one case (snapshot 5) and ΔΔEEF decreases
the overestimation occurring in three cases for the 3 Å environment and as many as

six cases and the average value for the 4 Å environment. On average the F -shift shows
better agreement with ΔREF for Δ(DPOL+EEF) than for ΔGSPOL and specifically for the 4 Å
environment ΔDPOL yields results deviating more from ΔREF than the ΔGSPOL results.
Here, the use of an EEF is indispensable, when introducing the DPOL model.

Overall, deviations between the two embedding models remain small, suggesting

that QM effects do not contribute strongly for this system. For the calculation of S-
shifts mutual polarization yielded with the GSPOL model is often sufficient in order to

reproduce the results for the supermolecular reference calculation for both models.

The DPOL model did not obtain significantly better results for the S-shifts, but showed
a higher impact on the F -shift. In contrast to the other models, it also did not show
systematic increase with the system size. Additionally, the use of an EEF can decrease

the overestimation of the DPOL model’s F -shifts in comparison to reference (specifically
in a bigger environment) and – similarly to results for the GSPOL model – yield F -shifts
that are in excellent agreement with the reference values.

4.2.2.2. Pentameric Formyl Thiophene Acetic Acid

Having performed a numerical comparison for pNA, the highly anionic system pFTAA

[Fig. 4.2.1 b) and c)] was the next target system examined in this study. The quadruple

negative charge in combination with sodium ions occurring in the 3 Å environment of

four of the eight snapshots from MD simulations make this system more challenging for
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4. Dissection of Interaction Contributions for Local Optical Properties

QM/MM schemes such as PE due to their lack of repulsive terms in the environment. For

FDE partial repulsion is expected to be recovered in the non-additive potential terms.

For snapshot 1 [Fig. 4.2.1 b)], that does not show any sodium ions in close vicinity of

pFTAA, the results and the orbitals involved in the transitions are presented in Table A.27

and Figs. A.5 and A.6. In all cases, one very strong 𝜋 → 𝜋∗ transition is found, that is in
line with literature.[359, 360] The excitation energy deviates by 0.03 eV at most from the

reference value for all embedding schemes and models. The oscillator strengths show

an increase for both embedding schemes when introducing higher polarization models.

Examining snapshot 2 [Fig. 4.2.1 c)], where two sodium ions are present at an average

distance of 2.3 Å to two of the carboxyl groups of pFTAA, problems occur. The results

for this snapshot are exemplary presented in Table 4.2.1 and Fig. 4.2.9. The full data

can be found in Figs. A.7 to A.9 and Table A.28. For FDE, especially the strongest

transition is calculated correctly and as the first transition. There is some ESO effects

occurring in the FDE GSPOL model, and the third strong transition (4.03 eV), which

can be explained by lack of accuracy in the treatment of non-additive effects of the

environment. However, the strongest transition, that is the centre of this discussion is

not affected by this effect. For the PE model and specifically the NOPOL model, strong

ESO effects occur, slightly decreasing for the higher polarization models. In conclusion,

the first strong transition is calculated in the 10th or higher response vector. For the

NOPOL model, the oscillator strength is also significantly lower than it would be expected

from the reference calculation and shows a lower excitation energy. For the GSPOL and

DPOLmodels, the excitation energy for the strongest transition is in good agreement with

the strongest transition from reference calculations. The oscillator strengths improve

as well, however, overestimate in comparison to reference and the FDE results. Also for

other strong transitions ESO effects occur. The involved orbitals are shown in Fig. 4.2.9,

presenting the characteristic accumulation on one of the carboxylic groups of pFTAA,

that is in close vicinity to a sodium ion in the excitation on the example of the NOPOL

model.

To alleviate the ESO effects for PE, atomic pseudopotentials are employed for the

ions in the environment of pFTAA in order to introduce repulsion and obtain feasible

results.[354] The results for the PE scheme including the potentials are presented in

Table 4.2.2 for the excitation energies and S-shifts and in Table 4.2.4 for the oscillator
strengths and F -shifts. Since the computational effort for the PE scheme is lower in this
implementation, additional snapshots could be examined (Tables 4.2.1, 4.2.3 and 4.2.5).

As can be seen in the overview for PE in Table A.29 and Fig. A.10, for snapshot 2 all

strong transitions obtained by the inclusion of pseudopotentials lead to improved excita-

tion energies compared to the reference calculation as well as meaningful transitions

(𝜋 → 𝜋∗) for every model. Accordingly, the oscillator strength improved, specifically for
the NOPOL model, but also for the GSPOL and DPOL model, where the values are in better

agreement with the values obtained with the FDE scheme and reference calculation.

Comparing the PE and FDE scheme for the common snapshots 1 and 2 in Table 4.2.2,

the differences between the models are small. For the ΔNOPOL, a deviation of 0.01 eV
and 0.03 eV is observed for snapshots 1 and 2, respectively. The values for ΔΔGSPOL
coincide for snapshot 1 and for the two embedding schemes deviate by 0.03 eV for
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Table 4.2.1.: Orbitals involved in the strongest transitions of snapshot 2 of pFTAA for the PE NOPOL

scheme with and without atomic pseudopotentials (PP) for sodium ions in the environment

and the supermolecular reference calculation. Numbers in brackets denote the calculated

contributions of involved orbitals in a transition if more than one strong contribution

occurred. Orbitals affected by an ESO are denoted ESO.

Model Transition Excitation energy / eV Oscillator strength Orbitals

PE NOPOL

12 3.02 0.3080 𝜋 →ESO

15 3.22 0.4151

𝜋→𝜋∗ (0.39)
𝜋→ESO (0.32)
𝜋→ESO (0.30)

16 3.24 0.6427 𝜋→𝜋∗
20 3.72 0.2196 𝜋→𝜋∗

PE NOPOL + PP

1 3.18 1.3077 𝜋→𝜋∗
2 3.59 0.1480 𝜋→𝜋∗
3 3.90 0.1999 𝜋→𝜋∗

Reference

1 3.20 1.1573

2 3.27 0.1764

3 3.66 0.1564

5 4.01 0.1831

PE NOPOL:

(12)

𝜋→ESO

PE NOPOL:

(15)

𝜋→𝜋∗ (0.39)

𝜋→ESO (0.32)

Figure 4.2.9.: Orbitals involved in the strongest transition of pFTAA in the PE NOPOL model for snapshot

2. Numbers in brackets after the model denote the calculated transition shown. Numbers

in brackets after the orbital-type transition denote the contribution of the orbitals to the

calculated transition.
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snapshot 2. In total, ΔGSPOL is the same for both embedding schemes and deviates by
0.03 eV for snapshot 1 and by 0.04 eV for snapshot 2. The introduction of the ΔΔDPOL
contribution in the PE scheme, that shows an opposing sign to ΔΔGSPOL, gives an even
better agreement with ΔREF (deviation of 0.01 eV) in comparison to the already excellent
agreement for ΔGSPOL.
For the additional snapshots examined with the PE scheme (Table 4.2.3) the introduc-

tion of pseudopotentials alleviated occurring ESO effects and gave meaningful results

independent of the number of sodium ions (one or two) in the close vicinity to pFTAA. On

average ΔNOPOL is the smallest contribution to the S-shift, followed by ΔΔDPOL and the
highest contribution, ΔΔGSPOL. It should be noted, that on average the ΔDPOL contribu-
tion has an opposing sign to the other contributions. For individual snapshots, there is a

great variation in contrast to the observed trends. For instance, the ΔNOPOL contribution
ranges between -0.14 eV and 0.16 eV, ΔΔGSPOL ranges between 0 eV and 0.17 eV and
ΔΔDPOL ranges between -0.08 eV and 0.02 eV.

Table 4.2.2.: Contributions from the different models to the total S-shift in eV for different configurations
of pFTAA in a 3 Å environment of water obtained from an MD simulation and subsequently

calculated in a PE and FDE framework and different orders of polarization contributions.

All snapshots containing (two) sodium ions in close proximity are marked with ∗∗ and

incorporate pseudopotentials in the PE calculations. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–

5703. Copyright 2023 American Chemical Society.

S FDE PE ΔREFΔNOPOL ΔΔGSPOL ΔGSPOL ΔNOPOL ΔΔGSPOL ΔΔDPOL ΔGSPOL ΔDPOL
Snaps. 1 0.15 0.01 0.17 0.16 0.01 -0.03 0.17 0.14 0.14

Snaps. 2∗∗ 0.04 0.02 0.07 0.01 0.05 -0.08 0.07 0.04 0.03

The obtained F -shifts for pFTAA comparing the FDE and PE scheme, shown in Ta-
ble 4.2.4, show once more very similar results for ΔNOPOL and ΔΔGSPOL (deviation 0.026
or lower for both models). In comparison to ΔREF, FDE ΔGSPOL shows a deviation of
0.04 and 0.19 for snapshots 1 and 2, respectively, whereas PE ΔGSPOL shows a deviation
of 0.01 and 0.17. The inclusion of ΔΔDPOL in the PE scheme corrects the S-shift in
the correct direction but overestimates the effect, worsening the agreement with ΔREF.
ΔΔEEF improves the ΔDPOL result but gives worse agreement with ΔREF than the value
for ΔGSPOL.
Extending the PE calculations to more snapshots, the average results show similar

contributions of the same sign for ΔΔGSPOL and ΔΔDPOL. The average ΔΔEEF contribu-
tion shows an almost coinciding value with these models but is of opposing sign. The

deviation of the reference on average is 0.073 for ΔGSPOL, worsens for ΔDPOL to 0.136
and gives the best results for Δ(DPOL+EEF) with a deviation of 0.071. Individual snapshots
show a higher variation of ΔNOPOL values (−0.125 to 0.497), than for ΔΔGSPOL (0.0 to
0.150), ΔDPOL (0.034 to 0.084) and ΔΔEEF (−0.029 to −0.094). The general trend of
ΔΔDPOL worsening the results in comparison to ΔREF and ΔΔEEF improving them can
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Table 4.2.3.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pFTAA in aug-cc-pVDZ quality and a 3 Å

water environment obtained with a PE embedding model (and optional EEF). All snapshots

containing one or two sodium ions in close proximity are marked with ∗ and ∗∗, respectively,

and incorporate pseudopotentials in the PE calculations. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL REF ΔREF
Snaps. 1 2.92 3.08 0.16 3.09 0.01 3.06 -0.03 0.17 0.14 3.05 0.14

Snaps. 2∗∗ 3.17 3.18 0.01 3.24 0.05 3.16 -0.08 0.07 -0.02 3.20 0.03

Snaps. 3∗ 2.78 2.68 -0.09 2.85 0.17 2.82 -0.03 0.07 0.04 2.64 -0.13

Snaps. 4∗ 2.98 2.90 -0.08 2.97 0.07 2.95 -0.02 -0.01 -0.04 2.90 -0.09

Snaps. 5 3.20 3.31 0.11 3.32 0.02 3.29 -0.04 0.13 0.09 3.28 0.08

Snaps. 6 3.36 3.46 0.10 3.46 0.00 3.43 -0.03 0.10 0.07 3.42 0.06

Snaps. 7 2.74 2.80 0.06 2.83 0.03 2.79 -0.04 0.09 0.05 2.80 0.06

Snaps. 8∗∗ 3.05 2.91 -0.14 2.95 0.03 2.91 -0.03 -0.10 -0.14 2.95 -0.10

∅ 3.02 3.04 0.02 3.09 0.05 3.05 -0.04 0.07 0.03 3.03 0.01

Table 4.2.4.: Contributions from the different models to the total F -shifts for different configurations of
pFTAA in a 3 Å environment of water obtained from an MD simulation and subsequently

calculated in a PE and FDE framework and different orders of polarization contributions

obtained with an aug-cc-pVDZ basis set. All snapshots containing (two) sodium ions in

close proximity are marked with ∗∗ and incorporate pseudopotentials in the PE calculations.

Reprinted with permission from Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys.

Chem. A 2023, 127, 5689–5703. Copyright 2023 American Chemical Society.

F FDE PE ΔREFΔNOPOL ΔΔGSPOL ΔGSPOL ΔNOPOL ΔΔGSPOL ΔΔDPOL ΔΔEEF ΔGSPOL ΔDPOL Δ(DPOL+EEF)
Snaps. 1 0.294 0.053 0.348 0.320 0.060 0.063 -0.029 0.380 0.443 0.414 0.388

Snaps. 2∗∗ 0.140 0.044 0.183 0.143 0.024 0.052 -0.076 0.167 0.219 0.143 -0.007
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Table 4.2.5.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pFTAA in aug-cc-pVDZ quality in a 3 Å

water environment obtained with a PE embedding model (and optional effective external

potential (EEF)). All snapshots containing one or two sodium ions in close proximity are

marked with ∗ and ∗∗, respectively, and incorporate pseudopotentials in the PE calculations.

Reprinted with permission from Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys.

Chem. A 2023, 127, 5689–5703. Copyright 2023 American Chemical Society..

ΔfL VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL DPOL+EEF ΔΔ EEF ΔGSPOL ΔDPOL ΔDPOL+EEF REF ΔREF
Snaps. 1 0.900 1.221 0.320 1.280 0.060 1.343 0.063 1.314 -0.029 0.380 0.443 0.414 1.288 0.388

Snaps. 2∗∗ 1.165 1.308 0.143 1.332 0.024 1.384 0.052 1.308 -0.076 0.167 0.219 0.143 1.157 -0.007

Snaps. 3∗ 1.150 1.076 -0.074 1.226 0.150 1.284 0.058 1.212 -0.072 0.076 0.134 0.0617 1.086 -0.064

Snaps. 4∗ 1.214 1.089 -0.125 1.197 0.108 1.274 0.078 1.214 -0.060 -0.017 0.061 -0.0001 1.065 -0.148

Snaps. 5 1.242 1.439 0.197 1.472 0.034 1.556 0.084 1.518 -0.038 0.231 0.315 0.276 1.504 0.263

Snaps. 6 0.802 1.299 0.497 1.350 0.000 1.422 0.071 1.348 -0.074 0.548 0.620 0.546 1.274 0.472

Snaps. 7 1.094 1.282 0.188 1.358 0.077 1.420 0.061 1.352 -0.068 0.265 0.326 0.258 1.340 0.246

Snaps. 8∗∗ 1.359 1.470 0.111 1.500 0.030 1.534 0.034 1.440 -0.094 0.141 0.175 0.081 1.416 0.057

∅ 1.116 1.273 0.157 1.339 0.060 1.402 0.063 1.338 -0.064 0.224 0.287 0.222 1.266 0.151

also be observed for the individual snapshots.

In conclusion, both embedding models were able to well reproduce the reference values.

For this, ESO effects could be efficiently circumvented by the use of atomic pseudopoten-

tials. A snapshot dependence could be shown specifically for the NOPOL model for both S
and F -shifts. For pFTAA, ΔGSPOL generally gives a good description of the S-shifts and
F -shifts in both embedding schemes. For the F -shifts in the case of using a PE DPOL

model, the introduction of EEF effects is strongly recommended, since these improved

the results in every examined case.

4.3. Summary

Overall, a common theoretical framework for FDE and PE was derived, successfully

showing the commonalities and disparities of these embedding schemes on a theoretical

basis targeting the same effects from two different philosophies. On the one hand,

PE, a QM/MM scheme, accounts for environmental effects by an embedding potential

obtained from a classical multipole expansion and anisotropic dipole polarizabilities on

environmental sites. Dynamical response effects are partially accounted for by introduc-

ing multipoles and polarizabilities via the embedding potential into the linear-response

framework. On the other hand, the original FDE formulation is based on real-space

electron densities, which allows the approximate description of QM effects due to the

QM/QM ansatz for constructing the embedding potential. In the response calculations,

these QM terms also contribute, but no dynamical response of the environment in the

excitation is accounted for in the uncoupled treatment. Therefore, the performance

strongly depends on the occurrence of ESO effects and dynamical-response effects.

Comparing the embedding schemes on a numerical basis, the previously presented

theoretical framework had to be implemented to enable a fair comparison. For this,

the FDE scheme was implemented in a similar fashion to the available Dalton-based
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implementation for PE extending the comparability in contrast to previous studies. On

this fundament, the presented theoretical polarization models could be directly applied

and dissected in the computational setup, and thus, in the following be employed in the

numerical comparison for the two examined target cases: pNA and pFTAA in an explicit

water environment.

In the comparison of S- and F -shifts (solvation shifts of the excitation energy and
oscillator strength, respectively), the polarization models of the embedding schemes

could be analyzed in detail: electrostatic, ground-state polarization, differential polar-

ization as well as QM effects and EEF effects. An overall similar performance of PE and

FDE schemes was found for the electrostatic and ground-state polarization models, the

two main ingredients for reproducing polarization effects of a supermolecular calcula-

tion. For the S-shifts the results including these models were sufficient to obtain good
agreement with reference calculations for both systems, pNA and pFTAA. Differential

polarization effects did not show a great contribution to the reproduction of the S-shift.
In the systematic analysis of F -shifts, a novel dissection of polarization effects, the

impact of differential polarization is higher than for S-shifts. Although not showing a
big influence on the average results for pNA, a high dependence on individual snapshots

was observed, that showed a partially sizeable influence of the differential polarization

effects. In these cases, the introduction of EEF effects decreased the deviation from

reference values. While the S-shifts overall support the findings for pNA, for the F -
shifts good results could be obtained with ground-state polarization and with differential

polarization, however, EEF effects showed to be indispensable for the reproduction of

the polarization effects obtained in reference calculations.

For pFTAA it could further be shown, that in this highly-anionic system with sodium

ions in close vicinity, ESO effects strongly impacted the PE results. These effects could

greatly be alleviated by the use of atomic pseudopotentials placed on the sodium ions

in the environment in order to account for the lack of repulsion effects in the classical

embedding potential (obtained via QM calculations). Since for the FDE results in some

transitions electronic-spill-out effects could be observed (but did not influence the results

discussed here), this suggests pFTAA to be a more challenging test case for embedding

schemes in general, aside from computational demands due to the sheer system size.

Altogether, extending previous studies, a thorough investigation of dissected polariza-

tion effects could be performed for a common theoretical and computational framework

for both a neutral molecule exhibiting a charge-transfer effect under solvation as well

as a LCO that proved to be highly challenging due to its size, high anionic charge

and cations in close vicinity. This study confirms the necessity of employing atomic

pseudopotentials in order to circumvent ESO effects in order to obtain feasible results

for the PE scheme. On this basis, the performance of FDE and PE was similar for both

target systems and ground-state polarization effects and well reproducing reference

calculation results. Differential polarization strongly impacting F -shifts in the pFTAA
system only showed good agreement with reference calculations when introducing EEF

effects. It is therefore recommended to either fully neglect differential polarization or

incorporate EEF effects.
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5 Refractive Indices of Zeolitic

Imidazolate Frameworks via

Fragmentation

From this, via the Lorenz–Lorentz equation [Eq. (2.4.30)] the frequency-dependent

refractive index can be calculated. Utilizing this approach, a fragmentation ansatz for

MOFs was proposed by Treger et al. earlier in 2023.[129] Here, the refractive indices

are calculated from the static polarizability on the example of several ZIFs, presenting

in different topologies as well as Zr-based MOFs. In the presented BU approach with

disjoint fragments only, the static polarizability was calculated with CP-SCF suggesting a

MPW1X/def2-QZVP protocol. Refractive indices were then determined with the Lorenz–

Lorentz equation [Eq. (2.4.30)], yielding overall good agreement with data from pDFT

and experimental data[35]. Due to the non-occurrence of resonances in the visible region

(proven by the transparency of MOFs viable for optical applications), they assume

that the refractive index shows little dependence on the frequency and infer, that the

calculated static refractive index can be compared to the experimental data obtained at

a wavelength of 589 nm.[35] Moreover, in the fragmentation, solely monomer terms and

no many-body terms were considered [cf. Eq. (2.4.28)].

In this study, the fragmentation approach by Treger et al. is extended to frequency-

dependent polarizabilities and higher fragmentation orders on the example of ZIFs

which present in a sodalite topology (ZIF-8, ZIF-71, ZIF-90 and ZIF-318, displayed in

Fig. 1.3.2).[96, 102–104] Firstly, a sophisticated study on optimization and calculation pa-

rameters is performed for ZIF-8 and discussed in comparison to experimental data[35, 363]

and data from pDFT[129]. For this, new fragmentation schemes and a computational

protocol for the calculation of the refractive index of ZIFs are established. This in-

cludes calculation parameters and optimization schemes in order to maximize accuracy

and computational efficiency and are discussed in detail in Sections 5.1.2 and 5.1.3.

The established protocol is then transferred to the other ZIFs in Section 5.1.4. Subse-

quently, the influence of guest molecules loaded into the pore of ZIFs is incorporated in

the fragmentation ansatz and computational protocol. The resulting tuning effect on

the refractive index for ZIF-8 and ZIF-71 from these novel approaches is discussed in

comparison to the reference data in Section 5.2.[35, 364]

Parts of the calculations discussed below were performed by students under the su-

pervision of the author of this thesis at the Leibniz University Hannover. This inter alia

refers to the XC functional and basis set benchmark on ZIF-8 in ORCA (Section 5.1.2
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and Appendices B.2.1 and B.2.2 that was performed by Onno Strolka in 2022.‡ Pascal

Czember conducted calculations using ORCA and TURBOMOLE for different XC function-

als and basis sets investigating different optimization and loading schemes for ZIF-8 and

partially for ZIF-71 in 2022 (Sections 5.1.2, 5.1.3 and 5.2.2.1, Appendix B.2.2, Table B.3,

and Figs. B.5, B.6 and B.8).‖ Daniel Bömke performed initial TURBOMOLE calculations

on the unloaded ZIF-90 as well as the unloaded and loaded ZIF-71 in an internship in

2022 (Section 5.2.2.2 and Figs. B.5 and B.6).§ Furthermore, Erona Shabani performed

TURBOMOLE TD-DFT calculations and geometry optimizations with the previously

established fragmentation and calculation schemes as well as new optimization schemes

for ZIF-8, ZIF-71, ZIF-90 and ZIF-318 in 2023 (Sections 5.1.4, 5.2.2.1 and 5.2.2.2).♣ In

order to highlight the detailed students’ contributions in the following chapters, results

that involve their work are marked with their respective footnotes introduced here.

5.1. Refractive Indices for Zeolitic Imidazolate

Frameworks

In the first part of this section, the fragmentation approaches and details on the calcula-

tion of the refractive index from these for empty ZIFs are introduced (Section 5.1.1).

The resulting schemes are then tested on the calculation of polarizability volumes and

refractive indices on the example of ZIF-8 and from this, a computational protocol is

developed (Sections 5.1.2 and 5.1.3). The established protocol is then transferred to the

calculation of refractive indices for other ZIFs with sodalite topology in Section 5.1.4.

All results are discussed and compared to experimental and computational reference

data.[35, 129, 363]

5.1.1. Fragmentation Schemes

As described in Section 2.4.2.1 for the energies, the framework of a MBE can be

transferred to the calculation of the total isotropic polarizability volumes 𝛼′ in by a BU
[cf. Eq. (2.4.28)] or TD formalism, respectively,

𝛼′BU =∑
𝑋

𝛼′𝑋 + ∑
𝑋<𝑌

Δ𝛼 ′
𝑋𝑌 + ∑

𝑋<𝑌<𝑍
Δ𝛼 ′
𝑋𝑌𝑍 + … ,

𝛼′TD =∑
𝑋

𝛼′𝑋 − ∑
𝑋<𝑌

𝛼′𝑋∩𝑌 + ∑
𝑋<𝑌<𝑍

𝛼′𝑋∩𝑌∩𝑍 − … (5.1.1)

‡ Onno Strolka, Leibniz University Hannover, 2022.
‖ Pascal Czember, Leibniz University Hannover, 2022.
§ Daniel Bömke, Leibniz University Hannover, 2022.
♣ Erona Shabani, Leibniz University Hannover, 2023.
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with

Δ𝛼 ′
𝑋𝑌 =𝛼′𝑋𝑌 − (𝛼′𝑋 + 𝛼′𝑌) (5.1.2)

Δ𝛼 ′
𝑋𝑌𝑍 =𝛼′𝑋𝑌𝑍 − (Δ𝛼 ′

𝑋𝑌 + Δ𝛼 ′
𝑋𝑍 + Δ𝛼 ′

𝑌𝑍) − (𝛼′𝑋 + 𝛼′𝑌 + 𝛼′𝑍). (5.1.3)

Here, 𝛼′𝑋𝑌 and 𝛼′𝑋𝑌𝑍 refer to the polarizability volumes calculated from the combined

subsystems 𝑋, 𝑌 and 𝑋, 𝑌 , 𝑍, respectively. In contrast to Eq. (2.4.28), these approaches
include many-body effects. The Lorenz-Lorentz equation [Eq. (2.4.30)] can then be

employed to determine the refractive indices from the total isotropic polarizability. The

latter is obtained from the respective fragmentation scheme, and thus, the individual

isotropic fragment polarizabilities. In the case of ZIFs, the total isotropic polarizability

volume refers to that of a unit cell. Therefore, the other variable in this equation,

the number density 𝑁, can be recognized as the reciprocal unit cell volume 𝑉−1. The
Lorenz–Lorentz equation is accordingly adapted to,

𝑛 =
√

1 + 2𝛼
′4𝜋
3𝑉

1 − 𝛼 ′4𝜋
3𝑉

. (5.1.4)

The unit cell volume for the different ZIFs can be obtained from single crystal X-ray

diffraction (SC XRD) experiments at low temperatures (Table 5.1.1). This circumvents

any potential temperature-dependent influence on the refractive index and accounts

for the fact that energy-minimized fragments were employed in the calculation.[129] For

some ZIFs, the synthesis is performed by the substitution of linkers from another ZIF. For

ZIF-318 this results in the fact, that not the ideally assumed full substitution is yielded in

the experiment and therefore the volume reported in Table 5.1.1 does not correspond to

the phase-pure ZIF-318 structure.[104, 365] In this study, both, the measured volume for

Table 5.1.1.: Unit cell volume 𝑉 of different ZIFs taken from experimental SC XRD structures at low

temperatures.

ZIF 𝑉 / Å3 Temperature / K Ref.

ZIF-8 4784.9 100 [366]

ZIF-71 4756.8 297.15 [102]

ZIF-90 5152.2 100 [103]

ZIF-318 4981.5 180 [104]

ZIF-318p 5178.1∗ - -

∗ Extrapolated from the volumes of ZIF-8 for full incorporation with MIM and ZIF-318 for half incorpo-

ration with CF3IM.

the partial linker incorporation as well as an extrapolated phase-pure product volume are

employed. The latter is obtained from the two known data points of the phase-pure ZIF-8

volume and the experimental ZIF-318 volume, that is considered to be incorporated half

with 2-trifluoromethyl-imidazolate (CF3IM) linkers. The examined ZIFs are composed of
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different organic linkers, MIM, 4,5-dichloroimidazolate (DCIM), CF3IM and imidazolate-2-

carboxyaldehyde (ICA) (Fig. 1.3.2). However, the fragmentation schemes and results

are formulated with the general representative imidazolate fragment IM, that for the

calculation for a specific ZIF refers to its respective linker.

Three fragmentation approaches are distinguished to ascertain the total polarizability

volume that can be inserted in Eq. (2.4.30), of which the first is the BU approach

reproduced from the formulation by Treger et al.[129]. It involves the heterolytic cutting

of the coordinative metal–linker bonds yielding Zn2+ and the respective anionic IM.

Since the unit cell of ZIFs in a sodalite topology is composed of 12 formula units, each

consisting of one Zn2+ and two IM fragments[96, 97], the unit cell polarizability volume

can be obtained from the fragment’s polarizability volumes as follows[129]

𝛼′BU = 12(𝛼′Zn
2+

+ 2𝛼′IM). (5.1.5)

Inserting the obtained unit cell polarizability volume 𝛼′BU into Eq. (5.1.4), yields the

a) b)

Figure 5.1.1.: Representation of the a) TET und b) DI fragments with green IM linkers and blue tetrahe-

drons representing the coordination of Zn2+ ions.

respective refractive index.

Since this approach does not include any interactions between fragments and the

TD approaches have shown beneficial properties and convergence[92, 93, 234] , while

accounting for interactions in the bigger primary fragments, two novel fragmentation

schemes for ZIFs are proposed that are denoted TD1 and TD2.

In the TD1 fragmentation scheme, a Zn2+ cation with its four tetrahedrally coordinated

IM linkers is chosen as the primary fragment (Fig. 5.1.1 a)). Referring to the sodalite

topology, the metal ions are assigned to nodes and the linkers are located on the edges

of the structural representation (Fig. 1.3.1). These tetrahedral “TET” fragments overlap

by a linker fragment (see Fig. 5.1.2 a)), yielding the following expression for the unit

cell polarizability volume,

𝛼′TD1 = 12(𝛼′TET − 2𝛼′IM), (5.1.6)

as a difference of the TET fragments and their overlapping IM fragments. Since the

monomer energies are automatically included and beyond that partially intact metal–
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linker bonds contribute in this expression, this implies that this approach obtains superior

results compared to the BU approach.

In the TD2 ansatz, this approach is advanced even further by choosing bigger primary

fragments. The “DI” fragment consists of two Zn2+ ions and all their directly coordinated

IM linkers (Fig. 5.1.1 b)). The overlap region, therefore, consists of a full TET fragment

(Fig. 5.1.2 b)), resulting in the total polarizability volume as a difference between the

polarizability volumes of these fragments,

𝛼′TD2 = 12(2𝛼′DI − 3𝛼′TET). (5.1.7)

This approach involves the highest-order interactions and is therefore expected to yield

the best results, however, is also expected to require the highest computational demand

due to the fragments’ size.

a)
b)

Figure 5.1.2.: Representation of the a) TD1 and b) TD2 fragmentation scheme. Tetrahedrons represent

the coordinated Zn2+ ions. Red areas signify overlap regions of two fragments. The

overlap is equal to one a) IM fragment or b) TET fragment.

5.1.2. Method Evaluation

In order to determine refractive indices for ZIFs, at first a computational protocol must

be established. Initially, the polarizability volumes of the different introduced fragments

(see Section 5.1.1) are calculated with different DFT approaches for the polarizability

calculation (CP-SCF/TD-DFT), XC functionals and basis sets (see Section 3.2) on the

example of ZIF-8. The calculations were performed for fragments directly extracted from

the SC XRD structure or from a pDFT PBEsol-optimized structures.[129] Those performing

best were then employed for further calculations of refractive indices comparing with

the results from pDFT and experiment.[35, 129, 363]

5.1.2.1. Exchange–Correlation Functional and Basis Set Evaluation

First calculations of the polarizability volume were performed in ORCA with the CP-

SCF approach for the Zn2+, IM, TET, and DI fragments. These were applied to SC XRD

structures and structures optimized with the PBEsol XC functional in pDFT.[129, 366] In
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the CP-SCF calculations a number of XC functionals (substantiated by previous studies)

and basis sets were employed. For instance, in the study by Afzal et al.[253] BP86, TPSSh,

B3LYP, B2PLYP, and PBE0 were applied for the calculation of polarizabilities, with PBE0

and B3LYP yielding the best results, outperforming the double-hybrid XC functional

B2PLYP. Concluding from the functional benchmark of Hait et al.[367], where static

polarizabilities were calculated in a finite-field approach on small inorganic species,

specifically double-hybrid functionals yielded excellent results. Even though in the past

specifically GGA XC functionals were shown to incorrectly describe the decay of the XC

potential leading to overestimated polarizabilities[368–370], in the study from Hait et al.

they partially gave good results.[367] Furthermore, a larger amount of Fock exchange

can yield more accurate polarizabilities[368–370] so that hybrid functionals and several

metaGGA functionals were found to give good results in this study. Especially range-

separated functionals prove beneficial for polarizability calculations.[358, 368, 371–374]

For these reasons and due to the availability and computational demand in ORCA, the

set of examined XC functionals was chosen as follows: BP86, TPSS, PBE, PBE0, B3LYP,

CAM-B3LYP, B2PLYP, B2GPPLYP, and DSD-PBEPBE-D3BJ. A large variation of basis sets

was employed with Dunning (cc-pV𝑋Z) and Ahlrichs-type basis sets (def2-𝑋(Z)VP) from
double- (𝑋 = D,S) to quintuple-𝜁 (𝑋 = 5) quality. The basis set availability was in some

cases limited by the availability in ORCA. The results of this benchmark for the DI, TET,

and IM fragments are shown in Fig. 5.1.3 and for the Zn2+ fragment in Fig. B.4 in the

appendix. Further results are presented in the appendix in Figs. B.2 and B.3 for TET,

Fig. B.1 for IM and Fig. B.4 for Zn2+. Results for GGA-type functionals (BP86, TPSS, and

PBE) are presented in yellow and red tones, for hybrid functionals (PBE0, B3LYP, and

CAM-B3LYP) are shown in blue tones and double-hybrid functionals (B2PLYP, B2GPPLYP,

and DSD-PBEPBE-D3BJ) are displayed in green tones.

The different XC functionals show the same trends for all basis sets for all fragments,

DI, TET and IM: The GGA functionals seem to overestimate the polarizability as they

show slightly higher values than all other XC functionals. This appears to be coherent

due to the aforementioned lack of accuracy in describing the asymptotic decay of the

XC potential in the GGA XC functionals.[368–370] Hybrid functionals give slightly lower

values with the result from CAM-B3LYP being the lowest for every fragment and on

a similar level as the double-hybrid functionals, specifically the DSD-PBEPBE-D3BJ

functional, which was one of the best-performing functionals in the polarizability study

by Hait et al.[367] This suggests, that CAM-B3LYP performs in a similar quality as the

examined double-hybrid functionals, but with a smaller computational demand. For the

DI fragment, the double-hybrid calculations proved difficult (numerical instabilities), so

that no results could be obtained except for the cc-pVDZ basis set. For the IM and TET

fragments, the results yielded with the double-hybrid functionals showed the lowest

polarizability volumes for this basis set, with the CAM-B3LYP functional value closest to

this. This implies, that CAM-B3LYP is the best-performing hybrid functional, however,

deviations remain small.

‡ Onno Strolka, Leibniz University Hannover, 2022.
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Figure 5.1.3.: Static polarizability volume 𝛼 ′0 calculated with CP-SCF, different XC functionals and differ-
ent basis sets in double-, triple-, quadruple- and quintuple-𝜁 quality for the a) DI b) TET
and c) IM fragment extracted from the experimental ZIF-8 SC XRD structure that was

additionally optimized with PBEsol (model D1).[129, 366] Results for GGA-type functionals

(BP86, TPSS, and PBE) are presented in yellow and red tones, for hybrid functionals

(PBE0, B3LYP and CAM-B3LYP) are shown in blue tones and double-hybrid functionals

(B2PLYP, B2GPPLYP and DSD-PBEPBE-D3BJ) are displayed in green tones.‡
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The results for the IM, TET and DI fragments give overall similar trends for the different

basis sets. For instance, for DI the polarizability volume on average increases by 79.6 𝑎30
and 40.3 𝑎30 for all functionals from a cc-pVDZ to a cc-pV5Z basis set and from a cc-pVTZ
to a cc-pV5Z basis set, respectively. Increasing the basis set size from double- to triple-𝜁
quality, thus, yield a majors step towards convergence. However, the further basis set

extension, gives on average equal increases of the polarizability volume, suggesting

that full convergence is not yet obtained with a cc-pV5Z basis set. Generally, when

increasing the basis set size, the polarizability volume increases, however, not reaching

a convergence in the range investigated. This is somewhat expected since it has been

shown, that for accurate polarizabilities large basis set should be employed.[375–377] It

suggests, that either bigger or different basis sets should be employed in the calculations.

Note that, the employment of different starting structures from SC XRD experiments

as well as pDFT optimizations results in minor differences in the polarizability of around

5% for both the IM and TET fragment (Fig. B.1 for IM and Fig. B.2 for TET, in the appendix).

The difference of the polarizability volumes for the different starting structures shows

overall low fluctuations. The RMSD for all functionals and basis sets lies at 0.27 𝑎30 and
0.69 𝑎30 for the IM and TET fragment, respectively. This implies a low dependence of the

calculation on the different examined structures for all XC functionals.

Additionally, a study with Ahlrichs basis sets (def2-𝑋(Z)VP) was performed for the IM
fragment with results displayed in Fig. 5.1.4 and Table 5.1.2. Further results for Zn2+,

IM and TET are shown in the appendix in Figs. B.1, B.2 and B.4. However, only basis sets

up to quadruple-𝜁 quality were available. For the obtained results similar trends of the
XC functional functionals and basis set increase could be obtained as for the Dunning

basis sets. The Ahlrichs basis sets gave polarizability volumes that were in all cases

higher than those obtained with the respective Dunning basis sets, e.g. with CAM-B3LYP

for triple- and quadruple-𝜁 quality a difference of 5.61 𝑎30 and 6.49 𝑎30, respectively, is
observed. Although yielding higher polarizability volumes, the results obtained with the

Ahlrichs basis sets do not show a convergence in the range up to the quadruple-𝜁 quality.
This indicates, that basis sets with more basis functions are necessary and since the IM,

TET and DI fragments are anionic, the addition of diffuse functions could be beneficial.

For the sake of employing the basis sets with diffuse functions as well as comparing

the CP-SCF to a linear-response framework (yielding frequency-dependent rather than

static polarizabilities), calculations were additionally performed with TURBOMOLE

(see Table 5.1.2). As the hybrid XC functional CAM-B3LYP showed the closest agree-

ment with double-hybrid values, while double-hybrid functionals did show numerical

instabilities for the bigger basis sets and fragments, CAM-B3LYP was chosen for further

calculations.

The polarizability volumes of the TURBOMOLE calculations with a response ansatz

for the IM fragment are presented in Table 5.1.2 in comparison to those obtained with

ORCA and the CP-SCF ansatz for different basis sets. The results for all other fragments

are given in the appendix in Tables B.1 to B.3. It can be seen, that the results for IM

obtained with TURBOMOLE and ORCA coincide in all cases. Differences can be found

in the first or second decimal, which however could in part be caused by numerical

accuracy deficiencies and are considered small deviations. Errors that occurred in the
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Figure 5.1.4.: Static polarizability volume 𝛼 ′0 calculated with CP-SCF, different XC functionals and differ-
ent basis sets in double-, triple-, quadruple-𝜁 quality for the IM fragment extracted from
the experimental ZIF-8 SC XRD structure (model A) .[366]‡

Table 5.1.2.: Static polarizabilities in 𝑎30 calculated with ORCA and TURBOMOLE with CAM-B3LYP and
different basis sets for IM.‡‖

Basis set ORCA TM Basis set ORCA TM

cc-pVDZ 53.78 - def2-SVP 56.16 56.17

cc-pVTZ 61.75 61.75 def2-TZVP 67.36 67.31

cc-pVQZ 66.86 66.86 def2-QZVP 73.35 73.32

cc-pV5Z 71.92 71.92 - - -

aug-cc-pVDZ 77.57 - def2-SVPD 71.97 71.97

aug-cc-pVTZ 78.40 78.36 def2-TZVPD 74.18 74.17

aug-cc-pVQZ 78.74 78.72 def2-QZVPD 76.05 76.04

aug-cc-pV5Z - 78.91 - - -

ORCA calculations with an aug-cc-pV5Z basis set, did not occur in TURBOMOLE with a

response calculation. For the other fragments, likewise minor to no differences can be

found between the majority of the results for TURBOMOLE and ORCA (Appendix B.2.2).

For instance, the average differences between the polarizability volumes obtained with

the different programs are 0 𝑎30, 0.1 𝑎30 and 0.01 𝑎30 and below for the Zn2+, TET and DI

fragments, respectively, with the Dunning basis sets. Slightly higher differences can

only be observed for the Ahlrichs basis sets without diffuse functions.

‡ Onno Strolka, Leibniz University Hannover, 2022.
‖ Pascal Czember, Leibniz University Hannover, 2022.
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Moreover, it becomes evident that the polarizability volume obtained with the biggest

Dunning basis set without diffuse functions (cc-pV5Z) gives as good results as the smallest

Dunning basis set including diffuse functions (aug-cc-pVDZ). In previous studies, slow

basis set convergence for Dunning basis sets and somewhat better convergence when

including diffuse functions has been observed.[378, 379] This can be substantiated by

the fact that augmented basis sets include a much larger number of basis functions.

The aug-cc-pV5Z calculations show only a minor increase of the polarizability volume in

comparison to the result for the aug-cc-pVQZ (an increase of 0.19 𝑎30) suggesting that
either convergence or close to convergence of the polarizability volume is reached. This

implies, that the calculation of polarizability volumes with an aug-cc-pVTZ is sufficient

to obtain results close to convergence. This performance is much better than for the

Ahlrichs basis sets. When increasing the basis set size for the def2-𝑋(Z)VPD basis
sets, the increase of the polarizability volume from double- to triple- and from triple-

to quadruple-𝜁 quality lies at 2.21 𝑎30 and 1.87 𝑎30, respectively. This implies that no
convergence is reached in this range and bigger basis sets would be necessary for the

Ahlrichs basis sets.

Since the IM, TET and DI fragments are anions, better performance of basis sets with

diffuse functions is somewhat expected.[380] This is the case for all fragments examined,

deeming these basis sets to be the most accurate for the calculation of polarizability

volumes. Moreover, in all cases, the augmented Dunning basis sets lead to polarizability

volumes that are equal to or higher than those of cc-pV5Z quality and show values close to

convergence already at triple-𝜁 quality. Therefore, and because of the favourable scaling
for bigger fragments such as DI, in further calculation of the dynamic polarizability an

aug-cc-pVTZ basis set is employed.

In summary, the influence of the XC functional was proven small compared to basis

set effects as long as functionals of hybrid or double-hybrid quality were employed. Ad-

ditionally, the calculation with an aug-cc-pVTZ basis set yielded dynamic polarizabilities

close to convergence. Therefore, the CAM-B3LYP/aug-cc-pVTZ protocol was determined

as the most favourable option for further calculations.

5.1.3. Refractive Indices for ZIF-8

With CAM-B3LYP/aug-cc-pVTZ emerging as the most favourable calculation scheme

for polarizability volumes, the refractive indices for ZIF-8 were calculated for the BU,

TD1 and TD2 fragmentation schemes and on the basis of differently geometry-optimized

structures (Fig. 5.1.5). Ensuing from the geometries taken from the SC XRD experiments,

the following optimization schemes were pursued. For scheme A all fragments for the

polarizability calculations were directly extracted from the experimental structure.

For scheme B the extracted DI fragment was further optimized with either a PBE XC

functional or a B97-3c method and all other fragments extracted from this optimized

geometry for polarizability calculations. In a more extensive optimization (scheme C)

the full 𝛽-cage was extracted from the experimental structure and fully optimized with

B97-3c/def2-mTZVP. Then further fragments were extracted from this geometry for

the polarizability calculation. Scheme D involves the most extensive optimization with
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pDFT and a PBEsol XC functional.[129] The obtained geometries were then either used

for fragment extraction and polarizability calculations (D1) or a further optimization

of an extracted DI with B-97-3c/def2-mTZVP was performed before the polarizability

calculation of the obtained fragments (scheme D2).

SC XRD structure

pDFT opt.

DI

POL

D1

DI

DFT opt.

POL

D2

BC

DFT opt.

DI

POL

C

DI

DFT opt.

POL

B

DI

POL

A

Figure 5.1.5.: Schematic representation of employed geometries and their origin for the calculation

of polarizabilities and refractive indices. The dark blue rectangular box represents the

original starting structure. White rectangular boxes refer to performed optimization

processes, diamond shapes refer to the extraction of substructures and ellipses refer to

polarizability calculations (POL). Optimization models (A, B, C, D1 and D2) are defined in

blue circular nodes.

The results for these schemes in comparison to full pDFT calculations with HSE06[129]

and experimental data[35] are presented in Fig. 5.1.6.

A few general statements can be made for the overall results. Firstly, the BU frag-

mentation scheme does in every case strongly overestimate the refractive index in

comparison to all reference data. For instance, the difference between the refractive

index from the BU ansatz and from the experiment for Fig. 5.1.6 a) (model A) and

Fig. 5.1.6 e) (model D1) on average lies at 0.11 and 0.10, respectively. For model A, for

lower wavelengths the difference between the refractive indices for BU and experiment

is slightly higher (on average 0.13 at 450 nm) than for higher wavelengths (on average

0.09 at 650 nm). For the polarizability volume from the BU approach low differences be-

tween the optimization schemes are consistent with the fact, that for the BU ansatz only

changes in the IM fragment contribute. This is substantiated by the fact that changes to

the structure in the different optimizations are marginal for all optimization models.

The results from the TD1 and TD2 schemes are in all cases closer to the reference

data than for the BU approach, specifically the TD1 results being closest to the HSE06

reference and the TD2 approach being closest to the experimental reference in most
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Figure 5.1.6.: Dispersion of refractive indices 𝑛 calculated with TD-DFT in a CAM-B3LYP/aug-cc-pVTZ
scheme for the fragments extracted from the experimental ZIF-8 SC XRD structure

(model B) for a)–d) and additional optimization with PBEsol (model D1) for e)–f).[129, 366].

Different fragmentation schemes are compared to the experimental and pDFT data.[35, 129]

The refractive indices for TD2 could not be obtained for a) (model A) due to non-real

instabilities in the SCF.‖

‖ Pascal Czember, Leibniz University Hannover, 2022.
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cases [a), c), d) and e)]. It should also be noted that solely the TD1 results give

an incorrect curve progression for small wavelengths for all optimization models. The

reason for this probably originates in a difficult description of the isolated IM fragment.

This also in part explains the overestimation of refractive indices in the BU approach

and the wrong frequency dependence in the TD1 approach. Since the linkers show

resonance structures, a partial multireference character can be found, and in a test

calculation this was estimated to be of low to medium influence. Nevertheless, it can be

speculated to be large enough to overestimate the polarizability specifically for small

wavelengths and therefore change the curve progression in the TD1 approach.

Focussing on the data obtained with the D1 and D2 schemes (pDFT-optimized struc-

tures, Fig. 5.1.6 e)-f)), it can be seen, that major differences occur in the refractive

indices when comparing the results for D1 without further optimization and D2 with

further optimized DI fragments. Leaving out the previously discussed results for the BU

scheme here, the results for the TD1 and TD2 schemes are much closer to reference

data than the BU results. For the TD1 scheme, the refractive indices for the D1 model

are closest to those for the HSE06 reference, which is coherent with both calculations

being obtained from the same optimized structure. For the D2 model higher deviations

of up to 0.02 at 650 nm occur. The refractive indices for the TD2 range between those

for both reference datasets for the D2 model (difference to exp. around -0.02) and

above the experimental reference (difference on average 0.02) for D1. However, the

general curve progression is in good agreement with experiment in both cases for the

TD2 scheme.

For the HSE06 data, a very small deviation in comparison to experiment can be observed

for lower wavelengths showing a slightly steeper decay of the refractive index. Overall

the HSE06 data was expected to underestimate the refractive index[129], however, the

experimental data could possibly also show slight effects of overestimating the refractive

index due to remaining guest molecules in the porous structure, that are not accounted

for in the fragmentation calculations. Nonetheless, the TD2 approach gives the closest

results to experiment for these structures and is expected to be closest to the actual

refractive index.

Fig. 5.1.6 additionally shows the results for the schemes A, B and C. The refractive

indices for the TD1 fragmentation scheme are in all optimizationmodels overall very close

to those obtained with the D1 scheme, showing refractive indices close to the HSE06

reference with differences of up to 0.02 at 650 nm. In contrast, the refractive indices for

the TD2 fragmentation scheme are overall closest to the experimental data implying a

better performance of this scheme for model A, B and C. However, the refractive indices

for TD2 could not be obtained for model A due to non-real instabilities in the SCF even

when extensively tightening convergence criteria and increasing the quadrature grid

size. A further problem analysis is described in Section 5.1.3.1. For model B it is found,

that the optimization with B97-3c gave results closer to the experimental reference

deviating by 0.19 and 0.12 at 650 nm with TD2 for the PBE and B97-3c optimized

structure, respectively. This implies that the optimization with B97-3c leads to refractive

indices in better agreement with experiment for the TD2 fragmentation scheme. This

is substantiated by the results for model C with a TD2 fragmentation scheme, that
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are in excellent agreement with the experimental reference with a slight deviation to

experiment of 0.003 at both 450 and 650 nm.

Overall the refractive indices for TD2 are closer to the experimental reference in the

A, B and C optimization schemes and for all wavelengths. In further calculations, mainly

the B(B97-3c) and C optimization schemes are suggested in order to obtain the best

agreement with the experimental reference. Moreover, the TD2 fragmentation involving

the highest-order of interaction terms is recommended as long as a stable SCF minimum

can be obtained. This also accounts for the fact that the individual IM fragment is not

part of this scheme, avoiding the observed overestimation of the polarizability volume

for small wavelengths.

5.1.3.1. Electrostatic Embedding

In the calculation of the DI fragment, SCF instabilities occurred and several approaches,

tightening the convergence criteria to find a true minimum, were performed unsuc-

cessfully. Therefore, electrostatic embedding (cf. Section 2.4 and Chapter 4) of the

full structure was considered via a continuum solvation model, since electrostati-

cally embedded fragmentation approaches have been employed successfully in the

past.[82, 228, 236, 381–384] Therefore, the Clausius–Mossotti equation relating the dielec-

tric permittivity to the polarizability,

𝜀𝑟 − 1
𝜀𝑟 + 2

= 𝑁𝛼
3𝜀0

, (5.1.8)

was employed. In order to determine an average permittivity for the ZIF surrounding

the fragment, it was solved for 𝜀𝑟 making use of the reciprocal unit cell volume for the
number density and the definition for the polarizability volume, giving

𝜀𝑟 =
8𝛼 ′𝜋
3𝑉 + 1

1 − 4𝛼 ′𝜋
3𝑉

. (5.1.9)

The polarizability volume was then taken from the polarizability calculation of the TD1

approach for the samemodel (A, see Fig. 5.1.6) yielding value of 𝜀𝑟 = 2.263 𝑒2/𝑎0𝐸h when av-
eraged over all wavelengths, while the values for the highest and lowest wavelength only

deviated by 0.02 𝑒2/𝑎0𝐸h. The calculations for all fragments were then repeated embedded
in the continuum with the obtained average permittivity. In the subsequent TD-DFT

calculation, no embedding was employed for the orbitals in the perturbation.[385, 386]

Unfortunately, stable SCF results were obtained for all fragments except DI, therefore

no results for the TD2 scheme are displayed in Fig. 5.1.7. The results in comparison to

those obtained without electrostatic embedding are displayed in Fig. 5.1.7. Modified

fragmentation schemes employing embedded fragments are denoted with the prefix

“m”, i.e. mBU and mTD1.

Although not obtaining results for TD2, the stabilization of the fragments in the con-

tinuum leads to the improvement of the curve progression at small wavelengths for both
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Figure 5.1.7.: Dispersion of refractive indices 𝑛 calculated with TD-DFT in a CAM-B3LYP/aug-cc-pVTZ
scheme for the fragments extracted from the experimental ZIF-8 SC XRD structure (model

A).[366] Results for model A are obtained a) without and b) with electrostatic embedding

for Zn2+, IM and TET with a relative permittivity continuum with 𝜀𝑟 = 2.263 𝑒2/𝑎0𝐸h. The
refractive indices for TD2 could not be obtained due to non-real instabilities in the SCF

for a) and b).
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BU and TD1. For BU a strong decrease of the refractive indices due to the polarizability

volume decrease for the IM fragment are the consequence, leading to polarizability

volume differences of 10.3 𝑎30 and 5.26 𝑎30 at 450 nm and 650 nm, respectively. For the

TET fragment the difference is 10.2 𝑎30 and 7.4 𝑎30 at 450 nm and 650 nm. The curve for the
mTD1 approach did show a shift to lower refractive indices. These results substantiate

the conclusion drawn before deeming the electronic structure description of the IM

fragment in vacuum partially insufficient. In the following calculations, the results for

embedded Zn2+, IM and TET fragments are therefore additionally evaluated.

5.1.4. Refractive Indices for Sodalite-Type Zeolitic Imidazolate

Frameworks

In this section, the refractive indices for ZIF-8, ZIF-90, ZIF318p and ZIF71 are com-

pared to reference data.[35, 129, 363, 364] ZIF-318 presents phase-pure in the thin film

experiments. Therefore, the refractive indices for ZIF-318 are calculated with the extrap-

olated phase-pure volume and phase-pure linkers, denoted ZIF-318p. All fragmentation

schemes were calculated for the optimization models A, B and C. Since models B and C

previously performed best, the results are presented in this section. For model B Zn2+,

IM and TET fragments solvated in a continuum were employed (Fig. 5.1.8). Results ob-

tained for model C and embedded Zn2+, IM and TET fragments are displayed in Fig. 5.1.9.

Additional results for model A and B are presented in the appendix in Figs. B.5 and B.6.

Focussing on the comparison of the refractive indices of ZIFs obtained with model

B and the Zn2+, IM and TET fragments solvated in a continuum with the permittiv-

ity calculated from the TD1 results, the obtained refractive indices are displayed in

Fig. 5.1.8.

Comparing the refractive indices for the embedded fragments (Fig. 5.1.8) and unem-

bedded fragments (Fig. B.6 in the appendix), the results strongly improved for all ZIFs

with the BU ansatz in comparison to reference data. However, overall the BU approach

gives results strongly deviating from the reference data in all cases. The results for TD1

for all ZIFs are shifted towards higher refractive indices when solvating the fragments,

decreasing the deviation to the curves for the TD2 scheme.

For ZIF-8 (Fig. 5.1.8 a)), the results for a TD1 fragmentation scheme are in good

agreement to those obtained without further optimization. The curve progression is

improving for TD1, however, in worse agreement than for the TD2 scheme.

For ZIF-90 (Fig. 5.1.8 b)), the refractive indices for a TD1 scheme are underestimated

with a difference to experiment of 0.02 and 0.01 at 450 nm and 650 nm, respectively. The

results are, however, improved in contrast to the calculations for unembedded fragments.

The curve progression is less steep than for the experiment at small wavelengths. The

pDFT reference for ZIF-90 is coinciding with reference data for the higher wavelengths,

however, it shows an even steeper curve progression than the TD1 results for small

wavelengths. For 450 nm the difference to experiment is 0.03, for 650 nm it is 8 ⋅
10−5. In contrast, the results of TD2 for ZIF-90 show good agreement of the curve

progression with experiment, but overestimate the refractive index by 0.02 on average.
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Figure 5.1.8.: Dispersion of refractive indices 𝑛 calculated with TD-DFT in a CAM-B3LYP/aug-cc-pVTZ
scheme for the fragments extracted from the experimental ZIF-8 SC XRD structure and

optimized with B97-3c/def2-mTZVP (model B).[366] Results are obtained for a) ZIF-8,

b) ZIF-90, c) ZIF-318 with an extrapolated volume and d) ZIF-71. Zn2+, IM and TET

fragments were electrostatically embedded in a relative permittivity continuum with a)

𝜀𝑟 = 2.263 𝑒2/𝑎0𝐸h, b) 𝜀𝑟 = 1.825 𝑒2/𝑎0𝐸h, c) 𝜀𝑟 = 1.787 𝑒2/𝑎0𝐸h, d) 𝜀𝑟 = 2.119 𝑒2/𝑎0𝐸h. The results are
compared to experimental and computational reference.[35, 129, 363] Respective linkers are

shown at the bottom.‖♣

‖ Pascal Czember, Leibniz University Hannover, 2022.
♣ Erona Shabani, Leibniz University Hannover, 2023.
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Table 5.1.3.: Unit cell volume 𝑉 of different ZIFs obtained from pDFT (PBEsol) and SC XRD structures at

low temperatures (exp.) in Å3.

MOF 𝑉exp. / Å3 𝑉pDFT / Å3

ZIF-8 4784.9[366] 4781.7[129]

ZIF-90 5152.2[103] 5163.9[129]

ZIF-71 4756.8[102] 4765.2[129]

ZIF-318 5178.1∗ 5168.1[129]

∗ Extrapolated from the experimental volumes of ZIF-8 for full incorporation with MIM and ZIF-318[104]

for half incorporation with CF3IM.

The refractive index for TD2 at 450 nm lies at 1.407, which is 0.006 lower than for

the pDFT reference. The TD2 refractive indices therefore give closest agreement in

comparison to the experiment for the curve progression, while showing a constant

overestimation for the refractive index of ZIF-90. Aiming at higher wavelengths, the

pDFT reference performs best. Furthermore, in comparison to ZIF-8 a slightly higher

polarizability of the linker, that is dominating the optical properties[35, 127, 128, 387, 388],

is anticipated, leading to an increase of refractive indices, which can be reproduced in

all calculations except for a BU scheme with unsolvated fragments.

In contrast, in ZIF-318 (Fig. 5.1.8 c)), the linker is substituted with a fluorinated methyl

group and expected to be less polarizable, leading to an overall lower refractive index

than for ZIF-8. This trend is reproduced for all calculations except for the unsolvated

TD1 fragments for small wavelengths (Figs. B.6 and B.7 in the appendix). The refractive

indices were calculated for the phase-pure ZIF-318 concerning the involved linkers

and extrapolated volume used in the Lorenz–Lorentz equation. Additionally, the same

calculation was performed employing the SC XRD volume (Table 5.1.1). Results from the

SC XRD volume slightly shifted the curves to higher refractive indices than for ZIF-8 and

are displayed in the appendix in Fig. B.7. These deviate further from the experimental

refractive indices, that are obtained for phase-pure ZIF-318 films and are, therefore,

omitted in the further discussion.

The calculations with embedded fragments lead to different curves than the unsolvated

fragments, decreasing the deviation of the BU curve and the experimental curve by 0.01

on average. The TD1 refractive indices change minorly upon solvation (mTD1), however,

the mTD1 results slightly deviate more from experiment than those obtained with the

TD1 approach (deviation increases on average by 0.003).

The pDFT reference shows very low refractive indices, that almost coincide with the

experimental data but deviate largely from the results for the fragmentation schemes.

Solely the curve progression is deviating from experiment but with deviations of only 1.81⋅
10−6 on average. The difference between TD2 and pDFT at 450 nm and 650 nm is 0.062

and 0.063, respectively. The curve progression in the results from the TD1 approach

gives the best agreement with experiment concerning solely the curve progression.

Moreover, the deviation of the TD1 and TD2 refractive indices from the experimental

data is on average 0.034 and 0.063, respectively. Thus, in this case, the results for TD1
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deviate less from experiment than for the TD2 approach. The deviation between TD2

and mBU (0.017) is on average lower than for TD2 and TD1 (0.029). However, it should

be noted, that this could be improved by an additional solvation of the fragments in the

TD2 approach.

The pDFT calculations were performed with PBEsol optimized structures and thus with

an adapted unit cell volume. It is possible, that the performed extrapolation to determine

the volume for the phase-pure ZIF-318 unit cell in the fragmentation-based calculations

is insufficient in this case. Incorporating an increased volume into the Lorenz–Lorentz

equation could result in downward shifts within the refractive index curves (cf. Fig. B.7

in the appendix). In Table 5.1.3, the unit cell volumes from experiment and pDFT are

listed. It is evident, that the volumes from a pDFT optimization are very close to the

SC XRD volumes for ZIF-8, ZIF-71 and ZIF-90. Therefore, the extrapolated volume,

that is in good agreement with the volume obtained in pDFT is expected to be close to

the real-phase pure volume. However, this assertion remains subject to experimental

verification. Given this assumption, the fragmentation approaches appear to exhibit an

apparent overestimation of the refractive indices concerning this particular ZIF. The

origin of this factor remains a subject for subsequent investigation, which could include

the use of a different optimization scheme or examining embedding not only for the

fragments in the polarizability calculation but also within the different optimization

schemes, as an example.

For ZIF-71 (Fig. 5.1.8 d)), that incorporates a 4,5-dichloroimidazolate linker, much

higher refractive indices than for ZIF-8 are expected. This effect is reproduced by all

fragmentation calculations. For the pDFT reference the values are higher than for ZIF-8,

but not than all ZIF-90 values where the curve is much steeper. For ZIF-71 the curve

progression only deviates slightly for all calculations. Unfortunately, no experimental

reference is available for comparison. The results for the mTD1 and TD2 approaches are

very close (average deviation 0.004) and closer than for the unembedded TD1 and TD2

approaches (average deviation 0.019), cf. Fig. 5.1.8. The result for the mBU approach

is closer to the curve for TD2 than that for the BU scheme as well, where the average

deviation is 0.016 (average deviation of BU and TD2: 0.030) For this ZIF, the results for

the fragmentation approaches are very close when involving embedding, but deviate

strongly from pDFT (deviation of 0.069 on average).

In Fig. 5.1.9 the results for ZIF-8, ZIF-90 and ZIF-71 calculated on the structure from

model C (𝛽-cage optimized) are compared for the different fragmentation schemes with-
out embedded fragments. For ZIF-8 (Fig. 5.1.9 a)) the results were previously discussed.

Specifically, the TD1 curve is in very good agreement with TD2 and experimental data.

For ZIF-90 (Fig. 5.1.9 b)) the optimization of the 𝛽-cage improved the results of the BU
and TD2 ansatz in comparison to the experimental reference, however, not for the TD1

ansatz. The refractive indices for a TD2 ansatz shifted strongly and for this optimization

model are overall closest to the experimental reference showing the highest deviation at

small wavelengths (0.01 at 450 nm) and lowest for high wavelengths (0.004 at 650 nm)

and a curve progression that is in good agreement with the experiment.

For ZIF-71 (Fig. 5.1.9 c)), the results for BU slightly shift to higher refractive indices

from model B to C and for TD1 only slightly shifts to higher values, whereas for TD2 the
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Figure 5.1.9.: Dispersion of refractive indices 𝑛 calculated with TD-DFT in a CAM-B3LYP/aug-cc-pVTZ
scheme for the fragments extracted from the experimental ZIF-8 SC XRD structure and

optimized 𝛽-cage with B97-3c/def2-mTZVP (model C). Results are obtained for a) ZIF-8, b)
ZIF-90, c) ZIF-71.[366] Results are obtained for a) ZIF-8, b) ZIF-90, c) ZIF-71. The results

are compared to experimental and computational reference.[35, 129, 363]♣

♣ Erona Shabani, Leibniz University Hannover, 2023.
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curve shifted to lower refractive indices (-0.027) showing a curve progression in good

agreement with the pDFT reference. The shifting leads to the TD1 and TD2 curves to be

extremely close with a deviation of 0.027 and 0.021 for 450 nm and 650 nm, respectively.

In summary, the results for the optimized 𝛽-cage in combination with a TD2 approach
yielded results in excellent agreement with experimental reference data. BU and TD1

approaches in most cases were found insufficient and specifically BU yielded major

shifts of the refractive indices even when modified with a solvation model. For mTD1

some improvements mainly for the curve progressions could be observed. The trends

expected due to the polarizability of substituents could be fully reproduced in TD2

results with structures from model A and B and C. The refractive index spanned a range

of 1.354 and 1.446 for the different ZIFs in the TD2 scheme for model C. The results for

model B and C were in excellent agreement with experimental data. In this case the

refractive index is predicted to be in close agreement with the TD2 result for ZIF-71. A

recommendation for the use of continuum solvation models can be given if values for 𝜀𝑟
are available.

5.2. Loading of Zeolitic Imidazolate Frameworks in

Fragmentation Schemes

As shown in Chapter 1, ZIFs with a sodalite topology exhibit a pore in every 𝛽-cage with
a volume of approximately 2500 Å3.[107] These large pores are connected by so-called
pore windows, six 4MR and eight 6MR, marked in the sodalite-type unit cell in Fig. 1.3.1

c) and d), respectively. While the former present with a Zn–Zn diagonal of approximately

8.5 Å, the 6MR shows a Zn–Zn diameter of circa 12.2 Å.

In Sections 5.1.3 and 5.1.4 energy-based fragmentation methods were successfully

applied in order to calculate the refractive index of unloaded ZIFs. Therefore, it is

feasible to adapt these methods to account for the loading of these MOFs and possibly

gain insight on the number of introduced molecules and favoured positions in the pore.

The adaptation of the fragmentation ansatz accounting for guest molecules is presented

in Section 5.2.1. Refractive indices are calculated with these novel schemes on the

example of ZIF-8 and ZIF-71 (Section 5.2.2) and compared to reference data.[35, 129, 364]

5.2.1. Fragmentation Schemes

Building on the theoretical basis set in Section 5.1.1, the total polarizability of the loaded

ZIF can be formulated as,

𝛼′ZIF = 𝛼′ZIF,empty + ΔL, (5.2.1)

with ΔL being the terms arising due to the introduction of the guest molecule. These are
added to the terms of the empty ZIF as mentioned above. This means, that in the process

of loading the ZIF, the unit cell volume is considered constant and solely the polarizability

of the guest itself and the interaction with that guest modifies the total polarizability.
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Generally, different approaches for representing the empty ZIFs can be employed in

this equation but will be limited to TD2 schemes here due to their performance for

empty ZIFs. According to the fragmentation schemes introduced before, ΔL can be
defined in a different orders. The zeroth order scheme is presented as a BU approach,

where only the polarizability of the guest molecule but no guest–host interactions are

considered. For the example of a single benzene molecule (B) per pore as the guest, the

total polarizability of the loaded ZIF becomes

ΔL0 = 𝛼′L,BU = 2𝛼′guest. (5.2.2)

This approach is denoted as L0 and takes into account, that the guest is in close vicinity

to more than one window in the pore. In this approach, multiple fragments can easily

a) b)

Figure 5.2.1.: Representation of the a) TETB and b) DIB fragments. Zn2+ ions are represented as tetra-

hedrons to highlight the coordination. The benzene guest molecule is depicted in blue.

be incorporated by simple addition.

Introducing the TETB fragment (Fig. 5.2.1), involving both TET and B, the interactions

between the guest and every TET fragment can be considered as follows,

ΔL1 = 2𝛼′B + 12 ⋅ (𝛼′TETB − 𝛼′TET − 𝛼′B). (5.2.3)

This is the first-order approach, denoted L1, which is scaled to account for the full

cell. This scheme requires the symmetry of the guest molecule so that no additional

terms occur due to different interactions with respective fragments in the ZIF. The pore

size available for incorporation of guests is experimentally approximated at 11.6 Å in

diameter and the benzene molecule spans approximately 4.9 Å in diameter. Thereby,

incorporating the guest molecule into the pore, at minimum minor interactions are

anticipated for all fragments in the pore. Additionally, fragments are part of more

than one pore and fragments that are not in close vicinity to the guest molecule in

one pore are closer to that in a neighbouring pore. Increasing the number of benzene

molecules in this approach could mean, that e.g. two benzene molecules are handled

as a single fragment. Therefore, the TETB and B fragments would be replaced by TETBB

and BB fragments, respectively, where the TETBB fragment is a TETB fragment with the

additional B guest and the BB fragment is the two incorporated B guests combined as one
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fragment. Alternatively, more than one TETB fragment could be introduced, interacting

with either of the two guest molecules. This would require additional consideration of

the B-B interactions either via the introduction of a new BB fragment or (additionally) a

TETBB fragment.

In the second-order scheme, additional interaction terms of the guest molecule with

the DI fragment are introduced. The DIB fragment (Fig. 5.2.1 b)) includes these, however,

also introduces double-counting of interactions obtained with the TETB fragment. There-

fore, subtracting the double-counted terms, the total loading polarizability, denoted L2,

can be obtained with,

ΔL2 = 2𝛼′B+12 ⋅ (𝛼′TETB − 𝛼′TET − 𝛼′B) (5.2.4)

+12 ⋅ (𝛼′DIB − 𝛼′DI − 𝛼′B) − 24 ⋅ (𝛼′TETB − 𝛼′TET − 𝛼′B)
= 2𝛼′B−12 ⋅ (𝛼′TETB − 𝛼′TET − 𝛼′B) + 12 ⋅ (𝛼′DIB − 𝛼′DI − 𝛼′B).

Similar to the L1 scheme, a general interaction of DI fragments in the whole cell with

the B fragment is introduced so that the introduction of asymmetrical molecules would

require an adaptation. Similar to L1, the incorporation of two guest molecules can

be followed by the addition of DIB terms for interactions with the other B fragment as

well as terms to account for the B-B interactions and possibly DIBB terms (where a DIBB

fragment is a DIB fragment with the additional B guest). These fragmentation schemes

for the total loaded polarizabilities are applied to the calculation of different ZIFs loaded

with benzene and refractive indices obtained with the Lorenz–Lorentz equation in the

following sections.

5.2.2. Refractive Indices for Loaded Zeolitic Imidazolate Frameworks

To retrieve fragments according to the novel fragmentation schemes without repeating

the calculations for the empty ZIF, the guest molecule (B) is brought into a single pore of

the system in strategically relevant positions, for instance, directly below pore windows

or the centre of the pore. Using this approach, the lowest possible local minima can be

found in the optimization. The ZIF structure is kept frozen in the optimization process

so that solely the guest molecule relaxes inside the pore. From the obtained position

of energetic minima further considerations can be made to add further guests. In the

fragmentation process, the same fragments as for the empty ZIF can be employed and

solely fragments involving the guest molecule need to be calculated. Since the unit cell

is kept frozen in this process, the same unit cell volume as for the calculation of the

empty ZIF can be applied in the calculation of refractive indices. However, this also

means, that not all optimization schemes are applicable unless a new unit cell volume is

determined from the recombination of optimized fragments (models B and D2) to a full

unit cell.

Technically, the placement of the B guest molecule is performed as follows with the

MOF guest placer script (Appendix B.1). First, a pore window is chosen, in whose close

vicinity the guest is supposed to be placed. The coordinates of the Zn2+ ions of that

window are extracted to form a plane and determine the centre of mass, i.e. the centre
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Figure 5.2.2.: Representation of a benzene (B) guest molecule placed inside a 6MR pore window of

ZIF-8 at a 0∘ rotation. The tetrahedrons represent Zn2+ ions that are coordinated to the

blue IM linkers. The yellow sphere highlights the empty pore inside the 𝛽-cage that was
incorporated with the benzene guest molecule.

of the pore window. Repeating the plane creation and centre of mass determination for

B, the molecular plane can be placed on the window plane with their centres of mass

coinciding. From here, the guest molecule plane can be rotated in plane if necessary

and subsequently shifted into the pore parallel to the window plane. The distance

between the parallel window and molecular planes is defined as the distance between

their centres of mass (𝑑Zn). An example of the benzene placement in the plane of the
6MR is displayed in Fig. 5.2.2 with the hydrogen atoms pointing towards the Zn2+ ions,

which is considered to be a 0∘ rotation.

5.2.2.1. ZIF-8

Keppler et al.[35] measured the tuned refractive indices with different guest molecules

for ZIF-8, however, not for benzene. Nevertheless, due to the extensive simplification of

the fragmentation approach because of the molecule’s symmetry benzene is utilized for

this initial loading study. Moreover, the refractive indices of toluene and benzene differ

by 0.0014 on average[106, 389] and the refractive index of loaded films was described as a

blend from the individual component’s refractive indices.[35] Therefore, some similarities

in the loading behaviour can be expected.[37] However, this is a crude approximation

since the interactions of toluene with the ZIF could vary and due to its substitution, the

length and volume of toluene could lead to greatly different loading positions as well

as a different number of molecules per pore. Therefore, the comparison yields only a

rough estimate.

108



5.2. Loading of Zeolitic Imidazolate Frameworks in Fragmentation Schemes

Because for ZIF-8, unfortunately, no results for the DI fragment for model A could

be obtained, the empty ZIF from the calculation for model B was taken in this case.

This is an approximation since the DI fragment is also necessary for the calculation of

the loading using the L2 scheme. Ideally, the results for model C will replace these in

further calculations.

Introducing B into the pore below a 4MR and performing the optimization in the frozen

𝛽-cage showed, that the molecule migrated towards the 6MR (Fig. B.8 in the appendix).
Thus, only approaches with the placement of the guest below these windows were

further investigated. Due to the topology of ZIF-8, two different 6MR pore windows

could be identified. Window A (Fig. 5.2.3 a), c) and e)), where all methyl substituents

of the linker point outwards of the pore (top of Fig. 5.2.3 c)) and window B, (Fig. 5.2.3

b), d), f)), where every other linker is rotated with a methyl group pointing inwards to

the pore centre. Therefore, two sets of calculations were performed for placing B below

either of these pore windows.

Four different distances between the Zn2+ plane of the respective window and the B

plane 𝑑Zn were examined: 2.7 Å, 2.85 Å, 3.00 Å and 3.45 Å that are displayed in blue,
green, red and orange, respectively, in Fig. 5.2.3 c) for window A and d) for window B.

For every distance, additionally, the 30∘ in-plane rotated guest molecules were also
introduced and optimized. After the geometry optimization all starting positions inde-

pendent of rotation parameters lead to minima with a single distance (but maintaining

the rotation). For window A a distance of 𝑑Zn = 3.26 Å and for window B of 𝑑Zn = 3.45 Å
was obtained.

Additionally, B was placed in the exact middle of the pore and the total energy for

that system is displayed in Table 5.2.1 in comparison to the other obtained positions

after the optimization process. Interestingly, the position of B in the pore centre is the

highest in energy and therefore, the positions closer to the 6MR are more favourable.

For window A, the 30∘-rotated molecule leads to a lower energy, than for the unrotated
benzene, however, just with a low deviation. For window B, the opposite trend can be

observed, with the unrotated system giving a lower total energy. This can be explained

by the orientation of the linker in this window with half of the methyl substituents

pointing inwards of the pore (Fig. 5.2.3). Therefore, when the hydrogen atoms of the

benzene molecule point in the same direction, this leads to a higher observed energy.

Thus, in the following calculations, the rotated benzene was employed for window A and

the unrotated benzene for window B. The results for these calculations are presented in

Fig. 5.2.4.

The results for both windows are in very good agreement. The results for L0 are

additionally shown for the introduction of up to four benzene molecules. This leads to

a simple shift to higher refractive indices of 0.035 per molecule on average. This is in

good agreement with pDFT predicting a shift of 0.033 for every added toluene molecule.

Following the L0 approach, in theory, approximately four molecules would be necessary

to reproduce the refractive index shift of toluene in the experiment, that is assumed to be

close to those for benzene. However, since no interactions are represented whatsoever,

in reality, this number of guests per pore probably deviates from this result.
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Window A Window B

a) b)

c) d)

e) f)

Figure 5.2.3.: a) and b): Top view and c)–f) side view of the 6MR Zn2+ plane and the loaded benzene

guest molecule. Colours in c) and d) represent a 𝑑Zn of 2.7 Å (blue), 2.85 Å (green), 3.00 Å
(red) and 3.45 Å (orange). The pre-optimization positioning of benzene for window A

is shown in a) and c) and for window B in b) and d). The post-optimization position is

presented in e) for window A and f) for window B.‖

Table 5.2.1.: Total energies for benzene in the ZIF-8 unit cell placed at different positions and rotated in

comparison to the Zn2+ ions.‖

Position Total energy / 𝐸h(0∘) Total energy / 𝐸h(30∘)

6MR - A (3.26 Å) −58841.492845 −58841.493379
6MR - B (3.45 Å) −58841.491268 −58841.489526
Middle −58841.482470 -

‖ Pascal Czember, Leibniz University Hannover, 2022.

110



5.2. Loading of Zeolitic Imidazolate Frameworks in Fragmentation Schemes

500 600
 / nm

1.30

1.35

1.40

1.45

1.50

1.55

1.60

n
a)

Window A loaded
Empty (TD2)
L0 1B
L0 2B
L0 3B
L0 4B
L1 1B
L2 1B

500 600
 / nm

1.30

1.35

1.40

1.45

1.50

1.55

1.60

n

b)

Window B loaded
Empty (TD2)
L0 1B
L0 2B
L0 3B
L0 4B
L1 1B
L2 1B

500 600
 / nm

1.30

1.35

1.40

1.45

1.50

1.55

1.60

n

c)

Reference Data
Exp.: Empty
Exp.: Toluene
pDFT: Empty
pDFT: 1 Toluene
pDFT: 2 Toluene
pDFT: 3 Toluene
pDFT: 4 Toluene
pDFT: 5 Toluene

Figure 5.2.4.: Dispersion of refractive indices 𝑛 calculated with TD-DFT in a CAM-B3LYP/aug- cc-pVTZ
scheme for the fragments extracted from the experimental ZIF-8 SC XRD structure (model

A). Results are obtained for the different loading schemes L0, L1, and L2 for a) window A

and b) window B. For L0 different numbers of B fragments were calculated (1B–6B).

Reference data from experiment and pDFT is presented in c).[35, 129, 364]‖♣

Focussing on the L1 and L2 schemes, the refractive indices are significantly higher

than for L0. The average shift from the empty ZIF is 0.058 for the TD1 scheme of both

window A and B. The L1 approach leads to even higher refractive indices than the L2

approach, that deviates from the empty ZIF by 0.051 on average for both window A and B.

When comparing to the toluene reference, this leads to the assumption, that the number

of molecules per pore should be lower than expected from the L0 results. It should,

however, be noted, that a simple additive shift is not sufficient in this fragmentation

scheme. Despite this limitation, it is expected to outperform the L0 results. As mentioned

in Section 5.2.1, this would also neglect the B–B interaction as well as the higher-

order interactions of the other fragments with more than one B fragment. Therefore,

the refractive index is expected to be somewhat lower for two incorporated benzene

molecules than double the shift of a single benzene molecule. In consequence, the

observed shift equals a number of approximately 4–6 guest molecules per pore, which

would have to be confirmed with more sophisticated fragmentation schemes. This

‖ Pascal Czember, Leibniz University Hannover, 2022.
♣ Erona Shabani, Leibniz University Hannover, 2023.
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estimate is in good agreement with the results from pDFT that predicts approximately

five toluene molecules per pore, however, for the empty ZIF the refractive index is found

to be underestimated, influencing the loading prediction.

5.2.2.2. ZIF-71

a) b)

Figure 5.2.5.: Representation of benzene positioning in a) window A and b) window B before (blue

tones) and after (pink tones) geometry optimization. The optimization of the light blue

benzene position (𝑑Zn = 4.00 Å) leads to the light pink optimized position. The optimization
of the dark blue benzene position (𝑑Zn = 2.5 Å) leads to the dark pink optimized position.
a) Light pink: 𝑑Zn = 1.1 Å, dark pink: 𝑑Zn = 5.2 Å. b) Light and dark pink: 5.57 Å.§

For ZIF-71, the investigation of possible guest molecule positioning was repeated for

the 6MR on the structure from model A, since all fragments lead to feasible results in

the empty ZIF. Two window types can be distinguished for ZIF-71. Window A exhibits

a linker orientation, where all chlorine substituents point outwards of the pore. In

window B, half of the chlorine substituents point towards the pore centre, whereas the

other half is oriented inside the pore but pointing to the neighbouring window. The

guest molecule was placed in 𝑑Zn = 2.5 Å and 𝑑Zn = 4.0 Å (Fig. 5.2.5). Only 30∘ rotated
benzene molecules were investigated since these are visibly more favourable due to the

placement of the chlorine substituents of the DCIM in ZIF-71 (see Fig. 5.2.5). In contrast

to ZIF-8 in window A, two favourable positions can be found in the optimization. For

window B, a single position is found for both starting geometries, however, the distance

to the Zn2+ plane is higher than for ZIF-8, caused by the inwards pointing chlorine

substituents on the IM. The refractive indices were calculated for all three single-loaded

positions and are presented in Fig. 5.2.6.

For window A the different benzene positions yield significantly different results. While

the L0 curve does not differ much between the positions, the L1 and L2 curves are

significantly higher for the 1.1 Å position than for the 5.2 Å position with a deviation of

0.005 for both L1 and L2. For window B the refractive indices for L1 and L2 are even

lower than for window A at the 5.2 Å position with a deviation of 0.003 and 0.006 for L1

and L2, respectively, suggesting that interactions have to be accounted for to perform

reliable calculations. Unfortunately, no reference data for the loaded ZIF-71 is available

for comparison at this point. However, it can be seen, that there is a strong shift when

§ Daniel Bömke, Leibniz University Hannover, 2022.
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Figure 5.2.6.: Dispersion of refractive indices 𝑛 calculated with TD-DFT in a CAM-B3LYP/aug- cc-pVTZ
scheme for the fragments extracted from the experimental ZIF-8 SC XRD structure (model

A). Results are obtained for the different loading positions a) window A at 𝑑Zn = 1.1 Å,
b) window A at 𝑑Zn = 5.2 Å and c) window B of ZIF-71at 𝑑Zn = 5.57 Å and different
fragmentations schemes L0, L1 and L2 in contrast to the results for the empty ZIF.§♣

Figure 5.2.7.: Window A of ZIF-71 loaded with two benzene molecules in T0B30 rotation.♣

introducing a single guest molecule. Therefore, a wide tuning range is expected for this

ZIF in possible further experimental studies.

Due to the occurrence of two favoured positions below the 6MR, a double-loading

study was performed. The benzene molecules were incorporated in either the same

(0∘) or 30∘ rotation to each other. For instance, in Fig. 5.2.7, the top benzene molecule
is in a 0∘ rotation (T0), while the bottom benzene molecule is in a 30∘ rotation (B30).
All four possible rotation combinations were produced and optimized giving the total

§ Daniel Bömke, Leibniz University Hannover, 2022.
♣ Erona Shabani, Leibniz University Hannover, 2023.
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Table 5.2.2.: Total energies for two benzene molecules in the ZIF-71 unit cell with the top and bottom

rotation of 0∘ and 30∘ in comparison to the Zn2+ ions.♣

Position Total energy / 𝐸h
T0B0 −111861.460439
T30B0 −111861.459849
T0B30 −111861.462661
T30B30 −111861.462293

energies listed in Table 5.2.2 with T0B30 emerging as the most favourable position,

where the top molecule is shifted towards the bottom molecule by 0.48 Å, whereas

the bottom molecule remained at the same position. The refractive indices for this

fragment have been calculated by simply replacing the single B to a double BB fragment

and, accordingly, replacing DIB to DIBB and TETB to a TETBB fragment, while keeping the

equations as shown in Section 5.2.1. The results are depicted in Fig. 5.3.1 c).

The refractive indices for the L0 approach are shifted by 0.07 in comparison to the

empty ZIF, which is approximately double the L0 shift of two single guest molecules added

although interactions between the molecules were introduced in the double-loading. The

L1 and the L2 curve are both shifted by 0.008 and −0.006 in comparison to the L0 curve,
respectively. The refractive indices for L1 and L2 are therefore significantly shifted

towards high refractive indices, showing a deviation of 0.079 and 0.064, respectively, in

comparison to the empty ZIF. For L1, this is found to be a multiple of 1.7 and 1.9 of the

loading shift for a single benzene molecule for the position at 1.1 Å and 5.2 Å distance

to window A, respectively. For the L2 approach, for the position at 1.1 Å distance to

window A, this is a multiple of 1.5 and for the position at 5.2 Å distance to window A,

the shift is a multiple of 1.7 in comparison to the loading shift for a single benzene

molecule. This roughly coincides with the observation made for ZIF-8. It should be noted,

that the shifts between the curves of the fragmentation schemes in the double-loading

scheme (Fig. 5.3.1 c)) are significantly higher than in the single-loaded approaches

(Fig. 5.3.1 a) and b)). This might be traced back to insufficiencies of the fragmentation

ansatz and requires a more sophisticated study of such effects. Additional reference

data is indispensable for further determining these schemes for an arbitrary number of

incorporated guest molecules.

5.3. Summary

Overall, the ansatz for the calculation of refractive indices for ZIFs via fragmentation

proposed by Treger et al. was successfully extended to account for interactions of the

fragments. For this purpose, two new TD fragmentation schemes were established

and extensively tested, yielding a computational protocol for empty ZIFs with the

highly efficient CAM-B3LYP/aug-cc-pVTZ scheme for the fragment calculations. In the

employment of different starting structures, the best performance was obtained with an

♣ Erona Shabani, Leibniz University Hannover, 2023.
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Figure 5.3.1.: Dispersion of refractive indices 𝑛 calculated with TD-DFT in a CAM-B3LYP/aug-cc-pVTZ
scheme for the fragments extracted from the experimental ZIF-8 SC XRD structure (model

A). Results are obtained for the different loading positions a) window A at 𝑑Zn = 1.1 Å with
single loading, b) window A at 𝑑Zn = 5.2 Å with single loading and c) window A at both
positions (double loading) Different fragmentations schemes L0, L1 and L2 are presented

in contrast to the results for the empty ZIF. For c) this refers to fragmentation schemes

obtained from BB fragments.♣

optimization model (A, B or C), completely independent from pDFT optimized structures,

thus, directly applicable to experimentally yielded structures for future calculations.

Furthermore, the application of CP-SCF and linear-response approaches could be

compared and gave coinciding results. Therefore, for a simple screening of static po-

larizabilities, the CP-SCF approach is sufficient, however, for further comparison to

experiment at common wavelengths, such as 𝜆 = 589 nm, the linear-response ansatz
enables the calculation of a full frequency-dependent set of refractive indices. Fur-

thermore, the evaluation of the established protocol could be evaluated on the popular

representative ZIF-8 and gave results in excellent agreement with experimental refer-

ence data and especially for small wavelengths and overall curve progression in some

cases outperforming data obtained with HSE06 in pDFT.

Since some SCF instabilities occurred, electrostatic embedding was applied to enhance

the description of Zn2+, IM and TET fragments. Specifically shifted for the BU fragmen-

tation scheme and curve progressions for the TD1 fragmentation scheme consequently

improved and can be recommended for the Zn2+ and IM fragments. However, the calcu-

lations of the refractive index for the TET fragment resulted in no major improvement

and could not be finished for the DI fragment for ZIF-8. Moreover, the refractive indices

♣ Erona Shabani, Leibniz University Hannover, 2023.
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for ZIF-71, ZIF-90 and ZIF-318 could be easily determined with the developed protocol

and partially compared to reference data to yield overall good agreement. ZIF-318 show-

ing an overestimation of the refractive indices from fragmentation schemes is subject

to further investigation, for instance, with electrostatic embedding in TD2, different

optimization schemes or possibly experimental phase-pure unit cell volumes. Approx-

imate predictions for the refractive index range could be given for ZIF-71, however,

further confirmation via experiment is necessary. Overall a recommendation for the

second-order fragmentation ansatz (TD2) in an optimized model (B or C) can be given

for further calculations of refractive indices in ZIFs. For this purpose, the fragmentation

scheme can be easily adapted to account for different ZIFs possibly even in different

topologies.

Further adaptations to the established fragmentation schemes allowed for the intro-

duction of guest molecules into the pore of ZIF-8 and ZIF-71. The calculation of the

refractive indices for the loaded systems was successfully performed for a single and

double-loaded system with a benzene guest molecule. The comparison to reference data

for toluene allowed a crude prediction of the molecule number per pore. First trends

resulting from the calculations showed, that for ZIF-8 the number of benzene/toluene

molecules per pore should be in the range of 5–7 molecules which is supported by results

from pDFT calculations for toluene. For ZIF-71 loading calculations were performed and

more than one favourable position for the guest molecule below the 6MR pore windows

could be identified. A first approach for the double-loading was performed and builds

the fundament for higher loading studies. However, further studies are indispensable in

order to refine the proposed loading schemes, specifically for unsymmetrical molecules.

Further reference data is imperative for the evaluation of the obtained data.
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Accurate theoretical calculations of optical properties can be challenging, specifically

when dealing with extended system sizes. The required quantum-mechanical (QM)

treatment greatly exceeds the possibilities of common quantum-chemical calculations

in terms of computational demand. However, the quantum nature of optical processes

makes this treatment indispensable even when dealing with large systems. Subsystem-

based methods open the possibility to apply the quantum-chemical methods to extended

systems by partitioning the full system, yielding computationally more feasible subsys-

tems, while maintaining the necessary accuracy. Depending on the system type, either

local embedding schemes or fragmentation approaches can be applied. The first yielding

localized optical properties for a dominant subsystem, whereas the second recombines

individual subsystem contributions yielding the global property.

Polarizable local embedding schemes were employed to calculate optical excitations in

extended systems, that are located on one subsystem. In contrast to most other studies,

a comparison of two different major representatives of advanced embedding schemes

was performed in the same consistent, theoretical framework. These representatives are

the quantum-mechanical/molecular-mechanical (QM/MM)-based polarizable embedding

(PE) and the quantum-mechanical/quantum-mechanical (QM/QM)-based frozen-density

embedding (FDE). The implementation of said framework allows for the observation of

dissected interaction effects introduced by the respective embedding schemes and a

classification of the importance of the occurring interaction effects.

In Chapter 4, it has been investigated how these dissected interaction contributions for

the different embedding approaches influence the calculation of properties for optical

excitations. Before addressing the distinct characteristics in a numerical comparison,

the aforementioned theoretical framework was established for the QM/MM-based as

well as the QM/QM-based methods, putting their characteristics in a common context.

Based on this framework, the methods were implemented within a unified computational

setup based on Dalton software, ensuring maximum comparability and incorporating the

formulation of the established interaction models. Building upon this implementation,

optical properties were calculated for para-nitroaniline (pNA) and pentameric formyl

thiophene acetic acid (pFTAA) using both approaches. The obtained framework allows

for the segregation of the underlying individual interaction effects, thereby enabling the

formulation of models with comparable interactions for both systems and highlighting

distinctions between the two approaches. The results for the target molecules were

subdivided into the arising interaction models. This comprehensive analysis allowed

for an understanding of the individual contributions of the various interaction models

and their effects on the overall optical properties of the target system. By separating
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the different interaction effects, valuable insights were gained into how each model

influenced the optical properties, and a comparison of the performance of the two

approaches in accurately capturing the behaviour of pNA and pFTAA was made. This

study paved the way for a deeper understanding of the interactions and their effects on

the optical response of these molecules.

For both embedding schemes, a classification of the polarization interactions into two

models could be performed. The first model considers electrostatic interactions between

subsystems and includes solely the ground-state polarization of the main subsystem. The

second model takes into account mutual polarization in the ground state. These models

were identified within the standard formulations of both embedding approaches. In the

calculations for the PE scheme calculations of pFTAA erroneous electron spill-out (ESO)

effects occurred. These could be diminished by the application of atomic pseudopo-

tentials. Thereafter, good agreement has been obtained for the calculated excitation

energies and oscillator strengths for both embedding schemes including mutual ground-

state polarization in comparison with a full supermolecular calculation and neglecting

differential polarization. This is in line with results from previous studies, expecting

ground-state polarization to give a major contribution to the full interaction.[76, 77] For

both embedding schemes exceedingly small deviations were found for the electrostatic

treatment of the environment polarizing solely the main subsystem as well as for the

mutual ground-state polarization. This suggests, that QM effects did not significantly in-

fluence the interaction of these systems, however, the introduced repulsion is necessary

in order to counteract the ESO effect for pFTAA.

In general, excitation energies could be shown to be less sensitive to polarization ef-

fects, than oscillator strengths for both molecules. Therefore, the impact of differential

polarization is lower for excitation energies. For oscillator strengths, the effects were

sizeable in part of the results but very dependent on the specific structural configura-

tions (snapshot). In the cases, where differential polarization showed a big influence,

agreement of the oscillator strengths with the reference values was in many cases

worsened. It was demonstrated that in these calculations the use of an effective external

field (EEF) improved the results in all cases showing to be essential for the reproduction

of polarization obtained with reference calculations. For pNA the effects of differential

polarization can be sizeable for individual snapshots with and without including EEF, but

it is small on average. Specifically for pFTAA, a system that is challenging to describe

due to its size and highly anionic charge, differential polarization had a significant

impact. However, the agreement with the reference calculation was only good, when

including EEF effects or overall neglecting differential polarization. Altogether, this

effect boils down to the dependence on the individual snapshots, where the dynamic

response of the environment might be sizeable, but on average does not strongly impact

the optical properties, which is in line with previous studies.[76, 77]

Overall, it was demonstrated that the established theoretical framework and computa-

tional setup allow the one-to-one comparison of PE and FDE on the same fundament

and is a valuable tool in the detailed analysis of the different contributions to the sol-

vent shift. This facilitates the characterization and deeper understanding of solvent

effects on these molecules. This methodology could possibly be extended to further

118



systems dissecting their interaction contributions. Overall, while general statements

regarding ground-state polarization are applicable, specific attention must be given to

the impact of differential polarization in PE, and the incorporation of EEF effects can be

recommended for accurately reproducing polarization effects on oscillator strengths

with PE. For challenging systems, that are prone to ESO effects, the use of atomic

pseudopotentials can be recommended without any preservation. The present frame-

work is deemed promising for the calculation and interpretation of optical spectra of

solvated chromophores. Furthermore, the framework can be extended to account for

more complex environments such as the protein environment of a chromophore. The

investigation of additional effects such as averaged environmental contributions or

differential polarization effects for FDE as seen in state-specific approaches logically

follow.[66] Moreover, more excited state properties could be considered due to their

applicability to fluorescent biomarkers, however, requires the introduction of a FDE

optimization scheme to allow for the minimization of excited states.

For the calculation of global optical properties, the desired characteristic is not

calculated localized on a main subsystem, but distributed over all subsystems. An

energy-based molecular fragmentation approach was developed for zeolitic imidazolate

frameworks, that in contrast to the computational advances in other studies on metal-

organic frameworks (MOFs) combines a significant decrease in computational demand

with the preservation of essential accuracy. Moreover, contrary to other molecular frag-

mentation studies on MOFs, the presented approach includes higher-order many-body

effects, that are indispensable for the accurate reproduction of optical properties. The

performed evaluation of this method is applicable for the rationalization and furthermore

the prediction of optical properties for differently substituted ZIFs. Therefore, it has

a high potential to assist the characterization and design of further ZIFs. Moreover,

a strength of the proposed fragmentation scheme is the possibility to examine the in-

fluence of guest molecules incorporated into the porous network of the investigated

systems and draw approximate conclusions for the tuning range of the calculated optical

properties. However, in order to reliably predict this loading behaviour a benchmark

with existing systems has yet to be performed.

In global subsystem-based methods the property of interest is calculated from the

individual subsystem contributions, that can then be recombined to give the global

optical property. A many-body type ansatz can be employed to account for the individual

subsystem properties and the many-body effects between them. In previous studies

such approaches have been applied to many systems, however, for MOFs, only one

approach neglecting all many-body effects is known.[129] Specifically the determination

of refractive indices has gained attention in optical applications[35] and the periodically

repetitive pattern of MOFs allows for the optimal application of molecular fragmenta-

tion methods. For this, a sufficient number of many-body terms has to be included to

obtain feasible results. Additionally, the convergence of the property of interest can be

increased by providing overlapping fragments as primary fragments in the fragmen-

tation scheme.[92, 93, 234] Since these schemes have not been applied to ZIFs yet, a

computational protocol has to be established and evaluated to reliably predict refractive

indices. Moreover, in experimental studies, a tuning of the refractive index range could
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6. Summary, Conclusions and Outlook

be obtained by incorporating guest molecules into the porous structure of the ZIFs.[35]

In order to reflect this in the calculations, the development of novel fragmentation

schemes is necessary allowing for approximate predictions of the loading process.

In chapter Chapter 5 fragmentation schemes including many-body effects have been

developed for the calculation of refractive indices in ZIFs. It was evaluated on the

example of ZIF-8, in an extensive computational study involving the calculation of

polarizability volumes for a variety of XC functionals and basis sets calculated with a

coupled-perturbed self-consistent field (CP-SCF) and a linear-response ansatz. The latter

allows the frequency-dependent determination of polarizability volumes, while solely

static polarizabilities are determined for the former. The calculation of refractive indices

from the polarizability volumes via the Lorenz–Lorentz equation has been employed

to further evaluate the approaches on different geometries for ZIF-8. The obtained

computational protocol has been transferred to the calculation of refractive indices for

ZIFs with the same topology but differently substituted organic linkers. The comparison

with reference data allowed further evaluation and prediction for the other empty ZIFs.

Moreover, in this study, the influence of continuum solvation on the individual fragments

was examined.

Subsequently, the established framework was extended to account for the incorporation

of guest molecules in the ZIF’s pore. Energetic minima were found for benzene guest

molecules placed inside the pore. Considerations concerning symmetry and placement

of the guest molecule and interactions with the pore’s subsystems allowed for the

calculation of refractive indices on ZIF-8 and ZIF-71 while incorporating a single benzene

molecule and up to two benzene molecules per pore, respectively. The results from this

approximate scheme could then be employed to give rough estimates about the number

of molecules incorporated per pore.

It has been found, that in contrast to other studies[253, 367] on the calculation of polar-

izabilities, a range-separated hybrid CAM-B3LYP XC functional yielded the best results

for all fragment types. Double-hybrid functionals performed similarly, however, could

often not be utilized due to the occurrence of numerical instabilities. Although it has

been shown, that the employment of sizeable basis sets is essential for the accurate

calculation of polarizabilities[375–377], the property of interest has been close to conver-

gence for an aug-cc-pVTZ basis set in this study. The computational protocol was then

applied to the calculation of refractive indices based on differently optimized structural

geometries. Structures were obtained directly from single crystal X-ray diffraction

(SC XRD) structures, that then were further optimized for some models. Additionally,

periodic density-functional theory (pDFT)-optimized structures[129] were employed, that

were further optimized in one model. It was found, that for ZIF-8, those optimization

schemes gave the best results in comparison to experiment, that were directly extracted

from experimental structures and subsequently optimized with the B97-3c/def2-mTZVP

approach, highlighting the independence from pDFT geometries in these calculations.

The optimization was either performed for the extracted fragments or the extracted

unit cell of the respective ZIF. Specifically the latter yielded excellent results for the

fragmentation scheme incorporating the highest (second) order of many-body effects

albeit the approximation made in this order. Generally, that fragmentation scheme (TD2)
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gave the best results in all calculations, outperforming the schemes with lower-order

and without many-body effects, TD1 and BU, respectively, as well as the results for

HSE06.[129] Due to self-consistent field (SCF) instabilities for some fragments the elec-

trostatic embedding of the fragments in a dielectric continuum was performed for all

fragments of ZIF-8. The relative permittivity was estimated from previous calculations.

For the BU approach major improvements have been obtained, however, still giving

results far from the experimental reference. The curve progressions as well as the curve

shift could be improved in comparison to experiment.

The transfer of the computational protocol for the different fragmentation schemes to

other ZIFs has confirmed the good performance of the TD2 fragmentation scheme and

allows for the estimation of possible refractive index ranges for those ZIFs where no

experimental data is available at this point. The predictions made here should, how-

ever, be checked against upcoming results in order to further advance the proposed

fragmentation scheme. The continuum solvation of the fragments similarly to the ZIF-8

results improved the curve shift for the BU approach, but only slightly improved the

results for the TD1 approach. For the TD2 approach no results are available for ZIF-8

due to reoccurring SCF instabilities. Moreover, embedding of the fragments for the TD2

approach should be subject of future investigations of the remaining ZIFs. Specifically,

for ZIF-318, where overestimation of the refractive indices were observed for all frag-

mentation schemes, this approach could result in improvements when comparing to

reference data. Furthermore, extending the electrostatic embedding to the employment

in the different optimization schemes could improve the agreement with the experimen-

tal refractive indices and eliminate possible occurring error cancellation. For this, the

volumes for the 𝛽-cage-optimized structures should be critically examined in comparison
to the experimentally obtained volumes.

For the purpose of incorporating guest molecules the fragmentation schemes were

adapted to account for the polarizability of a single benzene molecule introduced into

the ZIF-8 pore. For this, optimization of the guest molecule in the frozen unit cell of

the ZIF was performed to retrieve favoured positions inside the pore. The placement

below the six-membered ring (6MR) is clearly favoured in contrast to a placement

below the pore center or four-membered ring (4MR). The latter can be attributed to

the small pore window opening that exhibits close organic linkers interacting with the

guest molecule. Therefore, the calculation of refractive indices was performed for the

obtained favourable position for the two 6MR pore windows. Feasible results were

obtained, however, no experimental reference data was available. Generally, incorpo-

ration of benzene leads to an overall shift of the frequency-dependent refractive index

curves, while the frequency dependence remains similar. The curve shift obtained for

the loading process from the BU approach is smaller than for the other fragmentation

schemes. This can be traced back to the lack of many-body effects for the introduced

guest molecules. The results from the top-down approaches (TD1 and TD2) suggest an

approximate number of 4–6 guest molecules per pore, which is in good agreement with

the reference data for toluene.[35, 364]

The calculations were then transferred to the loaded ZIF-71, where the optimization of

the benzene molecule located inside the pore yielded two favourable positions for one of
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the 6MR pore windows. In a single-loading study, the results for both positions in that

window have shown only small deviations for the TD1 and TD2 schemes, with the results

for the benzene molecule placed deeper inside the pore giving lower refractive indices

than for molecules located in closer vicinity to pore windows. This trend is also obtained

for the other 6MR window, where the guest molecule is placed even further into the pore.

Solely for the BU approach only slight deviations for the different pore positions have

been observed. This highlights the importance of including the higher-order many-body

effects in the calculations.

In a double-loading study, orientations of the two incorporated benzene molecules were

examined for the two favoured positions below the pore window. The most favoured

position was then examined in further calculations. Great deviations between the re-

sults for all fragmentation schemes have been obtained, however, giving a shift that is

greater than the double of two single-loading events. This suggests, the influence of the

interaction between the two guest molecules is impacting the refractive index. These

results are rough estimates of the possible refractive indices for this ZIF. They suggest,

however, that for ZIF-71 a wide tuning range by the incorporation of guest molecules

can be obtained.

In order to make reliable predictions, further reference data for the benzene loading

would greatly facilitate the evaluation of the proposed scheme. Alternatively, a more

extensive fragmentation scheme taking into account the lower symmetry of toluene and

other (multiple) guest molecules could be introduced to allow comparison to available

reference data. The proposed scheme did, however, lay the theoretical and computa-

tional foundation for the application of fragmentation schemes for these systems and

allowed for predictions that could be further extended to structural isomorphs. Incor-

poration of these schemes in the in-house fragmentation script FragPy[82] potentially

opens up the possibility to examine higher-order fragmentation schemes potentially

also in multilevel schemes as well as the effects of geometry optimization within the

established fragmentation schemes.

In summary, this thesis provides insights into the accurate theoretical calculation of

optical properties in challenging systems using subsystem-based methods. The proposed

computational protocols allowed for a detailed analysis of the individual interaction

effects and their contributions to the overall optical properties. The comparison of local

embedding methods facilitated a better understanding of the strengths and limitations

of each approach and the importance of described effects. The development of fragmen-

tation schemes allowed for the prediction of optical properties for several structural

isomorphic ZIFs. Furthermore, the extension of the computational protocol to incorpo-

rate guest molecules in the porous structure of ZIFs opened up the possibility for an

approximate prediction of the tuning range of the calculated optical properties in loaded

systems. The results from this thesis lay the foundation for further investigations in the

field of optical properties in complex systems, allowing for a more comprehensive and

accurate characterization of these systems and their interactions with the environment.
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A Local Optical Properties

A.1. Computational Setup

A.1.1. Polarizable Embedding
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Figure A.1.: Workflow diagram of the PE scheme. The elliptical nodes represent input and output of

the calculation. Dark blue boxes denote major work steps in the workflow. The dashed box

represents the Dalton part of the workflow and its substeps inside. The white box represents

submodules. Arrows denote data exchanged in between programs and models.
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A. Local Optical Properties

A.1.2. Frozen-Density Embedding

The workflow presented in Section 4.2.1.2 was implemented in PyADF.[61, 296] The imple-

mentation (mainly for calling Dalton) is presented in listings A.1 and A.2. Subsequently,

the PyADF input performing the FDE cycles is shown on the example of pNA and pFTAA

in listings A.5 to A.9 and listings A.10 to A.16, respectively.

Listing A.1: PyADF code: Extracts from adapted classes in DaltonSinglePoint module

class daltonsettings:

”””

Class that holds the settings for a Dalton calculation..

@group Initialization:

__init__,

set_method, set_functional

@group Input Generation:

get_wavefunction_block

@group Other Internals:

__str__

”””

def __init__(self, method=’DFT’, functional=’LDA’, dftgrid=None, freeze_occ=0,

iterations=None, nexci=None, freeze_virt=0, memory=None):

”””

Constructor for daltonsettings.

All arguments are optional, leaving out an argument will choose

default settings.

@param method: the computational method, see L{set_method}

@type method: str

@param functional:

exchange-correlation functional for DFT calculations,

see L{set_functional}

@type functional: str

@param dftgrid: the numerical integration grid for the xc part in DFT,

see L{set_dftgrid}

@type dftgrid: None or str

@param freeze_occ: number of occupied orbitals to freeze, see L{set_freeze}.

@type freeze_occ: int

@param freeze_virt: number of virtual orbitals to freeze, see L{set_freeze}.

@type freeze_virt: int

@param memory: the maximum total memory to use (in MB)

@type memory: integer

”””

Listing A.2: PyADF code: Extracts from adapted classes in DaltonSinglePoint module Part 2.
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A.1. Computational Setup

self.method = None

self._functional = None

self.dftgrid = None

self.freeze_occ = None

self.freeze_virt = None

self.memory = None

self.iterations = None

self.set_method(method)

if self.method == ’DFT’:

self.set_functional(functional)

self.set_dftgrid(dftgrid)

self.set_freeze(freeze_occ, freeze_virt)

self.set_memory(memory)

self.set_iterations(iterations)

[.......]

def set_iterations(self, iterations):

”””

Set number of iterations in SCF (default = 60).

@param iterations: the maximum number of SCF iterations to use in SIRIUS module

@type iterations: integer

”””

self.iterations = iterations

def set_nexci(self, nexci):

”””

Set the number of excitations to calculated.

@param nexci: the number of excitations to calculate

@type nexci: int

”””

self.nexci = nexci

def get_wavefunction_block(self):

block = ”**WAVE FUNCTIONS\n”

if self.method == ’HF’:

block += ”.HF\n”

elif self.method == ’DFT’:

block += ”.DFT\n”

block += ” ” + self.functional + ”\n”

if self.dftgrid is not None:

block += ”*DFT INPUT\n”

block += ”.” + self.dftgrid.upper() + ”\n”

127



A. Local Optical Properties

Listing A.3: PyADF code: Extracts from adapted classes in DaltonSinglePoint module Part 3.

elif self.method in [’CC’, ’CCSD’, ’CCSD(T)’]:

block += ’.CC\n’

else:

raise PyAdfError(’Unknown method in Dalton job’)

if self.iterations:

block += ”*SCF INPUT\n”

block += ”.MAX DIIS\n”

block += ” ” + str(self.iterations) + ”\n”

return block

def __str__(self):

”””

Returns a human-readable description of the settings.

”””

s = f’  Method: {self.method} \n’

if self.method == ’DFT’:

s += f’  Exchange-correlation functional: {self.functional} \n’

elif self.method.startswith(’CC’):

s += f”  Number of frozen occupied orbitals: {self.freeze_occ:d} \n”

s += f”  Number of frozen virtual orbitals:  {self.freeze_virt:d} \n”

return s
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Listing A.4: PyADF code: Extracts from adapted classes in DaltonSinglePoint module Part 4.

class daltonsinglepointjob(daltonjob):

”””

A class for Dalton single point runs.

See the documentation of L{__init__} and L{daltonsettings} for details

on the available options.

Corresponding results class: L{daltonsinglepointresults}

@Note: Right now, HF, DFT, and CC jobs are supported.

@Note: Importing of embedding potential requires a modified Dalton version.

@group Initialization:

set_restart

@group Input Generation:

get_dalton_block, get_integral_block, get_molecule, get_options_block,

get_other_blocks, get_properties_block

@group Other Internals:

print_extras, print_molecule, print_settings

”””

[.......]

def before_run(self):

super().before_run()

if isinstance(self.fdein, GridFunctionPotential):

self.fdein.get_xyzwvfile(’EMBPOT’, add_comment=False, endmarker=True)

elif self.fdein is not None: # adffragmentsresults

self.fdein.export_embedding_data(’EMBPOT’,’FRZDNS’)

def after_run(self):

super().after_run()

if isinstance(self.fdein, GridFunctionPotential):

os.remove(’EMBPOT’)

elif self.fdein is not None:

os.remove(’EMBPOT’)

os.remove(’FRZDNS’)
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Listing A.5: PyADF input code for pNA Part 1.

import numpy

import xcfun

from pyadf.Plot.FileReaders import GridFunctionReader

import copy

input = ’in.pdb’

cycles = 3 # How many FDE cycles

main_functional = ’CAMB3LYP’ # Which functional for the active fragment

env_functional = ’B3LYP’ # Which functional for the environment fragments

dalton_basis = ’aug-cc-pVDZ’ # Which basis set in Dalton calculations

response_sp = True # Do a response calculation for the Dalton/Dirac SP calculation

# of main fragment, too? (For comparison)

#===============================================#

# READ FILE #

#===============================================#

molfile = os.path.join(pyadfenv.outdir, input)

supermol = molecule(molfile, ’pdb’)

supermol.set_symmetry(’NOSYM’)

frags = supermol.separate()

#===============================================#

# IDENTIFY PNA (must be first) #

#===============================================#

pna = frags[0] # identify pna as first molecule in fragment list

pna.write(os.path.join(pyadfenv.outdir, ’pna.xyz’)) # write out pna coordinates

pna.set_symmetry(’NOSYM’)

#===============================================#

# SUPER MOL GRID #

#===============================================#

settings = adfsettings(functional=main_functional, zlmfit=True)

settings.set_integration(6.0, becke=’good’) # grid settings

settings.set_ncycles(1) # do not converge SCF, we only need the grid

settings.set_save_tapes([21, 10])

res_super_adf = adfsinglepointjob(supermol, basis=’QZ4P’,settings=settings,options=

[’TOTALENERGY’, ’NumericalQuality good’]).run() # adf calculation

agrid = adfgrid(res_super_adf) # save supermoelcular adf grid in variable
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Listing A.6: PyADF input code for pNA Part 2.

#===============================================#

# SINGLE POINT ON ADF GRID IN DALTON #

#===============================================#

env_frags_res = fragmentlist()

updated_frags = fragmentlist()

#==============================#

# a) MAIN FRAGMENT #

#==============================#

#start dalton calculation

settings = daltonsettings(method=’DFT’,functional=main_functional)

if response_sp:

response = [’*LINEAR’,’.SINGLE RESIDUE’,’.DIPLEN’,’.ROOTS’,’5’,

’.NSTART’,’10’,’.PRINT’,’4’]

res_pna = daltonsinglepointjob(pna, dalton_basis, settings=settings,

response=response).run() # response calculation of main fragment

else:

# ground-state calculation of main fragment

res_pna = daltonsinglepointjob(pna, dalton_basis, settings=settings).run()

# update fragment data in list

updated_frags.append(fragment(res_pna, pna,isfrozen=False))

#==============================#

# b) ENVIRONMENT FRAGMENTS #

#==============================#

settings = daltonsettings(method=’DFT’, functional=env_functional)

settings.set_iterations(200)

#do calculations for all fragments

for frag in frags:

if not frag == frags[0]: # all fragments except main fragment

frag.set_symmetry(’NOSYM’)

# ground-state calculation for environment fragment

frag_res = daltonsinglepointjob(frag, dalton_basis, settings=settings).run()

env_frags_res.append(frag_res)

# update fragment in list

updated_frags.append(fragment(frag_res, frag, isfrozen=True,

fdeoptions={”RELAXsave”:””}))

#=======================================================================#

# Embedding potential #

#=======================================================================#

dens_pna = res_pna.get_density(grid=agrid, order=2) # get density for pna

pot_pna = res_pna.get_potential(grid=agrid, pot=’elstat’) # get pot elstat for pna

pot_pna.get_xyzwvfile(filename=’PNA-ELSTAT-POT’) # write out elstat potential

dens_env = None

pot_env = None

old_dens = None
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Listing A.7: PyADF input code for pNA Part 3.

for res in env_frags_res:

dens_f = res.get_density(grid=agrid, order=2)

pot_f = res.get_potential(grid=agrid, pot=’elstat’)

# add up environment densities and potentials

if dens_env is None:

dens_env = dens_f

else:

dens_env = dens_env + dens_f

if pot_env is None:

pot_env = pot_f

else:

pot_env = pot_env + pot_f

#======================================#

# EMB POT SETTINGS: #

#======================================#

embed_settings = EmbedXCFunSettings()

embed_settings.set_fun_nad_xc({’BP86’: 1.0})

embed_settings.set_fun_nad_kin({’PW91k’: 1.0})

embed_settings.show_functionals()

embed_eval = EmbedXCFunEvaluator(settings=embed_settings)

embpot_pna = None

# CREATE EMBPOT FOR MAIN FRAGMENT FROM DENSITIES AND POTENTIAL

embpot_pna = embed_eval.get_emb_pot(dens_pna, dens_env, pot_env) # generate emb. potential

embpot_pna.get_xyzwvfile(filename=’EMBPOT-FIRST-EMBPOT’) # write out emb. potential

#======================================#

#======================================#

# Starting FDE cycles #

#======================================#

#======================================#

for cycle in range (1,cycles+1):

print (’ENTER FDE CYCLE’)

# SP CALC FOR MAIN FRAG WITH EMBPOT FOR MAIN FRAG

settings = daltonsettings(method=’DFT’,functional=main_functional)

settings.set_iterations(200)

res_pna = daltonsinglepointjob(pna, dalton_basis, settings=settings,

fdein=embpot_pna).run()

# update active density (MAIN) and put it in fragment list

# make all of them frozen for next loop

for f in updated_frags:

if f.get_total_molecule() == pna:

f.results = res_pna

f.isfrozen = True
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Listing A.8: PyADF input code for pNA Part 4.

#=========================================================================#

#loop over env fragments, unfreeze one at a time, create new emb pot and #

# do sp calculation with new embpot, freeze #

#=========================================================================#

settings = daltonsettings(method=’DFT’,functional=env_functional)

settings.set_iterations(200)

# IF FRAG IS TO BE RELAXED, UNFREEZE, THEN GET DATA FOR EMBPOT IN LOOP

# CREATE EMBPOT_FRAG AND DO SP CALC FOR FRAG

for f in updated_frags:

if f.has_fdeoption(”RELAXsave”):

# unfreeze -> new active fragment

f.isfrozen = False

# get data for embpot of main frag

dens_main = f.results.get_density(grid=agrid, order=2)

dens_env = None

pot_env = None

settings = daltonsettings(method=’DFT’,functional=env_functional)

settings.set_iterations(200)

# check out embpot data for all frags that are not active

# in this cycle

for frag in updated_frags:

if not frag == f:

dens_f = frag.results.get_density(grid=agrid, order=2)

pot_f = frag.results.get_potential(grid=agrid, pot=’elstat’)

if dens_env is None:

dens_env = dens_f

else:

dens_env = dens_env + dens_f

if pot_env is None:

pot_env = pot_f

else:

pot_env = pot_env + pot_f

# get emb pot for fragment

embpot_f = embed_eval.get_emb_pot(dens_main, dens_env, pot_env)

print (’got embpot data’)

# update results for fragment in list

f.results = daltonsinglepointjob(f.get_total_molecule(), dalton_basis,

settings=settings, fdein=embpot_f).run()

# freeze for next cycle

f.isfrozen = True

print (’1 ENV FRAGMENT IN CYCLE DONE’)
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Listing A.9: PyADF input code for pNA Part 5.

#===========================#

#create new embpot for MAIN #

#===========================#

#none so they don’t add up to the existing ones

dens_env = None

pot_env = None

res_pna = None

embpot_pna = None

#==================================================#

#get necessary densities and potential for emb pot #

#==================================================#

for f in updated_frags:

if not f.has_fdeoption(”RELAXsave”): # all frozen fragments

res_pna = f.results

f.isfrozen = False

if f.has_fdeoption(”RELAXsave”): # unfrozen fragment

dens_f = f.results.get_density(grid=agrid, order=2)

pot_f = f.results.get_potential(grid=agrid, pot=’elstat’)

# add up environment density and potential

if dens_env is None:

dens_env = dens_f

else:

dens_env = dens_env + dens_f

if pot_env is None:

pot_env = pot_f

else:

pot_env = pot_env + pot_f

dens_pna = res_pna.get_density(grid=agrid, order=2)

#=============================#

# CREATE EMBPOT FOR MAIN FRAG #

#=============================#

embpot_pna = embed_eval.get_emb_pot(dens_pna, dens_env, pot_env)

# unfreeze main fragment

for f in updated_frags:

if not f.has_fdeoption(”RELAXsave”):

f.isfrozen = False

print (”===========CYCLE ”, cycle, ” DONE.===========”)

#======================================#

# End of cycles #

# Final calculation for main fragment #

#======================================#

#start dalton response calculation

settings = daltonsettings(method=’DFT’,functional=main_functional)

settings.set_iterations(200)

response = [’*LINEAR’,’.SINGLE RESIDUE’,’.DIPLEN’,’.ROOTS’,’5’,’.NSTART’,

’10’,’.PRINT’,’4’]

results = daltonsinglepointjob(pna, dalton_basis, settings=settings,

fdein=embpot_pna, response=response).run()
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Listing A.10: PyADF input code for pFTAA.

import numpy

import xcfun

from pyadf.Plot.FileReaders import GridFunctionReader

from pyadf.Molecule.OBFreeMolecule import OBFreeMolecule

frag_dict = ’Frag_Dict.py’

import os, sys

sys.path.append(os.path.dirname(os.path.expanduser(frag_dict)))

from Frag_Dict import * # read in charges from Frag_Dict.py

#===============================================#

#INPUT DATA #

#===============================================#

input = ’in.pdb’

cycles = 3 # How many FDE cycles

response_sp = True #

main_functional = ’CAMB3LYP’ #

env_functional = ’B3LYP’ #

dalton_basis = ’aug-cc-pVDZ’ # Which basis set in Dalton calculations

dalton_mem = 2000

#===============================================#

# READ FILE #

#===============================================#

filename = os.path.join(pyadfenv.outdir, input)

supermol = molecule(filename, ’pdb’)

supermol.set_symmetry(’NOSYM’)

#===============================================================#

# TAKE NA ATOMS OUT AND READ BACK IN AFTER SUPERMOL SEPARATION #

#===============================================================#

na_list = []

# Check for sodium ions in supermolecule and get out.

na_in_supermol = False

print(”Check for Na in supermol.”)

na_in_supermol = any(atom.symbol == ”Na” for atom in supermol.atoms)

while na_in_supermol:

# find next item index with symbol Na in supermol atoms

idx = next((i for i, atom in enumerate(supermol.atoms) if atom.symbol == ’Na’))

# remove that item from list and add to na list

na_list.append(supermol.atoms.pop(idx))

# still na in supermol?

na_in_supermol = any(atom.symbol == ”Na” for atom in supermol.atoms)

print(”Still Na in supermol? ” , na_in_supermol)

# Reset bonds and separate fragments

supermol.guess_bonds()

frags = supermol.separate()
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Listing A.11: PyADF input code for pFTAA Part 2.

# Readd sodium ions to supermol

for na in na_list:

na.bonds = []

supermol.add_atom(na)

for na in na_list:

mol = OBFreeMolecule()

mol.add_atom(na)

mol.delete_all_bonds()

frags.append(mol)

#=================================================#

# IDENTIFY PFTAA (must be first) AND SET CHARGE #

#=================================================#

total_charge = 0

# set charge of env and add up total charge

for i, frag in enumerate(frags):

frag.set_charge(frag_charge[frag.get_formula()])

print(”DICT ”, frag_charge[frag.get_formula()])

total_charge += int(frag.get_charge())

print(”FRAG”, frag.get_formula(), ” CHARGE: ”, frag.get_charge())

frag.write(os.path.join(pyadfenv.outdir, ’frag’+str(i)+’.xyz’))

# set total charge

supermol.set_charge(total_charge)

print(”TOTAL ”, supermol.get_charge())

# identify pftaa

pftaa = frags[0]

pftaa.write(os.path.join(pyadfenv.outdir, ’pftaa.xyz’))

pftaa.set_symmetry(’NOSYM’)

#===============================================#

# SUPER MOL GRID #

#===============================================#

settings = adfsettings(functional=main_functional, zlmfit=True)

settings.set_integration(6.0, becke=’good’)

settings.set_ncycles(1) # do not converge SCF, we only need the grid

settings.set_save_tapes([21, 10])

res_super_adf = adfsinglepointjob(supermol, basis=’DZP’,settings=settings,

options=[’TOTALENERGY’, ’NumericalQuality normal’]).run()

agrid = adfgrid(res_super_adf)

num_calc -= 1

#===============================================#

# SINGLE POINT ON ADF GRID IN DALTON #

#===============================================#

env_frags_res = fragmentlist()

updated_frags = fragmentlist()
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Listing A.12: PyADF input code for pFTAA Part 3.

#==============================#

# MAIN FRAGMENT #

#==============================#

# start dalton calculation

settings = daltonsettings(method=’DFT’,functional=main_functional)

settings.set_memory(dalton_mem)

if response_sp:

response = [’*LINEAR’,’.SINGLE RESIDUE’,’.DIPLEN’,’.ROOTS’,’5’,

’.NSTART’,’10’,’.PRINT’,’4’]

res_pftaa = daltonsinglepointjob(pftaa, dalton_basis, settings=settings,

response=response).run()

else:

res_pftaa = daltonsinglepointjob(pftaa, dalton_basis, settings=settings).run()

num_calc -= 1

print(num_calc, ” calculations left.”)

updated_frags.append(fragment(res_pftaa, pftaa,isfrozen=False))

#==============================#

# ENVIRONMENT FRAGMENTS #

#==============================#

settings = daltonsettings(method=’DFT’, functional=env_functional)

settings.set_memory(dalton_mem)

for frag in frags:

if not frag == frags[0]:

frag.set_symmetry(’NOSYM’)

frag_res = daltonsinglepointjob(frag, dalton_basis, settings=settings).run()

num_calc -= 1

print(num_calc, ” calculations left.”)

env_frags_res.append(frag_res)

updated_frags.append(fragment(frag_res, frag,

isfrozen=True,fdeoptions={”RELAXsave”:””}))

#=======================================================================#

# PyEmbed part #

# calculate FDE embedding potential with PyEmbed and import it in Dirac #

#=======================================================================#

dens_pftaa = res_pftaa.get_density(grid=agrid, order=2)

pot_pftaa = res_pftaa.get_potential(grid=agrid, pot=’elstat’)

pot_pftaa.get_xyzwvfile(filename=’PNA-POT’)

dens_env = None

pot_env = None

old_dens = None

for res in env_frags_res:

dens_f = res.get_density(grid=agrid, order=2)

pot_f = res.get_potential(grid=agrid, pot=’elstat’)

if dens_env is None:

dens_env = dens_f

else:

dens_env = dens_env + dens_f
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Listing A.13: PyADF input code for pFTAA Part 4.

if pot_env is None:

pot_env = pot_f

else:

pot_env = pot_env + pot_f

#======================================#

# EMB POT SETTINGS: #

#======================================#

embed_settings = EmbedXCFunSettings()

embed_settings.set_fun_nad_xc({’BP86’: 1.0})

embed_settings.set_fun_nad_kin({’PW91k’: 1.0})

embed_settings.show_functionals()

embed_eval = EmbedXCFunEvaluator(settings=embed_settings)

embpot_pftaa = None

#CREATE EMBPOT FOR MAIN FRAGMENT FROM DENSITIES AND POTENTIAL

embpot_pftaa = embed_eval.get_emb_pot(dens_pftaa, dens_env, pot_env)

embpot_pftaa.get_xyzwvfile(filename=’EMBPOT-PNA-FINAL’)

print (’ENTER FDE CYCLE’)

#======================================#

# Starting FDE cycles #

#======================================#

for cycle in range (1,cycles+1):

#SP CALC FOR MAIN FRAG WITH EMBPOT FOR MAIN FRAG

settings = daltonsettings(method=’DFT’,functional=main_functional)

settings.set_memory(dalton_mem)

res_pftaa = daltonsinglepointjob(pftaa, dalton_basis, settings=settings,

fdein=embpot_pftaa).run()

num_calc -= 1

print(num_calc, ” calculations left.”)

# update active dens and put it in fraglist, make all frozen for next loop

for f in updated_frags:

if f.get_total_molecule() == pftaa:

f.results = res_pftaa

f.isfrozen = True

#===========================================================================#

# loop over env fragments, unfreeze one at a time, #

# create new emb pot and do sp calculation with new embpot, freeze #

#===========================================================================#

settings = daltonsettings(method=’DFT’,functional=env_functional)

settings.set_memory(dalton_mem)

# IF FRAG IS TO BE RELAXED, UNFREEZE, THEN GET DATA FOR EMBPOT IN LOOP

# CREATE EMBPOT_FRAG AND DO SP CALC FOR FRAG

for f in updated_frags:

if f.has_fdeoption(”RELAXsave”):

f.isfrozen = False # unfreeze -> new active fragment

dens_main = f.results.get_density(grid=agrid, order=2) # get data of main frag
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Listing A.14: PyADF input code for pFTAA Part 5.

dens_env = None

pot_env = None

settings = daltonsettings(method=’DFT’,functional=env_functional)

settings.set_memory(dalton_mem)

# check out embpot data for all frags not active in this cycle

for frag in updated_frags:

if not frag == f:

dens_f = frag.results.get_density(grid=agrid, order=2)

pot_f = frag.results.get_potential(grid=agrid, pot=’elstat’)

if dens_env is None:

dens_env = dens_f

else:

dens_env = dens_env + dens_f

if pot_env is None:

pot_env = pot_f

else:

pot_env = pot_env + pot_f

embpot_f = embed_eval.get_emb_pot(dens_main, dens_env, pot_env) # get frag embpot

print (’got embpot data’)

# update results for fragment in list

f.results = daltonsinglepointjob(f.get_total_molecule(), dalton_basis,

settings=settings, fdein=embpot_f).run()

num_calc -= 1

print(num_calc, ” calculations left.”)

f.isfrozen = True # freeze for next cycle

print (’1 ENV FRAGMENT IN CYCLE DONE’)

#===========================#

#create embpot for pftaa #

#===========================#

# none so they don’t add up to the existing ones

dens_env = None

pot_env = None

res_pftaa = None

embpot_pftaa = None

#==================================================#

#get necessary densities and potential for emb pot #

#==================================================#

for f in updated_frags:

if not f.has_fdeoption(”RELAXsave”):

res_pftaa = f.results

f.isfrozen = False

if f.has_fdeoption(”RELAXsave”):

dens_f = f.results.get_density(grid=agrid, order=2)

pot_f = f.results.get_potential(grid=agrid, pot=’elstat’)

if dens_env is None:

dens_env = dens_f

else:

dens_env = dens_env + dens_f
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Listing A.15: PyADF input code for pFTAA Part 6.

if pot_env is None:

pot_env = pot_f

else:

pot_env = pot_env + pot_f

dens_pftaa = res_pftaa.get_density(grid=agrid, order=2)

#=============================#

# CREATE EMBPOT FOR MAIN FRAG #

#=============================#

embpot_pftaa = embed_eval.get_emb_pot(dens_pftaa, dens_env, pot_env)

for f in updated_frags: # unfreeze main fragment

if not f.has_fdeoption(”RELAXsave”):

f.isfrozen = False

print (”====CYCLE ”, cycle, ” DONE.====”)

#======================================#

# End of cycles #

#======================================#

# Final calculation for main fragment #

#======================================#

settings = daltonsettings(method=’DFT’,functional=main_functional)

settings.set_memory(dalton_mem)

response = [’*LINEAR’,’.SINGLE RESIDUE’,’.DIPLEN’,’.ROOTS’,’5’,

’.NSTART’,’10’,’.PRINT’,’4’]

results = daltonsinglepointjob(pftaa, dalton_basis, settings=settings,

fdein=embpot_pftaa, response=response).run()

Listing A.16: Charge dictionary for pFTAA“Frag_Dict.py”

frag_charge={’O1H2’ :’0’ ,

’Na1’ :’1’ ,

’S5O8C26H12’ :’-4’ ,

’S5O9Na1C26H13’ :’-3’ ,

’O2H6C6N2’ :’0’

}
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A.2. Numerical Comparison

A.2.1. Functional Evaluation

Supermolecular Reference Calculation for pNA in a 3 Å Environment with a

aug-cc-pVDZ Basis Set

Table A.1.: Excitation energies and oscillator strengths and their average obtained for the different

snapshots of pNA in a 3 Å water environment calculated with CAM-B3LYP/aug-cc-pVDZ.

On the left 100% Fock exchange was employed in the calculations, on the right the default

CAM-B3LYP was employed. The presented values are presented for the transition with the

highest oscillator strength.

Snap. Trans. 𝐸ex / eV fL

1 1 3.82 0.2352

2 1 3.42 0.1727

3 1 3.84 0.4503

4 1 3.88 0.2944

5 1 4.06 0.1341

6 1 3.99 0.2885

7 1 4.51 0.3695

∅ - 3.96 0.2972

Snap. Trans. 𝐸ex / eV fL

1 1 3.48 0.2109

2 1 3.09 0.1598

3 1 3.56 0.4101

4 1 3.54 0.2729

5 2 3.94 0.2749

6 1 3.64 0.2666

7 1 4.17 0.3529

∅ - 3.63 0.2783

Supermolecular Reference Calculation for pNA in a 3 Å Environment with a

aug-cc-pVTZ Basis Set

Table A.2.: Excitation energies and oscillator strengths and their average obtained for the different

snapshots of pNA in a 3 Å water environment calculated with CAM-B3LYP/aug-cc-pVTZ. On

the left 100% Fock exchange was employed in the calculations, on the right the default

CAM-B3LYP was employed. The presented values are presented for the transition with the

highest oscillator strength.

Snap. Trans. 𝐸ex / eV fL

1 1 3.84 0.2371

2 1 3.44 0.1735

3 1 3.86 0.4496

4 1 3.89 0.2940

5 2 4.26 0.2619

6 1 4.00 0.2899

7 1 4.52 0.3693

∅ - 3.97 0.2965

Snap. Trans. 𝐸ex / eV fL

1 1 3.50 0.2125

2 1 3.11 0.1606

3 1 3.57 0.4102

4 1 3.55 0.2729

5 2 3.95 0.2689

6 1 3.65 0.2680

7 1 4.18 0.3534

∅ - 3.64 0.2781
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A.2.2. para-Nitroaniline

The calculated excitation energies (in eV) and oscillator strengths for the models NOPOL,

GSPOL and PE DPOL of the strongest 𝜋 → 𝜋∗ transition are given. Calculations were done
with PE and FDE embedding models for different configurations of pNA and pFTAA. The

definition of the different shifts (ΔNOPOL, ΔGSPOL, ΔDPOL, Δ DPOL+EEF, and ΔREF) as well
as contributions (ΔNOPOL, ΔΔGSPOL, ΔΔDPOL, ΔΔDPOL+EEF, and ΔΔ EEF) are described in

Fig. 4.2.4.

A.2.2.1. Excitation Energies and S-Shifts for para-Nitroaniline
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Figure A.2.: Contributions to the S-shifts and their average for different configurations of pNA in 3, 4,5
and 12 Å environments of water obtained from a MD simulation and subsequently calculated

in a PE framework and different orders of polarization contributions obtained in calculations

with aug-cc-pVDZ and aug-cc-pVTZ basis sets. Reprinted with permission from Jansen, M.;

Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703. Copyright

2023 American Chemical Society.
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Figure A.3.: Contributions to the S-shifts and their average for different configurations of pNA in 3
and 4 Å water environments of water obtained from a MD simulation and subsequently

calculated in a PE and FDE framework and different orders of polarization contributions

obtained in calculations with aug-cc-pVDZ and aug-cc-pVTZ basis sets. Reprinted with

permission from Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A

2023, 127, 5689–5703. Copyright 2023 American Chemical Society.
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Calculations in a 3 Å water environment

Table A.3.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pNA in aug-cc-pVDZ quality and a 3 Å

water environment obtained with a FDE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex(FDE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL ΔGSPOL ΔDPOL REF Δ REF

Snap 1 4.68 3.56 -1.12 3.52 -0.04 -1.16 -1.16 3.48 -1.19

Snap 2 4.51 3.17 -1.35 3.13 -0.04 -1.38 -1.38 3.09 -1.42

Snap 3 4.19 3.66 -0.52 3.62 -0.05 -0.57 -0.57 3.56 -0.62

Snap 4 4.01 3.64 -0.37 3.59 -0.05 -0.42 -0.42 3.54 -0.47

Snap 5 4.25 4.01 -0.24 3.97 -0.04 -0.29 -0.29 3.94 -0.31

Snap 6 4.54 3.73 -0.81 3.68 -0.05 -0.86 -0.86 3.64 -0.90

Snap 7 4.53 4.26 -0.27 4.23 -0.03 -0.30 -0.30 4.17 -0.36

∅ 4.39 3.72 -0.67 3.67 -0.04 -0.71 -0.71 3.63 -0.75

Table A.4.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pNA in aug-cc-pVDZ quality and a 3 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex(PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL REF Δ REF

Snap 1 4.68 3.55 -1.13 3.50 -0.04 3.48 -0.02 -1.17 -1.19 3.48 -1.19

Snap 2 4.51 3.14 -1.37 3.11 -0.04 3.09 -0.02 -1.41 -1.43 3.09 -1.42

Snap 3 4.19 3.65 -0.53 3.60 -0.06 3.56 -0.04 -0.59 -0.63 3.56 -0.62

Snap 4 4.01 3.61 -0.40 3.56 -0.04 3.53 -0.04 -0.45 -0.49 3.54 -0.47

Snap 5 4.25 3.99 -0.26 3.95 -0.04 3.93 -0.03 -0.30 -0.32 3.94 -0.31

Snap 6 4.54 3.72 -0.82 3.66 -0.06 3.63 -0.03 -0.88 -0.91 3.64 -0.90

Snap 7 4.53 4.26 -0.27 4.22 -0.04 4.19 -0.03 -0.31 -0.33 4.17 -0.36

∅ 4.39 3.70 -0.68 3.66 -0.05 3.63 -0.03 -0.73 -0.76 3.63 -0.75
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Table A.5.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pNA in aug-cc-pVTZ quality and a 3 Å water

environment obtained with a FDE embedding model. Reprinted with permission from Jansen,

M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex(FDE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL ΔGSPOL ΔDPOL REF Δ REF

Snap 1 4.68 3.57 -1.11 3.53 -0.04 -1.16 -1.16 3.50 -1.19

Snap 2 4.52 3.18 -1.34 3.14 -0.04 -1.39 -1.39 3.11 -1.41

Snap 3 4.19 3.67 -0.52 3.62 -0.05 -0.57 -0.57 3.57 -0.62

Snap 4 4.02 3.64 -0.37 3.59 -0.05 -0.43 -0.43 3.55 -0.47

Snap 5 4.26 4.01 -0.24 3.97 -0.04 -0.29 -0.29 3.95 -0.31

Snap 6 4.54 3.74 -0.80 3.68 -0.05 -0.86 -0.86 3.65 -0.89

Snap 7 4.53 4.27 -0.26 4.23 -0.04 -0.30 -0.30 4.18 -0.35

∅ 4.39 3.73 -0.67 3.68 -0.05 -0.71 -0.71 3.64 -0.75

Table A.6.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pNA in aug-cc-pVTZ quality and a 3 Å water

environment obtained with a PE embedding model. Reprinted with permission from Jansen,

M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex(PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL REF Δ REF

Snap 1 4.68 3.56 -1.12 3.52 -0.05 3.49 -0.02 -1.17 -1.19 3.50 -1.19

Snap 2 4.52 3.15 -1.37 3.10 -0.04 3.08 -0.02 -1.42 -1.44 3.11 -1.41

Snap 3 4.19 3.65 -0.54 3.60 -0.06 3.56 -0.04 -0.60 -0.63 3.57 -0.62

Snap 4 4.02 3.61 -0.41 3.56 -0.05 3.52 -0.04 -0.46 -0.50 3.55 -0.47

Snap 5 4.26 4.00 -0.25 3.96 -0.04 3.94 -0.03 -0.29 -0.32 3.95 -0.31

Snap 6 4.54 3.72 -0.82 3.66 -0.07 3.63 -0.03 -0.88 -0.91 3.65 -0.89

Snap 7 4.53 4.26 -0.27 4.22 -0.04 4.20 -0.03 -0.31 -0.33 4.18 -0.35

∅ 4.39 3.71 -0.68 3.66 -0.05 3.63 -0.03 -0.73 -0.76 3.64 -0.75
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Calculations in a 4 Å water environment

Table A.7.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pNA in aug-cc-pVDZ quality and a 4 Å

water environment obtained with a FDE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex(FDE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL ΔGSPOL ΔDPOL REF Δ REF

Snap 1 4.68 3.49 -1.18 3.43 -0.07 -1.25 -1.25 3.38 -1.30

Snap 2 4.51 3.22 -1.29 3.18 -0.04 -1.33 -1.33 3.15 -1.36

Snap 3 4.19 3.57 -0.61 3.50 -0.07 -0.68 -0.68 3.43 -0.76

Snap 4 4.01 3.58 -0.43 3.51 -0.08 -0.50 -0.50 3.45 -0.56

Snap 5 4.25 4.01 -0.24 3.96 -0.05 -0.29 -0.29 3.93 -0.32

Snap 6 4.54 3.68 -0.86 3.61 -0.07 -0.92 -0.92 3.56 -0.98

Snap 7 4.53 4.22 -0.31 4.17 -0.05 -0.36 -0.36 4.10 -0.43

∅ 4.39 3.68 -0.70 3.62 -0.06 -0.76 -0.76 3.57 -0.81

Table A.8.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pNA in aug-cc-pVDZ quality and a 4 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex(PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL REF Δ REF

Snap 1 4.68 3.49 -1.19 3.41 -0.08 3.38 -0.03 -1.26 -1.30 3.38 -1.30

Snap 2 4.51 3.20 -1.31 3.16 -0.04 3.14 -0.02 -1.35 -1.38 3.15 -1.36

Snap 3 4.19 3.57 -0.62 3.47 -0.09 3.41 -0.06 -0.71 -0.77 3.43 -0.76

Snap 4 4.01 3.55 -0.46 3.47 -0.08 3.42 -0.05 -0.54 -0.59 3.45 -0.56

Snap 5 4.25 4.00 -0.25 3.96 -0.04 3.92 -0.04 -0.30 -0.33 3.93 -0.32

Snap 6 4.54 3.67 -0.87 3.58 -0.09 3.54 -0.04 -0.96 -1.00 3.56 -0.98

Snap 7 4.53 4.22 -0.31 4.16 -0.06 4.12 -0.04 -0.37 -0.41 4.10 -0.43

∅ 4.39 3.67 -0.71 3.60 -0.07 3.56 -0.04 -0.78 -0.82 3.57 -0.81

146



A.2. Numerical Comparison

Table A.9.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pNA in aug-cc-pVTZ quality and a 4 Å water

environment obtained with a FDE embedding model. Reprinted with permission from Jansen,

M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex(FDE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL ΔGSPOL ΔDPOL REF Δ REF

Snap 1 4.68 3.51 -1.18 3.44 -0.07 -1.25 -1.25 3.40 -1.29

Snap 2 4.52 3.23 -1.29 3.19 -0.05 -1.34 -1.34 3.16 -1.36

Snap 3 4.19 3.58 -0.62 3.50 -0.07 -0.69 -0.69 3.44 -0.75

Snap 4 4.02 3.59 -0.43 3.51 -0.08 -0.51 -0.51 3.46 -0.56

Snap 5 4.26 4.02 -0.24 3.97 -0.05 -0.29 -0.29 3.94 -0.32

Snap 6 4.54 3.69 -0.85 3.61 -0.07 -0.93 -0.93 3.57 -0.97

Snap 7 4.53 4.23 -0.31 4.17 -0.05 -0.36 -0.36 4.11 -0.42

∅ 4.39 3.69 -0.70 3.63 -0.06 -0.77 -0.77 3.58 -0.81

Table A.10.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pNA in aug-cc-pVTZ quality and a 4 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex(PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL REF Δ REF

Snap 1 4.68 3.50 -1.18 3.42 -0.08 3.39 -0.03 -1.26 -1.30 3.40 -1.29

Snap 2 4.52 3.21 -1.32 3.16 -0.05 3.13 -0.03 -1.36 -1.39 3.16 -1.36

Snap 3 4.19 3.57 -0.62 3.47 -0.10 3.41 -0.06 -0.72 -0.78 3.44 -0.75

Snap 4 4.02 3.55 -0.46 3.47 -0.09 3.42 -0.05 -0.55 -0.60 3.46 -0.56

Snap 5 4.26 4.01 -0.24 3.96 -0.05 3.93 -0.04 -0.29 -0.33 3.94 -0.32

Snap 6 4.54 3.67 -0.87 3.58 -0.09 3.54 -0.04 -0.96 -1.00 3.57 -0.97

Snap 7 4.53 4.23 -0.31 4.17 -0.06 4.13 -0.04 -0.37 -0.41 4.11 -0.42

∅ 4.39 3.68 -0.71 3.60 -0.07 3.56 -0.04 -0.79 -0.83 3.58 -0.81
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A. Local Optical Properties

PE calculations in a 5 Å water environment

Table A.11.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pNA in aug-cc-pVDZ quality and a 5 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex(PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL
Snap 1 4.68 3.44 -1.23 3.35 -0.09 3.31 -0.04 -1.33 -1.36

Snap 2 4.51 3.12 -1.39 3.05 -0.07 3.02 -0.03 -1.46 -1.49

Snap 3 4.19 3.53 -0.66 3.41 -0.11 3.35 -0.06 -0.77 -0.84

Snap 4 4.01 3.50 -0.51 3.40 -0.10 3.35 -0.05 -0.61 -0.66

Snap 5 4.25 3.99 -0.27 3.93 -0.05 3.90 -0.03 -0.32 -0.36

Snap 6 4.54 3.57 -0.97 3.46 -0.11 3.41 -0.05 -1.07 -1.13

Snap 7 4.53 4.22 -0.30 4.16 -0.06 4.12 -0.04 -0.36 -0.40

∅ 4.39 3.62 -0.76 3.54 -0.09 3.49 -0.04 -0.85 -0.89

Table A.12.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pNA in aug-cc-pVTZ quality and a 5 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex(PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL
Snap 1 4.68 3.44 -1.24 3.35 -0.09 3.31 -0.04 -1.34 -1.37

Snap 2 4.52 3.12 -1.40 3.05 -0.07 3.02 -0.03 -1.47 -1.50

Snap 3 4.19 3.53 -0.67 3.41 -0.11 3.35 -0.06 -0.78 -0.84

Snap 4 4.02 3.50 -0.51 3.40 -0.10 3.35 -0.05 -0.61 -0.67

Snap 5 4.26 3.99 -0.27 3.93 -0.05 3.90 -0.03 -0.32 -0.36

Snap 6 4.54 3.57 -0.97 3.46 -0.11 3.41 -0.05 -1.08 -1.13

Snap 7 4.53 4.22 -0.31 4.16 -0.06 4.12 -0.04 -0.37 -0.41

∅ 4.39 3.62 -0.77 3.54 -0.09 3.49 -0.04 -0.85 -0.90
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A.2. Numerical Comparison

PE calculations in a 12 Å water environment

Table A.13.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pNA in aug-cc-pVDZ quality and a 12 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex(PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL
Snap 1 4.68 3.47 -1.21 3.37 -0.10 3.33 -0.04 -1.31 -1.35

Snap 2 4.51 3.08 -1.44 2.94 -0.13 2.90 -0.04 -1.57 -1.61

Snap 3 4.19 3.51 -0.67 3.39 -0.12 3.31 -0.08 -0.79 -0.87

Snap 4 4.01 3.33 -0.69 3.17 -0.15 3.10 -0.07 -0.84 -0.91

Snap 5 4.25 3.91 -0.34 3.70 -0.22 3.65 -0.05 -0.55 -0.60

Snap 6 4.54 3.54 -1.00 3.40 -0.13 3.34 -0.06 -1.13 -1.19

Snap 7 4.53 4.01 -0.52 3.91 -0.10 3.86 -0.06 -0.61 -0.67

∅ 4.39 3.55 -0.84 3.41 -0.14 3.36 -0.06 -0.97 -1.03

Table A.14.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pNA in aug-cc-pVTZ quality and a 12 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex(PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL
Snap 1 4.68 3.49 -1.20 3.38 -0.11 3.33 -0.04 -1.31 -1.35

Snap 2 4.52 3.08 -1.44 2.94 -0.14 2.89 -0.04 -1.58 -1.63

Snap 3 4.19 3.52 -0.67 3.39 -0.13 3.31 -0.08 -0.80 -0.88

Snap 4 4.02 3.33 -0.69 3.16 -0.16 3.09 -0.08 -0.85 -0.93

Snap 5 4.26 3.93 -0.33 3.71 -0.22 3.66 -0.05 -0.55 -0.60

Snap 6 4.54 3.54 -1.00 3.40 -0.14 3.34 -0.06 -1.14 -1.20

Snap 7 4.53 4.02 -0.51 3.92 -0.10 3.86 -0.06 -0.61 -0.67

∅ 4.39 3.56 -0.84 3.41 -0.14 3.35 -0.06 -0.98 -1.04
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A. Local Optical Properties

A.2.2.2. Oscillator Strengths and F -shifts for para-nitroaniline
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Figure A.4.: Contributions to the F -shifts and their average for different configurations of pNA in 3 and
4 Å water environments of water obtained from aMD simulation and subsequently calculated

in a PE and FDE framework, different orders of polarization contributions and effective

external field (EEF) effects obtained in calculations with aug-cc-pVDZ and aug-cc-pVTZ basis

sets. Reprinted with permission from Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J.

Phys. Chem. A 2023, 127, 5689–5703. Copyright 2023 American Chemical Society.
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A.2. Numerical Comparison

Calculations in a 3 Å water environment

Table A.15.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pNA in aug-cc-pVDZ quality and a 3 Å

water environment obtained with a FDE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

ΔfL (FDE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL ΔGSPOL Δ DPOL REF Δ REF

Snap 1 0.129 0.180 0.052 0.187 0.007 0.059 0.059 0.211 0.082

Snap 2 0.159 0.142 -0.017 0.149 0.007 -0.010 -0.010 0.160 0.001

Snap 3 0.301 0.362 0.062 0.374 0.011 0.073 0.073 0.410 0.110

Snap 4 0.127 0.230 0.104 0.247 0.017 0.120 0.120 0.273 0.146

Snap 5 0.261 0.307 0.046 0.291 -0.017 0.030 0.030 0.275 0.014

Snap 6 0.273 0.215 -0.058 0.245 0.030 -0.027 -0.027 0.267 -0.006

Snap 7 0.306 0.255 -0.051 0.301 0.046 -0.004 -0.004 0.353 0.047

∅ 0.222 0.242 0.020 0.256 0.015 0.034 0.034 0.278 0.056

Table A.16.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pNA in aug-cc-pVDZ quality and a 3 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

ΔfL (PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL DPOL+EEF ΔΔ EEF ΔGSPOL ΔDPOL ΔDPOL+EEF REF Δ REF

Snap 1 0.129 0.182 0.053 0.189 0.007 0.205 0.016 0.210 0.005 0.060 0.077 0.081 0.211 0.082

Snap 2 0.159 0.143 -0.016 0.150 0.007 0.165 0.015 0.162 -0.004 -0.009 0.006 0.003 0.160 0.001

Snap 3 0.301 0.363 0.063 0.376 0.013 0.401 0.025 0.410 0.009 0.076 0.101 0.109 0.410 0.110

Snap 4 0.127 0.235 0.108 0.250 0.015 0.282 0.032 0.273 -0.009 0.123 0.155 0.146 0.273 0.146

Snap 5 0.261 0.309 0.048 0.291 -0.017 0.296 0.005 0.299 0.003 0.030 0.035 0.038 0.275 0.014

Snap 6 0.273 0.228 -0.045 0.258 0.030 0.279 0.022 0.273 -0.006 -0.015 0.007 0.000 0.267 -0.006

Snap 7 0.306 0.259 -0.046 0.307 0.047 0.347 0.040 0.357 0.010 0.001 0.041 0.051 0.353 0.047

∅ 0.222 0.246 0.024 0.260 0.014 0.282 0.022 0.283 0.001 0.038 0.060 0.061 0.278 0.056
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A. Local Optical Properties

Table A.17.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pNA in aug-cc-pVTZ quality and a 3 Å

water environment obtained with a FDE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

ΔfL (FDE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL ΔGSPOL ΔDPOL REF Δ REF

Snap 1 0.129 0.182 0.053 0.189 0.008 0.061 0.061 0.213 0.084

Snap 2 0.160 0.143 -0.017 0.151 0.008 -0.009 -0.009 0.161 0.001

Snap 3 0.297 0.363 0.066 0.375 0.012 0.078 0.078 0.410 0.113

Snap 4 0.119 0.233 0.113 0.249 0.017 0.130 0.130 0.273 0.153

Snap 5 0.256 0.305 0.050 0.285 -0.020 0.029 0.029 0.269 0.013

Snap 6 0.271 0.219 -0.051 0.250 0.031 -0.020 -0.020 0.268 -0.003

Snap 7 0.304 0.263 -0.040 0.308 0.045 0.004 0.004 0.353 0.050

∅ 0.219 0.244 0.025 0.258 0.014 0.039 0.039 0.278 0.059

Table A.18.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pNA in aug-cc-pVTZ quality and a 3 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

ΔfL (PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL DPOL+EEF ΔΔ EEF ΔGSPOL Δ DPOL ΔDPOL+EEF REF Δ REF

Snap 1 0.129 0.184 0.055 0.191 0.008 0.209 0.017 0.213 0.004 0.063 0.080 0.084 0.213 0.084

Snap 2 0.160 0.145 -0.015 0.152 0.007 0.168 0.016 0.164 -0.004 -0.008 0.008 0.004 0.161 0.001

Snap 3 0.297 0.365 0.068 0.377 0.012 0.404 0.026 0.412 0.008 0.080 0.106 0.115 0.410 0.113

Snap 4 0.119 0.236 0.116 0.251 0.015 0.285 0.034 0.275 -0.010 0.132 0.166 0.156 0.273 0.153

Snap 5 0.256 0.307 0.051 0.287 -0.020 0.290 0.003 0.293 0.003 0.031 0.034 0.037 0.269 0.013

Snap 6 0.271 0.234 -0.037 0.263 0.029 0.285 0.022 0.279 -0.006 -0.008 0.015 0.008 0.268 -0.003

Snap 7 0.304 0.271 -0.033 0.314 0.043 0.354 0.040 0.363 0.009 0.010 0.050 0.059 0.353 0.050

∅ 0.219 0.249 0.029 0.262 0.014 0.285 0.023 0.286 0.001 0.043 0.066 0.066 0.278 0.059
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A.2. Numerical Comparison

Calculations in a 4 Å water environment

Table A.19.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pNA in aug-cc-pVDZ quality and a 4 Å

water environment obtained with a FDE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

ΔfL (FDE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL Δ GSPOL Δ DPOL REF Δ REF

Snap 1 0.129 0.190 0.062 0.200 0.010 0.071 0.071 0.209 0.081

Snap 2 0.159 0.137 -0.023 0.145 0.008 -0.015 -0.015 0.152 -0.007

Snap 3 0.301 0.376 0.076 0.388 0.012 0.088 0.088 0.419 0.118

Snap 4 0.127 0.252 0.125 0.268 0.016 0.141 0.141 0.286 0.159

Snap 5 0.261 0.308 0.047 0.293 -0.014 0.032 0.032 0.266 0.005

Snap 6 0.273 0.241 -0.032 0.269 0.028 -0.004 -0.004 0.285 0.012

Snap 7 0.306 0.299 -0.006 0.329 0.030 0.023 0.023 0.354 0.048

∅ 0.222 0.258 0.035 0.270 0.013 0.048 0.048 0.282 0.059

Table A.20.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pNA in aug-cc-pVDZ quality and a 4 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

ΔfL (PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL DPOL+EEF ΔΔ EEF Δ GSPOL ΔDPOL Δ DPOL+EEF REF Δ REF

Snap 1 0.129 0.192 0.064 0.203 0.011 0.228 0.024 0.208 -0.020 0.075 0.099 0.079 0.209 0.081

Snap 2 0.159 0.139 -0.021 0.146 0.007 0.164 0.018 0.152 -0.012 -0.013 0.005 -0.007 0.152 -0.007

Snap 3 0.301 0.376 0.075 0.392 0.016 0.433 0.041 0.420 -0.013 0.092 0.133 0.119 0.419 0.118

Snap 4 0.127 0.256 0.129 0.273 0.017 0.311 0.038 0.291 -0.020 0.146 0.184 0.164 0.286 0.159

Snap 5 0.261 0.309 0.048 0.297 -0.013 0.308 0.011 0.292 -0.016 0.036 0.047 0.031 0.266 0.005

Snap 6 0.273 0.251 -0.022 0.281 0.030 0.314 0.033 0.288 -0.026 0.008 0.041 0.015 0.285 0.012

Snap 7 0.306 0.303 -0.003 0.336 0.034 0.382 0.045 0.366 -0.016 0.031 0.076 0.060 0.354 0.048

∅ 0.222 0.261 0.039 0.275 0.015 0.306 0.030 0.288 -0.018 0.053 0.083 0.066 0.282 0.059
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A. Local Optical Properties

Table A.21.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pNA in aug-cc-pVTZ quality and a 4 Å

water environment obtained with a FDE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

ΔfL (FDE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL ΔGSPOL ΔDPOL REF Δ REF

Snap 1 0.129 0.192 0.063 0.202 0.010 0.073 0.073 0.211 0.082

Snap 2 0.160 0.138 -0.022 0.147 0.009 -0.013 -0.013 0.153 -0.007

Snap 3 0.297 0.377 0.080 0.389 0.013 0.092 0.092 0.419 0.122

Snap 4 0.119 0.253 0.133 0.269 0.016 0.150 0.150 0.286 0.166

Snap 5 0.256 0.306 0.050 0.288 -0.018 0.032 0.032 0.261 0.006

Snap 6 0.271 0.246 -0.025 0.274 0.028 0.003 0.003 0.286 0.015

Snap 7 0.304 0.304 0.001 0.333 0.029 0.030 0.030 0.353 0.050

∅ 0.219 0.259 0.040 0.272 0.012 0.052 0.052 0.281 0.062

Table A.22.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pNA in aug-cc-pVTZ quality and a 4 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

ΔfL (PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL DPOL+EEF ΔΔ EEF ΔGSPOL ΔDPOL ΔDPOL+EEF REF Δ REF

Snap 1 0.129 0.194 0.065 0.206 0.011 0.232 0.026 0.211 -0.021 0.077 0.103 0.082 0.211 0.082

Snap 2 0.160 0.140 -0.020 0.148 0.008 0.167 0.019 0.155 -0.012 -0.012 0.008 -0.005 0.153 -0.007

Snap 3 0.297 0.377 0.080 0.394 0.016 0.436 0.043 0.422 -0.014 0.096 0.139 0.125 0.419 0.122

Snap 4 0.119 0.256 0.136 0.274 0.018 0.314 0.040 0.292 -0.022 0.154 0.194 0.173 0.286 0.166

Snap 5 0.256 0.307 0.052 0.293 -0.015 0.302 0.009 0.285 -0.017 0.037 0.046 0.029 0.261 0.006

Snap 6 0.271 0.257 -0.014 0.286 0.029 0.320 0.034 0.293 -0.027 0.015 0.049 0.022 0.286 0.015

Snap 7 0.304 0.309 0.005 0.341 0.032 0.388 0.047 0.370 -0.018 0.037 0.084 0.066 0.353 0.050

∅ 0.219 0.263 0.044 0.277 0.014 0.308 0.031 0.290 -0.019 0.058 0.089 0.070 0.281 0.062
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PE calculations in aug-cc-pVDZ quality in a 5 Å water environment

Table A.23.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pNA in aug-cc-pVDZ quality and a 5 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

ΔfL (PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL
Snap 1 0.129 0.199 0.070 0.211 0.012 0.239 0.028 0.082 0.110

Snap 2 0.159 0.152 -0.007 0.163 0.011 0.185 0.022 0.004 0.026

Snap 3 0.301 0.381 0.081 0.401 0.019 0.446 0.045 0.100 0.146

Snap 4 0.127 0.263 0.136 0.281 0.018 0.322 0.042 0.154 0.195

Snap 5 0.261 0.303 0.041 0.268 -0.035 0.257 -0.011 0.007 -0.004

Snap 6 0.273 0.278 0.005 0.303 0.025 0.341 0.038 0.030 0.069

Snap 7 0.306 0.297 -0.009 0.335 0.038 0.383 0.049 0.029 0.078

∅ 0.222 0.268 0.045 0.280 0.013 0.311 0.030 0.058 0.088

Table A.24.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pNA in aug-cc-pVTZ quality and a 5 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

ΔfL (PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL
Snap 1 0.129 0.199 0.070 0.211 0.012 0.239 0.028 0.082 0.110

Snap 2 0.160 0.152 -0.008 0.163 0.011 0.185 0.022 0.003 0.025

Snap 3 0.297 0.381 0.084 0.401 0.019 0.446 0.045 0.104 0.149

Snap 4 0.119 0.263 0.144 0.281 0.018 0.322 0.042 0.161 0.203

Snap 5 0.256 0.303 0.047 0.268 -0.035 0.257 -0.011 0.012 0.002

Snap 6 0.271 0.278 0.008 0.303 0.025 0.341 0.038 0.033 0.071

Snap 7 0.304 0.297 -0.007 0.335 0.038 0.383 0.049 0.031 0.080

∅ 0.219 0.268 0.048 0.280 0.013 0.311 0.030 0.061 0.091
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PE calculations in aug-cc-pVDZ quality in a 12 Å water environment

Table A.25.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pNA in aug-cc-pVDZ quality and a 12 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

ΔfL (PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL
Snap 1 0.129 0.194 0.065 0.207 0.013 0.239 0.032 0.079 0.111

Snap 2 0.159 0.158 -0.001 0.177 0.019 0.205 0.027 0.018 0.045

Snap 3 0.301 0.382 0.082 0.403 0.021 0.457 0.054 0.102 0.156

Snap 4 0.127 0.289 0.162 0.311 0.022 0.362 0.050 0.184 0.235

Snap 5 0.261 0.236 -0.026 0.230 -0.005 0.314 0.084 -0.031 0.053

Snap 6 0.273 0.286 0.013 0.313 0.027 0.358 0.045 0.040 0.085

Snap 7 0.306 0.355 0.049 0.365 0.011 0.419 0.053 0.060 0.113

∅ 0.222 0.271 0.049 0.287 0.015 0.336 0.049 0.065 0.114

Table A.26.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pNA in aug-cc-pVTZ quality and a 12 Å

water environment obtained with a PE embedding model. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

ΔfL (PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL
Snap 1 0.129 0.196 0.067 0.210 0.014 0.244 0.034 0.081 0.115

Snap 2 0.160 0.160 0.000 0.179 0.020 0.208 0.029 0.020 0.048

Snap 3 0.297 0.383 0.086 0.404 0.021 0.460 0.056 0.107 0.163

Snap 4 0.119 0.289 0.170 0.313 0.023 0.366 0.053 0.193 0.246

Snap 5 0.256 0.232 -0.024 0.237 0.005 0.324 0.087 -0.018 0.068

Snap 6 0.271 0.289 0.018 0.315 0.026 0.362 0.047 0.045 0.091

Snap 7 0.304 0.357 0.053 0.368 0.011 0.424 0.056 0.064 0.120

∅ 0.219 0.272 0.053 0.289 0.017 0.341 0.052 0.070 0.122

156



A.2. Numerical Comparison

A.2.3. Pentameric Formyl Thiophene Acetic Acid

Table A.27.: Excitation energies, oscillator strengths, and contributions of the strongest transitions of

snapshot 1 calculated for different polarization models. Reprinted with permission from

Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Model Trans. 𝐸ex / eV fL Contrib. Orbitals transition

PE NOPOL 1 3.08 1.221 0.66 𝜋 → 𝜋∗
PE GSPOL 1 3.09 1.280 0.65 𝜋 → 𝜋∗
PE DPOL 1 3.06 1.343 0.65 𝜋 → 𝜋∗
FDE NOPOL 1 3.07 1.195 0.66 𝜋 → 𝜋∗
FDE GSPOL 1 3.09 1.248 0.65 𝜋 → 𝜋∗
Reference 1 3.05 1.2882 0.65
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A. Local Optical Properties

PE

NOPOL

HOMO LUMO

PE

GSPOL

HOMO LUMO

PE

DPOL

HOMO LUMO

Figure A.5.: Orbitals involved in the strongest transition of pFTAA in the different models for snapshot 1

for the PE scheme. Reprinted with permission from Jansen, M.; Reinholdt, P.; Hedegård,

E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703. Copyright 2023 American Chemical

Society.
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FDE

NOPOL

HOMO LUMO

FDE

GSPOL

HOMO LUMO

Figure A.6.: Orbitals involved in the strongest transition of pFTAA in the different models for snapshot 1

for the FDE scheme. Reprinted with permission from Jansen, M.; Reinholdt, P.; Hedegård,

E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703. Copyright 2023 American Chemical

Society.
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A. Local Optical Properties

A.2.3.1. Electron-Spill-Out Effect

PE

NOPOL

(12)

𝜋→𝜋∗

PE

NOPOL

(15)

𝜋→𝜋∗
(0.39)

PE

NOPOL

(15)

𝜋→ESO
(0.32)

Figure A.7.: Orbitals involved in the strongest transitions of snapshot 2 of pFTAA for the PE NOPOL model.

Numbers in brackets denote the calculated transition number.
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PE
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𝜋→𝜋∗

PE

GSPOL

(16)

𝜋→𝜋∗

Figure A.8.: Orbitals involved in the strongest transitions of snapshot 2 of pFTAA for the PE GSPOL model

PE DPOL

(10)

𝜋→𝜋∗

PE

DPOL(16)

𝜋→ESO

Figure A.9.: Orbitals involved in the strongest transitions of snapshot 2 of pFTAA for the PE DPOL model
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A. Local Optical Properties

Table A.28.: Strongest transitions and identification of the contributing orbitals of the PE calculations

for snapshots 2 of pFTAA in a 3 Å water environment and the different polarization models.

If more than one high contribution was found, those were given in brackets.

Model Transition 𝐸ex fL Orbitals

PE NOPOL

12 3.02 0.3080 𝜋 →ESO

15 3.22 0.4151

𝜋→𝜋∗ (0.39)
𝜋→ESO (0.32)
𝜋→ESO (0.30)

16 3.24 0.6427 𝜋→𝜋∗
20 3.72 0.2196 𝜋→𝜋∗

PE GSPOL

11 3.22 1.3817 𝜋→𝜋∗

16 3.65 0.1824
𝜋→ESO (0.48)
𝜋→𝜋∗ (0.16)

22 4.01 0.2000
𝜋→𝜋∗
𝜋→𝜋∗

PE DPOL

10 3.19 1.4363 𝜋→𝜋∗

16 3.64 0.2248
𝜋 → ESO (0.44)

𝑛 → ESO (0.21)

22 3.99 0.2013

𝜋→ 𝜋∗ (0.46)
𝜋 → 𝜋∗ (0.33)
𝜋 → 𝜋∗ (0.24)

FDE NOPOL

1 3.21 1.3042 𝜋→𝜋∗

3 3.73 0.2594
𝜋→𝜋∗ (0.46)
𝜋→𝜋∗ (0.38)

5 4.02 0.1711 𝜋→𝜋∗

FDE GSPOL

1 3.24 1.3477 𝜋→𝜋∗

3 3.74 0.2435
𝜋→𝜋∗
𝜋→𝜋∗

4 4.03 0.1459

𝜋→ESO (0.36)
𝜋→𝜋∗ (0.30)
𝜋→𝜋∗ (0.27)

Reference

1 3.20 1.1573

2 3.27 0.1764

3 3.66 0.1564

5 4.01 0.1831
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A.2. Numerical Comparison

A.2.3.2. Introduction of Atomic Pseudopotentials to PE

PE

NOPOL

(1)

PE

GSPOL

(1)

PE DPOL

(1)

Figure A.10.: Orbitals involved in the strongest transition of pFTAA in the different models for snapshot

2 calculated with atomic pseudo potentials. Numbers in brackets after the model denote

the calculated transition shown. Numbers in brackets after the orbital type transition

denote the contribution of the orbitals to the calculated transition.
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A. Local Optical Properties

Table A.29.: Strongest transitions and identification of the contributing orbitals of the PE calculations

for snapshots 2 of pFTAA in a 3 Å water environment and the different polarization models

including pseudo potentials (PP). If more than one high contribution was found, those were

given in brackets.

Model Transition 𝐸ex fL Orbitals

PE NOPOL + PP

1 3.18 1.3077 𝜋→𝜋∗
2 3.59 0.1480 𝜋→𝜋∗
3 3.90 0.1999 𝜋→𝜋∗

PE GSPOL + PP

1 3.24 1.3320 𝜋→𝜋∗

2 3.71 0.1941

𝜋→𝜋∗ (0.42)
𝜋→𝜋∗ (0.39)
𝜋→𝜋∗ (0.36)

3 3.99 0.2271 𝜋→𝜋∗ (0.41)

PE DPOL + PP

1 3.16 1.3839 𝜋→𝜋∗ (0.57)

2 3.53 0.1208

𝜋→𝜋∗ (0.51)
𝜋→𝜋∗ (0.31)
𝜋→𝜋∗ (0.24)

3 3.83 0.2510

𝜋→𝜋∗ (0.47)
𝑛→𝜋∗ (0.27)
𝜋→𝜋∗ (0.26)
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A.2. Numerical Comparison

A.2.3.3. Shifts of Pentameric Formyl Thiophene Acetic Acid

The calculated excitation energies (in eV) and oscillator strengths for the models NOPOL,

GSPOL and PE DPOL of the strongest 𝜋 → 𝜋∗ transition are given. Calculations were done
with PE and FDE embedding models for different configurations of pNA and pFTAA. The

definition of the different shifts (ΔNOPOL, ΔGSPOL, ΔDPOL, Δ DPOL+EEF, and ΔREF) as well
as contributions (ΔNOPOL, ΔΔGSPOL, ΔΔDPOL, ΔΔDPOL+EEF, and ΔΔ EEF) are described in

Fig. 4.2.4.

Excitation energies and S-shifts of pentameric formyl thiophene acetic acid in a 3 Å

water environment in aug-cc-pVDZ quality

Table A.30.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pFTAA in aug-cc-pVDZ quality and a 3 Å

water environment obtained with a FDE embedding model. All snapshots containing two

sodium ions in close proximity are marked with ∗∗. Reprinted with permission from Jansen,

M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703.

Copyright 2023 American Chemical Society.

Δ𝐸ex(FDE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL ΔGSPOL ΔDPOL REF ΔREF
Snap 1 2.92 3.07 0.15 3.09 0.01 0.17 0.17 3.05 0.14

Snap 2∗∗ 3.17 3.21 0.04 3.24 0.02 0.07 0.07 3.20 0.03

∅ 3.05 3.14 0.10 3.16 0.02 0.12 0.12 3.13 0.09

Table A.31.: Excitation energies and contributions from the different polarization models to the S-shifts
and their average for different configurations of pFTAA in aug-cc-pVDZ quality and a 3 Å

water environment obtained with a PE embedding model (and optional effective external

potential (EEF)). All snapshots containing one or two sodium ions in close proximity are

marked with ∗ and ∗∗, respectively, and incorporate pseudopotentials in the PE calculations.

Reprinted with permission from Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys.

Chem. A 2023, 127, 5689–5703. Copyright 2023 American Chemical Society.

Δ𝐸ex(PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL ΔGSPOL ΔDPOL REF ΔREF
Snap 1 2.92 3.08 0.16 3.09 0.01 3.06 -0.03 0.17 0.14 3.05 0.14

Snap 2∗∗ 3.17 3.18 0.01 3.24 0.05 3.16 -0.08 0.07 -0.02 3.20 0.03

Snap 3∗ 2.78 2.68 -0.09 2.85 0.17 2.82 -0.03 0.07 0.04 2.64 -0.13

Snap 4∗ 2.98 2.90 -0.08 2.97 0.07 2.95 -0.02 -0.01 -0.04 2.90 -0.09

Snap 5 3.20 3.31 0.11 3.32 0.02 3.29 -0.04 0.13 0.09 3.28 0.08

Snap 6 3.36 3.46 0.10 3.46 0.00 3.43 -0.03 0.10 0.07 3.42 0.06

Snap 7 2.74 2.80 0.06 2.83 0.03 2.79 -0.04 0.09 0.05 2.80 0.06

Snap 8∗∗ 3.05 2.91 -0.14 2.95 0.03 2.91 -0.03 -0.10 -0.14 2.95 -0.10

∅ 3.02 3.04 0.02 3.09 0.05 3.05 -0.04 0.07 0.03 3.03 0.01
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Oscillator strengths and F -shifts of pFTAA in a 3 Å water environment in

aug-cc-pVDZ quality

Table A.32.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pFTAA in aug-cc-pVDZ quality in a 3 Å water

environment obtained with a FDE embedding model. All snapshots containing two sodium

ions in close proximity are marked with ∗∗. Reprinted with permission from Jansen, M.;

Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023, 127, 5689–5703. Copyright

2023 American Chemical Society.

fL (FDE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL ΔGSPOL ΔDPOL REF ΔREF
Snap 1 0.900 1.195 0.294 1.248 0.053 0.348 0.348 1.288 0.388

Snap 2∗∗ 1.165 1.304 0.140 1.348 0.044 0.183 0.183 1.157 -0.007

∅ 1.033 1.249 0.217 1.298 0.049 0.265 0.265 1.223 0.191

Table A.33.: Oscillator strengths and contributions from the different polarization models to the F -shifts
and their average for different configurations of pFTAA in aug-cc-pVDZ quality in a 3 Å

water environment obtained with a PE embedding model (and optional effective external

potential (EEF)). All snapshots containing one or two sodium ions in close proximity are

marked with ∗ and ∗∗, respectively, and incorporate pseudopotentials in the PE calculations.

Reprinted with permission from Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys.

Chem. A 2023, 127, 5689–5703. Copyright 2023 American Chemical Society..

ΔfL (PE): VACUUM NOPOL Δ NOPOL GSPOL ΔΔ GSPOL DPOL ΔΔ DPOL DPOL+EEF ΔΔ EEF ΔGSPOL ΔDPOL ΔDPOL+EEF REF ΔREF
Snap 1 0.900 1.221 0.320 1.280 0.060 1.343 0.063 1.314 -0.029 0.380 0.443 0.414 1.288 0.388

Snap 2∗∗ 1.165 1.308 0.143 1.332 0.024 1.384 0.052 1.308 -0.076 0.167 0.219 0.143 1.157 -0.007

Snap 3∗ 1.150 1.076 -0.074 1.226 0.150 1.284 0.058 1.212 -0.072 0.076 0.134 0.0617 1.086 -0.064

Snap 4∗ 1.214 1.089 -0.125 1.197 0.108 1.274 0.078 1.214 -0.060 -0.017 0.061 -0.0001 1.065 -0.148

Snap 5 1.242 1.439 0.197 1.472 0.034 1.556 0.084 1.518 -0.038 0.231 0.315 0.276 1.504 0.263

Snap 6 0.802 1.299 0.497 1.350 0.000 1.422 0.071 1.348 -0.074 0.548 0.620 0.546 1.274 0.472

Snap 7 1.094 1.282 0.188 1.358 0.077 1.420 0.061 1.352 -0.068 0.265 0.326 0.258 1.340 0.246

Snap 8∗∗ 1.359 1.470 0.111 1.500 0.030 1.534 0.034 1.440 -0.094 0.141 0.175 0.081 1.416 0.057

∅ 1.116 1.273 0.157 1.339 0.060 1.402 0.063 1.338 -0.064 0.224 0.287 0.222 1.266 0.151
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A.2.4. Publications

A.2.4.1. Jansen, M.; Thi Minh, N. N.; Hedegård, E. D.; König, C. In Chemical

Modelling: Volume 17, 2022

Reproduced from Ref. Jansen, M.; Thi Minh, N. N.; Hedegård, E. D.; König, C. In Chemical

Modelling: Volume 17, 2022 with permission from the Royal Society of Chemistry.

Quantum-derived embedding schemes for
local excitations
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DOI: 10.1039/9781839169342-00024

Quantum-mechanical and classical embedding schemes both employ effective operators
that incorporate the environmental effects for local properties. Despite their common
goal, the two methods follow rather different philosophies: quantum-mechanical density-
based embedding schemes aim at a reformulation of density-functional theory methods
through a subsystem formalism, while in classical polarizable embedding models, per-
turbation theory is employed to derive and parametrize the effective operators. In this
book chapter, we derive these two methodologies in a common framework, highlighting
the common ideas as well as differences between them. We further review the latest
extensions to these methodologies as well as recent applications to local absorption
properties of small molecules as well as the green fluorescent protein.

1 Introduction

Accurate theoretical calculations of absorption and fluorescent spectra have
been a long-standing goal of theoretical chemistry. If fulfilled, such calcu-
lations can enable design of both, novel optical materials as well as new
diagnostics. One of the most obvious examples of the latter are dyes used in
bioimaging.1–6 For instance, fluorescent dyes are good candidates for the
detection of protein misfolds that are hallmarks for neurodegenerative dis-
eases, like Alzheimer’s disease and Parkinson’s disease.7 Another, prominent
example is the green fluorescent protein (GFP) and related fluorescent pro-
teins, which serve as protein biomarkers.8,9 An understanding of which
factors govern the optical properties of dyes or proteins alike can only be
achieved in atomistic detail with the help of theoretical methods.10–12

For the calculation of optical properties, quantum-mechanical (QM)
approaches are indispensable, but their high computational cost makes
their application unfeasible for most biomolecular systems. For solvated
systems, one way to tackle this situation is to treat the solvent as a struc-
tureless continuum.13 Yet, this approach does not cover strong solvent–
solute interactions (e.g. hydrogen bonds), where explicit inclusion of solvent
molecules is required. Further, continuum models are not constructed for
heterogeneous environments such as proteins. The most prominent
approach to heterogeneous as well as hydrogen-binding environments is a
quantum-mechanical/molecular-mechanical (QM/MM) model.14,15 In the
QM/MM models, the dye is treated by QM methods and its environment by
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a classical description. This classical description usually means that the
electrostatic part of the interaction energy is treated by point charges. This
treatment has been shown to be insufficient in many cases for optical
properties.16 Indeed, for GFP it has been shown that protein models beyond
the electrostatics provided by standard MM calculations are needed for
agreement with experimental absorption spectra.17–19

In this book chapter, we focus on embedding schemes for optical tran-
sitions. The QM/MM model can be seen as a very simple formulation of
an embedding scheme, but we focus on more advanced formulations in
which the environmental description is obtained from fragments or sub-
systems (the environment can be solvent, protein or alike). We only dis-
cuss local absorption and emission phenomena, where local refers
to transitions that can be described by orbitals within the active region
(the dye). Thus, we assume that no (or little) excitonic coupling or charge
transfer occurs with the environment.

Historically, two main methodologies have been employed for describ-
ing electronic transitions: state-specific or linear-response-based method-
ologies, where the former directly optimizes the individual excited state
wave functions. Linear-response methodologies20–24 are time-dependent
perturbation-based models that avoid explicit optimization of the excited
state wave function. Response methods have the further advantage that
they give rise to a full set of possible optical transitions and intensities
within one matrix eigenvalue equation. A large part of this chapter is
devoted to the theoretical foundation of embedding schemes when com-
bined with linear-response theory. We also briefly comment on the state-
specific methodology.

We distinguish between two different classes of embedding approaches:
(i) QM/classical polarizable embedding (PE) approaches including multi-
pole description of the environment with additional classical polarization
and (ii) density-based QM/QM embedding approaches in which the
environment is also treated quantum-mechanically. Both methods have
been combined with a large number of electronic-structure methods,25–59

but we will focus on embedding with density-functional theory (DFT) in
this book chapter. Recent reviews of PE approaches16,60–62 as well as
QM/QM embedding schemes48,63–65 can be found in the literature. They
have also been collectively reviewed about a decade ago by Gomes and
Jacob.66 Despite QM/QM and QM/classical approaches having the same
goal, their origins are rather different and comparisons are sparse. The
goal of this chapter is to present a common framework for these two types
of embedding approaches and use this framework to derive the effective
operators employed in the respective environment models. We next com-
pare how the effective potential manifests in the linear-response equa-
tions. Based on this common framework, the differences as well as
advantages and disadvantages of the methodologies are discussed.
We further review recent extensions to both density-based QM/QM and
QM/classical approaches and show that some of these extensions bring
these two classes of embedding methods closer together. Finally, we review
studies where the methods have been applied to small model systems and
GFP, respectively.
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2 Defining the interaction energy and Hamiltonian

In this section, we formally compare the energy expressions from density-
based QM/QM and classical PE methods. We will investigate two different
formulations; one is denoted frozen-density embedding (FDE)48,63,64,67 and
the other relies on a multipole expansion of the densities/potentials.16,68–70

As a toy model we consider a total system comprised of two subsystems
A and B. We define one of these subsystems as the active subsystem, while
we define the other as the environment; we arbitrarily choose subsystem A
as the active one. We first focus on the interaction energy and Hamiltonian
for the full system. Next, we define an effective Hamiltonian for the active
subsystem only. Finally, we employ this effective Hamiltonian in a linear-
response time-dependent density-functional theory (LR-TD-DFT) frame-
work to obtain local excitations.

2.1 Density- and multipole-based interaction energies
We decompose the total energy of the combined A and B subsystems as a
sum of the energy functionals

Etot[rtot]¼ EA[rA] þEB[rB]þ Eint[rA, rB], (1)

where the first two terms denote energy for subsystem A and B, respectively,
and Eint[rA, rB] defines the interaction energy, i.e. Eint[rA, rB]¼ Etot[rtot]�
EA[rA]� EB[rB]. Thus, the interaction energy in eqn (1) is defined with
reference to EA[rA] and EB[rB], but we have so far left the form of these
energies unspecified. Note that the interaction energy Eint does not only
depend on rA and rB, but also on rtot. We, however, skip the rtot-dependence
here as we below choose to define rtot¼ rAþ rB.

We can further decompose the interaction energy into Coulomb
(classical), EC

int[rA, rB], and QM contributions, EQM
int [rA, rB]

Eint[rA, rB]¼ EC
int[rA, rB]þ EQM

int [rA, rB]. (2)

Both contributions can be obtained analogously to eqn (1)

EC
int[rA, rB]¼ EC

tot[rtot]� EC
A[rA]� EC

B[rB] (3)

EQM
int [rA, rB]¼ EQM

tot [rtot]� EQM
A [rA]� EQM

B [rB]. (4)

We focus on the Coulomb part as this is included in both density-
embedding and classical embedding schemes. In practice, EQM will of
course be present and we describe how to deal with this part in Section 2.2.
The Coulomb energy for a molecular multi-electron system with density r
in atomic units is defined by

EC½r� ¼ 1
2

ðð
rðrÞrðr0Þ

r� r0j j
drdr0 �

X
N

ð
rðrÞZN

r� RNj j
drþ

X
N

X
MaN

ZN ZM

RN � RMj j
; (5)

where ZN defines the charge of nucleus N and the electronic and nuclear
coordinates are denoted by small r and capital R, respectively. We will in
the following use eqn (5) to define the classical interaction energy
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between subsystems A and B in our toy system. The total density will be
expressed as rtot(r) ¼ rA(ra)þ rB(rb). Inserting this into eqn (5) and using
the definition in eqn (3) for the Coulombic interaction energy between
subsystems A and B, one obtains

EC
int rA; rB½ � ¼

ðð
rAðraÞrBðrbÞ

ra � rbj j dradrb �
X
IAA

ð
ZIrBðrbÞ
RI � rbj jdrb

�
X
JAB

ð
ZJrAðraÞ
RJ � ra
�� ��dra þ

X
IAA

X
JAB

ZI ZJ

RI � RJ

�� ��;
(6)

where sums run over all nuclei with charges ZI and ZJ in subsystem A and
B, respectively. We stress that we have to this point not made any
assumption regarding possible overlap of the densities and underlying
subsystem wave functions.

Since the classical embedding schemes often are derived in terms
of the underlying Hamilton operator, rather than the densities,71

we also define a Hamiltonian for the total system. This Hamiltonian is
defined as

Ĥtot¼ ĤAþ ĤBþ Ĥint, (7)

where ĤX are Hamiltonians for the isolated subsystems (X¼A, B). The
interaction Hamiltonian, Ĥint, contains interactions between electrons
and nuclei in the two subsystems,

Ĥint¼
X
iAA

X
jAB

1
ri� rj

�� ���
X
iAA

X
JAB

ZJ

ri�RJ

�� ���
X
IAA

X
jAB

ZI

RI � rj

�� ��þ
X
IAA

X
JAB

ZI ZJ

RI �RJ

�� ��:
(8)

The interaction energy can be obtained by using Ĥint as the perturbation
in Rayleigh–Schrödinger perturbation theory; classical embedding
theory including polarization is formally derived in this framework as
will be elaborated later in this section.

We can now define |C(0)
X i as the optimized wave function for an isol-

ated subsystem and Ĥint (eqn (8)) as perturbation. However, using
the unperturbed wave functions requires specific care as we then define
|C(0)

toti¼ |C(0)
A i|C(0)

B i as the total unperturbed wave function. This wave
function is an eigenfunction of the unperturbed Hamiltonian
Ĥ0¼ ĤAþ ĤB, ensuring that the monomer energies for the isolated
subsystems are obtained at zeroth order. However, |C(0)

toti violates the
anti-symmetry requirement with respect to interchanging electrons in
subsystems A and B. We could define an anti-symmetric wave function

A Cð0Þtot

���
E

, but this wave function is not an eigenfunction of Ĥ0, removing

the theoretical ground for using perturbation theory. Theories to
circumvent the issue of anti-symmetrization while treating Ĥint in the
basis of unperturbed wave functions have been developed within the
framework of symmetry-adapted perturbation theory.72 The classical
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embedding models discussed in this book chapter take a different
(and less rigorous) approach assuming that the subsystems A and B do
not overlap. We also assume that the wave functions for A and B are
always individually normalized, i.e. hCX|CYi¼ dXY.

In case A and B do not overlap, the EQM
int [rA, rB] in eqn (2) vanishes, and

we can focus on the Coulombic interaction energy in eqn (3). Moreover,
we can ascribe certain electron densities to subsystem A and B, respect-
ively. The Hamiltonian can be connected to the density-based expression
through the density operator

r̂XðrxÞ¼
X
iAX

dðri � rxÞ; (9)

where the italic index i refers to a single-electron coordinate and the
index x refers to a real-space coordinate of the electron density of sub-
system X. From the density operator we can obtain the density as
rXðrxÞ¼ CX r̂XðrxÞj jCXh i.

The density operator is a central operator in the present comparison as
density-based embedding schemes are often formulated in terms of real-
space electron densities, whereas QM/classical approaches are more
frequently expressed in terms of operators acting on electron coordin-
ates. Using the density operator introduced in eqn (9), we obtain the
equivalent definition of Ĥint

Ĥint ¼
ðð
r̂AðraÞr̂BðrbÞ

ra � rbj j dradrb �
X
IAA

ð
r̂BðrbÞZI

RI � rbj jdrb

�
X
JAB

ð
r̂AðraÞZJ

RJ � ra
�� ��dra þ

X
IAA

X
JAB

ZI ZJ

RI � RJ

�� ��:
(10)

In the following, we will use eqn (6)–(10) to analyze different contri-
butions to the Coulombic interaction energy. We first investigate a
scenario where all densities are kept frozen, and next a scenario in which
one of the subsystems is allowed to relax. Finally, we investigate the case
where polarization effects of both densities with respect to each other are
considered.

2.1.1 Interaction energy for frozen densities. In the case where there
is no relaxation of the two subsystems, the isolated (non-polarized) dens-
ity for the total system is r(0)

tot(r)¼ r(0)
A (ra)þ r(0)

B (rb) and we obtain from
eqn (3) and (5)

EC
int rð0ÞA ; rð0ÞB

h i
¼
ðð

rð0ÞA ðraÞrð0ÞB ðrbÞ
ra � rbj j

dradrb �
X
IAA

ð
ZIr

ð0Þ
B ðrbÞ

RI � rbj j
drb

�
X
JAB

ð
ZJr

ð0Þ
A ðraÞ

RJ � ra

�� �� dra þ
X
IAA

X
JAB

ZI ZJ

RI � RJ

�� ��;
(11)

similarly to how we obtained eqn (6).
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In density-based embedding methods, all involved subsystems within eqn
(11) are treated by means of real-space densities. In the PE embedding
methods, the density of the environmental subsystem is expressed by dis-
cretized multipoles. We show the procedure to obtain the multipoles below:
using Ĥint in the form of eqn (10), we obtain the expression

EC
int rð0ÞA ; rð0ÞB

h i
¼ Cð0Þtot

D ���Ĥint C
ð0Þ
tot

���
E
¼ Cð0ÞA

D ��� Cð0ÞB

D ���Ĥint C
ð0Þ
B

���
E� �

Cð0ÞA

���
E

¼ Cð0ÞA

D ��� Cð0ÞB

D ���
ðð

r̂AðraÞr̂BðrbÞ
ra � rbj j

dradrb �
X
JAB

ð
ZJ r̂AðraÞ
RJ � ra
�� ��dra

  

�
X
IAA

ð
ZI r̂BðrbÞ
RI � rbj j

drb þ
X
IAA

X
JAB

ZI ZJ

RI � RJ

�� ��
!

Cð0ÞB

���
E!

Cð0ÞA

���
E
:

(12)

Note that taking the expectation values over r̂A and r̂B leads directly to
the expression in eqn (11). We can now perform a Taylor expansion of the
inverse distances |ra� rb|�1, |RI� rb|�1 and |RJ� ra|�1, |RI�RJ|

�1 using
eqn (76) and (77) in the Appendix. To shorten the resulting expression, we

define the interaction operators T (0)
ji ¼ |Ri�Rj|

�1, T ð1Þji;a ¼
@

@Ri;a
Ri � Rj

�� ���1

and so on, according to the book by Stone.71 Here, a denotes a Cartesian
coordinate, x, y, or z. We choose to describe the electron density of
subsystem B, rB, in terms of multipoles and define the expansion point of
the Taylor series as the centre of mass of system B (RB). This leads to

EC
int[r

(0)
A , r(0)

B ]EEmult
int [r(0)

A , r(0)
B ] (13)

¼ � Cð0ÞA

D ���
ð
r̂AðraÞT ð0ÞBa dra Cð0ÞA

���
E
þ
X
IAA

ZI T ð0ÞBI

 !
Cð0ÞB

D ���q̂B Cð0ÞB

���
E

�
X
a

� Cð0ÞA

D ���
ð
r̂AðraÞT ð1ÞBa;adra Cð0ÞA

���
E
þ
X
IAA

ZI T ð1ÞBI;a

 !

� Cð0ÞB

D ���m̂B;a Cð0ÞB

���
E
þ � � � : (14)

Note that T(k)
Ba is also dependent on ra and although this dependence is

not parametric, we let this dependence be implicit as in the definition in
the book by Stone.71 In eqn (14), we have defined the multipole moment
operators with respect to the environmental charge density

q̂B¼�
ð
r̂BðrbÞdrb þ

X
JAB

ZJ (15)

m̂B;a¼�
ð
r̂B rbð Þ rb;a � RB;a

� �
drb þ

X
JAB

ZJ RJ;a � RB;a
� �

: (16)
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Note that the multipole moment operators combine nuclei and electron
contributions from the environment. When the multipoles are obtained

from |C(0)
B i we use the short-hand notation qB rð0ÞB

h i
� Cð0ÞB

D ���q̂B Cð0ÞB

���
E

,

mB;a½r
ð0Þ
B � � Cð0ÞB

D ���m̂B;a Cð0ÞB

���
E

and so on. In later expressions we will even

further shorten the notation as q0
B, m0

B,a and so forth. Taking the expect-
ation values in eqn (14), we obtain the Coulombic interaction energy of
the unperturbed electron density r(0)

A in subsystem A with the multipole
description of subsystem B,

Emult
int rð0ÞA ; rð0ÞB

h i
¼ �

ð
rð0ÞA ðraÞT ð0ÞBa dra þ

X
IAA

ZI T ð0ÞBI

 !
qB rð0ÞB

h i

�
X
a

�
ð
rð0ÞA ðraÞT ð1ÞBa;adra þ

X
IAA

ZI T ð1ÞBI;a

 !
mB;a½r

ð0Þ
B � þ � � � :

(17)

The equation with all densities frozen in eqn (17) is rarely used with one
notable exception: in the so-called mechanical embedding strategy to
describe electrostatic interactions in QM/MM methods the first term
(point charges) in eqn (17) is employed to describe the electrostatics
between QM and MM regions.15

2.1.2 Polarization of one subsystem density. In a next step, we
allow the active subsystem to relax in the potential from the (still frozen)
environment density r(0)

B . This will lead to a polarization of the electron
density of subsystem A, and we denote the polarized density r(1)

A . Within
the density-based embedding schemes, this approach refers to FDE.25

The Coulombic interaction energy can in this case be obtained by
inserting r(1)

tot¼ r(1)
A þ r(0)

B in eqn (5)

EC
tot[r

(1)
tot]¼ EC

int[r
(1)
A , r(0)

B ]þ EC
A[r(1)

A ]þ EC
B[r(0)

B ]. (18)

The EC
int[r

(1)
A , r(0)

B ] term in eqn (18) is defined in eqn (11) (with r(0)
A replaced

by r(1)
A ), but can naturally also be defined as a multipole expansion.

The procedure is identical to the one used to obtain EC
int[r

(0)
A , r(0)

B ] in
the unrelaxed case. The sole exception is that we now allow the active
subsystem to relax, and hence wave function |C(0)

A i in eqn (17) changes
to |C(1)

A i. We thus perform the same manipulations for the multipole
expansion as in eqn (12)–(14), but we use the opportunity to collect the
orders of the Taylor expansion into a multi-index k (see eqn (78) and (79)
in the Appendix)

Emult
int rð1ÞA ; rð0ÞB

h i
¼
X
k¼ 0

ð�1Þjkj

k !
� Cð1ÞA

D ���
ð
r̂AðraÞTðkÞBa dra Cð1ÞA

���
E
þ
X
IAA

ZIT
ðkÞ
BI

 !

� Cð0ÞB

D ���Q̂ðkÞB Cð0ÞB

���
E
:

(19)
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In eqn (19), we have further defined a general multipole-moment vector
operator, Q̂(k)

B where the orders correspond to point charge (k¼ 0), dipole
(k¼ 1), quadrupole (k¼ 2), etc. Taking the expectation values in eqn (19)
yields the expression

Emult
int rð1ÞA ; rð0ÞB

h i
¼
X
k¼ 0

ð�1Þjkj

k !
�
ð
rð1ÞA ðraÞTðkÞBa dra þ

X
IAA

ZIT
ðkÞ
BI

 !
QðkÞB ½r

ð0Þ
B �;

(20)

where QðkÞB rð0ÞB

h i
� Cð0ÞB

D ���Q̂ðkÞB Cð0ÞB

���
E

. The first term in the expansion (k¼ 0)

in eqn (20) corresponds to the parametrization employed in electro-
statically embedding QM/MM models.15 At this point, we also note that
electrostatically embedded QM/MM (and also polarizable extensions)
usually employ a distributed origin and we return to this below
(cf. Section 2.2).

2.1.3 Mutual polarization of densities. The above-described change
from r(0)

A to r(1)
A will naturally also induce a change on subsystem B,

which will then again change rA. One method to capture this mutual
polarization effect is a step-wise optimization of rA and rB in a number
of steps until self-consistency. This process of alternating which subsys-
tem is optimized, also known as freeze-and-thaw26 procedure, is often
applied in density-based embedding methods.26,40,43,73 We here denote
relaxed densities obtained from such freeze-and-thaw cycles r(2)

A and r(2)
B .

Within the context of density-based embedding schemes, these freeze-
and-thaw cycles over many FDE calculations formally recover the super-
system result.26,63

Similarly, also classical multipole expansions of the densities may be
updated in a self-consistent scheme to describe mutual polarization; this
corresponds to employing a Q(k)

B [rB] with a mutually polarized rB in
eqn (20). This is done in the embedded X-Pol model.69,74,75 A more
common method in classical embedding schemes is to construct an
energy expression based on perturbation theory71 and we spend the rest
of this section to show this procedure.

If we assume that a full set of solutions is available for the isolated
subsystems,

ĤX|C(0)
X,ni¼ E(0)

X,n|C(0)
X,ni, (21)

and choose Ĥint from eqn (7) as the perturbation operator, we obtain
from Rayleigh–Schrödinger perturbation theory,

Etot¼ E(0)þ E(1)þ E(2). (22)

We can from eqn (1) identify E(0)¼ EA[r(0)
A ]þ EB[r(0)

B ] and the interaction
energy, Eint[r

(0)
A , r(0)

B ], comes through first and second-order energy
corrections. We recognize the former as

E(1)¼hC(0)
tot|Ĥint|C

(0)
toti¼ EC

int[r
(0)
A , r(0)

B ]EEmult
int [r(0)

A , r(0)
B ], (23)
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where the term EC
int[r

(0)
A , r(0)

B ] is given in eqn (12). As implied by the above
equation, we can follow eqn (12)–(17) to replace the densities by a mul-
tipole expansion to obtain the first-order energy correction E(1). The
second-order corrections are more complicated, as they involve excited-
state wave functions. We can decompose this part into71

E(2)¼ Epol
A þ Epol

B þ Edisp. (24)

The terms are sorted such that the expression for Epol
B includes excited

states for subsystem B, whereas the wave function for A remains in the
ground state (and vice versa for Epol

A ). The dispersion part involves excited
states from both subsystems simultaneously,71 but we will disregard this
part. The perturbation expression for Epol

B becomes

Epol
B ¼

X
na0

Cð0ÞB;0

D ��� Cð0ÞA;0

D ���Ĥint C
ð0Þ
A;0

���
E
Cð0ÞB;n

���
E

Cð0ÞB;n

D ��� Cð0ÞA;0

D ���Ĥint C
ð0Þ
A;0

���
E
Cð0ÞB;0

���
E

Eð0ÞB;0 � Eð0ÞB;n

;

(25)

and Epol
A can be obtained analogously. Inserting Ĥint and performing the

Taylor expansion as done above, leads to

Epol
B ¼

X
ab

(
� Cð0ÞA;0

D ���
ð
r̂AðraÞT ð1ÞBa;adra Cð0ÞA;0

���
E
þ
X
IAA

ZI T ð1ÞBI;a

 !

�
X
na0

Cð0ÞB;0

D ���m̂B;a Cð0ÞB;n

���
E

Cð0ÞB;n

D ���m̂B;b Cð0ÞB;0

���
E

Eð0ÞB;0 � Eð0ÞB;n

� � Cð0ÞA;0

D ���
ð
r̂AðraÞT ð1ÞBa;bdra Cð0ÞA;0

���
E
þ
X
IAA

ZI T ð1ÞBI;b

 !)
;

(26)

where we have truncated the multipole expansion after the dipole
contribution. Note that contrary to eqn (17), the zeroth-order multipoles

(point charges) do not contribute in eqn (26) since Cð0ÞB;0 q̂Bj jCð0ÞB;n

D E
¼

qB Cð0ÞB;0

���Cð0ÞB;n

D E
¼ 0, and hence

Cð0ÞB;0

D ��� � Cð0ÞA;0

D ���
ð
r̂AðraÞT ð0ÞBa dra Cð0ÞA;0

���
E
þ
X
IAA

ZI T ð0ÞBI

 !
q̂B

( )
Cð0ÞB;n

���
E
¼ 0: (27)

The expression in eqn (26) can be further rewritten: first, we recognize the
static polarizability for subsystem B with the elements

a0
B;ab¼� 2

X
na0

Cð0ÞB;0

D ���m̂B;a Cð0ÞB;n

���
E

Cð0ÞB;n

D ���m̂B;b Cð0ÞB;0

���
E

Eð0ÞB;0 � Eð0ÞB;n

: (28)

Next, we use that the potential at RB due to presence of an electron in
subsystem A at ra is V(ra)¼� |ra�RB|�1 and the potential due to a
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nucleus in subsystem A is V(RI)¼ ZI|RI�RB|�1. With these definitions
along with the usual definition of an electric field E as the negative
derivative of the potential, we see that the terms involving the inter-
actions operators T(1)

Ba and T(1)
BI in eqn (26) are

X
IAA

ZI T ð1ÞBI;a¼
X
IAA

@VðRIÞ
@RI;a

¼� En
a (29)

Cð0ÞA

D ���
ð
r̂AðraÞT ð1ÞBa;adra Cð0ÞA

���
E
¼�

ð
rð0ÞA ðraÞ

@VðraÞ
@ra;a

� �
dra¼ Ee

a rð0ÞA

h i
: (30)

We denote the a component of field from nuclei in system A as En
a and

the corresponding a component from the electrons Ee
a rð0ÞA

h i
. Inserting

eqn (28)–(30) in eqn (26), we arrive at

Epol
B rð0ÞA

h i
¼� 1

2
Ee

A rð0ÞA

h i
þ En

A

� �T
a0

B Ee
A rð0ÞA

h i
þ En

A

� �
; (31)

where we note that we have encapsulated all dependence on C(0)
B,n into a

parametric dependence through the polarizabilities, a0
B, similar to what is

done with the multipoles in eqn (17). The total energy (in eqn (1)) is now
defined by combining eqn (22)–(24) while neglecting Edisp as

EPE
tot[r

(0)
A , r(0)

B ]¼ EA[r(0)
A ]þ EB[r(0)

B ]þ Emult
int [r(0)

A , r(0)
B ]þ Epol

B [r(0)
A ]þ Epol

A [r(0)
B ].

(32)

The expressions for the last three terms are given in eqn (20) and (31),
respectively. For consistency with the definition in eqn (1), we write the
total energy as a sum of the energies of the two subsystems A and B plus
an interaction energy,

EPE
tot[r

(0)
A , r(0)

B ]¼ EPE
A [r(0)

A , r(0)
B ]þ EPE

B [r(0)
B , r(0)

A ]þ Emult
int [r(0)

A , r(0)
B ], (33)

where we have combined the energy of the isolated subsystem and
polarization in the term

EPE
A [r(0)

A , r(0)
B ]¼ EA[r(0)

A ]þ Epol
A [r(0)

B ]. (34)

The term EPE
B [r(0)

B , r(0)
A ] is defined in a similar fashion. In next section,

we will allow rA to change (e.g., through a self-consistent procedure),
while r(0)

B will remain the isolated density of subsystem B (represented by
a multipole expansion). We denote the density that is freely optimized
without superscript as rA, thus writing the total energy for the PE model
becomes

EPE
tot[rA, r(0)

B ]¼ EPE
A [rA, r(0)

B ]þ EPE
B [r(0)

B , rA]þ Emult
int [rA, r(0)

B ]. (35)

2.2 Effective embedding potentials
In the previous subsection, we considered the total system. We now focus
on a selected active subsystem, while including the environment through
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an effective operator. We again select subsystem A as the active sub-
system and the additional embedding terms are added to the subsystem
Hamiltonian,

Ĥeff
A ¼ ĤA þ v̂emb

A : (36)

We assume v̂emb
A to be a one-electron operator that can be expressed via

a real-space potential vemb
A (ra) as

v̂emb
A ¼

ð
r̂Avemb

A ðraÞdra: (37)

The embedding potential vemb
A (ra) may then be obtained as25,67

vemb
A ðraÞ¼

d
drA

Etot rtot½ � � EA rA½ �ð Þ¼ dEtot rtot½ �
drA

� dEA rA½ �
drA

; (38)

where Etot[rtot] is the total energy as introduced in eqn (1). Directly
employing the general forms in eqn (1) and (2) yields

vemb
A ðraÞ¼

dEC
tot rtot½ �
drA

� dEC
A rA½ �
drA

þ dEQM
tot rtot½ �
drA

� dEQM
A rA½ �
drA

: (39)

We now examine, how the FDE and PE methods obtain different forms of
vemb

A (ra) by employing different expressions for Etot[rtot] and EA[rA]. In
FDE, we assume the environmental electron density rB to be constant
(frozen). In this case

dEC
B rB½ �
drA

����
rB ¼ const:

¼ dEQM
B rB½ �
drA

����
rB ¼ const:

¼ 0 (40)

so that

vFDE
A ðraÞ¼

dEC
int rA; rB½ �
drA

����
rB ¼ const:

þ
dEQM

int rA; rB½ �
drA

�����
rB ¼ const:

: (41)

It is further realized that the Coulomb contribution to the energy is
additive such that the Coulomb contribution to the embedding potential
depends on the environmental subsystem density rB only.25,67 Thus, if we
insert eqn (11) in the first term of eqn (41) (but with rA free to be opti-
mized and possibly a different rB than the one for an isolated system),
we obtain

dEC
int rA; rB½ �
drA

����
rB ¼ const:

¼�
X
JAB

ZJ

ra � RJ

�� ��þ
ð
rBðrbÞ
ra � rbj j

drb¼ vC
A rB½ �ðraÞ: (42)

The situation is different for the QM parts: EQM
int [rA, rB] (eqn (4)), is comprised

of a kinetic energy contribution Ekin
int [rA, rB] and an exchange–correlation
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contribution Exc
int[rA, rB], both of which are non-linear (non-additive) in the

electron density.25,67 This means that

vQM
A rA;rB½ �ðraÞ¼

dEQM
int rA; rB½ �
drA

�����
rB¼const:

¼dEkin
int rA; rB½ �
drA

����
rB¼const:

þ
dExc

int rA; rB½ �
drA

����
rB¼const:

¼vnadd;kin
A rA; rB½ �ðraÞþvnadd;xc

A rA; rB½ �ðraÞ;

(43)

is dependent on the electron density of the active subsystem rA and that
of the environment rB. The overall FDE potential, hence, reads

vFDE
A (ra)¼ vC

A[rB](ra)þ vnadd,kin
A [rA, rB](ra)þ vnadd,xc

A [rA, rB](ra). (44)

Even though the environmental density rB is assumed to be frozen
here, it is possible by subsequent optimization of the subsystem electron
densities in freeze-and-thaw cycles26 to obtain the mutually relaxed
electron densities r(2)

A and r(2)
B introduced in Section 2.1. At the end of the

freeze-and-thaw procedure, an embedding potential vFDE
A for subsystem A

is obtained that incorporates the ground-state polarization of subsystem
B and vice versa.

For fully relaxed electron densities (r(2)
A and r(2)

B ), eqn (44) formally
leads to the supermolecular results, but the applied approximations in
the embedding potential lead to deviations from that result. The latter
can, however, be obtained by reconstruction schemes (see ref. 63, 76 and
77 for further information).

For the PE method, we only include the Coulomb-type embedding
potentials and turn to the multipole expansion. This means, we insert
eqn (35) and (34) in eqn (38) and obtain the functional derivative in close
analogy with FDE above

vPE
A ¼

dEPE
tot rA; r

ð0Þ
B

h i

drA
� dEPE

A rA½ �
drA

¼
dEmult

int rA; r
ð0Þ
B

h i

drA
þ dEpol

B rA½ �
drA

: (45)

For the second equality in eqn (45), we exploited that r(0)
B is represented

by parameters, which are assumed to be constant.
The functional derivative of the Emult

int [rA, r(0)
B ] (cf. eqn (20)) is straight-

forward, whereas the functional derivative of Epol
B [rA] (cf. eqn (31))

requires use of the functional derivative product rule (see the Appendix of
ref. 78). The final potential becomes

vPE
A ðraÞ¼ vmultðraÞ þ vpol rA½ �ðraÞ

¼ �
X
k¼ 0

ð�1Þjkj

k !
TðkÞBa ðraÞQ0;ðkÞ

B � Ee
A rA½ � þ En

A

� �T
a0

B ee
AðraÞ;

(46)
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where we have used the short form Q0,(k)
B �Q(k)

B [r(0)
B ] and made the ra

dependence of T (k)
Ba(ra) explicit. Note that we in the above equation have

used eqn (30) to write

dEe
A;a rAðraÞ½ �
drAðraÞ

¼ ee
A;aðraÞ; (47)

with ee
A,a(ra) being the a component of the electronic part of the electric

field operator, defined in real-space coordinates. Since the second term
in eqn (46) is dependent on rA, the PE embedding operator is an effective
operator.

In classical electrostatics, the term a � E in eqn (46) corresponds to the
first term in the induced dipole. We can thus define

vpol rA½ �ðraÞ¼ � ðlind rA½ �Þ
TEe

AðraÞ; (48)

with lind rA½ � ¼ a0
B Ee

A rA½ � þ En
A

� �
. Below, we use this formulation in a more

general form of vpol[rA](ra) including more than one environment sub-
system density.

2.3 Extension to multiple environment subsystems
We have so far only considered two subsystem densities, of which we
denoted rB the environment density. However, a much more common
situation is to have many subsystem densities. For instance, when rA is a
solute and the environment densities represent solvent molecules. In this
case, the total density can be written as

rtot ¼ rA þ renv¼ rA þ
X
XaA

rX: (49)

This leads to a modification of the FDE and PE potentials in eqn (44) and
(46). For the former, we define renv¼

P
XaA

rX and introduce sums over the

subsystems. The resulting Coulomb potential reads

vC
A renv½ �ðraÞ¼ �

X
XaA

X
JAX

ZJX

ra � RJX

�� ��þ
X
XaA

ð
rXðrbÞ
ra � rbj jdrb

¼ �
X
XaA

X
JAX

ZJX

ra � RJX

�� ��þ
ð
renvðrbÞ
ra � rbj jdrb;

(50)

where ZJX
is the charge of the Jth nucleus in the subsystem X and RJX

, its
spatial coordinate. The non-additive kinetic and exchange–correlation
contributions can be obtained analogously by replacing rB in eqn (44)
by renv, that is vnadd,kin

A [rA, renv](ra)þ vnadd,xc
A [rA, renv](ra). Within a freeze-

and-thaw procedure renv is redefined for every subsystem Y in the pro-
cedure as renv¼

P
XaY

rX .

The PE potential in eqn (46) can also straightforwardly be extended to
more densities, by introducing a sum over the environment multipoles.
However, even for a single environment density, it is an advantage to
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choose distributed origins for the multipole expansion. A distributed
origin leads to an improved radius of convergence of the 1/R Taylor
series.79,80 In practice, that means replacing RB with a sum over several,
distributed sites in eqn (14)–(16). The most obvious sites are the atomic
positions in subsystem B, but occasionally also bond-midpoints are used.
We additionally allow this sum over sites (s) to include multiple frag-
ments. vmult(ra) in eqn (46) thus becomes

vmultðraÞ¼
X

s

vmult
s ðraÞ¼ �

X
s

X
k¼ 0

ð�1Þjkj

k !
TðkÞsa ðraÞQ0;ðkÞ

s : (51)

For the polarization part, vpol(ra), it should additionally be noted that
with multiple environment subsystems the electric fields in eqn (31) and
thus also eqn (46) need to be augmented with a field due to the multi-
poles Emult

s

� �
. That means, the total field on a given site s becomes

Etot
A;s rA½ � ¼Emult

s þ Ee
A;s rA½ � þ En

A;s: (52)

The fields from the electrons and nuclei in the active subsystem A is
defined as in eqn (29) and (30), but with interaction operators involving
sites Rs rather than RB. Further, the induced dipole in eqn (48) will be
modified to81

lind
s rA½ � ¼ a0

s Etot
A;s rA½ � þ

X
tas

Tð2Þst lind
t rA½ �

 !
; (53)

where the total field, Etot
A;s, was given above (cf. eqn (52)). The last term is

the field from the induced dipoles from all other sites. Applequist and co-
workers showed how eqn (53) can be rewritten into a matrix equation81

lind
s rA½ � ¼

X
t

RtsE
tot
A;s rA½ �; (54)

where R is the so-called response matrix

R¼

a�1
1 �Tð2Þ12 . . . �Tð2Þ1S

�Tð2Þ21 a�1
2 . . . �Tð2Þ2S

..

. ..
. . .

. ..
.

�Tð2ÞS1 �Tð2ÞS2 . . . a�1
S

0
BBBB@

1
CCCCA: (55)

With eqn (54), we can write vpol[rA](ra) in eqn (48) as

vpol rA½ �ðraÞ¼
X

s

vpol
s rA½ �ðraÞ¼ �

X
s

lind
s rA½ �

� �T
Ee

A;sðraÞ: (56)

The total PE-type potential can, hence, be summarized as

vPE rA½ �ðraÞ¼ vmultðraÞ þ vpol rA½ �ðraÞ

¼
X

s

vmult
s ðraÞ þ vpol

s rA½ �ðraÞ
� �

:
(57)

Chem. Modell., 2022, 17, 24–60 | 37

D
ow

nloaded from
 http://books.rsc.org/books/edited-volum

e/chapter-pdf/1318138/bk9781839167416-00024.pdf by T
IB

 und U
niversitaetsbibliothek H

annover user on 30 June 2023

A. Local Optical Properties

180



In the literature, many different classical polarizable models based on
eqn (57) have been reported. The main difference between these models
is the employed parameters used to define the operators in eqn (57), e.g.
what type of multipole expansion, their truncation, and the form of the
polarization terms. Several methods employ the distributed multipole
analysis (DMA) by Stone90 for the multipoles. For the polarizabilities, it
should be noted that calculating the point-dipole interaction model in
eqn (53) can lead to divergence for short distances, which has been
denoted the polarizability catastrophe. Thole introduced a damped form
of the point-dipole interaction, which reduces the issue,91 and this
scheme is employed in some PE models. A very brief summary is pro-
vided in Table 1 (note that we do not aim at a complete list here).

3 Embedding for local optical properties

To shed light on the incorporation of embedding contributions to local
response calculations, we first briefly summarize the linear-response (or
LR-TD-DFT) equations for an isolated (vacuum) system. We use one of
many possible derivations,21,23,92 which is described in more detail in ref.
93. More general derivations also valid for non-variational correlated
wave functions23,94 have also been employed for PE95–97 as well as
density-based embedding35,36 models, and we refer to the literature for
these cases.

In vacuum the electronic excitation can be described as a response to
an external, time-dependent (electric) field

Vðr; tÞ¼ 1
2

V0ðrÞe�iot þ V *
0ðrÞeiot

� �
; (58)

Table 1 Overview of the main differences between different PE-type embedding meth-
ods. The method abbreviations are direct reaction field (DRF), polarizable embedding (PE),
molecular mechanics with polarization (MMPol), and effective fragment potential (EFP).
The last method is the atomic multipole optimized energetics for biomolecular appli-
cations (AMOEBA), developed originally for pure classical simulations.

Method Multipoles Polarizabilities Comments

DRF82,83 Charges Isotropic Localized charges and polarizabilities chosen
to reproduce gas-phase solvent dipole and
polarizabilities (with Thole damping).

PE84 Higher-order Anisotropic Local multipoles and polarizabilities obtained
with QM calculation using LoProp.85

MMPol86 Charges Isotropic AMBER charges and polarizabilities from
ref. 81 and 87.

EFP68,88 Higher-order Anisotropic Localized multipoles and polarizabilities from
QM calculations. Multipoles from DMA and
polarizabilities from localized orbitals. May
contain additional terms, i.e. exchange
repulsion, charge transfer, short-range
correlation, as well as dispersion terms.

AMOEBA89 Higher-order Isotropic Parameters from AMOEBA, i.e. DMA-based
local multipoles and (occasionally modified)
polarizabilities from Thole.
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where o is the frequency of the electric field and V0 quantifies its
strength. Since we generally work in a Kohn–Sham-DFT framework for
the active subsystem, we assume a single-determinant wave function,
comprised of Kohn–Sham orbitals that are eigenfunction to the Kohn–
Sham operator, f̂ (0)

iso. Our interest here is in the time-dependent Kohn–
Sham operator described by adding V(r,t) to the Kohn–Sham operator for
the isolated system f̂ (0)

iso

f̂ ðtÞ¼ f̂ ð0Þiso þ Vðr; tÞ: (59)

At this point, it should be noted that, although we until now exclusively
worked in a density-based formalism, the density can be directly
related to the Kohn–Sham orbitals through the density matrix, P. This
relation is

rðrÞ¼
X

pq

PpqfpðrÞf*
qðrÞ (60)

where fp and fq are atomic or molecular orbitals.
By means of the density matrix, the time-dependent Kohn–Sham

equations can be formulated as

i
@P
@t
¼ ½F;P�; (61)

where F is the matrix representation of the Kohn–Sham operator. We
assume the response of the density matrix elements to be linear and
immediate, so that the perturbed matrix elements read

Ppq¼ Pð0Þpq þ Pð1Þpq ¼ Pð0Þpq þ
1
2

dpqe�iot þ d*
pqeiot

� �
: (62)

We will now assume the orbitals to be the canonical orbitals of the
unperturbed system, i.e. P(0)

ij ¼ dij and P(0)
ia ¼ P(0)

ai ¼ P(0)
ab ¼ 0, where i and j

refer to occupied and a and b to virtual canonical orbitals in the unper-
turbed system. Next to the unperturbed components F(0)

pq , the perturbed
Kohn–Sham-matrix elements (Fpq) also include the effect of the external
time-dependent field Vpq(t) as well as of the first-order response in the
density matrix.

Fpq¼ Fð0Þpq þ Fð1Þpq ¼ Fð0Þpq þ VpqðtÞ þ
X

st

@Fð0Þpq

@Pai
Pð1Þai : (63)

Inserting eqn (63) and (62) into eqn (61) yields at resonance conditions
(i.e. assuming hfp|V0|fqi¼ 0) the eigenvalue problem

A B
�B* �A*

� �
� o

1 0
0 1

� �	 

X
Y

� �
¼ 0: (64)
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Here, we have defined dai¼Xai and dia¼ Yia, while A and B have the
elements

Aai,bj¼ dijdab(ea� ei)þBai, jb (65)

Bai;bj ¼
@Fð0Þai

@Pjb
: (66)

The quantities ea and ei are orbital energies of the unperturbed system.
The eigenvalues of eqn (64) are the excitation energies o and its eigen-
vectors (XoYo)T define the transition density upon an electronic
transition as

droðrÞ¼
X

ia

Xo
iafiðrÞfa*ðrÞ þ Yo

iafaðrÞfi*ðrÞ
� �

: (67)

With the vacuum equations in place, we can now investigate the effect of
adding an embedding potential to f̂ (0)

iso, so that

f̂ (0)
tot¼ f̂ (0)

isoþ vemb, (68)

where vemb is either in form of eqn (44) or (57) for FDE or PE, respectively.
Accordingly, a matrix element of the unperturbed Kohn–Sham matrix is
defined as

F(0)
tot, pq¼ F(0)

iso, pqþ Vemb, pq, (69)

with the matrix elements

Vemb, pq¼hfp|vemb|fqi, (70)

being the only difference from the isolated system.
If we carry out the same manipulations as above, but with f̂ (0)

iso replaced
by f̂ (0)

tot (cf. eqn (68)), we likewise obtain an eigenvalue of the form of eqn
(64). However, A and B terms will be altered through (i) altered orbital
energies due to introduction of the embedding potential in the unper-
turbed Kohn–Sham matrix, entering directly in eqn (65) and (ii) an
addition to the B-term in eqn (66) with no equivalent in the eigenvalue
equations for the isolated system

Bemb
ai; jb¼

@Vemb; ai

@Pbj
: (71)

For FDE, this term is obtained by98,99 employing eqn (44) in eqn (71)

BFDE
ai;jb¼ faðraÞfbðr0aÞ

dvFDE
A ðraÞ

drAðr
0
aÞ

����
����fiðraÞfjðr0aÞ

� �

¼
ð

dra

ð
dr0ar

t
aiðraÞ

dvFDE
A ðraÞ

drAðr0aÞ
rt

bjðr0aÞ;
(72)
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where rt
ai rð Þ¼f*

a rð Þfi rð Þ. The kernel can be obtained as67,98

dvFDE
A ðraÞ

drAðr0aÞ
¼ d2Exc rtot½ �

drtotðraÞdrtotðr0aÞ
� d2Exc rA½ �
drAðraÞdrAðr0aÞ

þ d2Ts rtot½ �
drtotðraÞdrtotðr0aÞ

� d2Ts rA½ �
drAðraÞdrAðr0aÞ

;

(73)

where rtot¼
P

I
rI is the electron density of the complete system and rA

that of the active subsystem. The Exc and Ts terms are the exchange–
correlation and kinetic energy functionals. Note that the embedding
contribution to the LR-TD-DFT kernel contains no Coulomb term, as the
functional derivative of eqn (50) with respect to rA is zero for a frozen
environmental density renv. The remaining QM embedding contributions
to the response kernel are typically small29,100 and can often be
neglected.29

In PE, we arrive through an analogous derivation (see Appendix A.2 for
details) at

BPE
ai;bj ¼ faðraÞfbðr0aÞ

dvPE
A ½rAðr0aÞ�ðraÞ
drAðr0aÞ

����
����fiðraÞfjðr0aÞ

� �

¼
ð

dra

ð
dr0ar

t
aiðraÞ

dvPE
A ½rAðr0aÞ�ðraÞ
drAðr0aÞ

rt
bjðr
0
aÞ;

(74)

with

dvPE
A ðraÞ

drAðr0aÞ
¼ �

X
t

X
s

Tð1Þat ðr0aÞRtsTð1Þas ðraÞ: (75)

Eqn (74) is sometimes said to describe the dynamical response of the
environment due to the perturbation.80,84 It can also be understood as an
(approximate) description of differential polarization. We define differ-
ential polarization as mutual response of the environmental and active
subsystem densities to a local change of density in the active subsystem
caused by an electronic excitation.

Even though we are mainly concerned with embedding models com-
bined with linear-response methods, we also briefly comment on the
alternative state-specific description of excited states. In this case, dif-
ferential polarization may be accounted for by means of state-specific
embedding potentials. That means every electronic state has a dedicated
embedding potential, explicitly optimized to fit the excited state wave
function or density. Within FDE with freeze-and-thaw cycles, this
approach formally corresponds to incorporating differential polarization
to infinite order (see also Section 4.1.2).40 State-specific embedding
models are not restricted to state-specific electronic structure methods
for the local excited state, but can also be combined with response
approaches for the local excitation.43
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Within the PE models, the physical interpretation of the terms in eqn
(74) and (75) are still discussed and compared to the state-specific opti-
mization. In the framework of a continuum model (whose theoretical
foundation is equivalent to the PE models39), it has been shown that
embedded state-specific calculations and embedded response calcula-
tions cover the differential polarization in a rather different manner,101

i.e. via static and dynamical contribution, respectively.101,102 This differ-
ence originates from the assumption that the overall state can be
described as a product wave function (see Section 2.1).

A topic related to the state-specific discussion is the applicability of PE
for emission from an excited state using response methods for the active
region with the ground state as reference state. This method has occa-
sionally been questioned.103,104 This concern arises due to the presence
of non-linear embedding operators, leading to difference in results,
expected for ground- and excited-state embedding calculations (such
difference is not present for an exact state description). However, since
the vertical emission and absorption energies are just energy differences
between two electronic states at a given nuclear conformation, we see no
reason, why one of the interpretations of this energy difference (the
absorption energy) should be well described while the other (emission
energy) is not. That means that emission energies may be obtained with
the same PE-like embedding approaches as absorption energies. The only
difference is then the nuclear conformation (or a set of these) the static
calculations are performed in. Studies following this approach have been
reported in ref. 52, 105 and 106.

4 Method comparison and extensions

Having shown the details of the PE and FDE models in a common
framework above, we can now summarize the main formal differences
(with reference to the underlying equations in the previous chapter). Key
points are collected in Table 2. We also highlight extensions to both
methods (also collected in Table 2). We further present a short summary
of numerical studies performed with PE and/or FDE for selected target
systems, that are small molecules and the GFP.

4.1 Formal comparison of the original methodologies and latest
extensions
In Table 2, PE and FDE features are classified in the categories (i) classical
part of the environment, (ii) QM embedding part of the environment, and
(iii) differential polarization. Table 2 further lists possible extensions that
address short-comings of the original forms of PE and FDE.

4.1.1 Comparison
4.1.1.1 Classical embedding contribution. In FDE, the classical (Cou-

lomb) part in eqn (50) is evaluated directly, employing the real-space dens-
ity, typically expressed on an integration grid. The polarization is encoded
as density changes upon mutual optimization (freeze-and-thaw)
approaches. Contrary to this, the representation of the environment is dis-
cretized in PE models, employing a multipole expansion with localized
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multipoles to approximate eqn (50). The order of the expansion is usually
up to quadru- or octopoles, but higher orders are possible. In PE
approaches, the mutual polarization of the density is approximated
through the induced dipole in the environment, obtained by solving
eqn (53) self-consistently.

4.1.1.2 Quantum mechanical embedding contribution. Since FDE
approaches originate from a full quantum description, QM contributions
to the embedding energy are (approximately) covered. The PE models in
the original formulation, do not include these effects, as discussed in
Section 2. In FDE, these kinetic and exchange–correlation contributions
(cf. eqn (43)) are often covered by approximate orbital-free DFT.25,63,64

The resulting QM potential also contains repulsion terms,63,76,108 which
reduce the electron spill-out problem128 for FDE compared to classical
models.108 Due to the approximate kinetic embedding functionals, how-
ever, electron spill-out effects can also occur in FDE.108,129,130

4.1.1.3 Differential polarization. The formulation of FDE is generally
more rigorous than PE for ground states, but in the original linear-
response FDE approach, the differential polarization is neglected. In
the PE scheme this is included via localized static polarizabilities in
the response kernel (eqn (75)).

4.1.2 Extensions. Within the last years, several extensions to the ori-
ginal FDE and PE models have been suggested. Some of these extensions

Table 2 Formal comparison of polarizable embedding and frozen-density embedding
approaches and selected extensions for local excitations.

Environment Polarizable embedding Frozen-density embedding

(i) Classical part
(vC, see eqn (50))

Multipole expansion with localized
multipoles (cf. eqn (51)) and
localized static polarizabilities
(cf. eqn (56)).

Real-space densities and mutual
optimization via freeze-and-
thaw cycles.

(ii) QM part (vQM,
see eqn (43))

Neglected. Orbital-free DFT (see ref. 25, 63
and 64).

Extensions Tailored ECPs.107 Tailored ECPs or long-distance
correction added to vQM in
eqn (43).108,109

Polarizable density embedding
(PDE; corresponds to adding
explicit density (eqn (50) with renv

replaced by r(0)
env) and a repulsive

projection operator).110–113

Projection techniques.73,114–125

Exchange repulsion terms in EFP
(see ref. 88 and references therein).

MP2-based correction terms to
exchange–correlation
contribution of eqn (43).126

(iii) Differential
polarization in
response
methods

Localized static polarizabilities
(cf. eqn (74) and (75)).

Neglected.

Extensions State-specific FDE potentials.40,43

Effective local description of
coupled FDE.67,127
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to PE are inspired by FDE and vice versa, so that the resulting methods
can occasionally be considered hybrids. We describe those according to
the categories in Table 2.

4.1.2.1 Quantum-mechanical embedding contribution. To reduce the
electron spill-out problem, several extensions have been made to both PE
and FDE. The FDE method (approximately) accounts for repulsive QM
effects, and these effects have also been introduced to PE: in the so-
called polarizable density embedding (PDE) methods, this has been done
by adding explicit densities and using a projection-operator to mimic the
repulsion for environment fragments in close proximity of the QM region
(this is sometimes denoted exchange or Pauli repulsion). In contrast to
the original FDE scheme, PDE employs projection techniques to enforce
mutual orthogonality of the orbitals of the different subsystems.131 Such
orthogonality constraints have also been used to avoid the need of an
orbital-free kinetic energy functional in density embedding approaches,
often in combination with wave function methods for the central
subsystem.73,114–125 Projection-based embedding techniques even allow
the construction of conjugated systems from subsystems.73 In projection-
based embedding schemes, the exchange–correlation contribution can
significantly contribute to the error and MP2-based corrections have been
suggested to reduce this error.126 Projection-based density embedding
schemes have further been extended to excited states.132–135

A somewhat more pragmatic way to reduce the electron spill-out is the
use of additional potentials in the form of tailored effective core poten-
tials (ECPs), as has been done for both PE107 and FDE.109 In the case of
FDE, a long-distance correction to the kinetic energy functional has also
been employed for this purpose.108

4.1.2.2 Differential polarization in response methods. The neglect of
differential polarization in standard FDE response methods can be
remedied through introduction of state-specific embedding poten-
tials.40 While conceptually easy, this approach requires excited-state
electron densities, which are not generally easily accessible in practice,
in particular for the embedded case using response theory for the
active subsystem.43 Further, the change of the environmental energy
through different polarization has to be accounted for.40

An alternative to recover the differential polarization is the coupled
FDE approach,67,99,127,136–141 which attempts to reformulate the full
response equations by means of subsystems. The original formulation of
coupled FDE aimed at excitonically coupled subsystems,67,99,127,136–138

i.e., non-local excitations. However, also non-resonant effects can be
formulated via an effective, frequency-dependent contribution to the
eigenvalue equation in eqn (64).67

4.1.2.3 Further extensions. In Section 3, all contributions from the
environment were exclusively included in A and B terms in eqn (65) and
(66). However, the introduction of the external field has an additional
effect, namely to induce a field within the environment, which is not
accounted for by the modifications to A and B. Such local field effects may
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be covered by so-called effective external field (EEF) approaches, which
have been reported for PE60,142 as well as a variant of FDE, denoted polar-
izable FDE143 (see below). Note that the EEF effects do not alter the transi-
tion energies, but can have a significant effect on transition moments (and
therefore also polarizabilities and oscillator strengths).142,143

The polarizable FDE method is a combination of FDE with a PE-like
description of the environment.143,144 Here, the rather expensive freeze-
and-thaw cycles are replaced by a purely electrostatic PE-like treatment of
the polarizability. For the corresponding linear-response equations, the
introduction of the PE-like polarization operator incorporates differential
polarization effects in the resulting response kernel.143

Another addition to the PE models concerns the employed polariz-
abilities: in the original PE approach, static polarizabilities are employed.
However, an electronic excitation is induced by a frequency-dependent
electromagnetic field (cf. Section 3) and it can be argued that this should
entail use of frequency-dependent polarizabilities. This was done in ref.
145, although the effect is not very large for the investigated systems.

For PE additionally damped response methodologies are reported,146

as well as application to higher-order response properties.147–150 Finally,
also real-time TD-DFT approaches are reported both for FDE151–153 and
PE154 approaches, and the same holds for extensions to relativistic wave
functions.29,52,53,155

The methods discussed so far dealt with local excitations. It has,
however, been argued that the inclusion of charge-transfer excitations
between the dye and its environment can be required for good agreement
with experiment.135,156–158 This contribution may be included by exact
subsystem LR-TD-DFT139–141 or (combination of embedding schemes
with) molecular fragmentation many-body expansion (MBE)-like
approaches.135,159,160 Another direction for PE models has been to derive
correction terms to account for the asymmetry between state-specific and
linear-response methods discussed in Section 3. These methods have
been denoted corrected PE (see ref. 161 for an overview).

4.2 Numerical comparison
4.2.1 Small model systems. In an early study from 2006, Jacob

et al.100 compared a polarizable embedding model (DRF, see Table 1) to
FDE for water in water. This study concludes that both approaches
perform similarly for ground-state dipole and quadrupole moments, but
differently for electronic excitation energies and frequency-dependent po-
larizabilities obtained via response methods. In a later review by Gomes
and Jacob,66 different studies on acetone in water are compared. The dis-
cussed studies employ either QM embedding or classical polarizable
embedding, but do not compare them in a single study. It is concluded
that differential polarization only has small effects on the solvent shift,
as, for instance, found in ref. 31. This is in line with a good agreement to
the experimental solvent shift obtained with FDE analogues neglecting
this contribution compared to the experimental values.29,162 Studies on
microsolvated formaldehyde and p-nitroaniline reach the same conclu-
sion (or at least find that ground-state polarization effects are larger than
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the contribution due to differential polarization).163,164 One should, how-
ever, be aware, that the impact of differential polarization is highly
dependent on the molecule, size of solvent shell, transition and even the
employed snapshot if dynamics are included: indeed, ref. 31 and 163
find an increase of the differential polarization when including two, four,
and six water molecules in the same microsolvated model for p-nitroani-
line. The analysis is expanded up to a 12 Å radius (239 water molecules)
in the paper by Sneksov et al.31 By averaging over 100 snapshots, they
obtain an average contribution from differential polarization to the solvo-
chromatic shift of p-nitroaniline in water of about 13%, while the contri-
bution of ground-state polarization amounts to 19% and 21% for
coupled-cluster and LR-TD-DFT methods (CAM-B3LYP), respectively. They
further investigate p-nitrophenolate, where the impact of differential
polarization on the excitation energies is above 60%. Another conclusion
from ref. 31 is that different snapshots exhibit somewhat varying impact
of differential polarization. This was also found within state-specific FDE
in ref. 40. Here, the differential polarization for the p-p* transition of a
p-nitroaniline–water system has been estimated for three microsolvated
snapshots. The differential polarization for the different snapshots has
been found in the ranges between 0.01–0.22 or �0.02–0.15 eV, depending
on the description of the excited-state density.

4.2.2 Example application: green fluorescent protein. The green
fluorescent protein (GFP) shown in Fig. 1165,168–173 has become indis-
pensable in non-invasive in vivo bioimaging.9,174,175 The optical proper-
ties of GFP proteins are therefore actively studied experimentally as
well as theoretically. These properties have origin in the p-conjugated
chromophore p-hydroxybenzylideneimidazolidinone (HBDI), which in
its isolated form is a non-fluorescent species due to a conical intersec-
tion reducing the excited-state lifetime.176–181 However, as a covalently-
bound, intrinsic part of the protein scaffold, the quantum yield
increases by several orders of magnitude.170,182,183 In equilibrium, the
neutral form (A form) of the protein-embedded chromophore domin-
ates over the anionic B form where the chromophore’s phenol moiety

Fig. 1 Neutral GFP chromophore (middle) extracted from the b-barrel wtGFP 1EMB
structure165 in top view (left) and front view (right). Graphics were created with Visual
Molecular Dynamics 1.9.3.166,167
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is deprotonated. Since these occur in a 6 : 1 ratio the experimental
absorption spectrum displays two maxima, the first, higher maximum
at about 395–398 nm corresponding to the A form and the second at
about 475–478 nm corresponding to the B form.165,170,184–191 There
have been many studies to computationally reproduce the absorption
properties of the system incorporating the structural changes in the
chromophore pocket.17–19,107,133,137,159,160,192–212 However, the size of
the environment so far prohibits a full-system QM calculation.

In 2003, Marques et al.213 introduced a QM/MM model for mechanic-
ally restricting the HBDI in the protein and subsequently performing
a LR-TD-DFT calculation for the isolated chromophore. They were
followed by several studies electrostatically embedding (EE) the
chromophore.17,192,194,195,197,199–201,203,214–219

Beerepoot et al.204 were able to show that the polarization effects of the
environment in a distance of up to 20 Å influence the excitation energy of
the chromophore by approximately 0.14 eV. In a study comparing
QM/MM, QM/MMpol and (state-specific) FDE embedding schemes
Daday et al.18 confirmed the need of a protein description exceeding
pure electrostatics. Several additional PE studies have been per-
formed19,145,197,202,204,205,207,211 as well as studies for different embedding
schemes increasing the QM region.18,19,160,199–201,203,207,210,211,217

In the following, more recent studies will be shortly summarized.
Selected excitation energies are condensed in Table 3: In ref. 207, a PE
model was employed for studying the effect of different QM system sizes.
The authors conclude that a PE model is essential to qualitatively
capture environmental effects when comparatively small QM regions are
employed. Additionally, the importance of using an EEF in the calcu-
lation of absorption intensities could be shown.207 Further, Grabarek
et al.210 were able to show that including polarizability of the environ-
ment via PE allowed for a decreased size of the QM region in reproducing
accurate results in comparison to electrostatic embedding (especially
the intensities). Notably, a large effect of environmental polarization on
the absorption energies is found for a GFP mutant in the same study.
In an additional study, Grabarek et al.211 were able to eliminate errors
occurring in the previous PE study with diffuse function basis sets by
including an effective-core potential (ECP) to avoid electron spill-out
effects. This effect was also studied by Khah et al.107 using PE(TD-HF)
and PE(ADC(2)) models in combination with pseudopotentials, also
distinctly stressing the impact of the electronic structure method for the
active site, as similarly concluded earlier in a comparison of TD-DFT and
CASPT2 methods.208 Furthermore, the PE scheme was also adapted
with a cost-effective polarizable protein potential (CP3) replacing the
PE potential at a certain cut-off distance and achieving high accuracy
while vastly decreasing the cost in the calculation of excitation energies
of GFP.209

Another interesting point is the effect of ground-state polarization and
differential polarization. Nifosi et al.208 performed a study comparing
QM/classical schemes with different treatment of the polarization
contributions. These are non-polarized EE, ground-state polarized
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Table 3 Selected recent studies for GFP in their A form and B form employing quantum-derived embedding methods and their results for the 0-1 excitation
energy dependent on the QM region size.

Ref. QM Embedding DEA/eV DEB/eV QM atoms A/B

Classical (polarizable)
embedding

207 CAM-B3LYP/6-31G*

CAM-B3LYP/6-31G*

EE (AMBER)

PE (B3LYP/6-31G*)

—

—

3.15

3.00

—/96

—/317
— 2.98 —/35

3.02 —/96
2.97 —/317

210 BHandHLYP/aug-cc-pVDZ EE (AMBER) 3.28 3.10 40/39
3.23 3.07 84/81
3.19 3.00 141/154

BHandHLYP/cc-pVDZ PE (B3LYP/ANO-L-VDZP) 3.26 3.10 40/39
3.24 3.08 84/81
3.22 3.03 141/154

211 BHandHLYP/aug-cc-pVDZ PE(ECP) (B3LYP/ANO-L-VDZP) 3.22 — 40/—
107 TD-HF/aug-cc-pVDZ PE(ECP) (B3LYP/ANO-aug-cc-pVDZ) — 3.32 —/35

ADC(2)/aug-cc-pVDZ PE(ECP) (B3LYP/ANO-aug-cc-pVDZ) — 2.39 —/35
209 CAM-B3LYP/pcseg-2 AMOEBA — 3.48 —/39

CAM-B3LYP/pcseg-2 CP3 (from PBE0/ANO-aug-cc-pvDZ) — 3.14 —/39
208 CAM-B3LYP/6-31þG* EE (AMBER99) — 3.14 —/43

MMpol (AMBER pol12) — 3.23 (polGS) —/43
3.00 (polLR)
2.99 (polLRþ SS)

SA-CASSCF/CASPT2/ANO EE (AMBER99) — 2.85 —/43
MMpol (AMBER pol12) — 3.05 (polGS) —/43

2.96 (polSS)
2.73 (polLRþ SS)
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QM embedding 133 B3LYP/def2-TZVP Projection-based embedding
(B3LYP/def2-TZVP)

3.27 — 49/—
3.18 96/—

MBE-type 159 oB97X/6-31G* EE (AMBER ff14SB) 3.38 3.07 36/35a

oB97X/6-31G* Polarized protein-specific charge
(RESP from B3LYP/6-31G*)

3.31 2.88 36/35a

160 CAM-B3LYP/def2-SVP sDFTþMBE (CAM-B3LYP/def2-SVP,
Enadd,xc: BLYP, Enadd,kin: LLP91)

3.31 3.07 40/39b

3.29 3.04 152/151b

165, 170 and
184–191

Experimental comparison 3.12–3.14 2.59–2.61 —

a In the employed fragmentation approach the system is divided into smaller subsystems that are all calculated at QM level. However, in this case the value represents
the number of atoms in the GFP chromophore. The whole system considered in the EE-GMFCC approach contains 776 atoms.
b Although technically all subsystems were determined at QM quality, in this case the value displays the number of atoms of the active subsystem in the FDE-LR-TD-DFT
calculation. The full system included 278 atoms in the small system and 538 atoms in the large system.
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embedding (polGS) as well as a linear-response description of differential
polarization (polLR) via the MMPol method (see Table 1). The latter
was further extended by a correction for the lack of contributions
included in the state-specific approach (polLRþ SS) through the cor-
rection terms briefly discussed at the end of Section 4.1.2. They show
that with ground-state polarization, the excitation energies often
exceeded the experimental results. A fine-tuning with differential and
state-specific polarization is necessary since it is leading to a partial
cancellation of the ground-state polarization effect.208 Wen et al.133

employed a projection-based density embedding model and confirmed
the ground-state polarization as a major contribution. Subsequently,
they performed a step-wise increase of the QM region including up to
96 atoms, which shows the residue-specific, systematic improvement in
the agreement with the experiment.

Going beyond local embedding, a many-body expansion (MBE)-FDE
hybrid achieved accurate results at second order (in the MBE) for the
A form and at third order (in the MBE) for the B form. This approach
also allowed an analysis of the specific residues dominant in response.160

In another fragmentation study159 the necessity of polarization effects in
the stabilization of hydrogen bond interactions was revealed.

5 Summary and conclusions

We have presented a common derivation of the original frozen-density
embedding (FDE) as well as polarizable embedding (PE) equations.
We first compared to ground-state equations and then moved on to
compare how optical properties are described within a linear-response
framework.

This common framework enabled us to compare and discuss the two
approaches’ theoretical basis: The main differences for ground-state
calculations are the incorporation of quantum-mechanical (QM) effects
as well as a real-space representation of the electron densities in FDE,
while the original form of PE uses a purely classical multipole
description of the environment. For response properties an additional
difference occurs: For PE, the embedding contribution to the response
kernel contains only terms to approximate differential polarization
effects, which are absent in the FDE response kernel. The latter only
contains QM contributions. In summary, FDE accounts for QM effects
and is therefore more rigorous and less prone to electron spill-out is-
sues, while PE incorporates differential polarization effects in response
calculations. Thus, the performance of the different methods will
depend on how important electronic spill-out effects and differential
polarization are, respectively.

We have surveyed a number of numerical investigations regarding
the importance of differential polarization, but this contribution varies
rather drastically with the system. Estimates ranges from above 60% of
the solvochromatic shift for p-nitro-phenolate in water to negligible for
acetone in water. We have further reviewed recent work on the green
fluorescent protein, where embedding schemes that include polarization
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effects seem indispensable for accurate calculation of absorption
properties.

We have also discussed several recent extensions of the FDE and
PE models; some of these extensions draw on experience from the
other model, hoping to combine the advantages of both methodologies.
This has in many cases been successful, yielding methods that better
incorporate the correct physical description of the excitation process in a
complex environment.

Within this book chapter, we neither discuss the nuclear and dynamic
contributions to the optical spectra nor technical aspects related to the
efficiency of the computational expressions. In a vertical approximation,
introduction of nuclear effects requires a suitable set of conformations
representing and covering all accessible conformations. These can be
challenging to obtain, especially in case where quantum or excited-state
descriptions are required for (part of) the system. This is, for example, the
case, when targeting fluorescence spectra (see ref. 220–222 and references
therein). Such studies indeed pose challenges to the described quantum-
derived embedding methodologies, both regarding the required efficiency
of spectra calculation, and the theoretical description. The latter holds
particularly when vibronic effects of the spectrum need to be considered
along with environmental effects. This is currently an active field of
research (see ref. 223 and references therein), but considerably more work
should be done in this direction.

A Appendix

A.1 Interaction operators and Taylor expansion of a potential
We define a distance between two vectors |Ri�Rj|. The Taylor expansion
of |Ri�Rj|

�1 around an expansion point, RO, using that

@

@Rj;a

1
Ri � Rj

�� ��
 !

Rj ¼RO

¼� @

@Ri;a

1
Ri � ROj j

� �
(76)

gives

1
Ri � Rj

�� �� ¼
1

Ri � ROj j
�
X
a

@

@Ri;a

1
Ri � ROj j

� �
ðRj;a � RO;aÞ þ � � �

¼T ð0ÞOi �
X
a

T ð1ÞOi;aðRj;a � RO;aÞ þ � � � ;
(77)

where we have defined the interaction operators71 T(0)
ji ¼ |Ri�Rj|

�1,

T ð1Þji;a ¼
@

@Ri;a
Ri � Rj

�� ���1
and so on.

The Taylor expansion in eqn (77) can be written in a compact form
if we use a three-dimensional multi-index k¼ (kx,ky,kz).

80 The norm of
the multi-index is |k|¼ kxþ kyþ kz and the k’th power of the vectors
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in eqn (76) and (77) is defined Rk¼ xkxykyzkz. We can then define a
derivative

@jkj

@Rk ¼
@kxþkyþkz

@xkx@yky@zkz
(78)

The multi-index notation can thus be used to rewrite eqn (77) into

1
j Ri � Rj j

¼
X
jkj ¼ 0

ð�1Þjkj

k !

@jkj

@Rk
i

1
j Ri � RO j

� �
ðRi � ROÞk

¼
X
jkj ¼ 0

ð�1Þjkj

k !
TðkÞOi ðRi � ROÞk:

(79)

The interaction operator is defined as a tensor with Einstein summation

over coordinate indices implied, TðkÞji ¼
@kxþkyþkz

@xkx
i @y

ky

i @zkz
i

Ri � Rj

�� ���1
.

A.2 Polarizable embedding kernel in linear-response time-dependent
density-functional theory
To derive the contributions of the PE operator to the LR-TD-DFT response
matrix (eqn (64)), within the framework sketched in Section 3, we apply
the matrix element of the PE operator in the form (cf. eqn (57))

VPE
ai ¼hfa(ra)|(vmult(ra)þ vpol[rA](ra))|fi(ra)i (80)

and insert it as Vemb
ai in eqn (63). The electrostatic part vmult(ra) (cf. eqn

(51)) is independent of the QM electron density therefore does not con-
tribute to the response kernel. Thus, we can focus on the vpol[rA](ra)
contribution; the matrix element in eqn (80) reads

VPE
ai [rA]¼hfa(ra)|vpol[rA](ra)|fi(ra)i. (81)

Inserting eqn (81) into eqn (71) as Vemb
ai ¼ VPE

ai yields

@

@Pbj
faðraÞjvpol½rA�ðraÞ j fiðraÞ
 �

¼hfaðraÞ j
@vpol½rA�ðraÞ

@Pbj
jfiðraÞi (82)

The derivative is evaluated as a functional derivative: in general, the
derivative of a functional G[g] with respect to the parameter l can be
expressed as,78

@G
@l
¼
ð

dG
dðgðxÞÞ

@gðxÞ
@l

dx (83)

The derivative of vpol in eqn (82) thus becomes

@vpol½rA�ðraÞ
@Pbj

¼
ð
dvpol½rAðr0aÞ�ðraÞ

drAðr0aÞ
@rAðr0aÞ
@Pbj

dr0a; (84)
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where the kernel can be obtained by inserting the expression for vpol

(cf. eqn (54) and (56)) with

dvpol½rAðr0aÞ�ðraÞ
drAðr0aÞ

¼ �
X

s

dlind
s ½rAðr0aÞ�
drAðr0aÞ

ee
A;sðraÞ

¼ �
X

s

X
t

dEe
A;t½rAðr0aÞ�
drAðr0aÞ

� �
Rtse

e
A;sðraÞ

¼ �
X

s

X
t

ee
A;tðr

0
aÞRtse

e
A;sðraÞ¼ �

X
s

X
t

Tð1Þat ðr0aÞRtsTð1Þas ðraÞ:

(85)

Note, that only the electronic part of the electric field in eqn (52)
contributes, as this is the only part dependent on rA. We further realize
that ee

A,t(ra)¼T(1)
at (ra), as can be deducted from eqn (30) and (47), and

explicitly write the ra dependence of T(1)
at (ra). This form of the kernel given

in eqn (75), thus, eqn (82) becomes

hfaðraÞ
@vpol½rA�ðraÞ

@Pbj

����
����fiðraÞi

¼ �
X

s

X
t

hfaðraÞ
ð

Tð1Þat ðr0aÞRts
@rðr0aÞ
@Pbj

���� dr0aTð1Þas ðraÞ
���fiðraÞi:

¼ �
X

s

X
t

hfaðraÞfbðr0aÞ
���Tð1Þat ðr0aÞRtsTð1Þas ðraÞ

���fjðr0aÞfiðraÞi:

(86)

which is the equation given in eqn (74).
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221 G. Dı́az Mirón and M. C. González Lebrero, J. Phys. Chem. A, 2020, 124,

9503–9512.
222 M. Nottoli, B. Mennucci and F. Lipparini, Phys. Chem. Chem. Phys., 2020, 22,

19532–19541.
223 T. J. Zuehlsdorff, S. V. Shedge, S. Y. Lu, H. Hong, V. P. Aguirre, L. Shi and

C. M. Isborn, Annu. Rev. Phys. Chem., 2020, 72, 165–188.

60 | Chem. Modell., 2022, 17, 24–60

D
ow

nloaded from
 http://books.rsc.org/books/edited-volum

e/chapter-pdf/1318138/bk9781839167416-00024.pdf by T
IB

 und U
niversitaetsbibliothek H

annover user on 30 June 2023

A.2. Numerical Comparison

203



A. Local Optical Properties

A.2.4.2. Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J. Phys. Chem. A 2023,

127, 5689–5703

Reprinted with permission from Jansen, M.; Reinholdt, P.; Hedegård, E. D.; König, C. J.

Phys. Chem. A 2023, 127, 5689–5703. Copyright 2023 American Chemical Society.

Theoretical and Numerical Comparison of Quantum- and Classical
Embedding Models for Optical Spectra
Published as part of The Journal of Physical Chemistry A virtual special issue “Roland Lindh Festschrift”.

Marina Jansen, Peter Reinholdt, Erik D. Hedegård,* and Carolin König*

Cite This: J. Phys. Chem. A 2023, 127, 5689−5703 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Quantum-mechanical (QM) and classical embed-
ding models approximate a supermolecular quantum-chemical
calculation. This is particularly useful when the supermolecular
calculation has a size that is out of reach for present QM models.
Although QM and classical embedding methods share the same
goal, they approach this goal from different starting points. In this
study, we compare the polarizable embedding (PE) and frozen-
density embedding (FDE) models. The former is a classical
embedding model, whereas the latter is a density-based QM
embedding model. Our comparison focuses on solvent effects on
optical spectra of solutes. This is a typical scenario where super-
system calculations including the solvent environment become
prohibitively large. We formulate a common theoretical framework
for PE and FDE models and systematically investigate how PE and FDE approximate solvent effects. Generally, differences are found
to be small, except in cases where electron spill-out becomes problematic in the classical frameworks. In these cases, however, atomic
pseudopotentials can reduce the electron-spill-out issue.

■ INTRODUCTION
Quantum-mechanical (QM) methods are indispensable for the
calculation of optical spectra, but their use often becomes
computationally too demanding for large systems. Embedding
schemes have been introduced to circumvent the full, super-
system QM calculation by including large environments
through an effective embedding operator.
The definition of an embedding model requires that the

system is split into an active system and the remaining part
(“the environment”).1−4 Embedding models can be divided
into two main classes: (i) QM−classical embedding
approaches describe the active system by a QM method,
whereas all interactions between the active system and
environment (as well as the environment itself) are treated
by a classical description. (ii) QM−QM embedding describes
both active system and environment with QM methods (either
on the same or different footings). In this case, the interaction
between active system and the environment also contains QM
contributions.
For optical properties, the electrostatic interaction between

the active system and the environment is often the dominating
embedding contribution. In traditional QM-classical ap-
proaches, this contribution is modeled through (atomic)
point charges in the environment.4 The point-charge model is,
however, insufficient in many cases.1,5−9 Therefore, a large

number of more advanced embedding schemes have been
developed over the years.5,7,10−23

In this work, we employ an advanced QM-classical
embedding model, namely the polarizable embedding (PE)
model.20 In this model, point charges in the environment are
replaced by a multipole expansion. Additionally, PE incorpo-
rates the environment polarization through anisotropic
electronic dipole−dipole polarizabilities. The parameters for
the environment (i.e., multipoles and polarizabilities) are
obtained from QM calculations on isolated fragments. If the
environment is a solvent, these fragments are most naturally
defined as solvent molecules.
In the class of QM−QM embedding methods, the total

system is expressed by means of fragments or subsystems:24−27

Within density functional theory (DFT) this is known as
subsystem DFT.28 All subsystems are described by their
electron densities, which are obtained by quantum-chemical
calculations. The interaction of the environment subsystems
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with the active subsystem is then recovered through an
embedding potential, which contains quantum-mechanical
contributions. This potential is dependent on all other
subsystem’s electron densities.28,29 In practice, the environ-
mental electron densities are commonly kept frozen, so that
only the active subsystem’s electron density is polarized. In this
frozen-density embedding (FDE) approach,29 the effect of the
environment’s polarizability can be incorporated by self-
consistently cycling through all subsystems in a so-called
freeze-and-thaw scheme.25,27−30

Both embedding classes share, hence, a common goal and
have been employed to show that polarization effects
originating from the environment can play a significant role
in the accurate calculation of local optical properties.8,31−34

Yet, direct numerical comparisons have been rare.35,36 We
recently developed a common theoretical framework17

encompassing both fragmentation-based QM−QM and
QM−classical embedding methods with a special focus on
FDE and PE. This framework was employed to dissect how the
two classes of embedding models describe the interactions
between the active system and the environment. We here
continue this comparison by quantifying how the theoretical
differences manifest numerically for optical properties of two
solvated systems, employing a supermolecular calculation as a
reference.
Our target systems are two fluorescent dyes whose excited-

state properties are known to be sensitive to solvent effects:
The first target system is para-nitroaniline (pNA, see Figure
1a), which has been studied with several different embedding
schemes.7,8,37−40 Yet, the performance of the QM−QM and
QM−classical embedding schemes for pNA have never been
compared in a combined study. The second test case is
pentameric formyl thiophene acetic acid (pFTAA, see Figure
1b), a luminescent biomarker developed for fluorescence
imaging for amyloid proteins.41 The mechanism occurring with
the chromophore embedded in the protein is not fully
understood yet, but it is known that its properties strongly
depend on the solvent−solute interactions and the con-
formation of the molecule.42−45 Notably, pFTAA is an anionic
system and therefore poses somewhat different challenges in
the description of the solute−solvent interaction than pNA.
This paper is organized as follows. We first briefly introduce

the PE and FDE scheme in the common theoretical framework
as derived in previous work17 (Theoretical Background
Section). In particular, we point out similarities and differences
between these schemes. We then describe the Computational
Setup, developed to enable us to compare the embedding
methods on equal footing before we outline the Computational
Details. Subsequently, the results are presented and discussed
(Results and Discussion Section). Finally, the last section
provides the Summary and Conclusions.

■ THEORETICAL BACKGROUND
In this section, we give a brief overview of the density-based
QM−QM embedding and classical PE methods. For a more
detailed derivation, reviews, and further extensions of the
presented models we refer to refs 14−17, 28, 36, 46−48. Here,
we use the common framework developed in ref 17.
Embedding schemes commonly focus on a selected, active

subsystem A. The remaining parts are labeled the environment
(env). The total energy can be written as the sum of the energy
functionals of the respective electron densities ρA and ρenv,

E E E E ,tot tot A A env env int A env[ ] = [ ] + [ ] + [ ] (1)

where Etot[ρtot]and EA[ρA] denote the total energy functional
and the energy functional of the active subsystem A,
respectively. The Eint[ρA, ρenv] term defines the interaction
energy, i.e., Eint[ρA, ρenv] = Etot[ρtot] − EA[ρA] − Eenv[ρenv],
where we assume ρtot = ρA + ρenv. The environment density can
analogously be approximated as a sum of all environmental
(subsystem) densities, ρX, by ρenv = ∑X≠AρX. We further
decompose the interaction energy into Coulomb (classical),
EintC [ρA, ρenv], and QM contributions, EintQM[ρA, ρenv],

E E E, , ,int A env int
C

A env int
QM

A env[ ] = [ ] + [ ] (2)

where both contributions can be obtained analogously to eq 1.
The Coulomb part is included in both density-based and

classical embedding schemes. In the density-based QM−QM
embedding schemes this part is expressed as
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where RI/J denote nuclear coordinates, ra/x denote electronic
coordinates, and ZI/J are nuclear charges. The interaction of
the environment with the active subsystem is included via
Coulomb [and possibly quantum-mechanical (QM)] contri-
butions through an effective embedding operator. The effective
Hamiltonian for subsystem A can be expressed as

H H v H vr r r( ) ( )dA
eff

A A
emb

A A a A
emb

a a= + = + (4)

where ĤA denotes the Hamiltonian of the isolated subsystem A
incorporating the kinetic energy and intra-subsystem Coulomb
interaction terms. The density operator ρ̂A (ra) = ∑i ∈Aδ (ri −

Figure 1. Dyes considered in this work: (a) para-nitroaniline (b) pentameric formyl thiophene acetic acid.
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ra) defines the connection between the Hamiltonian with
electron-based coordinates and density-based expressions with
real-space coordinates. We define the embedding operator via
a real-space potential

v E E

E E E
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a
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(5)

In FDE, the environmental density ρenv is kept frozen so that
the total embedding potential resulting from eq 5 becomes

v v v

v

r r r
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( ) ( ) , ( )
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a A
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env a A
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with the Coulomb potential only depending on ρA and the
(frozen) densities of the environment
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where EintC [ρA, ρenv] is defined in eq 3. The QM contributions
from eq 5 are comprised of kinetic and an exchange−
correlation (xc) parts, represented by vAnadd,kin and vAnadd,xc in eq
6. In practical calculations, these contributions are often
approximated by orbital-free DFT methodologies,28,29,47

though for vAnadd,kin also orbital-dependent projection schemes
have been reported.49−61

The application of a fixed ρenv in FDE leads to several
possible choices of frozen densities. The crudest approximation
is to use the density from the isolated fragments. We denote
these densities {ρX

(0)}. Likewise, we also can define ρA
(0).

Allowing the active subsystem A to relax by submitting ρA to a
self-consistent-field optimization in the frozen environment
density, ρenv(0), leads to a relaxed density ρA

(1). In terms of density-
based embedding schemes, this approach directly refers to
FDE.29 It yields a relaxed energy for the active subsystem
EA[ρA(1)].
The relaxation of ρA

(0) to ρA
(1) can be done for all fragments in

a step-wise manner until self-consistency to obtain the relaxed
densities ρA

(2) and ρenv(2). This is denoted a freeze-and-thaw
procedure.62 Formally, the mutual polarization of the densities
in the ground state of the super system is recovered when
performing a sufficient number of freeze-and-thaw cycles. This
mutual optimization does not only account for electronic
polarization but also affects non-electrostatic contributions
through the density-dependent description of the kinetic part
of the interaction energy.46

In contrast to that, the PE methods approximate both static
electrostatics and polarization solely based on frozen densities
in the environment, ρenv(0) = ∑X≠AρX

(0). An expression for the

total energy comparable to eq 1 can then be obtained through
Rayleigh−Schrödinger perturbation theory,

E E E Etot
(0) (1) (2)+ + (8)

By expressing the interaction between the subsystems as
perturbations of the energy, the zeroth-order perturbation can
be identified as the isolated subsystem energies. Thus, from eq
1 we identify E(0) = EA[ρA(0)] + Eenv[ρenv(0)] and the interaction
energy (Eint[ρA(0), ρenv(0)]) must therefore come through the
higher-order energy corrections. Indeed, the first-order
correction corresponds to eq 3 with frozen densities, i.e.,
EintC [ρA(0), ρenv(0)]. The PE model further approximates EintC [ρA(0),
ρenv(0)] through a multipole expansion,34,63,64 i.e.,

E E E, ,(1)
int
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int
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A
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env
(0)= [ ] [ ] (9)

the multipole expansion employs individual atoms of the
subsystems/fragments as expansion points ({Rs} or in short
sites, s). The multipole expansion can thus be written as
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In the above equation, we have defined the interaction
operators to k’th order in a multi-index notation17

T R Rs
k
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a
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a
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a
ky

a
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= | |
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. Moreover, the multipole moment

operator of k’th order on site s is defined as Qs
(k)[ρX

(0)] = ⟨ΨX
(0)|

Q̂s
(k)|ΨX

(0)⟩. The term for zeroth-order moments represents the
charge contribution Q̂s

(0) = q̂s, the first-order term denotes the
dipole contribution Q̂s

(1) = μ̂s and so on. In the following, we
combine the two sums over fragments X and sites s into one
sum over all sites s.
The mutual polarization effects are approximately covered

by the second-order correction64

E E E E(2)
A
pol

env
pol disp= + + (11)

We focus on the following only on the polarization part, while
neglecting the dispersion contribution, Edisp. The environment
polarization energy, Eenvpol , can be described as

E
1
2

T
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A
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(12)

and EApol can in principle be obtained analogously. This part is,
however, inherently included in the QM model for the active
system. The field is defined as the sum of the fields from
electrons in system A, nuclei in system A, and the multipoles in
the environment
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The induced dipole moment on site s can then be obtained
as65
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where αs is the (static) point-polarizability localized on site s
and s A

(0)[ ] the field in eq 13 on site s. Note that the induced
dipole on site s depends on the field generated from the
induced dipoles on all remaining sites. Thus, a self-consistent
optimization is required to obtain the induced dipole moment,
μs
ind. This optimization problem can be written as

Rs
t

ts s
ind

A
(0)

A, A
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(15)

where the so-called classical response matrix, R, is given as
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The total energy (in eq 1) is now defined by combining eqs
8−11,
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here we skip the superscript for ρA to denote that it is subject
to change in the self-consistent-field (SCF) procedure
performed during the optimization of the QM system (note
that eq 15 will then have to be solved within each SCF cycle).
The environment density ρenv(0) remains the isolated density of
the environment fragments (represented by a multipole
expansion). For consistency with the definition in eq 1, we
have written the total energy in eq 17 as a sum of the energies
of the active system A and the environment plus an interaction
energy, where we have combined the energy of the isolated
subsystem and polarization in the term EAPE[ρA, ρenv(0)] = EA[ρA]
+ EApol [ρenv(0)]. The term EenvPE [ρenv(0), ρA] is defined in a similar
fashion.
With this starting point, a PE embedding potential according

to eq 5 is derived to be17
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where the two operators are defined as
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The field potential εA,se (ra) is the component of the electronic
part of the electric field operator on the site s, defined in real-
space coordinates as,
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where r( )sA,
e

A a[ ] is the electronic component of the field in
system A on site s (cf. eq 13). Thus, vmult corresponds to a
multipole approximation of eq 7, where only ρX

(0) are
employed. Similarly, vpol approximates the effect of mutual

polarization, i.e., moving from ρX
(0) to ρX

(2) in eq 7. The QM
contributions from eq 6 are not included in standard PE.
Optical spectra are in this work obtained by linear response

theory in the form of time-dependent DFT (TD-DFT). To
incorporate embedding contributions for the models discussed
above, we add the embedding potential vemb to the Kohn-Sham
operator of the vacuum system ( fîso)

f f vtot iso emb= + (22)

with vemb being eqs 6 or 18 for FDE and PE, respectively.
Replacing fîso with ft̂ot in the derivation of the response
equations leads to a set of modified response equations, that
are,
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with the excitation energies ω and the eigenvectors (X, Y)T.
The elements of A and B are given as

A B( )ai bj ij ab a i ai jb, ,= + (24)

B
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a i
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,
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(25)

Here, Fai
iso denotes a Fock matrix element of the isolated

system and Pbj is an element of the density matrix. The
quantities εa and εi are orbital energies, where occupied
orbitals are labeled with i or j and the virtual ones with a or b.
The orbital energies are eigenvalues of the total Fock operator
ft̂ot in eq 22. Thus, part of the environmental contribution (the
static electrostatics and ground-state polarization) enters
through these energies.
For FDE, vemb can be chosen to rely only on {ρX

(0)} densities,
which we denote FDE NOPOL. An equivalent contribution can
be defined for PE (which we denote PE NOPOL) if only vmult
of eq 18 is included in vemb, but not vpol. Employing the relaxed
densities {ρX

(2)} in eq 5 corresponds to including the ground-
state polarization and we denote this model FDE GSPOL. The
corresponding model in the PE framework (denoted PE
GSPOL) corresponds to employing both vmult and vpol of eq 18
in vemb, while neglecting the vemb part of Bai,bj in eqs 24 and 25.
The second term of B requires more attention since the

physical content between PE and FDE models is rather
different.17 The term can be identified as
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The functional derivative ( )v r
r
( )

( )
A
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a

A a
for the corresponding

embedding scheme can be derived from eqs 6 and 18 for FDE
and PE, respectively.
In the case of FDE, we have a static (ground-state) potential

and the Coulomb terms vanish. Thus, only quantum-
mechanical terms contribute,66 so that
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The remaining QM embedding contributions to the response
kernel, however, are often small, so that the major environ-
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mental effect in the electronic transitions and oscillator
strengths are results of differences in the canonical orbitals
and orbital energies.35,67 The QM contributions to the
embedding in the response kernel are, hence, not included in
the numerical examples of the present work.
For PE, the functional derivative is obtained from eq 18 as17

v r
r

T r R T r
( )

( )
( ) ( )

t s
t ts s

A
PE

a

A a
a
(1)

a a
(1)

a=
(28)

This contribution can be understood as an (approximate)
treatment of differential polarization, i.e., the difference in the
interaction between the ground-state and excited-state
densities with the environment densities. We denote PE
models with this effect included as PE DPOL. There is no
corresponding term for FDE models, although extensions have
been suggested that include differential polarization.8,32,68−72

Most of them are, however, rather computationally demand-
ing68 or require embedded excited-state densities,8 which are
somewhat tedious to obtain for TD-DFT methods.69

While excitation energies are a fundamental part of a UV−
vis spectrum, the associated intensities are often highly
important for assignments. The intensity is usually obtained
from the oscillator strength which can also be extracted from
eq 23; for transition n, the oscillator strength, f n, can be
calculated as

f
2
3n n n

2=
(29)

where ωn is the excitation frequency and μn is the transition
dipole moment. The latter can (for the α-component) be
obtained from the converged response vectors in eq 23 as73

M X Y
1

( )n
n

= +
(30)

where the Mα is a vector comprised of the α = x, y, and z
components with the elements

M rai a i= | | (31)

Since the introduction of vemb in the response equations (eqs
23−25) also affects the eigenvectors, the embedding also
influences the calculated oscillator strengths. However, the
external field employed to excite the solute also generates an
induced dipole on environment sites. This effect is not
included in the standard local embedding schemes: In the FDE
scheme, applied here, solely the response of the active system
in the frozen environment is determined, while the coupling to
an environmental response is neglected. The latter may be
incorporated via the non-local, so-called coupled FDE scheme,
which affects both excitation energies and oscillator
strengths.68,74−76 This, however, goes beyond the scope of

Table 1. Overview of the Included Contributions in the Different Embedding Models Considered Here

class label static G.s. pol QMa diff. pol. EEF comments

QM/classical PE NOPOL ⊕ × × × × vmult (based on {ρX
(0)}), see eqs 18 and 19.

QM/QM FDE NOPOL ⊕ × ⊕ × × vAFDE (ra) in eq 6 based on {ρX
(0)}.

QM/classical PE GSPOL ⊕ ⊕ × × × vmult (based on {ρX
(0)}) and vpol, see eqs 18−20.

QM/QM FDE GSPOL ⊕ ⊕ ⊕ × × vAFDE (ra) (eq 6) based on {ρX
(2)}.

QM/classical PE DPOL ⊕ ⊕ × ⊕ × PE GSPOL and additionally eq 28.
QM/classical PE DPOL + EEF ⊕ ⊕ × ⊕ ⊕ PE DPOL with modified dipole transition moments, eq 32

aCan be included via orbital-free DFT. Note that we do not consider the response kernel, eq 27, in this work.

Figure 2. Flowchart of the performed workflows for molecule (A) in the environment of the molecule (env). The steps in dark blue boxes stand for
subprograms used for a task. The large arrows indicate results that are passed in between the different programs. In either workflow, the
supermolecular structure is passed to PEAS or PyADF, respectively, and split up into subsystems. (a) PE workflow utilizing PEAS and PElib78

(PEAS calls Openmolcas for subsystem calculations). (b) The FDE workflow uses the PyADF scripting framework, that is calling all programs and
managing all results mentioned in this workflow.
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the present work on local descriptions. Also in the standard PE
scheme, the local field effect is not incorporated. It’s effect on
the oscillator strengths can, however, approximately be
accounted for by adding an external effective field (EEF)
term, ⟨ϕa |V̂loc|ϕi ⟩, to M.72,77 The required operator is defined
as

V T R T
ts

t ts s
t

t t
loc

a
(1) uni

a
(1)

ext,
ind= =

(32)

where μext,tind is the induced dipole to a unit field, s
uni. This

approximate description has thereby an effect on the oscillator
strengths only, but does not alter the excitation energies.
We have summarized the contributions considered in the

different embedding approaches in Table 1 and refer to the
labels used in this table in the following sections.
Computational Setup. The common theoretical compar-

ison of density-based QM−QM embedding and PE is only a
first step. We also aim for a setup that allows a one-to-one
comparison between the two embedding models in practical
calculations. Our setup is shown in Figure 2.
The general procedure for the PE model involves the

construction of the embedding potential. For this purpose, we
employ the PE Assistance Script (PEAS).79 The script divides
the environment into subsystems/fragments and constructs the
densities {ρX

(0)} for the individual fragments, employing DFT
calculations with Openmolcas.80 From these densities localized
multipoles, {Qs[ρX

(0)]}, and static polarizabilities, {αs
0}, can be

derived from the LoProp81 method, implemented in Open-
molcas. PEAS collects multipoles and polarizabilities in a
potential file that is employed in the calculation of the
excitation energies and oscillator strengths with TD-DFT.
Optimization of the ground-state as well as solving TD-DFT
equations [eqs 23−25] are done while including the PE
potential; this means that the induced dipole moments in eq
28 are self-consistently optimized along with the SCF/linear
response iterations. PElib handles this self-consistent calcu-
lation of the induced dipole moments and adds the resulting
PE contributions to the Kohn−Sham or Kohn−Sham-like
matrices used in the SCF or response calculations.78

We employed four different models of increasing accuracy.
(i) PE NOPOL, which only contains multipoles up to
quadrupoles and no polarizabilities (eq 18), (ii) PE GSPOL,
where full ground-state polarization is included, but differential
polarization (eq 28) is ignored in the TD-DFT calculation,
(iii) PE DPOL including both multipoles, ground-state, and
differential polarization (eq 28), and (iv) PE DPOL with
modified dipole transition moments (eq 30) due to the effect
of the external effective field in eq 32. The last model (iv) is
equivalent to (iii) for excitation energies but leads to a change
in oscillator strengths. We denote this model PE DPOL+EEF.
For the FDE calculations, we employed the PyADF scripting

framework (Figure 2b).82,83 A supermolecular DFT integration
grid was obtained via the ADF program from AMS2020.103
program suite84 to ensure that the grids include the full area of
all subsystems to preempt grid artifacts that could affect our
comparison. Subsequently, ground-state calculations of all
subsystems were performed individually in Dalton.85 The
resulting molecular orbitals from these calculations were then
translated to electron density and electrostatic potentials on
the initially generated grid, using the DensityEvaluator module
of PyADF. The non-additive kinetic and the exchange−
correlation term (eq 6) were then evaluated by PyEmbed

module of PyADF on the same grid. Finally, the embedding
potential was obtained by adding the environmental electro-
static potential and the environmental non-additive potential
for the kinetic and exchange−correlation term.
For the FDE calculations, we employed two potentials: (i) A

static embedding potential from isolated environmental
densities (skipping the performance of FDE cycles, see Figure
2b: blue underlaid box, FDE NOPOL, eq 6). (ii) A potential
including mutual polarization via freeze-and-thaw cycles of the
active subsystem with environmental fragments in the ground
state (FDE GSPOL, eq 6). In the freeze-and-thaw procedure,
we employ the DensityEvaluator to write updated density and
electrostatic potential of every ground-state subsystem
calculation in Dalton on the integration grid. This results in
an updated embedding potential when evaluating the
embedding potential with PyEmbed.
It should be noted, that the current implementation in

Dalton includes the non-additive parts of the embedding
potential in the SCF process, but not in the response kernel for
the TD-DFT calculation.
The above-described framework enables us to dissect the

embedding contributions and quantify the different approx-
imations discussed above. For this, the presented embedding
models were to a large degree implemented in Dalton to allow
a fair side-by-side comparison and the stepwise inclusion of
polarization effects.

■ COMPUTATIONAL DETAILS
The solvated pNA and pFTAA molecules are dynamic and
different solvent configurations may lead to different results.
To ensure that our comparison is not biased towards one
specific configuration of solvent molecules, we employed a few
different configurations. These configurations (i.e., solute and
water atomic coordinates) were extracted as snapshots from a
time-dependent simulation of the solvated molecules, employ-
ing classical molecular dynamics (MDs). The snapshots of
pNA were taken from an MD simulation, using the AMBER
software.86 We parameterized the pNA molecule with the
General AMBER force field (GAFF)87 and RESP charges88

calculated with B3LYP89−91 6-31+G* basis set92−94 (with
PCM95 using the dielectric constant of water). The system was
set up with tleap of the Amber package and pNA was solvated
with 3160 water molecules, represented by the OPC model.96

We first ran a minimization using 10000 steps of steepest
descent, followed by 10,000 steps of conjugate gradient
minimization. We next equilibrated the system by running a
1 ns (in the NPT ensemble), heating the system from 0 to 298
K (at 1 atm. pressure) over the first 20 ps. This was followed
by a 100 ns production run, using the NPT ensemble (at 298
K), a Langevin thermostat, and a Monte Carlo barostat.
Electrostatics were treated with Particle Mesh Ewald,97 and
non-bonded interactions were cut-off at 12 Å. The hydrogen
bonds were constrained with the SHAKE algorithm.98,99 For
further calculations, we arbitrarily selected seven out of the
total of one hundred obtained snapshots. For these snapshots,
we constructed systems where all environment molecules
within 3, 4, 5, and 12 Å of pNA were included.
The snapshots of pFTAA were taken from an MD

simulation, using the GROMACS software.100−107 We para-
meterized the pFTAA molecule with an adapted CHARMM
force field.42,43,108,109 The pFTAA molecule was solvated with
4028 water molecules, represented by the TIP3P model.110 We
first ran a minimization using 50,000 steps of steepest descent.
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We next equilibrated the system for 10 ns (in the NPT
ensemble), heating the system from 0 to 300 K (at 1 atm.
pressure) over the first 0.2 ps. All employed snapshots were
taken from a 100 ns production run, using the NVT ensemble
(at 300 K), a velocity-rescaling thermostat,111 a Berendsen
barostat112 and electrostatics were treated with Particle Mesh
Ewald,97,113 and non-bonded interactions were cut-off at 10 Å.
All bonds were constrained with the LINCS algorithm.114 For
pFTAA, we only consider solvated models with a 3 Å water
environment for a selection of eight independent snapshots.
We note that, for some snapshots, there are sodium ions in the
3 Å environment at an average distance of 2.3 Å to the
chromophore, while for others there are no sodium ions in
close proximity of the dye.
The reference calculations were performed with Dalton

202085 in a supermolecular TD-DFT calculation with the
CAM-B3LYP115 xc functional. The workflow for the
embedding calculation is shown in Figure 2. The construction
of the environment potential in the polarizable embedding
approach was performed with LoProp81 in Openmolcas80 in
combination with the Polarizable Embedding Assistant Script
(PEAS).116 In these fragment calculations, the B3LYP89−91 xc
functional was employed together with ANO-type recon-
tractions of the aug-cc-pVDZ and aug-cc-pVTZ basis set,
respectively.117−120 For sodium ions, the ANO-L basis sets
were applied.121 The linear response calculation for pNA was
then carried out with Dalton including the constructed PE
potential using the PElib78 module in Dalton. For PE pFTAA
calculations with sodium counterions, the QM core region was
adapted to account for the lack of repulsion via transferable
atomic all-electron pseudopotentials for the sodium ions.122

In the FDE approach, the supermolecular grid with a “good”
Becke grid quality123 was obtained with the ADF84 code and
the TD-DFT calculations with the Dalton code via the PyADF
scripting environment.82,83 In line with the calculations for the
PE approach, the linear response calculations for pNA were
performed with the CAM-B3LYP xc functional whereas for the
environment molecules, a B3LYP xc functional was employed.
In all FDE calculations, the additive xc functional BP8689,124

and the kinetic energy functional PW91k125,126 were applied
for the non-additive contributions to the embedding potential.
Three freeze-and-thaw cycles have been used throughout as
this setting had been found to generally yield sufficient
results.127

All calculations for pNA were performed with an aug-cc-
pVDZ [see Supporting Information (SI)] or aug-cc-pVTZ
basis set. For pFTAA, an aug-cc-pVDZ basis set was employed
in all calculations. After calculating the five lowest excitations
for the reference, as well as for the embedding calculations,
they were sorted by the oscillator strength of the transition.
The strongest π → π* transition (ensured via inspection of
response vectors and orbitals) was chosen to be compared with
other results.

■ RESULTS AND DISCUSSION
We numerically compare calculated excitation energies and
oscillator strengths for the models NOPOL, GSPOL, PE DPOL,
and PE DPOL+EEF introduced in the Theoretical Background
Section (see Table 1 for an overview). We generally report on
shifts, i.e., differences in excitation energy or oscillator strength
of a solvation model to the vacuum case with the same
structure of the dye. We denote these shifts as solvatochromic
( -)shifts and -shifts for excitation energies and oscillator

strengths, respectively. We compare the shifts from embedding
models to reference shifts obtained as the difference of a full
quantum-chemical result to the vacuum case (ΔREF). We
generally denote these shifts by Δ, i.e., ΔNOPOL is the shift
obtained with the NOPOL approximation and ΔGSPOL and
ΔDPOL are defined analogously. The individual contributions
are then defined with respect to the next lower model, i.e.,
ΔΔGSPOL = ΔGSPOL − ΔNOPOL, ΔΔDPOL = ΔDPOL −
ΔGSPOL, and ΔΔEEF = Δ(DPOL+EEF) − ΔDPOL.
Additionally, we define ΔΔ(DPOL+EEF) = Δ(DPOL+EEF)
− ΔGSPOL.
Regarding the proportion of the single contributions

(ΔNOPOL, ΔΔGSPOL, ΔΔDPOL) to the total shift, we
reference to the total supermolecular shift (ΔREF) for both
models, whenever available, and to the total DPOL shift
(ΔDPOL) when a supermolecular reference is unavailable (cf.
Figure 5).

para-Nitroaniline. Our first test system is para-nitroaniline
(pNA) in different water environments (see Figure 3). First,

we investigate environment sizes of 3 and 4 Å for seven
snapshots. Figure 4 shows the contributions to the total
-shifts of pNA for the different solvent models and compares
them to the supermolecular reference. It can be seen, that the
total -shift varies largely for the different snapshots,
independent of the environment size or embedding scheme
used. Both, PE and FDE models reproduce the changes
obtained in the reference calculations qualitatively correctly:
For both, FDE and PE, ΔNOPOL is the largest contribution to
the -shift (for 4 Å on average a proportion of 86 and 88% for
FDE and PE, respectively). Thus, the GSPOL contribution
(ΔΔGSPOL) is small (7% and 9% of the supermolecular
-shift for 4 Å and FDE and PE, respectively). The PE
ΔΔDPOL proportion lies below 5%. Thus, ΔNOPOL and
ΔGSPOL for PE as well as FDE are in very good agreement
with ΔREF (the largest average differences are −0.01 eV, see
Tables S3, S4, S7 and S8 in the SI).
Ultimately, the total -shifts for ΔGSPOL and ΔDPOL are

in good agreement with ΔREF (Figure 4). ΔGSPOL on
average slightly underestimates the total -shift, whereas
adding the ΔDPOL leads to an (equally small) overestimation:
For most snapshots, the ΔDPOL from PE is slightly higher
than for the ΔREF, with an average deviation of −0.01 and
−0.02 eV for the 3 Å and 4 Å system, respectively (see Tables
S3 and S4 in the SI for the 3 Å system and Tables S7 and S8 in

Figure 3. Example MD configuration of para-nitroaniline in a 4 Å and
12 Å water environment selection.
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the SI for the 4 Å system). These deviations are smaller than
those we expect from the differences in the applied xc
functionals (the reference calculation is a full CAM-B3LYP
calculation and in the determination of the PE embedding
potential, B3LYP was employed for environment fragments).
It should be noted that for individual snapshots, the

ΔΔGSPOL proportion can exceed the average considerably.
This is most pronounced for snapshot 5, which shows an
overall small total -shift: Here, the ΔΔGSPOL proportion for
both FDE and PE constitutes between 13% and 16% of the
supermolecular -shift for 3 and 4 Å environments,
respectively. PE ΔΔDPOL takes a proportion of 10% and
13% in the 3 and 4 Å environments, respectively.
We further observe a slight change in the proportions when

increasing the environment size: When going from 3 to 4 Å
environment, the average ΔΔGSPOL proportion remains
around 7% of the supermolecular shift for FDE and slightly
increases from 7 to 9% for PE. The PE ΔΔDPOL proportion
on average increases from 4 to 5%. In absolute values, however,
these contributions for all environment sizes are rather low, i.e.,
at most −0.10 eV for ΔΔGSPOL for both PE and FDE and
−0.06 eV for ΔΔDPOL in PE.
For PE, we also extended the environment further to 5 and 2

Å. The results for the -shifts from all these calculations are
depicted in Figure 5. The overall trend is a distinct increase in
the size of the total -shifts when extending from a 3 to a 12 Å
environment (i.e., the shift becomes more negative): on
average it increases by −0.27 eV. Again, ΔNOPOL is the largest
contribution and it increases with enlarged environment size:
With the extension from the 3 to 4 Å environment it increases
by −0.02 eV on average, from the 4 to the 5 Å environment it
increases by −0.06 eV on average, and by −0.07 eV when
further extending to the 12 Å environment. ΔΔGSPOL also
increases: the increase is on average −0.02 eV from the 3 Å to
4 Å environment, additional −0.02 eV from the 4 Å to the 5 Å
environment, and −0.05 eV when extending to the 12 Å
environment. ΔΔDPOL also shows an increase when going
from a 3 Å to a 12 Å environment. The absolute contribution
on average increases from −0.03 to −0.06 eV. However, the
average proportion of the total shift does not steadily increase:
From a 3 to a 4 Å environment it changes from −0.03 eV (4%
of ΔDPOL) to −0.04 eV (5% of ΔDPOL), for a 5 Å
environment it decreases to −0.04 eV (4% of ΔDPOL) and

increases for a 12 Å environment to −0.06 eV (6% of
ΔDPOL).

As discussed above, for the snapshots with smaller total
shifts, ΔΔGSPOL can exceed the average considerably: Here,
we again look at snapshot 5 for which the ΔΔGSPOL
proportion changes from 13% (−0.05 eV ) in a 3 Å
environment to 15% (−0.05 eV) in a 4 Å environment, 14%
(−0.05 eV) in a 5 Å environment, and 37% (−0.22 eV) in a 12
Å environment, where all percentages refer to the Δ DPOL
shift. Thus, for this particular snapshot, the ΔNOPOL accounts
for 55% (−0.33 eV) of ΔDPOL for a 12 Å environment model.
In a previous study on pNA in a water environment (2−6

molecules) using an EOM-CCSD/EFP scheme, Slipchenko et
al.39 found the ΔNOPOL proportion of the excitation energy to
be of similar amount (80%) as was obtained in our calculations
(86−88%). The ΔΔDPOL proportion was determined to be
3−8% which is in good agreement with our result of 4−5%. In
their study, increasing the number of water molecules used in

Figure 4. Contributions from the different models to the total -shifts and their average for different configurations of pNA in 3 and 4 Å
environments of water obtained from an MD simulation and subsequently calculated in a PE and FDE framework and different orders of
polarization contributions obtained in calculations with a aug-cc-pVTZ basis set.

Figure 5. Contributions from the different models to the total
-shifts and their average for different configurations of pNA in 3, 4, 5,
and 12 Å environments of water obtained from an MD simulation and
subsequently calculated in a PE framework and different orders of
polarization contributions obtained in calculations with a aug-cc-
pVTZ basis set.
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the solvation led to an increase in ΔΔDPOL, similar to the
increase observed in our results.
In a study by Sneskov et al.,40 the average polarization

contribution was obtained from 100 snapshots for pNA in a 12
Å environment of water and for PE only. Both the ΔΔGSPOL
and the ΔΔDPOL proportion are higher than in the present
study’s result: 19-21 and 13% for the ΔΔGSPOL and
ΔΔDPOL proportion, respectively. These authors also noted
that the variation of these values is dependent on the individual
snapshot, similar to what is seen in Figure 5. In an FDE
context, absolute values for ΔΔDPOL were obtained from
mutual optimization with excited-state densities a the study of
Daday et al.8 The magnitudes (0.01−0.22 or −0.02−0.15 eV,
depending on the description of the excited-state density) are
similar to our results for ΔΔDPOL ranging between 0.02−0.06
eV.
Equivalently to the -shifts discussed above, Figure 6

displays the change in the oscillator strength ( -shift) of the
strongest (π → π*) transition for the various PE and FDE
solvation models. We find that the -shift of the reference
calculations displays larger sensitivity than the -shifts with
respect to both, the size of the system and snapshot. This is in
line with previous comparisons of different electronic structure
methods, showing oscillator strengths to be more sensitive to
the employed electronic structure methods.128

In contrast to the discussion of -shifts, we here omit the
presentation of single contributions (ΔNOPOL, ΔΔGSPOL,
and ΔΔDPOL) as percentage of the total shift since the
oscillator strengths are generally smaller than the excitations
energies and even small changes can lead to large percent-wise
changes.
The reference -shifts are on average 0.06 for both 3 and 4

Å. The FDE and PE NOPOL models both give an average
-shift of 0.03 for 3 Å and 0.04 for 4 Å. Generally, ΔNOPOL is
estimated similarly by FDE and PE, the largest deviation being
0.01. ΔNOPOL is often the largest contribution to the total
-shift, but is much less dominant compared to the -shift.
Notably, the ΔNOPOL results alone are often rather far from
the total shifts (most obvious in snapshots 6 and 7 for both 3
and 4 Å). ΔΔGSPOL generally improves the results for PE
and FDE similarly: The largest deviation between FDE and PE
amounts to less than 0.01 for both the 3 and 4 Å systems.

In contrast to the -shift, ΔΔDPOL can be rather large for
-shifts: In some cases (see snapshots 2 and 6) both

ΔΔGSPOL (for FDE and PE) and ΔΔDPOL (for PE) correct
the -shift in the opposite direction of ΔNOPOL. Especially
for the 4 Å environment, we observe large ΔΔDPOL values
often leading to larger deviation of ΔDPOL from the ΔREF
than ΔGSPOL. This over-correction of ΔDPOL led us to
investigate local field effects on the oscillator strength by
means of effective external field (Figure 6). While for the 3 Å
system on average only a small increase in -shift can be
observed (below 0.01), the total -shift for the 4 Å system
decreases significantly (for all snapshots), leading to an
improved result compared to the reference: The average
deviation is 0.03 for ΔDPOL compared to and less than 0.01
for ΔDPOL + EEF.
We finally note that all the discussed results are obtained

with aug-cc-pVTZ but for calculations with an aug-cc-pVDZ
basis set, the same trends can be observed (see Figures S1, S3
and Tables S1−S24 in the SI). The proportions of the single
contributions are in line with those obtained with an aug-cc-
pVTZ basis set.
In summary, we observe similar results for FDE GSPOL and

PE GSPOL, suggesting that the additional quantum-mechan-
ical contribution and real-space treatment in FDE have only a
minor effect in this case. The supermolecular reference of
excitation energies of pNA in the 3 and 4 Å water environment
is well in line with FDE results as well as the PE values with or
without including differential polarization effects. When going
to larger systems sizes within the PE model, we observe an
increased ΔΔGSPOL proportion to the -shift, but an unclear
trend for the differential polarization.
The observations for the oscillator strengths are similar,

though not identical to those for the electronic excitation
energies. In particular, we observe a larger snapshot depend-
ence and the differential polarization contribution in the PE
calculations is larger than for the excitation energies. We
further observe an overcorrection for the 4 Å environments
due ΔΔDPOL, which can be largely canceled by accounting for
local field effects (EEF).
Pentameric formyl thiophene acetic acid (pFTAA).

Our second test case, pFTAA, is in contrast to pNA highly
negatively charged (4−). The solvated system is shown in
Figure 7. It is hence, more challenged by possible electron-

Figure 6. Contributions from the different models to the total -shifts and their average for different configurations of pNA in 3 and 4 Å
environments of water obtained from an MD simulation and subsequently calculated in a PE and FDE framework, different orders of polarization
contributions and added EEF effects obtained in calculations with a aug-cc-pVTZ basis set. (Full data in Tables S15, S16, S19, and S20).
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spill-out effects, which makes it difficult to describe classical
models like PE. The FDE is expected to be less prone to
electron-spill-out effects due to the approximate quantum
contributions in the embedding potential [cf. eq 6].129,130

Indeed, we found that in the five snapshots that contained
sodium cations close to the pFTAA chromophore, the standard
PE model broke down. The breakdown manifests in too low
excitation energies and varying oscillator strengths for the
excitation of interest. The electron spill-out was further
revealed by analyzing the contributing orbitals in the response
solution vectors. We counteracted the electron spill-out in
these cases by placing atomic pseudopotentials on sodium
ions122 which in all cases led to meaningful results. The PE
results for all these snapshots can be found in Tables S25 and
S28 in the SI.
Here, we focus on the discussion of two, representative

snapshots: one with two sodium ions and one without sodium
ions in close proximity to the pFTAA solute. Again we
compare the performance of the PE and FDE models (see
Table 2). The supersystem reference shifts (ΔREF) are well
reproduced for both the FDE and PE models. ΔNOPOL is by
far the largest contribution, while ΔΔGSPOL is small. Both,
ΔNOPOL and ΔΔGSPOL, are close to identical for FDE and
PE. ΔΔDPOL is of similar magnitude as ΔΔGSPOL but points
in the opposite direction.
Table 3 shows the -shifts for the PE and FDE embedding

model employing the two snapshots. ΔNOPOL and
ΔΔGSPOL are similar for FDE and PE, where the
ΔΔGSPOL contributions are significantly smaller than the
ΔNOPOL contributions. ΔΔDPOL in the PE model for the

two investigated snapshots is also rather small and of similar
magnitude as the ΔΔGSPOL contributions. The ΔΔEEF
contribution is of similar magnitude as the ΔΔDPOL
contribution but of opposing sign.
For snapshot 1, both ΔGSPOL and ΔDPOL are in

reasonable agreement with the reference value of 0.388: For
ΔGSPOL we obtain deviations of 0.04 and 0.01, respectively
for the FDE and the PE models. As also seen for pNA,
ΔΔDPOL overcorrects the -shift (leading to a deviation of
0.05 to the reference), whereas introducing EEF effects
(ΔDPOL + EEF) again brings the value closer to the
reference.

■ SUMMARY AND CONCLUSIONS
We have investigated the influence of different approximations
in quantum- and classical embedding schemes on the
excitation energies and oscillator strengths for pNA and
pFTAA in water. We chose Frozen-density embedding (FDE)
and polarizable embedding (PE) schemes to represent
quantum and a classical embedding scheme, respectively.
Unlike previous comparisons,32,35 we employed an FDE
framework that complies to a large degree with the PE
implementation in Dalton.34,116,131 In particular, we performed
the mutual polarization of subsystems within FDE in the
PyADF scripting environment82,83 using Dalton85 for all (TD-
)DFT calculations thus enabling a one-to-one comparison of
the two methods.
With this computational setup at hand, we performed a

detailed analysis of the different contributions, i.e., static

Figure 7. Selected snapshots of pFTAA in a pure 3 Å water environment (left, snapshot 1) and additionally including sodium ions in close vicinity
to pFTAA (right, snapshot 2).

Table 2. Contributions from the Different Models to the Total -Shift in eV for Different Configurations of pFTAA in a 3 Å
Environment of Water Obtained from an MD Simulation and Subsequently Calculated in a PE and FDE Framework and
Different Orders of Polarization Contributionsa

FDE PE

snap ΔNOPOL ΔΔGSPOL ΔGSPOL ΔNOPOL ΔΔGSPOL ΔΔDPOL ΔGSPOL ΔDPOL ΔREF

1 0.15 0.01 0.17 0.16 0.01 −0.03 0.17 0.14 0.14
2** 0.04 0.02 0.07 0.01 0.05 −0.08 0.07 0.04 0.03

aAll snapshots containing (two) sodium ions in close proximity are marked with ** and incorporate pseudopotentials in the PE calculations.

Table 3. Contributions From the Different Models to the Total -Shifts for Different Configurations of pFTAA in a 3 Å
Environment of Water Obtained from an MD Simulation and Subsequently Calculated in a PE and FDE Framework and
Different Orders of Polarization Contributions Obtained with a Aug-cc-pVDZ Basis Seta

FDE PE

snap ΔNOPOL ΔΔGSPOL ΔTOTGSPOL ΔNOPOL ΔΔGSPOL ΔΔDPOL ΔΔEEF ΔGSPOL ΔDPOL ΔDPOL + EEF ΔREF

1 0.294 0.053 0.348 0.320 0.060 0.063 −0.029 0.380 0.443 0.414 0.388
2** 0.140 0.044 0.183 0.143 0.024 0.052 −0.076 0.167 0.219 0.143 −0.007

aAll snapshots containing (two) sodium ions in close proximity are marked with ** and incorporate pseudopotentials in the PE calculations.
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electrostatics (no polarization), ground-state polarization,
differential polarization, and quantum-mechanical effects in
the FDE and PE models: The target systems were pNA and
pFTAA in an explicit water solvent for which we compared the
solvent shift of excitation energies and oscillator strengths to
supermolecular TDDFT calculations.
We find that FDE and PE perform similarly with the

inclusion of static environmental densities and ground-state
polarization, respectively. Since these two contributions are
dominating, the solvochromatic ( -)shift for both pNA and
pFTAA, FDE and PE both achieve good agreement with the
reference -shifts. This also holds when neglecting differential
polarization effects.
The effect of different embedding contributions on the

-shifts has not previously been investigated systematically. We
find that the differential polarization effect on -shifts is more
pronounced than that of the -shifts in standard PE. This
effect on the -shifts is, however, reduced by the
incorporation of external effective field effects, so that for a 4
Å environment of pNA, the average -shift is similarly well
described with and without differential polarization. For
individual snapshots, however, the effect of differential
polarization can be sizable, both with and without including
external effective field effects. In these cases, external field
effects improve the agreement with the supersystem reference.
We could further show that the severe electron-spill-out issues
preventing traditional PE calculations on the highly anionic
pFTAA dye with sodium ions in close proximity could be
largely reduced by atomic pseudopotentials on the sodium
ions.
In summary, we find a similar performance for FDE and PE

on excitation energies as well as average oscillator strengths.
For the excitation energies, this is similar to what has
previously been found.32,35 Our investigation on -shifts,
however, lead us to recommend employing both differential
polarization and external effective field (EEF) effects (or
neglecting both), since accurate oscillator strengths with PE
DPOL required the incorporation of EEF effects. Unlike
previous investigations, we also compared PE and FDE for a
challenging system, namely the highly charged anionic pFTAA.
Here, PE and FDE can be brought to become similar, but
pseudopotentials are essential on nearby cations to avoid
electron-spill-out effects in PE. We thus recommend the use of
such potentials in PE calculations on highly charged anions.
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B Global Properties

B.1. MOF Guest Placer Script

In order to introduce guest molecules into the ZIFs, the following script was developed

enabling the introduction of moelcules by center of mass. The MOF Guest Placer is

called via the main.py and employs the different classes: VectorRotation, Molecule,

Coordinate, Plane. The code for all of these is shown below (listings B.1 to B.14). ‖

Listing B.1: MOF Guest Placer main.py

#!/usr/bin/env python3

from flags import *

from Molecule import *

from Plane import *

from sympy.geometry import *

from Coordinate import *

if args.debug > 0:

print(args)

# determine input files

supermol_file = None

if args.input and len(args.input) >= 2:

input_files = args.input

plane_file = input_files[0]

guest_file = input_files[1]

try:

supermol_file = input_files[2]

except:

print(”No supermol file found.”)

pass

else:

raise FileNotFoundError(’Error reading input files.

                             Looking for: -r Plane Guest Supermol’)

if not args.output:

args.output = ’out’

‖ Pascal Czember, Leibniz University Hannover, 2022. Pascal Czember assisted with writing the functions

for reading and writing pdb files, overall organizational assistance and fruitful discussions.
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Listing B.2: MOF Guest Placer main.py continued

# create molecule instances from input files

plane_mol = Molecule(plane_file)

guest_mol = Molecule(guest_file)

super_mol = None

if supermol_file:

if args.debug > 0:

print(supermol_file)

super_mol = Molecule(supermol_file)

# example for what can be done

if super_mol:

x, y, z = super_mol.atoms[0].get_coords() # get coords of first atom

#########################

## TRANSLATE TO ORIGIN #

#########################

# calculate plane from plane_mol

plane_mol.get_atomic_vectors()

plane_plane = Molplane(mol=plane_mol, center=plane_mol.com)

first_t = plane_mol.com # save for later

plane_mol.translate(first_t, invert=True)

# guest mol: make plane

guest_mol.get_atomic_vectors()

guest_plane = Molplane(mol=guest_mol, center=guest_mol.com)

guest_mol.translate(guest_mol.com, invert=True)

if args.debug > 1:

new_mol = plane_mol + guest_mol

new_mol.write_xyz(”1_first_translation”)

##############################

# ROTATE AROUND INTERSECTION #

##############################

# calculate plane from plane_mol

plane_mol.get_atomic_vectors()

plane_plane = Molplane(mol=plane_mol, center=plane_mol.com)

# guest mol: make plane

guest_mol.get_atomic_vectors()

guest_plane = Molplane(mol=guest_mol, center=guest_mol.com)

common_line = plane_plane.intersection(guest_plane)

common_vector = common_line[0].points[1]-common_line[0].points[0] # get origin vec
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Listing B.3: MOF Guest Placer main.py continued

rot_vec = Coordinate([[float(common_vector.x), float(common_vector.y),

float(common_vector.z)]])

phi = float(guest_plane.angle_between(plane_plane))

if args.invert_rot:

phi = -1 * phi

guest_mol.rotates(rot_vec, phi=phi)

if args.debug > 1:

new_mol = plane_mol + guest_mol

new_mol.write_xyz(”2_rotation”)

######################

# ROTATE IN PLANE #

######################

# rotation of guest around com to match planemol

guest_mol.get_atomic_vectors()

guest_plane = Molplane(mol=guest_mol, center=guest_mol.com)

nv = Coordinate([[float(guest_plane.normal_vector[0]),

float(guest_plane.normal_vector[1]), float(guest_plane.normal_vector[2])]])

nv_norm = nv/math.sqrt(nv.x**2 + nv.y**2+ nv.z**2)

nv_norm_float = Coordinate([[float(nv_norm[0]), float(nv_norm[1]), float(nv_norm[2])]])

a = plane_mol.atoms[0].coords

b = guest_mol.atoms[0].coords

c = float(a.dot(b)/(a.len*b.len)) # angle between first atom of guest and plane

phi = np.arccos(c)

if args.invert_2_rot:

phi = -1 * phi

guest_mol.rotates(nv_norm_float, phi=-1*phi)

if args.debug > 1:

new_mol = plane_mol + guest_mol

new_mol.write_xyz(”3_planerotation”)

###########################

# ROTATE IN PLANE (USER) #

###########################

# rotation of plane around com

guest_mol.get_atomic_vectors()

guest_plane = Molplane(mol=guest_mol, center=guest_mol.com)

nv = Coordinate([[float(guest_plane.normal_vector[0]),

float(guest_plane.normal_vector[1]), float(guest_plane.normal_vector[2])]])

nv_norm = nv/math.sqrt(nv.x**2 + nv.y**2+ nv.z**2)

nv_norm_float = Coordinate([[float(nv_norm[0]), float(nv_norm[1]), float(nv_norm[2])]])

phi = np.radians(args.angle)

guest_mol.rotates(nv_norm_float, phi=phi)

if args.debug > 1:

new_mol = plane_mol + guest_mol

new_mol.write_xyz(”4_userrotation”)
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Listing B.4: MOF Guest Placer main.py continued

######################

## TRANSLATE OFFSET #

######################

# offset

if args.invert:

offset = -1*args.offset

else:

offset = args.offset

# shift by offset vector (normalvector)

nv = Coordinate([[float(guest_plane.normal_vector[0]),

float(guest_plane.normal_vector[1]), float(guest_plane.normal_vector[2])]])

nv_norm = offset * nv/math.sqrt(nv.x**2 + nv.y**2+ nv.z**2)

nv_norm_float = Coordinate([[float(nv_norm[0]), float(nv_norm[1]), float(nv_norm[2])]])

guest_mol.translate(nv_norm_float)

if args.debug > 1:

new_mol = plane_mol + guest_mol

new_mol.write_xyz(”5_offset_translation”)

##################

# TRANSLATE BACK #

##################

plane_mol.translate(first_t)

guest_mol.translate(first_t)

if args.debug > 1:

new_mol = plane_mol + guest_mol

new_mol.write_xyz(”6_back_translation”)

if super_mol:

final_mol = super_mol + guest_mol

else:

final_mol = plane_mol + guest_mol

if args.outputformat == ”pdb”:

final_mol.write_pdb(args.output)

else:

final_mol.write_xyz(args.output)
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Listing B.5: MOF Guest Placer VectorRotation.py

import numpy as np

import math

from Coordinate import *

def rot_matrix(u,phi=None, phi_deg=None):

# u: rotation um diesen vektor

# rotation gegen uhrzeigersinn um winkel in radians

if phi_deg:

phi = np.radians(phi_deg)

u_norm = u/math.sqrt(u.x**2 + u.y**2+ u.z**2)

a = u_norm[0,0]

b = u_norm[0,1]

c = u_norm[0,2]

sin = np.sin(phi)

cos = np.cos(phi)

m = np.array(

[[a**2*(1-cos)+cos , a*b*(1-cos)-c*sin , a*c*(1-cos)+b*sin ],

[a*b*(1-cos)+c*sin, b**2 *(1-cos)+cos , b*c*(1-cos) - a*sin],

[a*c*(1-cos)-b*sin, b*c*(1-cos)+a*sin , c**2 * (1-cos)+cos ]]

)

return m

def rotate(v, u, phi=None, phi_deg=None):

# v: vector to rotate, u: rotation axis, phi: angle to rotate in radians,

# phi_deg: angle to rotate in degrees

if args.debug > 1:

print(v)

if u.rows == 1 and u.cols == 3:

pass

else:

raise TypeError(”u needs to be a np array of form 1x3”)

if phi:

m = rot_matrix(u,phi=phi)

elif phi_deg:

m = rot_matrix(u,phi_deg=phi_deg)

else:

raise Exception(”Define angle for rotation: phi in radians or

                                                  phi_deg in degrees.”)
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Listing B.6: MOF Guest Placer Plane.py continued

if v.rows == 1 and v.cols == 3:

x = v.T

elif v.rows == 3 and v.cols == 1:

x = v

else:

raise TypeError(”v needs to be a np array of form 1x3 or 3x1”)

if args.debug > 2:

print(”m: ”, m, ”\n v”, x)

product = m.dot(x)

out_vec = Coordinate([[product[0,0], product[1,0], product[2,0]]])

if args.debug > 2:

print(out_vec)

return out_vec

Listing B.7: MOF Guest Placer Plane.py

from flags import *

from sympy import Plane

from sympy import Point3D

class Molplane(Plane):

def __new__(cls, p1=None, p2=None, p3=None, normal_vector=None,

mol=None, center=None):

if mol and center:

atom_list = mol.sorted_atom_list_by_com

p1 = atom_list[0].coords

p2 = atom_list[1].coords-atom_list[0].coords

p3 = atom_list[2].coords-atom_list[0].coords

normal_vector = p2.cross(p3)

if args.debug > 2:

print(”P1: ”, p1, ”\nNormal vector: ”, normal_vector)

return super().__new__(cls, p1=p1, normal_vector=normal_vector)

elif p1 and p2 and p3:

normal_vector = p2.cross(p3)

return super().__new__(cls, p1=p1, normal_vector=normal_vector)

elif p1 and normal_vector:

return super().__new__(cls, p1=p1, normal_vector=normal_vector)

else:

raise Exception(’Neither p1 and normal_vector nor mol and center defined.

                             No plane could be created.’)
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Listing B.8: MOF Guest Placer Molecule.py

from flags import *

from collections import namedtuple

import sympy as s

from VectorRotation import *

from Coordinate import *

class Molecule:

def __init__(self, filename=None):

self.com = None

self.center = None

self.atoms = None

self.number_of_atoms = None

self.comment = None

self.sorted_atom_list_by_com = None

if filename is not None:

self.read(filename)

def __add__(self, second_mol):

added_mol = Molecule()

added_mol.number_of_atoms = self.number_of_atoms + second_mol.number_of_atoms

added_mol.atoms = self.atoms + second_mol.atoms

return added_mol

def translate(self, t, invert=False): # translation vector t

for atom in self.atoms:

if invert:

new_coords = atom.coords - t

else:

new_coords = atom.coords + t

atom.coords = new_coords

def rotates(self, u, phi=None, phi_deg=None):

atoms = []

for atom in self.atoms:

if phi:

new_coord = rotate(atom.coords, u=u, phi=phi)

elif phi_deg:

new_coord = rotate(atom.coords, u=u, phi_deg=phi_deg)

else:

new_coord = atom.coords

atoms.append(Atom(element=atom.element, coords=new_coord))

self.atoms = atoms
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Listing B.9: MOF Guest Placer Molecule.py continued

def read(self, filename):

try:

f = open(filename, ’r’)

except OSError:

raise FileNotFoundError(’Error reading file: {}’.format(filename))

if filename.endswith(’.xyz’):

self.readxyz(f)

elif filename.endswith(’.pdb’):

self.readpdb(f)

else:

raise TypeError(”Filename should be of type .xyz or .pdb

                                                  but is not for: ”, filename)

def readxyz(self, f):

if args.debug > 0:

print(”read xyz”)

lines = f.readlines()

self.number_of_atoms = int(lines[0])

self.comment = lines[1]

if args.debug > 2:

print(self.number_of_atoms)

atoms = []

for line in lines[2:]:

data = line.split()

atoms.append(Atom(number_of_atoms=len(lines[2:]),

element=data[0].lower().title(),

coords=Coordinate([[float(data[1]), float(data[2]),

float(data[3])]]), unit=’angstrom’))

self.atoms = atoms

def readpdb(self, f):

if args.debug > 0:

print(”read pdb”)

lines = f.readlines()

self.number_of_atoms = int(lines[-2].split()[1])

if args.debug > 0:

print(self.number_of_atoms)

atoms = []

for line in lines[1:-1]:

data = line.split()

atoms.append(Atom(number_of_atoms=len(lines[-2:1]),

element=data[2].lower().title(),

coords=Coordinate([[float(data[5]), float(data[6]),

float(data[7])]]), unit=’angstrom’))

self.atoms = atoms
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Listing B.10: MOF Guest Placer Molecule.py continued

def get_com(self):

import periodictable as pt

if args.debug > 1:

print(”calc com”)

xm, ym, zm = 0.0, 0.0, 0.0

M = 0.0

# get mass of all elements

elements = {}

for el in pt.elements:

elements[el.symbol] = el.mass

for atom in self.atoms:

m = elements[atom.element]

if args.debug > 2:

print(atom.element, m)

xm += atom.coords.x * m

ym += atom.coords.y * m

zm += atom.coords.z * m

M += m

if args.debug > 2:

print(xm, ym, zm, M)

com_x = xm / M

com_y = ym / M

com_z = zm / M

com = Coordinate([[com_x, com_y, com_z]])

self.com = com

if args.debug > 2:

print(com_x, com_y, com_z)

return com

def get_center(self):

x_tot, y_tot, z_tot = 0.0, 0.0, 0.0

for atom in self.atoms:

x_tot += atom.coords.x

y_tot += atom.coords.y

z_tot += atom.coords.z

if args.debug > 2:

print(x_tot, y_tot, z_tot)

c_x = x_tot / self.number_of_atoms

c_y = y_tot / self.number_of_atoms

c_z = z_tot / self.number_of_atoms

227



B. Global Properties

Listing B.11: MOF Guest Placer Molecule.py continued

c = Coordinate(c_x, c_y, c_z)

self.center = c

if args.debug > 2:

print(c_x, c_y, c_z)

return c

def write_xyz(self, fileprefix):

filename = fileprefix + ’.xyz’

lines = str(self.number_of_atoms) + ’\n’

if self.comment:

lines += str(self.comment)

lines += ’\n’

for atom in self.atoms:

lines += ’{:3}\t{:11.8f}\t{:11.8f}\t{:11.8f}\n’.format(atom.element,

atom.coords.x, atom.coords.y, atom.coords.z)

with open(filename,’w’) as f:

f.write(lines)

def write_pdb(self, fileprefix):

filename = fileprefix + ’.pdb’

lines = ’CRYST1    0.000    0.000    0.000  90.00  90.00  90.00 P 1           1’

lines += ’\n’

atomcount = 0

for atom in self.atoms:

atomcount += 1

lines += ’{}{atomcount:>7}{element:>3}{x:>8}{v:>4}{xcoord:>12}{ycoord:>8}

                      {zcoord:>8}{p:>6}{p:>6}{element:>12}\n’.format(”ATOM”,

atomcount=atomcount, element=atom.element, x=”X”,v=1,

xcoord=f’{atom.coords.x:.3f}’, ycoord=f’{atom.coords.y:.3f}’,

zcoord=f’{atom.coords.z:.3f}’, p=f’{0.00:.2f}’)

with open(filename,’w’) as f:

f.write(lines)

def get_atomic_vectors(self):

# defining the Atoms in the guest molecule as vectors

# from the Center of Mass

distance_dict = {}

sorted_atom_list_by_com =[]

com = self.get_com()

for atom in self.atoms:

element = atom.element

atom.get_com_vec(com)

distance_dict[atom.dist_from_com] = atom

# create dictionary entry for every distance
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Listing B.12: MOF Guest Placer Molecule.py continued

sorted_dist_dict = dict(sorted(distance_dict.items()))

for key, value in sorted_dist_dict.items():

sorted_atom_list_by_com.append(value)

self.sorted_atom_list_by_com = sorted_atom_list_by_com

def get_sorted_atom_list(self):

self.get_atomic_vectors(self)

return self.sorted_atom_list_by_com

class Atom:

def __init__(self, number_of_atoms=None, element=None, coords=None, unit=’angstrom’):

self.number_of_atoms = number_of_atoms

self.coords = coords

self.unit = unit

self.element = element

self.vec_from_com = None

self.dist_from_com = None

def get_coords(self):

return self.coords.x, self.coords.y, self.coords.z

def get_com_vec(self, com):

vec = self.coords - com

com_distance = (vec.x**2 + vec.y**2 + vec.z**2)**0.5

# magnitude of the vector

self.vec_from_com = vec # gives the vector attribute to the Atom

self.dist_from_com = com_distance

# gives the distance from COM attribute to the Atom

Listing B.13: MOF Guest Placer Coordinate.py

from flags import *

import sympy as s

import math

class Coordinate(s.Matrix):

__slots__ = ()

def __init__(self, coords):

super().__init__()

self.x = coords[0][0]

self.y = coords[0][1]

self.z = coords[0][2]

self.len = self.get_length()
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Listing B.14: MOF Guest Placer Coordinate.py continued

def __sub__(self, second_coord):

# Enable subtracting coordinate class Objects

if type(second_coord) != Coordinate:

raise TypeError(”Not of type Coordinate.”)

new_x = self.x - second_coord.x

new_y = self.y - second_coord.y

new_z = self.z - second_coord.z

subtracted_coord = Coordinate([[new_x, new_y, new_z]])

return subtracted_coord

def __add__(self, second_coord): # Enable adding coordinate class Objects

if type(second_coord) != Coordinate:

raise TypeError(”Not of type Coordinate.”)

new_x = self.x + second_coord.x

new_y = self.y + second_coord.y

new_z = self.z + second_coord.z

added_coord = Coordinate([[new_x, new_y, new_z]])

return added_coord

def get_length(self): # Length of vector

len = math.sqrt(self.x**2 + self.y**2+ self.z**2)

return len

def normalize(self):

norm = self/math.sqrt(u.x**2 + u.y**2+ u.z**2)

self.x = norm[0,0]

self.y = norm[0,1]

self.z = norm[0,2]

return norm
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B.2. Results

B.2.1. DFT Functional Evaluation

In this section the static polarizability volumes that were calculated with CP-SCF in

ORCA for the Zn2+, IM, TET and DI fragments with different XC functionals and basis

sets in double-(𝜁 = 2), triple-(𝜁 = 3), quadruple-(𝜁 = 4) and quintuple-(𝜁 = 5)quality are
presented.
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Figure B.1.: Static polarizability volume 𝛼 ′0 calculated with CP-SCF, different XC functionals and different
basis sets in double-(𝜁 = 2), triple-(𝜁 = 3), quadruple-(𝜁 = 4) and quintuple-(𝜁 = 5)quality
for the IM fragment extracted from the experimental ZIF-8 SC XRD structure (model A)

.[366]Results for GGA-type functionals (BP86, TPSS and PBE) are presented in yellow and

red tones, for hybrid functionals (PBE0, B3LYP and CAM-B3LYP) are shown in blue tones.‡
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Figure B.2.: Static polarizability volume 𝛼 ′0 calculated with CP-SCF, different XC functionals and different
basis sets in double-(𝜁 = 2), triple-(𝜁 = 3), quadruple-(𝜁 = 4) and quintuple-(𝜁 = 5)quality
for the TET fragment extracted from the experimental ZIF-8 SC XRD structure (model

A).[366]Results for GGA-type functionals (BP86, TPSS and PBE) are presented in yellow and

red tones, for hybrid functionals (PBE0, B3LYP and CAM-B3LYP) are shown in blue tones.‡

‡ Onno Strolka, Leibniz University Hannover, 2022.
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Figure B.3.: Static polarizability volume 𝛼 ′0 calculated with CP-SCF, different XC functionals and different
basis sets in double-(𝜁 = 2), triple-(𝜁 = 3), quadruple-(𝜁 = 4) and quintuple-(𝜁 = 5)quality
for the TET fragment extracted from the experimental ZIF-8 SC XRD structure (model A)
[366]‡

‡ Onno Strolka, Leibniz University Hannover, 2022.
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Figure B.4.: Static polarizability volume 𝛼 ′0 calculated with CP-SCF, different XC functionals and different
basis sets in double-, triple-, quadruple- and quintuple-𝜁 quality for the Zn2+ fragment.
Results for GGA-type functionals (BP86, TPSS and PBE) are presented in yellow and red

tones, for hybrid functionals (PBE0, B3LYP and CAM-B3LYP) are shown in blue tones and

double-hybrid functionals (B2PLYP, B2GPPLYP and DSD-PBEPBE-D3BJ) are displayed in

green tones.‡

‡ Onno Strolka, Leibniz University Hannover, 2022.
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B.2.2. Program Comparison

In this section the static polarizabilities calculated with an CP-SCF ansatz and a TD-

DFT ansatz in ORCA and TURBOMOLE, respectively, are presented for the different

fragments and obtained with different Dunning- and Ahlrichs-type basis sets.

Table B.1.: Static polarizabilities in 𝑎30 calculated with ORCA and TURBOMOLE (TM) with CAM-B3LYP
and different basis sets with and without diffuse functions for Zn2+. x denotes erroneous

calculations.‡

Basis set ORCA TM Basis set ORCA TM

cc-pVDZ 2.00 - def2-SVP 1.33 -

cc-pVTZ 2.04 2.04 def2-TZVP 1.77 1.77

cc-pVQZ 2.33 2.33 def2-QZVP 2.34 2.34

cc-pV5Z x 2.55 - - -

aug-cc-pVDZ 2.59 - def2-SVPD - -

aug-cc-pVTZ 2.57 2.57 def2-TZVPD 1.77 1.77

aug-cc-pVQZ 2.73 2.73 def2-QZVPD 2.34 2.34

aug-cc-pV5Z x 2.75 - - -

Table B.2.: Static polarizabilities in 𝑎30 calculated with ORCA and TURBOMOLE with CAM-B3LYP and
different basis sets for TET.‡‖

Basis set ORCA TM Basis set ORCA TM

cc-pVDZ 228.14 - def2-SVP 233.11 -

cc-pVTZ 251.17 251.16 def2-TZVP 267.87 257.63

cc-pVQZ 264.25 264.22 def2-QZVP 283.40 272.41

cc-pV5Z 275.00 - - - -

aug-cc-pVDZ 283.80 - def2-SVPD - -

aug-cc-pVTZ 284.18 284.09 def2-TZVPD - 278.20

aug-cc-pVQZ - - def2-QZVPD - 281.16

‡ Onno Strolka, Leibniz University Hannover, 2022.
‖ Pascal Czember, Leibniz University Hannover, 2022.
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Table B.3.: Static polarizabilities in 𝑎30 calculated with ORCA and TURBOMOLE with CAM-B3LYP and
different basis sets for DI.‡‖

Basis set ORCA TM Basis set ORCA TM

cc-pVDZ 408.69 – def2-SVP - -

cc-pVTZ 446.82 446.83 def2-TZVP - 456.98

cc-pVQZ 467.77 - def2-QZVP - -

cc-pV5Z 484.25 - - - -

aug-cc-pVDZ - - def2-SVPD - -

aug-cc-pVTZ - 497.53 def2-TZVPD - 488.88

‡ Onno Strolka, Leibniz University Hannover, 2022.
‖ Pascal Czember, Leibniz University Hannover, 2022.
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B.2.3. Refractive Indices for Empty Zeolitic Imidazolate Frameworks
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Figure B.5.: Dispersion of refractive indices 𝑛 calculated with TD-DFT in a CAM-B3LYP/aug-cc-pVTZ
scheme for the fragments extracted from the experimental SC XRD structures. (modelA) [366]

Results are obtained for a) ZIF-8, b) ZIF-90, c) ZIF-318 with an extrapolated volume, d) ZIF-

71. The results are compared to experimental and computational reference.[35, 129, 363]‖§♣

‖ Pascal Czember, Leibniz University Hannover, 2022.
§ Daniel Bömke, Leibniz University Hannover, 2022.
♣ Erona Shabani, Leibniz University Hannover, 2023.
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Figure B.6.: Dispersion of refractive indices 𝑛 calculated with TD-DFT in a CAM-B3LYP/aug-cc-pVTZ
scheme for the fragments extracted from the experimental SC XRD structures and optimized

with B97-3c/def2-mTZVP (model B). [366] Results are obtained for a) ZIF-8, b) ZIF-90, c)

ZIF-318 with an extrapolated volume, d) ZIF-71. The results are compared to experimental

and computational reference.[35, 129, 363]‖§♣

‖ Pascal Czember, Leibniz University Hannover, 2022.
§ Daniel Bömke, Leibniz University Hannover, 2022.
♣ Erona Shabani, Leibniz University Hannover, 2023.
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Figure B.7.: Dispersion of refractive indices 𝑛 calculated with TD-DFT in a CAM-B3LYP/aug-cc-pVTZ
scheme for the fragments extracted from the experimental ZIF-318 SC XRD structure and op-

timized fragments with B97-3c/def2-mTZVP. (model B) [366] Results are obtained for ZIF-318

with different volumes: a) the extrapolated and b) the experimental volume (cf. Table 5.1.1).

The results are compared to experimental and computational reference.[129, 363]♣

♣ Erona Shabani, Leibniz University Hannover, 2023.
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B.2.4. Loading of Zeolitic Imidazolate Frameworks

Figure B.8.: Progression of a benzene guest molecule placed below a 4MR of the ZIF-8 pore. Red and

purple molecules show the progression during the optimization, while the black molecule

shows the ideal 6MR position.‖

‖ Pascal Czember, Leibniz University Hannover, 2022.
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