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Abstract

This dissertation contains four essays on applied time series problems. Chapter 1 positions
each of the essays in the broader context of climate change and introduces their main
objectives and findings.

Chapter 2 deals with the clustering of extremes in oceanographic time series of signif-
icant wave heights in late 2013. While established extreme value methods are limited to
independent and identically distributed observations, these data are characterized by both
short- and long-range dependencies. In a two-step procedure, the dependencies are ac-
counted for by means of an autoregressive fractionally integrated moving average process,
which is followed by the application of the peaks-over-threshold approach to the approx-
imately independent residuals. A comparison with two alternative methods for modeling
extremal clustering highlights the benefits of jointly incorporating short- and long-range
dependence.

Chapter 3 addresses the persistence of precipitation time series, which is subject to
considerable estimation uncertainty and variability over time, climatological factors, and
geographic locations. For monthly precipitation anomaly series of the United States from
1990 to 2019, a strategy for estimating their memory parameters is proposed which takes
potential low-frequency contaminations and short-range ARMA noise into consideration.
The variations in the estimated memory parameters are explained in a nonparametric re-
gression that contains both spatial and climatological characteristics and binary indicators
for the sources of uncertainty in the memory estimation.

In Chapter 4, the dynamics of the German energy mix and its transition towards
renewable energies are analyzed. Focusing on daily power generation from its twelve en-
ergy sources and power consumption in the time period from 2016 to 2022, a detrending
scheme is introduced that captures the particular seasonal patterns, long-term trends, and
weekday and holiday effects of the German energy market. Building upon the detrended
time series and based on semiparametric estimation together with a strategy for optimal
bandwidth selection, memory parameter estimates are provided. Complemented by a cor-
relation analysis of the detrended and fractionally differenced series, the results are linked
to the roles of the renewable power sources within the energy mix.

Chapter 5 is concerned with modeling monthly real exchange rates of 17 countries
from 1973 to 2019 and their relation to macroeconomic indicators. A new Markov-STAR
model is introduced, which combines the Markov switching models that allow for a shifting



Abstract II

equilibrium rate, and the smooth transition autoregressive models that capture a nonlinear
adjustment process towards that equilibrium. Together with a specification procedure for
discriminating between the combined model and the individual approaches, the switching
equilibrium rates and volatilities are then related to a set of macroeconomic indicators,
allowing to draw conclusions on their effect on the likelihood of currency depreciation.

Keywords: Climate Econometrics · Extremal Clustering · Local Whittle Estimation · Long-
Range Dependence · Nonlinear Time Series · Seasonality · Spatio-Temporal Heterogeneity
· Spurious Long Memory
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Chapter 1

Introduction

In the recent decades, time series analysis has proven to be a valuable field of econo-
metrics, allowing to capture complex dynamics and temporal dependencies in various
empirical applications. When understanding the underlying processes of time series data,
one is able to comprehend historical patterns, identify drivers and trends, characterize
seasonal behavior, detect changing structures or anomalies, forecast future development,
and thereby support decision-making processes. Besides its wide use in economics, the
benefits of time series modeling have been stretched to environmental data and problems
linked to climate change. The latter refers to a disruption of known long-term trends and
patterns in the environment, such as an accelerated rise of global temperature and sea
levels, shifting seasonal cycles and precipitation patterns, and increased frequency and
intensity of extreme weather events, causing severe challenges for the human society and
global economy (UN, 2023a). In this context, time series techniques allow to investigate
different aspects of climate change only by inference from observed data and an approx-
imation of the generating processes rather than depending on the accuracy of a complex
global climate model (IPCC, 2013).

While the need for improved or fully new methods never abates when working with
empirical data, the field of climate change imposes additional challenges on econometri-
cians, even when not attempting to explain climate phenomena by complex multivariate
systems (for overviews on a range of recently introduced models, see e.g. Castle et al.,
2020; Hillebrand et al., 2020). From a univariate perspective, for instance, environmen-
tal series are often governed by pronounced long-term dependencies that require special
statistical attention (amongst many others e.g. highlighted by Tyralis et al., 2018; Yuan
et al., 2019), and their analysis is additionally complicated by underlying seasonal pat-
terns (see e.g. Vanem and Walker, 2013; Gil-Alana, 2017; Proietti and Maddanu, 2022).
At the same time, the disruption of environmental circumstances and the associated adap-
tation of human behavior can cause structural breaks in both climate and economic data
(e.g. stressed by Werner et al., 2015; Adedoyin et al., 2020), contradicting the assump-
tions that are needed for many established methods. In this context, the econometric view
on climate change is not limited to environmental data, but also considers its impact on
human society and vice versa. This includes quantifying the effects of human actions and
governmental measures against climate change and their interplay on a global scale, as
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well as assessing the overall economic and financial risks that arise due to the environ-
mental transformation on the one hand, and the transition towards a greener economy
on the other (Bonato et al., 2023). Addressing some of the aforementioned aspects, this
dissertation consists of four independent essays that provide new perspectives and intro-
duce novel approaches for time series problems that are in the broader sense related to
climate change.

In Chapter 2, the well-established peaks-over-threshold (POT) model for extreme val-
ues is connected to time series with strong dependencies over distant observations. In
its original form, the POT method was introduced by Pickands (1975) to describe the
occurrence of extreme observations, i.e. observations above some high threshold 𝑢, within
independent and identically distributed (iid) data. As time series are usually characterized
by temporal dependencies, the iid assumption is easily violated due to short- or long-range
dependence, causing a clustering of extremes. Both of these forms of dependencies are
present in the considered oceanographic time series of significant wave heights measured
on the Sefton coast, UK. As pointed out e.g. by Dissanayake et al. (2015), having a suit-
able model for this type of data is highly relevant for long-term coastal management.
Being constantly aggravated by climate change, the increasing frequency and intensity of
storm events and the associated coastal erosion impose difficult challenges to both the
coastal societies and landscapes (Nicholls et al., 2007). Moreover, as climate change in-
volves a general rise in weather and climate extremes (IPCC, 2023), expanding the range
of suitable extreme value methods to dependent time series data is highly relevant for
climate econometrics. The proposed two-step ARFIMA-POT approach contributes to an
effective management of the risks inherent to extreme events in environmental data by
addressing the clustering of extremes under short and long memory. In a first step, the
short- and long-range dependencies are captured by the commonly used ARFIMA model
(Granger and Joyeux, 1980; Hosking, 1981), which combines autoregressive and moving
average short-range components with fractional integration (or so-called “long memory”).
In a second step, the POT approach is applied to the approximately iid residuals, where
the occurrence of extremes can be described by a homogeneous Poisson process, while
their magnitude is modeled by the generalised Pareto distribution. For comparison, the
improved performance of the proposed method over two alternative approaches is docu-
mented for modeling of the wave height data: the conditional POT of Chavez-Demoulin
et al. (2005) and McNeil et al. (2015) for short-range dependence, and the continuous
time random exceedance model of Hees et al. (2021) for long-range dependence.

Chapter 3 addresses the persistence characteristics of precipitation time series. While
long-range dependence is generally accepted as a stylized fact of precipitation, it is sub-
ject to considerable estimation uncertainty and variability over time, climatological fac-
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tors, and geographic locations. However, having reliable estimates for the persistence of
precipitation is relevant for comprehending the intensity and frequency of global rain-
fall patterns, and detecting deviations caused by climate change. Even under a stable
total volume, it is known that climate change causes a global reallocation of precipita-
tion through an increasing occurrence of both heavy rainfall and droughts (Dore, 2005),
which endangers food and water security around the world (IPCC, 2023). Hence, con-
tributing to the understanding of the persistence of rainfall, monthly precipitation series
recorded for the contiguous United States in the time period of 1990 to 2019 are ana-
lyzed. The distinct seasonal characteristics of each of the 1,077 monitoring stations are
accounted for by considering precipitation anomalies in the form of deviations from the
corresponding median precipitation of a reference period from 1960 to 1989. For these
anomaly series, a thorough univariate analysis of their memory properties is performed,
while accounting for uncertainties regarding the underlying data-generating processes.
More precisely, starting from the well-established semiparametric local Whittle estimator
for the memory parameter 𝑑 (Künsch, 1987), the possibilities of so-called spurious long
memory and of short-range ARMA noise components are evaluated. Spurious long memory
can, for instance, be caused by level shifts, and creates the false impression of significant
dependencies over distant observations, which requires a modified estimation technique
such as the one proposed by Hou and Perron (2014). Short-range noise components can
further bias the semiparametric estimation and call for an adjustment of the user-chosen
bandwidth that is needed for both estimators. In a second step, the resulting corrected
estimates 𝑑★ are evaluated in a suitable nonparametric regression (Racine and Li, 2004)
on two predictor sets: first, consisting of spatial and climatological characteristics such
as geographic coordinates and climate zone, and second, additionally containing binary
indicators for the sources of uncertainty in the memory estimation. It is shown that both
sets of variables contribute to explaining the variability of memory parameters and the
discrepancies found in previous literature, which is confirmed in a robustness check based
on global precipitation data and two other nonparametric regression approaches.

Moving away from environmental data towards the societal and economic implications
of climate change, Chapter 4 analyzes the dynamics of the German energy mix. In Ger-
many, energy supply alone accounts for one third of the greenhouse gas emissions, which
are the main cause of climate change (UBA, 2023b). Hence, along with international
endeavors to substantially reduce greenhouse gas emissions, the German “Erneuerbare-
Energien-Gesetz” statutorily determines the gradual replacement of conventional power
sources with renewable energies that are based on non-depletable natural sources and
involve substantially lower emissions (Bundesregierung, 2022). Yet, designing a system of
renewable energies that provides the same capacity, reliability, and controllability as the
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current energy mix is complicated by the particular characteristics of the main renewable
sources, i.e. wind and solar energy, as they depend on volatile weather determinants.
Understanding the interplay and substitution possibilities of the available renewable en-
ergy sources is therefore essential for securing Germany’s energy future. To shed light
on the univariate dynamics and interdependencies of the German energy mix, daily time
series of the power generation from its twelve energy sources and power consumption
in the time period from 2016 to 2022 are analyzed. By means of a detrending scheme
that is specifically tailored to the German energy market, the particular seasonal patterns,
long-term trends, and weekday and holiday effects are captured and interpreted. Then,
as these series feature long memory, their degree of long-range dependence is estimated
via the local Whittle estimator as described above, in combination with a bandwidth
selection procedure proposed by Arteche and Orbe (2017) to minimize the estimation un-
certainty, while accounting for possible bias from structural breaks or short-range ARMA
noise components. The resulting memory parameter estimates allow to divide the twelve
energy sources into three groups that reflect their stability and role within the German
energy mix. In a first step towards a multivariate setting, it is further discovered that
the detrended and fractionally differenced power generation series from the intermittent
sources are negatively correlated with the other series, which highlights their unique role
in replacing the conventional energies.

Finally, Chapter 5 is concerned with modeling real exchange rates and their relation
to macroeconomic indicators. Exchange rates are indirectly linked to the topic of climate
change through the global nature of both the associated environmental challenges and
the necessary counteractions. Exchange rate data is required whenever currencies need to
be translated in a global setting, whether for comparing economic measures like the gross
domestic product across nations (Manne et al., 2005), or for reaching financial agreements
on international investments into environmental protection and restitution. At the same
time, exchange rates are affected by the increasing possibility of rare but extreme climate
disasters, leading to a general depreciation and larger fluctuations (Farhi and Gabaix,
2016; Bonato et al., 2023). Being able to explain the main characteristics of exchange rate
series with help of a suitable time series model does therefore contribute to understanding
the economic implications of climate change. In this chapter, a new Markov-STAR model is
introduced, which combines two major branches of the literature on exchange rates: the
Markov switching models that allow for a shifting equilibrium rate (Engel and Hamilton,
1990; Bergman and Hansson, 2005), and the smooth transition autoregressive (STAR)
models that capture a nonlinear adjustment process towards that equilibrium (Teräsvirta,
1994; van Dijk et al., 2002). From a statistical perspective, an exponential transition
function smoothly blends an inner unit root regime with a white noise process to correct
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strong deviations from the equilibrium, while its switching mean and innovation variance
are defined by a latent variable that follows a Markov chain. Together with a specification
procedure for discriminating between the combined model and the individual approaches
(based on Distaso, 2008), the model is applied to real exchange rates of 17 countries,
and the estimated equilibrium regime series are explained by different macroeconomic
indicators (i.e. output gap differential, inflation differential, and economic uncertainty),
which allows to draw conclusions on the likelihood of currency depreciation. While the
model was initially proposed for exchange rate data, it could prove equally useful for data
sets directly related to climate change. For example, Gil-Alana et al. (2017) found evidence
for concurrent nonlinear mean-reversion and level shifts in carbon dioxide emissions from
several countries. Furthermore, the need for considering the respective counterpart in
applications of either Markov switching or STAR models on environmental series (e.g.
Ailliot and Monbet, 2012; Ubilava and Helmers, 2013) could be re-examined.
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Chapter 3

Changes in US Precipitation, its Memory, and
Climatological Heterogeneity

Co-authored with Markus Fritsch, Harry Haupt, Joachim Schnurbus, and Philipp Sibbertsen.

3.1 Introduction

A prominent research question in hydrology originated from modeling river-runoff to sup-
port engineering practice in the design of dams and reservoirs for regulating river flows,
water storage, and flood protection (Hurst, 1956; Eagleson, 1994; Sutcliffe et al., 2016;
O’Connell et al., 2016). As a natural source of river-runoff (Potter, 1979) and due to
its wide economic and agricultural implications (Kotz et al., 2022), developing modeling
frameworks for precipitation series (for early work, see Hurst, 1957; Le Cam, 1961; Man-
delbrot and Wallis, 1968) and short-term forecasting of such series and related extreme
events (for recent work, see Sansó and Guenni, 2000; Berrocal et al., 2008; Kleiber et al.,
2011; Bertolacci et al., 2019; Liu et al., 2019; Schlosser et al., 2019; Bacro et al., 2020;
Bopp et al., 2021; Dupuis and Trapin, 2023; Richards et al., 2022) received considerable
attention in the literature. While river flow and precipitation modeling has traditionally
focused on small geographic areas and short-term dynamics (Eagleson, 1994), recent re-
search on precipitation series has expanded to a global scale to examine the effects of
climate change and its attribution to anthropogenic influences and/or natural phenom-
ena (Zhang et al., 2007; Büntgen et al., 2011; Bindoff et al., 2013; O’Connell et al.,
2022). Closely related issues are the relationship between precipitation and temperature
(Liu et al., 2009; Allan et al., 2014), the variability of precipitation in different climates
(Zhang et al., 2007; Bhend and von Storch, 2008; Tapiador, 2010; Polson et al., 2013)
or the different characteristics of precipitation series at different time scales and/or ge-
ographic locations (Rocheta et al., 2014; Gehne et al., 2016; Adler et al., 2017; Tyralis
et al., 2018), and changes in the spatial distribution over time (for a review, see Dore,
2005).

Recent reports from the Intergovernmental Panel on Climate Change (IPCC) highlight
substantial changes in global precipitation patterns and future projections. Globally, the
variability of precipitation and the underlying uncertainty are projected to increase in the
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mid 21st century – continuing the trends observed in several regions like the northern high
latitudes and tropical land areas. Locally, increases in mean precipitation are projected
for Asia and the Polar and Terrestrial regions, decreases for Africa and Australia, and
region-specific changes for Europe and North-, Central-, and South America. With respect
to heavy precipitation and aridity, increases are projected across almost all regions of
the world which increases the likelihood of pluvial flooding and dry spells and creates
important challenges for ecosystems, human society, and water management (IPCC, 2021,
2023). More detailed analyses at a finer resolution are provided by national agencies such
as the United States Environmental Protection Agency (EPA, 2022), where changes in past
rainfall patterns are documented for the contiguous United States and Alaska.

All of the aforementioned research questions and projections of climatic conditions
require a deep understanding of the underlying data-generating processes and there have
been vigorous debates about the memory properties of precipitation in the past (for de-
tails, see Graves et al., 2017), particularly its long-range dependence. This phenomenon,
also referred to as long memory, long-term persistence, Hurst-Kolmogorov behavior, or
Hurst effect (e.g., Markonis and Koutsoyiannis, 2016; O’Connell et al., 2016; Graves et al.,
2017), effectively describes the decay of the autocorrelation function. A slow decay leads to
high correlations over long lags, and the process is regarded to exhibit long-range depen-
dence (Koutsoyiannis, 2003). Numerous empirical studies have investigated the properties
of precipitation for different regions and on different time scales. Overall, the reported
memory characteristics show considerable heterogeneity (e.g., Potter, 1979; Breslin and
Belward, 1999; Longobardi and Villani, 2010; Efstathiou and Varotsos, 2012; Anghileri
et al., 2014; Yaya et al., 2015; Gil-Alana et al., 2019; Paul et al., 2019; Gil-Alana et al.,
2022) supporting short memory in some cases (e.g., Rao and Bhattacharya, 1999), while
providing evidence for long-range dependence in others (e.g., Gil-Alana, 2012; Efstathiou
and Varotsos, 2012; Fatichi et al., 2012; Yaya et al., 2015; Illiopoulu et al., 2018). This
inconsistent empirical evidence from studies of the memory properties of precipitation is
often attributed to a lack of long-term records, sparse spatial monitoring, and the use
of different algorithms, time intervals, regions, and data pre-processing strategies (e.g.,
Bunde et al., 2013; O’Connell et al., 2016; Graves et al., 2017; Sun et al., 2018; Tyralis
et al., 2018; Gil-Alana et al., 2022). Not surprisingly, some authors have suggested that the
statistical methodology used to test these various forms of short precipitation records has
sometimes been over-interpreted (e.g., Cohn and Lins, 2005; Markonis and Koutsoyiannis,
2016; Serinaldi et al., 2018).

Early concerns on this matter were voiced by Klemeš (1974) for applied hydrology, and
it is now well established in time series analysis of hydrological processes (e.g., Koutsoyian-
nis, 2000; Diebold and Inoue, 2001; Beran and Feng, 2002; Cohn and Lins, 2005) that
different insights into the memory properties may be due to spatio-temporal heterogeneity
driven by level shifts, (temporary) trends, seasonality, and dry spells. We propose a care-
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ful strategy for identifying and estimating memory parameters of precipitation processes
that tests for the presence of these drivers. From the resulting testing and estimation pro-
cedure, based on recent advances in the statistical literature on long-memory processes,
we obtain memory estimates for all regions considered and corresponding indicator vari-
ables as proxies for the drivers of spatio-temporal heterogeneity in precipitation processes.
For the monthly precipitation anomalies observed in the contiguous United States from
January 1960 to December 2019 at 1,077 monitoring stations, we find that precipitation
patterns not only change substantially in this time span, but also that there is considerable
spatial and climatologic heterogeneity underlying the memory parameters. The estimated
parameters support a wide range of interpretations from long-range dependence to short-
run dynamics and anti-persistent structures. In particular, the results illustrate the merits
of the proposed approach by emphasizing that estimators should be chosen judiciously
and encompassed in a test strategy. We show that the observed variation in the resulting
memory estimates nonlinearly depends on climatological and geographic variables after
controlling for the indicators derived from our diagnostic tests. Similar results hold in
our complementary analysis for other large regions with different climatological patterns
around the world.

The remainder of this paper is structured as follows. Section 3.2 introduces precipi-
tation anomalies and highlights stylized facts of the data. Section 3.3 proposes a basic
model which incorporates various forms of (long-range) dependence and details the steps
for characterizing the memory properties of precipitation anomalies in the presence of
seasonality, spatial heterogeneity, and spurious long memory. Section 3.4 summarizes the
identification of the memory parameters and their properties for the contiguous United
States. Section 3.5 discusses the strengths, weaknesses, and potential extensions of the
proposed approach in context with related literature and concludes.

3.2 Precipitation anomalies

Figure 3.1 shows a season plot of the median total monthly precipitation (in millimeters)
from January 1960 to December 2019. The blue lines represent the monthly medians
over 1,077 permanent monitoring stations in the contiguous United States and the gray
lines are corresponding monthly medians over the 30-year reference period from 1960 to
1989; (see, e.g., Zhang et al., 2000, 2007; Sánchez-Murillo et al., 2017). The raw data are
precipitation series recorded by the weather monitoring stations of the Global Historical
Climatology Network – Daily (GHCN-Daily, Version 3.26) and provided by the National
Centers for Environmental Information (Menne et al., 2020). Although Figure 3.1 does
not display an actual observed series, it illustrates the presence of pronounced seasonality
(in levels and variation). Differences in the levels of total precipitation throughout the
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Figure 3.1: Median total monthly precipitation (in millimeters) across all monitoring stations in
contiguous United States from January 1960 to December 2019. Horizontal lines
represent median total monthly precipitation for reference period 1960 to 1989.

annual cycle have been documented frequently (see, e.g., Haan et al., 1976; Buishand,
1978; Efstathiou and Varotsos, 2012; Yaya et al., 2015) and are a key stylized fact of
precipitation series.

In the following, we investigate precipitation anomalies of monthly frequency 𝐴𝑡,𝑖 com-
puted for each monitoring station 𝑖. The anomalies are obtained for the 30 years from
1990 to 2019 (evaluation period) by adjusting for seasonal variations by taking the differ-
ences of the total precipitation 𝑅𝑦:𝑚,𝑖 in year 𝑦 and month 𝑚 and the median precipitation
over the 30 years from 1960 to 1989 (reference period),

𝐴𝑦:𝑚,𝑖 = 𝑅𝑦:𝑚,𝑖 − 𝑅•:𝑚,𝑖, (3.1)

where 𝑅•:𝑚,𝑖 := 𝑚𝑒𝑑 (𝑅1960:𝑚,𝑖, . . . , 𝑅1989:𝑚,𝑖). We consider the median to appropriately
capture the central tendency of the empirical distribution of monthly precipitation due
to the (rare) occurrence of heavy precipitation. Figure 3.2 provides two maps of the
contiguous United States. The top display illustrates the locations of monitoring stations
for which precipitation series were available from January 1960 to December 2019 and
is colored according to the Köppen climate zones of the respective areas. The map shows
that the stations are located in the main climate zones B, C, and D. In the bottom display,
the locations of the stations are colored according to the median precipitation anomalies
over the 30 years from 1990 to 2019 (evaluation period)

𝐴•:•,𝑖 := 𝑚𝑒𝑑 (𝐴1990:1,𝑖, . . . , 𝐴2019:12,𝑖). (3.2)
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Figure 3.2: Top: Monitoring stations in contiguous United States and Köppen climate zones.
Bottom: Precipitation anomalies 𝐴•:•,𝑖 calculated according to (3.1) and (3.2).

We observe positive median anomalies mostly in the Mid-Atlantic region and eastern parts
of the South West and the Mid-West – while for the North-West and parts of the South East,
the median anomalies tend to be negative or close to zero. This mirrors trends documented
for mean precipitation anomalies by the United States Environmental Protection Agency
(EPA, 2022) and the recent IPCC reports (IPCC, 2021, 2023).

Figure 3.3 displays the empirical densities of monthly median precipitation anomalies
over the evaluation period 1990 to 2019 and stations separately for all months (right part
of violin plots),

𝐴•:𝑚,• = 𝑚𝑒𝑑 (𝐴•:𝑚,1, . . . , 𝐴•:𝑚,1077), (3.3)

and analogously for the reference period 1960 to 1989 (left part of violin plots). While
the median anomalies from 1990 to 2019 exceeded the medians of the reference period
for all months but September and November, we observe an increased spread of the
empirical distribution, as the interdecile and interquartile ranges increase from 1990 to
2019 compared to the reference period for all months but November. Further, for both
considered time periods, the empirical distribution of anomalies tends to be right skewed
across all months. Finally, as the differences between the means and medians increased
for all months – except March, September, and November – the skewness of the empirical
distribution of the anomalies increased in the evaluation period compared to the reference
period. In the following, we use 𝐴𝑡,𝑖 to denote the precipitation anomalies, where 𝑡 is a
time index.
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Figure 3.3: Right part of violin plots shows empirical densities of precipitation anomalies 𝐴•:𝑚,•
calculated according to (3.1) and (3.3) for evaluation period, left part shows anal-
ogous densities for reference period. Solid lines indicate median; dashed (dotted)
lines are empirical 25%- and 75%-quantiles (10%- and 90%-deciles).

3.3 Methododology

We propose a basic model for the characterization of the memory properties of precipita-
tion anomalies. First, commonly employed statistics are used to distinguish long memory,
short memory, and anti-persistent behavior. Second, methods for identifying, estimat-
ing, and testing for spurious long memory are introduced. Then, an approach based on
distribution-free regression is developed to investigate the variation in the memory prop-
erties.

3.3.1 Characterization of the memory properties of time series and
long-range dependence

The properties of precipitation series are often characterized by the Hurst coefficient, the
fractal dimension, and the degree of fractal differencing. Those parameters are intimately
connected and we start by clarifying their relationship and interpretation. The Hurst coef-
ficient 𝐻 indicates a fractional Brownian motion (fBM) – a generalization of an ordinary
Brownian motion. A key property of fBM is, that considering the process on a different
time-scale results in an identical finite dimensional distribution after suitable re-scaling
(Graves et al., 2017). The fractal dimension 𝐹, which can be estimated based on empiri-
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cal data by box-counting, re-scaled range analysis, and the variation method (Breslin and
Belward, 1999), is defined as

𝐹 = 2 − 𝐻. (3.4)

Here and subsequently, we drop the subscript 𝑖 and define long-range dependence as
follows. A process {𝐴𝑡}𝑡≥1 is stationary fractionally integrated of type I, if fractional dif-
ferencing of degree 𝑑, where

𝑑 = 𝐻 − 0.5, (3.5)

leads to a stationary short-memory sequence

(1 − 𝐿)𝑑𝐴𝑡 = 𝑉𝑡 (3.6)

with continuous and bounded spectrum and infinite past (Marinucci and Robinson, 1999).
For 𝑑 ∈ ] − 0.5, 0[ ⋃ ]0, 0.5[, the sequence 𝑉𝑡 satisfies

𝛾(𝑘) ∼ 𝐿𝛾 (𝑘) |𝑘 |2𝑑−1 for 𝑘 → ∞, (3.7)

𝐿𝛾 (𝑘) = 2𝐺 (𝑘−1)Γ(1 − 2𝑑) sin(𝜋𝑑),

where 𝛾(𝑘) is the autocovariance function evaluated at lag 𝑘, and 𝐺 (·) is a slowly varying
function in Zygmund’s sense (such that for 𝑘 → ∞, the function is well approximated by
a constant 𝐺). The fractional differencing operator is defined (via Gamma function Γ(·))
by

(1 − 𝐿)𝑑 =
∞∑︁
𝑘=0

𝜋𝑘 (𝑑)𝐿𝑘 =
∞∑︁
𝑘=0

Γ(𝑘 − 𝑑)
Γ(−𝑑)Γ(𝑘 + 1) 𝐿

𝑘 . (3.8)

Table 3.1 summarizes the characterization of the memory property of a series into anti-
persistent, short memory, and long memory by the Hurst coefficient 𝐻, fractal dimension
𝐹, and degree of fractional differencing 𝑑 via the corresponding ranges of values.

Table 3.1: Characterization of memory property of time series into anti-persistent, short memory,
and long memory and corresponding ranges of values for Hurst coefficient 𝐻, fractal
dimension 𝐹, and degree of fractional differencing 𝑑.

Characterization Hurst coef. 𝐻 Fractal dim. 𝐹 Degree of frac. diff. 𝑑

Anti-persistent ]0,0.5[ ]1.5,2[ ]-0.5,0[
Short memory 0.5 1.5 0
Long memory ]0.5,1[ ]1,1.5[ ]0,0.5[
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In the following, we employ the degree of fractional differencing 𝑑 and refer to 𝑑 as
the memory parameter. Starting from the classical and most widely used local Whittle
(LW) estimator for 𝑑, we propose to compute at least one additional estimator. We use
an encompassing strategy based on statistical tests covering a variety of data generating
processes which may differ with respect to their autocovariance functions. In particular,
we test for the presence of structural breaks, smooth trends, and short-memory noise
components. In all of these cases, the LW estimator can lead to incorrect conclusions. The
resulting estimators for 𝑑 can take four different forms: the LW estimator, the Hou-Perron
(HP or modified LW) estimator, and both of these estimators with lower bandwidths when
accounting for short-memory noise.

3.3.2 Identification and estimation of memory parameters and testing
for spurious long memory

This subsection introduces the local Whittle estimator and its modified version, the Hou-
Perron estimator. Additionally, tests and identification strategies for the presence of spu-
rious long memory, mean breaks, and short-run dynamics are summarized.

The classical memory parameter estimator: Local Whittle

As a natural choice for estimating 𝑑, the LW estimator (Künsch, 1987) is defined as

𝑑𝐿𝑊 = argmin
𝑑
𝑅(𝑑), (3.9)

with

𝑅(𝑑) = log ©«1𝐽
𝐽∑︁
𝑗=1

𝐼 (_ 𝑗 )
_−2𝑑
𝑗

ª®¬ + 1
𝐽

𝐽∑︁
𝑗=1

log_−2𝑑𝑗 , (3.10)

based on the precipitation anomalies’ periodogram 𝐼 (_ 𝑗 ) = (2𝜋𝑇)−1
��∑𝑇

𝑡=1 𝐴𝑡 exp(−𝑖𝑡_)
��2

evaluated at the Fourier frequencies _ 𝑗 = 2𝜋 𝑗/𝑇 for a sample size 𝑇 , where, 𝑗 = 1, . . . , 𝐽.
As bandwidth, we choose 𝐽 = ⌊𝑇0.7⌋ unless stated otherwise, where ⌊·⌋ returns the integer
part of its argument. The estimator 𝑑𝐿𝑊 has been frequently used for studying the memory
in precipitation series (see, e.g., Gil-Alana, 2012; Paul et al., 2019; Gil-Alana et al., 2022).
As the following paragraphs suggest, however, 𝑑𝐿𝑊 may not be the optimal choice in the
presence of level shifts, smooth trends, or short-run (ARMA) dynamics.

A modified local Whittle estimator: Hou-Perron

Low-frequency contaminations such as level shifts or smooth trends may falsely indicate
long-range dependence. As 𝑑𝐿𝑊 is based on periodogram ordinates close to the origin, it
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can be upward biased when spurious long memory is present. The estimator of Hou and
Perron (2014) is a modified local Whittle estimator which includes a second component
in the spectral density representing the share of low-frequency contaminations,

𝑑𝐻𝑃 = argmin
𝑑,\

𝑅(𝑑, \), (3.11)

with

𝑅(𝑑, \) = log ©«1𝐽
𝐽∑︁
𝑗=1

𝐼 (_ 𝑗 )
_−2𝑑
𝑗

+ \_−2
𝑗
/𝑇

ª®¬ + 1
𝐽

𝐽∑︁
𝑗=1

log
(
_−2𝑑𝑗 + \_−2𝑗 /𝑇

)
, (3.12)

where \ ∈ ]0,∞[ denotes the signal-to-noise ratio. According to simulation results of Busch
and Sibbertsen (2018), the modified 𝑑𝐻𝑃 is the most reliable semi-parametric estimator
in the presence of various types of low-frequency contaminations. To the best of our
knowledge, it was not yet used for studying the memory in precipitation series.

Qu’s test for spurious long memory

Stationary long-memory processes and series with spurious long memory can be distin-
guished by the test of Qu (2011). Similar to the estimators for the memory parameters,
it is based on periodogram ordinates close to the origin. For the hypotheses

𝐻0 : stationary process with 𝑓 (_) ∼ 𝐺_−2𝑑 as _ → 0+ vs.

𝐻1 : process contaminated by level shifts or smooth trend,

the test statistic is given by

𝑊𝑄𝑢 = sup
𝑟∈[𝜖,1]

©«
𝐽∑︁
𝑗=1

a2𝑗
ª®¬
− 1

2
������
⌊𝐽𝑟⌋∑︁
𝑗=1

a 𝑗
©«

𝐼 (_ 𝑗 )

𝐺 (𝑑𝐿𝑊 )_−2𝑑𝐿𝑊𝑗

− 1ª®¬
������ , (3.13)

with 𝐺 (𝑑) = 1
𝐽

∑𝐽
𝑗=1 _

2𝑑
𝑗
𝐼 (_ 𝑗 ), a 𝑗 = log_ 𝑗 − 1

𝐽

∑𝐽
𝑗=1 log_ 𝑗 , and trimming parameter 𝜖 . In

the empirical application we set 𝜖 = 0.05. If 𝐻0 is not rejected, there is no indication that
the process is contaminated, neither by level shifts, nor by a smooth (deterministic) trend.

Pre-whitening of short-run ARMA dynamics

Whenever series exhibit short-run dynamics, the corresponding higher-frequency peri-
odogram ordinates can bias the given memory estimators and Qu’s test. Short-run dy-
namics can be identified using autoregressive and moving average components in an
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ARFIMA(𝑝, 𝑑, 𝑞) model, which is defined according to Granger and Joyeux (1980) and
Hosking (1981) as

Φ(𝐿) (1 − 𝐿)𝑑𝐴𝑡 = Θ(𝐿)𝑉𝑡 , (3.14)

where Φ(𝑧) = 1 − ∑𝑝

ℎ=1 𝜙ℎ𝑧
ℎ and Θ(𝑧) = 1 − ∑𝑞

𝑘=1 \𝑘 𝑧
𝑘 denote AR and MA polynomials,

and 𝑉𝑡 ∼ 𝑖𝑖𝑑 (0, 𝜎2
𝑉
) are independently and identically distributed innovations. Following

recommendations of Qu (2011), we carry out pre-whitening according to (3.14). This in-
volves estimating ARFIMA(𝑝, 𝑑, 𝑞) models for 𝑝, 𝑞 ≤ 1 via exact maximum likelihood for
all series and selecting one model for each series based on the Akaike information crite-
rion. Whenever the selected model is non-stationary or non-invertible, the corresponding
parameters are cut down to lie within the unit circle. The estimated parameters of the
selected model are then used to fit the corresponding ARMA(𝑝, 𝑞) model and thereof a
vector of residuals is obtained for each series. Additionally, we employ a smaller band-
width 𝐽 = ⌊𝑇0.6⌋ in the memory parameter estimation, whenever AR or MA dynamics
are identified during the pre-whitening procedure. Our results for the contiguous United
States and global data suggest that pre-whitening and a lower bandwidth should be con-
sidered, as roughly one third of the investigated series contained indications for short-run
dynamics, which increases the variation of the memory parameter estimates and thus the
uncertainty when identifying the memory properties of precipitation.

Sup-Wald tests for mean breaks

Unreported analyses have shown that the test of Qu (2011) reacts to positive skewness of
the precipitation anomaly series with a negative bias, resulting in a higher type II error
and fewer detections of spurious long memory. Hence, we also test for the presence of
level shifts. As some series might feature such low frequency contaminations and true long
memory, we use two mean break tests comprising consistent estimation of the long-run
variance: The self-normalized sup-Wald test (SNSW) of Shao (2011) and the fixed-𝑏 sup-
Wald test (FBSW) of Iacone et al. (2014). Both test statistics (see appendix) are reliable
under short and long memory (Wenger et al., 2019) and employ a single mean shift model
in which the stochastic process {𝐴𝑡}𝑡≥1 is generated by

𝐴𝑡 = `𝑡 + Y𝑡 , (3.15)

`𝑡 = ` + 𝛽1(𝑡 ≥ 𝑡∗), 𝑡 ≥ 0,

where the sequence of regression means `𝑡 is assumed to be deterministic, the coefficient
𝛽 quantifies the magnitude of the possible mean shift, 1(𝑡 ≥ 𝑡∗) is an indicator function
that depends on the break point location 𝑡∗ = ⌊𝜏∗𝑇⌋, and 𝜏∗ ∈ ]0, 1[ denotes the break
fraction. As the error term {Y𝑡}𝑡≥1 may be stationary fractionally integrated, both tests
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require prior estimation of the memory parameter. We use 𝑑𝐿𝑊 here, whenever necessary
with lower bandwidth 𝐽 = ⌊𝑇0.6⌋ to prevent bias from short-run dynamics, and then
test the null hypothesis of a constant unconditional mean against the alternative of a
change-in-mean:

𝐻0 : `1 = ... = `𝑇 = ` vs.

𝐻1 : `𝑡 ≠ `𝑠 for some 1 < 𝑡, 𝑠 < 𝑇 and 𝑡 ≠ 𝑠.

If we cannot reject 𝐻0, there are no indications for level shifts.

Conventional and adjusted memory parameter estimates

From our previous analysis we have two sets of estimators:

– 𝑑𝐿𝑊 , the conventional memory parameter estimate.

– 𝑑∗, the adjusted memory parameter estimate: For short-run dynamics, the lower band-
width 𝐽 = ⌊𝑇0.6⌋ is employed. In case of level shifts and smooth trends (if 𝐻0 of Qu’s
test or one of the two mean break tests is rejected at significance level 𝛼 = 10%), 𝑑𝐻𝑃
is used; in all remaining cases 𝑑𝐿𝑊 is used.

3.3.3 The variation in precipitation memory

In a next step we identify predictors of the variation in the estimated memory parameters.
We compute both estimators for all precipitation anomaly series and use them as response
in a regression. While Tyralis et al. (2018) investigate whether the variation in 𝑑𝐿𝑊 is
driven by spatial and climatological heterogeneity summarized by the established predictor
set X𝑃, we consider the set of binary predictors X𝐵, with X = (X𝑃,X𝐵) and 𝑃 + 𝐵 = 𝐾:

– X𝑃 consists of the spatial characteristics Latitude, Longitude, and Altitude (grouped into
deciles) as well as the (categorical) variables Main climate zone, Precipitation subgroup,
and Temperature subgroup that reflect the Köppen climate zone classification.

– X𝐵 comprises four binary predictors constructed as follows (cf. Section 3.3.2):
1. Qu spurious: This binary predictor is assigned a value of one if the null hypothesis

of Qu’s test is rejected after pre-whitening at the significance level 𝛼 = 5%.
2. Mean break: This binary predictor is assigned a value of one, whenever one (both)

of the two long-memory-robust mean break tests SNSW and FBSW rejects the null
hypothesis of a constant mean at the significance level 𝛼 = 5% (𝛼 = 10%).

3. Contaminated: This binary predictor is assigned a value of one, when at least one
of the previous tests rejects the null hypothesis at the significance level 𝛼 = 10%. It
indicates series that give no clear evidence on spurious long memory in Qu’s sense
or on a mean shift, but which might still be contaminated in the lower frequencies.
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4. ARMA noise: This binary predictor is assigned a value of one, if any autoregressive
(𝑝 > 0) or moving average components (𝑞 > 0) are selected within the ARFIMA
(𝑝, 𝑑, 𝑞) estimation. It indicates the presence of short-run dynamics, which induces
a bias in the estimation of the memory parameter.

Including the predictor set X𝐵 addresses one of the shortcomings pointed out in Tyralis
et al. (2018) by reducing the uncertainty underlying the identification (and estimation) of
the memory parameters. In their analysis of the spatial and climatological dimensions of
precipitation memory, Tyralis et al. (2018) employ the data-driven “black-box” procedure
random forests (RF). While imposing minimal structural assumptions, RF make it difficult
to provide interpretations and assess the relevance of predictor (sets) beyond comparing
the predictive performance of different specifications, since the large sample properties of
RF remain unknown.

Instead of RF, we employ multiple nonparametric (NP) regression for mixed continuous
and discrete predictors (Racine and Li, 2004; Li and Racine, 2007), and also fit generalized
additive models (GAM, see Hastie, 1990; Wood, 2017) as a baseline approach. The two
approaches provide model interpretation and inference within the familiar regression
framework, while imposing minimal structural assumptions and allow to infer whether
spatial and climatological heterogeneity is still relevant after controlling for uncertainty
in the identification and estimation of memory parameters. We leverage the advantages
of both regression approaches to provide interpretations about the fitted models and test
the empirical relevance of the binary predictors X𝐵 after controlling for X𝑃.

We first fit the NP regression

𝑌 = 𝑓 (X) +𝑈, (3.16)

where 𝑌 denotes the estimated memory parameter, X the 𝐾 predictors, and 𝑈 is an
additive error term. We assume mean independence between precipitation anomalies and
the complete set of predictors, meaning that

E(𝑈 | X) = 0 (3.17)

holds almost surely (a.s.). We fit regression (3.16) by using the local constant estimator
of Racine and Li (2004),

�̂� (x, b) = 1
𝑛

𝑛∑︁
𝑖=1

∏𝐾
𝑘=1 𝑤𝑘 (𝑥𝑘 , 𝑥𝑖,𝑘 , 𝑏𝑘 )

1
𝑛

∑𝑛
𝑖=1

∏𝐾
𝑘=1 𝑤𝑘 (𝑥𝑘 , 𝑥𝑖,𝑘 , 𝑏𝑘 )

· 𝑦𝑖, (3.18)
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with weighting function 𝑤𝑘 (·), which depends on the scale level of the underlying ob-
served predictors 𝑥𝑘 and the corresponding smoothing parameters 𝑏𝑘 . We estimate b =

(𝑏1, . . . , 𝑏𝐾)′ by least-squares cross-validation via

b̂ = argmin
b

𝑛∑︁
𝑖=1

(
𝑦𝑖 − �̂�−𝑖 (x−𝑖, b)

)2
· 𝑀 (x𝑖),

where �̂�−𝑖 (·) is the jackknife estimator for observation 𝑖 and 𝑀 (·) is a function that controls
for boundary issues of the local constant estimation. A benefit of local constant regression
with bandwidths estimated by least-squares cross-validation are the insights available
from the estimated smoothing parameters b̂: Large values indicate that the underlying
predictors are irrelevant, as it denotes the degree of smoothing and when it approaches
one, the respective predictor is smoothed out (Hall et al., 2007). A common drawback
of nonparametric approaches is the “curse of dimensionality”. However, X𝑃 contains only
two continuous predictors and the number of discrete predictors in X𝑃,X𝐵 has no effect
on the rate of convergence (for details, see Racine and Li, 2004; Li and Racine, 2007).

Based on the local constant estimator, it can be tested if one or more predictors have a
non-zero effect on the response for discrete (Racine et al., 2006) and continuous predictors
(Racine, 1997). For our purpose, this involves testing the hypotheses

𝐻0 : E(𝑌 | X𝑃,X𝐵) = E(𝑌 | X𝑃) a.s., vs.

𝐻1 : E(𝑌 | X𝑃,X𝐵) ≠ E(𝑌 | X𝑃) on a set with positive probability.

If we cannot reject 𝐻0, there are no indications that any of the four predictors in X𝐵 has
an effect on the response and the variables are not suitable for explaining the variation
of the memory parameters.

As a second modeling approach, we fit a GAM, where 𝑓 (X) in (3.16) is decomposed
into additively linked functionals, some of which depend on a finite dimensional set of
parameters 𝜷0. Then, we consider 𝑌 = 𝑔(X; 𝜷0) +𝑉 , where 𝑉 is an additive error term. As
a check of the GAM against the proposed fully nonparametric approach, we conduct the
consistent model specification test of Hsiao et al. (2007) which allows for discrete and
continuous predictors. The null hypothesis of this test can be expressed as a test of the
mean independence assumption 𝐻0 : E(𝑉 | X𝑃,X𝐵) = 0 𝑎.𝑠. (see Racine, 2019, Sec. 6.10.3,
for details and application). We cannot reject the null hypothesis if the GAM residuals
from a regression on X𝑃 and X𝐵 cannot be explained by an NP regression on X𝑃 and X𝐵.
In addition to the GAM, we also test the residuals of a RF in an analogous fashion.
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3.4 Results

This section summarizes the results when characterizing the memory properties of the
precipitation anomaly series observed in the contiguous United States. We calculate the
conventional memory parameter estimates 𝑑𝐿𝑊 and the adjusted memory parameter es-
timates 𝑑∗ and investigate the heterogeneity of precipitation memory as detailed in Sub-
section 3.3.3.

3.4.1 Identification, estimation, and inference of precipitation mem-
ory parameters

We assess the differences between conventional memory parameter estimates 𝑑𝐿𝑊 and
the carefully derived adjusted memory parameter estimates 𝑑∗. The results differ quanti-
tatively and qualitatively between the two estimates and suggests that further conclusions
may be affected substantially by the choice of estimator. Table 3.2 shows the absolute and
relative frequencies of potential contaminations of the conventional memory parameter
estimates diagnosed by the tests in Subsection 3.3.2 for the US precipitation anomaly
series. We find that although the null hypothesis of Qu’s test is rejected for only 4.6%
of the series, a substantial fraction of the series show evidence of mean breaks (11.7%),
potential contaminations (23.5%), and short-run dynamics (35.9%). Table 3.3 summa-
rizes the number of precipitation anomaly series falling into three regions indicative of
anti-persistence, short memory, and long-range dependence. We observe that the number
of anomaly series labeled as anti-persistent increases and the number of series with short

Table 3.2: Absolute and relative frequencies of binary variables X𝐵 for monthly precipitation
anomaly series (3.1) from contiguous United States 1990 to 2019.

Qu spurious Mean break Contaminated ARMA noise

Number of ones 50 126 253 387
Number of zeros 1027 951 824 690
Share of ones 4.6% 11.7% 23.5% 35.9%

Table 3.3: Memory estimates 𝑑𝐿𝑊 and 𝑑∗ for monthly precipitation anomaly series (3.1) from
contiguous United States 1990 to 2019 supporting different memory behavior.

Parameter range Memory behavior 𝑑𝐿𝑊 𝑑∗

[−0.5,−0.1] Anti-persistent 32 162
] − 0.1, 0.1[ Short memory 870 754
[0.1, 0.5] Long memory 175 161
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Figure 3.4: Frequency histograms of conventional memory estimates 𝑑𝐿𝑊 (left) and adjusted
memory estimates 𝑑∗ (right) for monthly precipitation anomaly series (3.1) from
contiguous United States 1990 to 2019. Dashed line indicates zero.

memory decreases, whereas the number of series considered to be long-range dependent
remains relatively stable.

The impact of accounting for these diagnosed sources of uncertainty in estimation and
inference on the memory parameters is illustrated by the histograms in Figure 3.4. We
note that the estimated average memory is lower when we consider 𝑑∗ instead of 𝑑𝐿𝑊 ,
while its range increases, reflected by a 63.5% increase of the standard deviation (from
0.070 for 𝑑𝐿𝑊 to 0.115 for 𝑑∗). As a consequence the variation of the memory estimates
is underestimated substantially by 𝑑𝐿𝑊 . The five number summary and mean in Table 3.4
and the scatter plot displayed in Figure 3.5 confirm these findings and add further detail.

Figure 3.6 shows maps of 𝑑𝐿𝑊 (top) and 𝑑∗ (bottom) for the contiguous United States.
The maps highlight the pronounced differences between the conventional and adjusted
memory parameter estimates discussed above, and are also an indication that some of
these differences are region-specific: Anti-persistence appears to be more prevalent in
southern California and the northern parts of the Midwest in particular for 𝑑∗ compared
to 𝑑𝐿𝑊 . Note that these were the two regions in the contiguous United States, where ac-
cording to the IPCC report the assessment of an increase or decrease in heavy precipitation
was difficult due to “Limited data and/or literature” and that the "Confidence in human
contribution to the observed change" was "Low due to limited evidence/agreement", IPCC
(2023, p.109).

Table 3.4: Five number summary and mean for conventional memory estimates 𝑑𝐿𝑊 and adjusted
memory estimates 𝑑∗ for monthly precipitation anomaly series (3.1) from contiguous
United States 1990 to 2019.

Min. 1st Qu. Median Mean 3rd Qu. Max.

𝑑𝐿𝑊 -0.24 -0.01 0.03 0.03 0.08 0.26
𝑑∗ -0.50 -0.06 0.02 -0.00 0.07 0.35
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Figure 3.5: Scatter plot of conventional memory estimates 𝑑𝐿𝑊 (abscissa) versus adjusted memory
estimates 𝑑∗ (ordinate) for monthly precipitation anomaly series (3.1) from contigu-
ous United States 1990 to 2019. Line is angle bisector.
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Figure 3.6: Conventional memory estimates 𝑑𝐿𝑊 and adjusted memory estimates 𝑑∗.

Our results indicate that the memory parameter estimator should be chosen with
care and that the conventional memory parameter estimate 𝑑𝐿𝑊 may suffer from severe
distortions, as it may be prone to overestimating the degree of fractional differencing.
Hence we subsequently focus on the adjusted memory parameter estimate 𝑑∗. In the
appendix, we report additional, qualitatively identical results for other large regions.
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3.4.2 The variation in precipitation memory

We investigate the climatological and spatial variation of the memory parameters as pre-
viously considered by Tyralis et al. (2018). We extend their work in several directions,
first and foremost by using the adjusted memory parameter estimates 𝑑∗ and including
the predictor set X𝐵 to reduce the uncertainty underlying the identification and estima-
tion of the memory parameters. Further, we apply a nonparametric regression framework
allowing a straightforward interpretation of the effects of the predictor sets X𝑃 and X𝐵
on precipitation memory. Finally, unlike model-free approaches such as RF, the use of
regression analysis provides a means for hypothesis testing.

In the context of distribution-free regression, we test not only the relevance of the
predictor set X𝐵, but also the model specification for GAM and RF versus the alternative
NP. Table 3.5 shows results for two nonparametric specifications – NP1 uses predictor set
X𝑃 and NP2 uses predictor set X = (X𝑃,X𝐵). We report estimated bandwidths for NP1
and NP2 for the adjusted memory parameter estimate. For continuous predictors, we list
the scale factor instead of the bandwidth, since it does neither depend on the scale level
of the underlying predictor nor on the number of observations and is thus comparable
across predictors, specifications, and geographical regions. Details on the application and
interpretation of nonparametric regression models with mixed continuous and discrete
predictors can be found in Li and Racine (2007); Henderson and Parmeter (2015); Racine
(2019).

The bandwidths and scale factors of the spatial characteristics are remarkably stable
across both specifications. The larger scale factor of Latitude compared to Longitude across

Table 3.5: Estimated bandwidths (for discrete predictors), scale factors (for continuous predic-
tors), and model fit of nonparametric specifications NP1 and NP2. Response variable
is adjusted memory parameter estimate 𝑑∗ for monthly precipitation anomaly series
(3.1) from contiguous United States 1990 to 2019.

NP1 NP2

Latitude 0.396 0.670
Longitude 0.254 0.300
Altitude 0.922 1.000

Main climate zone 1.000 0.206
Precipitation subgroup 1.000 0.111
Temperature subgroup 0.411 0.501

Qu spurious 0.336
Mean break 1.000
Contaminated 0.080
ARMA noise 0.052

𝑅2 0.599 0.811
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both specifications shows that in either specification, there is a stronger smoothing of the
north-south effect than of the west-east effect. This represents more abrupt changes in
memory from west to east (and vice versa) than from north to south (and vice versa),
which can be linked intuitively to the climatic characteristics of the contiguous United
States. Especially the higher share of desert scenery in the west (with longer stable rain-
fall periods) is expected to cause a very different persistence structure than the east. In
contrast, the selected bandwidth values of Altitude suggest that its impact on the spatial
variation of estimated memory parameters is negligible in both specifications. In general,
the discrete bandwidths are bounded in [0, 1], where a value approaching 0 indicates
high relevance of the predictor and a value approaching 1 indicates irrelevance.

Concerning the three climatological predictors we observe the following: Temperature
subgroup seems to exert a moderate effect in both specifications (selected bandwidths in
between [0.4, 0.5] for both specifications), Main climate zone and Precipitation subgroup
are irrelevant in specification NP1, but highly relevant in specification NP2. Looking more
closely at the estimated bandwidths of the climatological predictors for the NP2 specifi-
cation, we find that the precipitation subgroup has the lowest bandwidth and is thus of
particular importance for modeling. Thus, the combination of adjusted memory parame-
ters and extended predictor set revealed the relevance of the climatological predictors.

For the four binary predictors X𝐵 included in specification NP2, the selected band-
widths indicate a high empirical relevance (with the exception of Mean break) after ac-
counting for spatial and climatological characteristics. The Racine et al. (2006) test of
joint significance of the predictors X𝐵 strongly supports this finding (𝑝-value <0.001).

The estimation and test results imply that the complete set of predictors included
in the fully nonparametric specification NP2 is suitable for modeling the spatial and cli-
matological variation of precipitation memory. In particular, all climatological predictors
are (highly) relevant. When testing the GAM and the RF as proposed by Tyralis et al.
(2018) against the nonparametric regression with the test of Hsiao et al. (2007), the
𝑝-values of 0.093 (RF) and 0.018 (GAM) point towards misspecification compared to the
NP regression.

3.5 Discussion

Understanding the drivers of precipitation processes is vital for the development of physi-
cal process models and improving existing approaches for (short-term) precipitation fore-
casting. Especially for the latter, refining spatio-temporal correlations is an open field of
research and speculated to provide substantial room for improvement for existing ap-
proaches (Berrocal et al., 2008; Kleiber et al., 2011; Bacro et al., 2020). Additionally, in-
terpretations of empirical findings on (changes in) precipitation are intimately connected
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with the memory properties of the underlying physical processes to alleviate misuse of
statistical methodology and over-interpretation of the results, as long range dependence
increases the likelihood of dry spells and wet periods, while in case of anti-persistence, it is
less likely that such events are observed over a prolonged time horizon. We have presented
a statistical method for obtaining memory parameter estimators adjusted for potential
non-standard structures in the processes generating monthly precipitation anomalies. We
build on a large literature originated by Hurst (1957); Le Cam (1961); Mandelbrot and
Wallis (1968); Klemeš (1974); Potter (1979) on characterizing the memory properties of
precipitation series by the degree of fractional differencing 𝑑 and on recent contributions
in the time series literature (Qu, 2011; Hou and Perron, 2014; Busch and Sibbertsen,
2018) investigating said structures such as level shifts, smooth trends, breaks, or short-
run dynamics. The latter are well known to lead to biases in the estimators of memory
parameters, making reliable inferences and interpretations impossible. Using a sequence
of statistical tests (Qu, 2011; Shao, 2011; Iacone et al., 2014), we derived binary indi-
cators for these structures, found in roughly one third of the 1,077 precipitation series
across the contiguous United States.

Our empirical evidence for precipitation anomalies for the contiguous United States
over the past 60 years shows that adjusting memory parameter estimators leads to sub-
stantially different conclusions than using conventional ones, such as the most commonly
applied approach of local Whittle estimation. In particular, when comparing the adjusted
estimates of the memory parameters with the conventional estimates, our results show
that the latter tend to overestimate the memory parameters, whereas the former show
more than 60% greater variability. Our results also confirm a recent conjecture by Tyralis
et al. (2018) that there is substantial uncertainty in memory parameter estimates result-
ing from spatio-temporal heterogeneity due to level shifts, smooth trends, and seasonality.
This affects inferences about underlying memory properties, as more precipitation series
exhibit anti-persistence rather than short memory.

When investigating the variability of the adjusted memory parameter estimates over
the United States, we find substantial nonlinearities in the impacts exerted by spatial
characteristics, climatological characteristics and the indicators for level shifts/smooth
trends and short-run dynamics, supporting the findings in recent literature on changes
in United States precipitation patterns (IPCC, 2021, 2023). We have shown that these
results hold for other large regions (Europe, Australia, and global data) in various climate
zones worldwide.

Our work also has some limitations and provides further strands of research for fu-
ture work. First, our method relies on a number of pre-processing strategies, such as
the component model and the related de-seasonalizing by Equation (3.1). Extending our
framework to multiplicatively linked components and other seasonal decomposition meth-
ods such as the approaches outlined by Dagum and Bianconcini (2016) could spark useful
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methodological advances. Second, we employ nonparametric regression to investigate the
variation in the memory parameters, but the inclusion of additional continuous predic-
tors (beyond the two in this study) into the model specification could add to the curse
of dimensionality. In this setting, employing a random-forest-based analysis in the spirit
of Tyralis et al. (2018) or using generalized additive models as done in the robustness
checks has specific advantages and disadvantages that need to be considered in greater
detail. Third, we investigate the memory properties of precipitation anomaly series ob-
tained from weather monitoring stations, where we aggregate daily total precipitation to
monthly values and then compute monthly precipitation anomalies. A natural alternative
is to consider a different frequency of the data, as the properties could also be inves-
tigated based on an intra-daily (e.g., Poveda, 2011), daily (e.g., Yusof et al., 2013), or
annual time horizon (e.g., Illiopoulu et al., 2018). Fourth, additional data sources, such as
satellite data or paleoclimatic reconstructions, or different spatial aggregates could be em-
ployed to investigate the robustness of the reported results. However, other data sources
also have specific advantages and disadvantages that need to be weighed carefully (for
a discussion, see Tapiador et al., 2012). Fifth, it may be interesting to link precipitation
and river run-off by reconciling the memory properties of the underlying processes. As
suggested by Potter (1979), precipitation is a natural starting point. Fruitful avenues to
consider may be models for the physical process that causes river-runoff (Klemeš, 1974).
From a methodological point of view, this involves investigating the effect of aggregating
time series which exhibit particular dependence structures and relaxing the assumptions
and results of Granger and Joyeux (1980); Davidson and Sibbertsen (2005); Beran et al.
(2013). Finally, the special characteristics of precipitation series reveal the need for fur-
ther research on the estimation and identification of (spurious) long memory. Unreported
analyses have shown that the test of Qu (2011) reacts to positive skewness with a negative
bias, resulting in a higher type II error and fewer detections of spurious long memory.
Additionally, applying an automatic bandwidth selection procedure for the memory esti-
mation as suggested by Arteche and Orbe (2017) would control for short-run dynamics
in a more general way, but is yet to be derived for the case of spurious long memory.
Developing and applying alternative tests and modified estimation techniques that specif-
ically account for the particularities of precipitation series may also produce interesting
new empirical evidence to characterize the underlying memory properties, as definitive
conclusions regarding the memory properties of precipitation series are not possible based
on empirical data (Graves et al., 2017).
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3.A Appendix

Appendix with three sections: 1. Data and software, 2. Test statistics of the sup-Wald tests
for level shifts, 3. Robustness checks for other regions and worldwide precipitation series.
The first section provides information on data pre-processing and all employed software.
Information on the Köppen climate zone classification and the covariates employed in the
estimation of the nonparametric and generalized additive models and the random forests
is also provided. The second section details the mean break test statistics, while the final
section summarizes the results for the alternative regions Australia, Europe and Global.

3.A1 Data and software

The raw data include daily total precipitation in millimeters, maximum and minimum
temperature, snowfall, and snow depth for some monitoring stations. The quality of the
data is controlled by automated procedures (Menne et al., 2012). Almost all precipitation
series contain a small number of missing values and we imputed the data as follows:
Missing values in year 𝑡 and day 𝑑 were replaced by inserting the observed precipitation
of year 𝑡 −1 and day 𝑑. For leap years, when the precipitation of February 29 was missing
in year 𝑡, we inserted the value observed on February 28 in year 𝑡 − 1. When there were
missing values in the series in year 𝑡−1 and day 𝑑, we imputed the observed precipitation
of year 𝑡 +1 and day 𝑑, where, again, for leap years, February 28 was used when February
29 was missing. We conducted at most two iterations of the imputation scheme and
removed all precipitation series, which still contained missing values. Subsequently, total
daily precipitation was aggregated to total monthly precipitation.

All computations and visualizations were created with the statistical software R, version
4.2.2 (R Core Team, 2022) employing the packages anytime (Edelbuettel, 2020), arfima
(Veenstra and McLeod, 2015), dplyr (Wickham et al., 2017), ggmap (Kahle and Wickham,
2013), ggplot2 (Wickham, 2016), gridExtra (Auguie and Antonov, 2017), LongMemoryTS
(Leschinski et al., 2019), lubridate (Grolemund and Wickham, 2011), mgcv (Wood, 2017),
np (Hayfield and Racine, 2008), raster (Hijmans et al., 2023), rworldmap (South, 2011),
sf (Pebesma and Bivand, 2005), snowfall (Knaus, 2013), sp (Bivand et al., 2013), terra
(Hijmans, Bivand, Pebesma and Sumner, 2023), usmap (Di Lorenzo, 2022), and viridis
(Garnier et al., 2021).
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Köppen climate zone classification

Climate in a particular region arises from the complex interplay of multiple factors such as
temperature, precipitation, and other geographical characteristics (e.g., altitude; proximity
to sea, rivers, and lakes, or mountains) and is intimately linked with natural habitats of
plants and animals. Conventional climate zone classification is based on the three letter
scheme of Köppen (1884, 1900a,b, 1918, 1936) and uses temperature and precipitation
aggregates and thresholds (e.g., minimum monthly precipitation, minimum mean monthly
temperature of coldest month, maximum mean monthly temperature of warmest month;
for the specific thresholds, see Table 1 in Belda et al., 2014) to classify a given location into
a main climate zone (first letter), a seasonal precipitation subgroup (second letter), and a
temperature subgroup (third letter). Seasonal variation of precipitation may be present for
climate zones A (tropical climates), C (temperate climates), and D (continental climates).
For climate zone B (dry climates) annual rainfall is evenly distributed – while there are
no specific requirements for zone E (polar and alpine climates).

We obtained the information on the climate zone of the monitoring stations from
https://koeppen-geiger.vu-wien.ac.at/present.htm (Kottek et al., 2006). We
removed a total of six monitoring stations for which no climate zone classification was
available. Figure 3.7 shows a world map, where all land mass is colored according to
its Köppen climate zone. All monitoring stations available for the empirical analysis are
represented by dots. As indicated by the map, the vast majority of monitoring stations are
located in the main climate zones B, C, and D. We therefore removed all stations located
in climate zones A and E in the empirical analysis.
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Figure 3.7: Climate zones according to Köppen classified into main climate zone (first letter),
seasonal precipitation subgroup (second letter), and temperature subgroup (third
letter). Dots indicate locations of available monthly precipitation anomaly series.

https://koeppen-geiger.vu-wien.ac.at/present.htm
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Table 3.6 shows the Köppen climate zones and summarizes the number of monitor-
ing stations located in the different climate zones for the two regions “Global” and the
contiguous United States. In total, 2118 (Global) and 1077 (contiguous United States)
monitoring stations are available for the empirical analysis. Also note that 2009 of the
2118 worldwide monitoring stations are located in Australia, Europe, and the US.

Table 3.6: Köppen climate zones given by three letter classification scheme indicating main cli-
mate zone (first), seasonal precipitation subgroup (second), and temperature subgroup
(third). Fourth and fifth columns indicate number of monitoring stations in respective
climate zone worldwide and in contiguous United States.

Climate zone Precipitation subgroup Temperature subgroup Global Contig. US

f (no dry season) 0 0
A (tropical) w (savanna, dry winter) 0 0

s (savanna, dry summer) 0 0
m (monsoon) 0 0

B (dry) W (desert) h (hot) 30 8
k (cold) 13 9

S (steppe) h (hot) 72 3
k (cold) 199 139

a (hot summer) 486 391
f (no dry season) b (warm summer) 504 26

c (cold summer) 8 0
a (hot summer) 3 0

C (temperate) w (dry winter) b (warm summer) 0 0
c (cold summer) 0 0
a (hot summer) 52 23

s (dry summer) b (warm summer) 115 74
c (cold summer) 0 0

a (hot summer) 207 206
f (no dry season) b (warm summer) 250 180

c (cold summer) 147 9
d (very cold winter) 4 0
a (hot summer) 2 2

D (continental) w (dry winter) b (warm summer) 9 1
c (cold summer) 9 0
d (very cold winter) 0 0
a (hot summer) 0 0

s (dry summer) b (warm summer) 6 6
c (cold summer) 2 0
d (very cold winter) 0 0

E (polar and T (tundra) 0 0
alpine) F (eternal frost; ice cap) 0 0



3 Changes in US Precipitation, its Memory, and Climatological Heterogeneity 30

Figures 3.8 and 3.9 show precipitation anomalies (median over monitoring stations for
main climate zones B (left), C (middle), and D (right), respectively, separately for each
month (in rows)) for the evaluation period

𝐴𝑦:𝑚,• := 𝑚𝑒𝑑 (𝐴𝑦:𝑚,1, . . . , 𝐴𝑦:𝑚,1077), (3.19)

suggesting skewness due to an increase of positive precipitation anomalies (with respect
to the reference period 1960 to 1989 over the monitoring stations) and pronounced dif-
ferences in variability over the main climate zones.
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Figure 3.8: Precipitation anomalies 𝐴𝑦:𝑚,• calculated according to (3.1) and (3.19) for evaluation
period as median over monitoring stations in contiguous United States for main
climate zones B (left), C (middle), and D (right), respectively, separately for months:
January (top row) to June (bottom row); shaded areas indicate empirical 10%- and
90%-deciles (25%- and 75%-quantiles).
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Figure 3.9: Precipitation anomalies 𝐴𝑦:𝑚,• calculated according to (3.1) and (3.19) for evaluation
period as median over monitoring stations in contiguous United States for main
climate zones B (left), C (middle), and D (right), respectively, separately for months:
July (top row) to December (bottom row); shaded areas indicate empirical 10%- and
90%-deciles (25%- and 75%-quantiles).

Variable description

Table 3.7 lists the names, descriptions, and variable types of all predictors employed in
the empirical analysis. Additionally, some descriptive statistics for the monitoring stations
located in the contiguous United States are provided, where the mean (mode) is reported
for the continuous and binary (discrete) predictors. We employ two predictor sets X𝑃
and X. The former consists of the spatial characteristics Latitude, Longitude, and Altitude
(the latter grouped into deciles) as well as the (categorical) variables Main climate zone,
Precipitation subgroup, and Temperature subgroup that reflect the three letter climate zone
classification by Köppen. This set of predictors was also employed in the analysis of Tyralis
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Table 3.7: Name, description, type of predictors employed in empirical analysis and descriptive
statistics for contiguous United States and Global.

Global Contiguous US
Name Description Type Mean/Mode #Categ. Mean/Mode #Categ.

𝑋lon Longitude metric -20.46 -95.88
𝑋lon Latitude metric 31.12 39.34
𝑋alt Altitude discrete 2 10 10 10
𝑋clz Main climate zone discrete C 5 C 3
𝑋prc Precipitation subgr. discrete f 7 f 5
𝑋tmp Temperature subgr. discrete b 5 a 5

𝑋sprs Qu spurious binary 0.070 2 0.046 2
𝑋mbrk Mean break binary 0.105 2 0.117 2
𝑋ctmd Contaminated binary 0.245 2 0.227 2
𝑋arma ARMA noise binary 0.367 2 0.359 2

et al. (2018). The second set of predictors X additionally comprises the four binary pre-
dictors Qu spurious, Mean break, Contaminated, and ARMA noise as detailed in Subsection
3.3.3.

Note that the Altitude deciles were determined based on all monitoring stations world-
wide. For the contiguous United States, a total number of 187 stations was located in the
tenth decile, for which the actual altitudes ranged from 906 to 2763 meters above sea
level.

3.A2 Test statistics of the sup-Wald tests for level shifts

The self-normalization approach of Shao (2011) modifies the common sup-Wald test by
including the self-normalizer

𝐺 (𝑡∗) =
(
1
𝑇

𝑡∗∑︁
𝑡=1

𝑆2𝑡 (1, 𝑡∗) +
1
𝑇

𝑇∑︁
𝑡=𝑡∗+1

𝑆2𝑡 (𝑡∗ + 1, 𝑇)
)1/2

with 𝑆𝑡 ( 𝑗 , 𝑡∗) =
∑𝑡
ℎ= 𝑗 (𝐴ℎ − 𝐴 𝑗 ,𝑡∗) and 𝐴 𝑗 ,𝑡∗ =

1
𝑡∗− 𝑗+1

∑
𝑡 = 𝑗 𝑡

∗
𝐴𝑡 , which is proportional to a

consistent estimate of the long-run variance. The test statistic is then given by

𝑄𝑆𝑁𝑆𝑊 = sup
𝑡∗∈(𝑡∗1,...,𝑡

∗
2)

|𝛽(𝑡∗) |
𝐺 (𝑡∗) (3.20)

for OLS estimates 𝛽.
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The fixed-𝑏 modification of Iacone et al. (2014) uses the long-run variance estimate

�̂�2
𝑏 (𝑡

∗) = �̂�0(𝑡∗) + 2
𝑇−1∑︁
𝑗=1

𝑘

(
𝑗

𝑀

)
�̂� 𝑗 (𝑡∗),

where �̂� 𝑗 (𝑡∗) = 𝑇−1 ∑𝑇
𝑡= 𝑗+1 Ŷ𝑡 (𝑡∗)Ŷ𝑡− 𝑗 (𝑡∗) denote autocovariance estimates based on the

OLS residuals Ŷ𝑡 from (3.15). Further, 𝑘 (·) is a kernel function with bandwidth 𝑀 such
that 𝑀 = ⌊𝑏𝑇⌋ for 𝑏 ∈ (0, 1). This leads to the test statistic

𝑄𝐹𝐵𝑆𝑊 = sup
𝑡∗∈(𝑡∗1,...,𝑡

∗
2)

𝛽(𝑡∗)2

�̂�2
𝑏
𝑐𝑀𝐴𝐴 (𝑡∗)−1𝑐′

, (3.21)

where 𝑐 = (0, 1) and 𝑀𝐴𝐴 (𝑡∗) =
∑𝑇
𝑡=1 𝐴𝑡 (𝑡∗)𝐴𝑡 (𝑡∗)′ for 𝐴𝑡 = (1, 1(𝑡 ≥ 𝑡∗))′. Consequently,

the denominator converges to the long-run variance multiplied by a functional of a Brow-
nian bridge. In our application, we set (𝑡∗1, 𝑡

∗
2) = (0.15, 0.85) and use the Bartlett kernel

with 𝑏 = 0.1, as suggested by Iacone et al. (2014).

3.A3 Robustness checks for other regions and worldwide precipitation
series

We apply the proposed method to the alternative regions Global (𝑛 = 2118), Australia
(𝑛 = 383), and Europe (𝑛 = 549) to check the robustness of our modeling framework
analogous to the results of Section 3.4.

Identification, estimation, and inference of precipitation memory parameters

Table 3.8 summarizes the absolute and relative frequency of potential contaminations of
the conventional memory parameter estimates for the worldwide precipitation anomalies
as diagnosed by the classification scheme in Subsection 3.3.3. The results are qualitatively
identical to the ones for the contiguous United States provided in Table 3.2. While the
relative number of diagnosed mean breaks, potential contaminations, and short-run dy-
namics remain almost unchanged, the 𝐻0 of Qu’s test is rejected for a larger fraction of
the investigated anomaly series.

Table 3.8: Absolute and relative frequencies of the binary variables X𝐵 for 2,118 global monthly
precipitation anomaly series (3.1) from 1990 to 2019.

𝑋sprs 𝑋mbrk 𝑋ctmd 𝑋arma

Number of ones 141 199 497 743
Number of zeros 1878 1820 1522 1276
Share of ones 7.0% 9.9% 24.6% 36.8%
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Figure 3.10: Frequency histograms of estimated conventional memory estimates 𝑑𝐿𝑊 (left)
and adjusted memory estimates 𝑑∗ (right) for 2,118 global monthly precipitation
anomaly series (3.1) from 1990 to 2019. Dashed line indicates zero.

When comparing the histograms for the conventional memory parameter estimates
𝑑𝐿𝑊 and the adjusted estimates 𝑑∗ for the precipitation anomaly series from the contigu-
ous United States in Figure 3.4 to the ones for the global precipitation anomaly series
displayed in Figure 3.10, the conclusions remain unchanged: The range of memory pa-
rameter estimates increases and the corresponding empirical standard deviation increases
substantially (by 57.8% from 0.073 to 0.116). Virtually identical conclusions result when
considering the materials in Tables 3.9 and 3.10 as well as Figure 3.11 with the respective
materials in Section 3.4.1.

Table 3.9: Five number summary and mean for estimated conventional memory estimates 𝑑𝐿𝑊
(first row) and adjusted memory estimates 𝑑∗ (second row) for 2,118 global monthly
precipitation anomaly series (3.1) from 1990 to 2019.

Min. 1st Qu. Median Mean 3rd Qu. Max.

𝑑𝐿𝑊 -0.24 -0.02 0.03 0.03 0.07 0.40
𝑑∗ -0.50 -0.07 0.01 -0.01 0.07 0.35

Table 3.10: Memory parameter estimates 𝑑𝐿𝑊 and 𝑑∗ for 2,118 global monthly precipitation
anomaly series (3.1) from 1990 to 2019 falling into three regions that support
different memory behavior.

Parameter range Memory behavior 𝑑𝐿𝑊 𝑑∗

[−0.5,−0.1] Anti-persistent 76 365
] − 0.1, 0.1[ Short memory 1719 1470
[0.1, 0.5] Long memory 323 283
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Figure 3.11: Scatter plot of estimated conventional memory estimates 𝑑𝐿𝑊 (abscissa) versus
adjusted memory estimates 𝑑∗ (ordinate) for 2,118 global monthly precipitation
anomaly series (3.1) from 1990 to 2019. Line is angle bisector.

The variation in precipitation memory

The results for the different regions are shown in the columns of Table 3.11 in comparison
to the results for the contiguous United States from Table 3.5 (1077 obs., columns 7 and
8). We observe the following:

– The table shows that globally, we have the identical spatial characteristics (more smooth-
ing of Latitude than of Longitude and low relevance of Altitude) as for the contiguous
United States. For Australia and Europe this is not the case and we observe less smooth-
ing of the north-south effect than of the west-east effect for both regions. Hence, the
memory parameter estimates in Australia and Europe are supposed to change more
abrupt from north to south than from west to east (and vice versa). Altitude is of low
relevance for all regions apart from Europe (in model NP2).

– Regarding the climatological characteristics, the bandwidth values tend to be higher for
the models NP1. This indicates a lower relevance of the climatological characteristics.
Conversely, we can observe lower bandwidth values in the NP2 models pointing towards
a higher relevance of the climatological predictors. Hence, as for the contiguous United
States this effect becomes visible when the extended predictor set is used (i.e., for
NP2). Again and for all regions we obtain the smallest bandwidths of the climatological
predictors for the predictor Precipitation subgroup.

– The test of Racine et al. (2006) for joint significance of the additional predictors yields a
rejection of the null hypothesis for all regions (all 𝑝-values are below 0.001), underlining
the importance of predictor set X𝐵.
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Table 3.11: Estimated bandwidths (discrete predictors), scale factors (continuous predictors), and
fit of nonparametric regressions NP1 and NP2. Response variable is adjusted memory
parameter estimate 𝑑∗ of precipitation anomaly series from 1990 to 2019; columns
indicate regions Global, Australia, Europe, and contiguous United States.

Global Australia Europe Contiguous US
Predictor NP1 NP2 NP1 NP2 NP1 NP2 NP1 NP2

Latitude 0.206 0.330 0.259 0.256 0.594 0.964 0.396 0.670
Longitude 0.061 0.086 0.422 0.451 0.602 1.008 0.254 0.300
Altitude 1.000 0.815 1.000 1.000 1.000 0.385 0.922 1.000

Main climate zone 1.000 0.248 0.379 1.000 <0.001 0.145 1.000 0.206
Precipitation sub. 0.981 0.066 1.000 0.008 0.339 0.137 1.000 0.111
Temperature sub. 0.366 0.739 0.738 1.000 0.011 0.455 0.411 0.501

Qu spurious 0.805 1.000 0.247 0.336
Mean break 0.512 0.887 0.031 1.000
Contaminated 0.033 0.001 0.040 0.080
ARMA noise 0.032 0.002 0.110 0.052

𝑅2 0.586 0.806 0.680 0.917 0.508 0.783 0.599 0.811

Besides the nonparametric regressions, we also estimated two generalized additive
models (GAM) which included the predictors X𝑃 (GAM1) and X (GAM2). Table 3.12
shows the coefficient estimates and corresponding standard errors (in parentheses) for
the discrete predictors and the effective degrees of freedom (edf) and the respective 𝑝-
values for the two continuous predictors of GAM1 and GAM2. The edf correspond to the
degrees of freedom involved in fitting the smooth effect of Longitude and Latitude and
provide a measure for its complexity. Both models were fitted using the adjusted estimate
𝑑∗ as response.

We observe the following across the estimated GAMs: (i) The complexity of the smooth
effect remains highly relevant (𝑝-value <0.001). (ii) The model fit varies widely across the
regions and ranges from 0.207 (GAM1 for Australia) to 0.647 (GAM2 for Australia). (iii)
The fit of the specification GAM2 always exceeds the one of GAM1. The differences in the
fit range from 11.3 (Europe) to 19.7 (contiguous United States) percentage points. (iv)
Wald-tests reveal that the binary predictors are empirically relevant, as the null hypothesis
that their joint effect is zero is rejected for all specifications (𝑝-values < 0.001).

We perform the test of Hsiao et al. (2007) for the generalized additive model GAM2
and a random forest analogous to Tyralis et al. (2018) for all regions. This test shows to
directly compare our proposed nonparametric model NP2 to the competitors.

We can observe that for a significance level 𝛼 = 0.01, GAM2 is rejected for all regions,
apart from Australia and the contiguous United States. Hence, for these two regions, the
GAM seems to capture the relevant structure and interplay of all predictors adequately.
Since GAM2 has similar flexibility to NP2 with respect to the two continuous predictors,
this result suggests that the interplay of the discrete variables in particular is much more
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Table 3.12: Coefficient estimate and standard error (discrete predictors) and effective degrees
of freedom and 𝑝-value (smooth effect of Longitude and Latitude) for generalized
additive models GAM1 and GAM2. Response is adjusted memory parameter estimate
𝑑∗ of precipitation anomaly series from 1990 to 2019; columns indicate regions
Global, Australia, Europe, and contiguous United States.

Global Australia Europe Contiguous US
Predictor GAM1 GAM2 GAM1 GAM2 GAM1 GAM2 GAM1 GAM2

Qu spurious 0.650 -0.084 -0.045 -0.009
(0.147) (0.011) (0.008) (0.004)

Mean break 0.260 -0.073 0.062 0.113
(0.093) (0.095) (0.050) (0.063)

Contaminated 0.433 -0.016 0.028 0.031
(0.104) (0.031) (0.049) (0.045)

ARMA noise 0.316 0.018 -0.027 -0.031
(0.072) (0.066) (0.016) (0.006)

s (Lon, Lat) 27.354 26.304 21.114 21.364 23.334 22.493 24.070 25.104
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

𝑅2 0.207 0.392 0.474 0.647 0.362 0.475 0.262 0.459

complex than modeled by GAM2 (for all but the aforementioned regions). Of course, the
GAM could be extended by parametric interaction effects of arbitrary order. However,
these effects have to be specified a priori based on subject-matter knowledge. Table 3.13
shows that the random forest is rejected only for the global specification. Hence, for all
other regions, the random forest seems to sufficiently capture the explanatory potential
of all predictors. Note however, that we employed the asymptotic version of the test of
Hsiao et al. (2007), while the authors propose that the bootstrap versions of the test will
have additional power. Nevertheless, it was not our intention to overturn previous results.
Instead, we wanted to underline that the nonparametric mixed kernel regression seems
to be an appropriate model in this context.

Table 3.13: 𝑝-values of model specification test of Hsiao et al. (2007) based on asymptotic test
distribution.

Model Global Australia Europe Contiguous US

Random Forest 0.002 0.222 0.831 0.093
Generalized Additive Model <0.001 0.249 <0.001 0.018



Chapter 4

Germany’s Transition Towards Renewable
Energies
Empirical Evidence from a Time Series Perspective

4.1 Introduction

In Germany, energy supply alone accounts for one third of the greenhouse gas emissions,
which are the main cause of climate change (UBA, 2023b). Along with international
endeavors to substantially reduce greenhouse gas and especially carbon dioxide emissions,
a more sustainable and environmentally clean energy mix has been determined by German
law in the “Erneuerbare-Energien-Gesetz” (EEG) since the year 2000. As stated in its latest
version, Germany’s gross energy consumption is supposed to come from 65% renewable
energies until 2030, and conventional energy sources are to be fully replaced by the
year 2050 (UBA, 2021). Although this includes potential imports and exports of green
energy, the need for a boost of renewable power sources becomes obvious for both energy
production in Germany and on an international level.

Conventional energies depend on finite fossil resources and are tied to substantial car-
bon dioxide emissions, whereas renewable energies are based on non-depletable natural
sources and do not directly cause emissions (UN, 2023b). Additionally, renewable energy
sources are shown to involve a lower levelized cost of electricity, which describes all finan-
cial expenses associated with generating and converting energy to electricity (Fraunhofer
ISE, 2021). Despite of these environmental and financial benefits, the main renewable
energy sources come with the difficulty of depending on volatile weather determinants
such as wind speed and solar radiation, which occasionally leads to large imports of elec-
tricity whenever the intermittent energy sources (wind and photovoltaics) fail to meet
Germany’s energy demand (Netztransparenz.de, 2020). Complementing the intermittent
energy sources, other renewable energies provide more stability and thus help replicating
the benefits of the current energy mix that is still dominated by conventionals. In par-
ticular, the capacity for biomass energy was increased over the recent years, to allow a
more demand-driven deployment of renewable energies and fill supply gaps due to fluc-
tuating wind and solar energy generation (UBA, 2023a). However, biomass plants are
rather inefficient compared to fossil fuels and they may have negative agricultural and
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environmental impacts. Then, hydropower-based plants provide a highly efficient energy
source, but in turn depend on precipitation and water availability, and come with great
initial costs (Halkos and Gkampoura, 2020). Finding a system of renewable sources that
provides the same capacity, reliability, and controllability as the current energy mix is
therefore a major challenge in the transition towards a fully renewable energy mix. While
the shortcomings of the renewable energy sources at hand suggest the need for new tech-
nologies in the long run, understanding the interplay and substitution possibilities of the
already available sources is essential for securing Germany’s energy future.

A large branch of literature has addressed the multiple challenges that are entailed in
replacing conventional energy sources, and some examples thereof will be given in the
following. A general overview on the advantages and drawbacks of existing renewable
sources was given by Halkos and Gkampoura (2020), while Böhringer et al. (2020) pro-
vided an expert survey on the potential of new technologies and prerequisites for their
success on the energy market. For the United States, a detailed analysis of the charac-
teristics of both existing and future technologies and their possible interplay to mimic
the conventional energy mix was given by Ramirez-Meyers et al. (2021). Rethinking the
whole German energy mix from a technological point of view, scenarios for fully renewable
settings were developed and reviewed by Hansen et al. (2019) and Naegler et al. (2021),
amongst others. From an economic perspective, Guidolin and Guseo (2016) and Pegels
and Lütkenhorst (2014) analyzed the competitiveness of intermittent energy sources in
terms of costs and social effects. Turning to the financial aspects, the so-called merit order
effect has been studied by many researchers, which describes the reduction of electricity
prices due to an increased use of renewable energies. For instance, Paraschiv et al. (2014)
built a state space model which links the electricity price to a range of fundamental vari-
ables such as commodity prices and expected demand, and more recently, Antweiler and
Muesgens (2021) explained the merit order effect through a temporary adjustment to the
increasing capacity of intermittent renewable energies and their disruption of established
pricing mechanisms.

This work contributes to the understanding of the German energy mix by providing an
in-depth analysis of its composition over time and implications for the transition towards
a system that is entirely based on renewable energies. Through applying univariate time
series methods to daily historical data of Germany’s power generation and consumption,
seasonal patterns, temporal trends, and degrees of persistence of the different energy
sources are captured. On the one hand, this enables the interpretation of both seasonal
peculiarities and the reliability and long-term tendency of each power source individually.
On the other hand, being able to model and extract these characteristics then allows to
comprehend the underlying interdependencies of the energy sources and derive general
implications for the future energy mix. In particular, the obtained results highlight the
unique role of the intermittent wind and solar energy sources and their deficiencies in
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replicating the benefits of conventional energy sources in distinction to other established
renewable energy sources.

The data set in focus consists of daily power generation from Germany’s twelve energy
sources and total consumption in the years 2016 to 2022. This time span does not only
cover important steps on the way to a renewable energy mix, i.e. the constantly increasing
capacity of renewable energies and the gradual shutdown of conventional power plants,
but also captures impacts of both the Covid-19 crisis in 2020 and the Russian invasion of
Ukraine in 2022 on the German energy supply and demand. As each of the power series
shows a very particular seasonal structure, a detrending scheme is proposed that is specif-
ically tailored to the German energy market and which considers long-term movements as
well as weekday and holiday effects. Not accounting for seasonality and temporal trends
would strongly bias the results on persistence and correlation of the series, and, addition-
ally, the implications from the detrending estimation provide interesting insights into the
dynamics of the German energy mix. For the detrended power generation and consump-
tion series, the degree of persistence is then assessed. More precisely, each of the series
exhibits so-called long memory (or long-range dependence), which refers to significant
dependencies of time series observations across large time lags and can be interpreted
as a measure of stability or reliability of the respective energy source. For estimation of
the degree of long-range dependence, i.e. the memory parameter or fractional integration
order 0 < 𝑑 < 1, the local Whittle estimator by Künsch (1987) is used in combination
with the bandwidth selection procedure by Arteche and Orbe (2017). Possible bias from
structural breaks or short-range noise components is ruled out with help of the test of
Qu (2011) for spurious long memory in order to reduce the uncertainty involved in the
estimation. The resulting memory parameter estimates allow to divide the twelve energy
sources into three groups: the intermittent renewable energy sources with a low degree
of persistence (0 < 𝑑 < 0.2), the base load and peak load sources that reflect the typical
characteristics of a conventional energy mix (0.2 < 𝑑 < 0.5), and the rarely adjustable
base load or aggregated power sources with nonstationary long memory (0.5 < 𝑑 < 0.7).
Looking beyond the univariate seasons, trends, and fractional integration then allows to
make a first step in the multivariate direction, where the interdependencies of the twelve
energy sources are explained based on simple correlations of the detrended and differ-
enced series. Tying in with previous results, the power generation from the intermittent
energy sources are found to be negatively correlated with the other series, again confirm-
ing their unique status in replacing the conventional power sources.

The remainder of this paper is structured as follows. Section 4.2 introduces the under-
lying data set and reports basic pre-processing steps that were applied to remove obvious
outliers and level shifts from the series. Section 4.3 proposes the detrending scheme and
provides an interpretation of the obtained trends and cycles. In Section 4.4, the theoretical
background of long memory and the local Whittle estimation under optimal bandwidth
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selection are presented, the possibilities of spurious long memory and ARMA noise are
investigated, and memory estimates are obtained and interpreted. Finally, Section 4.5 re-
lates previous findings to multivariate interdependencies of the detrended and fractionally
differenced series, and Section 4.6 concludes.

4.2 Data description and pre-processing

In the following, the data set on Germany’s energy generation and consumption as the
main subject of this paper is described, and pre-processing steps with respect to obvious
outliers and level shifts are reported. The data set under consideration is taken from the
German Bundesnetzagentur (SMARD.de) and describes net electricity in MWh generated
by the different plant types contributing to the German energy market, as well as energy
consumption in Germany.1 All series are available in 15 minute intervals and are aggre-
gated to daily frequency in the range from 01-01-2016 to 31-12-2022 (CET), leading to
𝑇 = 2557 observations in each series.2

In general, the power sources are divided into six conventionals and six renewables:

– Nuclear.Energy, Brown.Coal, Hard.Coal, Natural.Gas, Pumped.Storage, and Other.Conven-
tionals (including mineral oil or by-products from coal extraction and industry),

– Biomass, Hydropower, Wind.Offshore, Wind.Onshore, Photovoltaics, and Other.Renewables
(including geothermal energy, biological by-products that are not included in the strict
definition of biomass, and firedamp).

To further analyze the course of the overall generation from conventional and renewable
sources, aggregated series are considered for both groups (All.Conventional, All.Renewable),
as well as the total power generation (All). In addition, the German energy consumption
is considered (Total.Load).

As dictated by EEG regulations, the importance of these twelve energy sources in the
German energy mix has shifted over the years (a visualization thereof is given in Figure 4.9
of the appendix). In general, the share of power generation from renewable energy sources
has increased from about 31.6% to 46.1% of the total energy production since 2016, which

1 According to SMARD.de, the net electricity volume excludes power generation that is not available to
the market, i.e. energy directly used for operating the power plants or being part of self-contained
industrial power grids as, e.g., provided by the German railway company.

2 Data would be available starting at 01-01-2015. However, thorough inspection of the data revealed
special challenges during 2015, caused by the fact that renewable sources were just emerging as relevant
contributors to the market. This caused outliers and breaks in trend or other structural breaks within
2015. To generally enable stationarity of the considered time series and a consistent definition of the
twelve energy sources, data prior to 2016 is omitted.
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is mainly driven by the rise of wind and solar energy production. Coming from an energy
mix dominated by conventional energy sources, this transformation challenges a reliable
and secure energy supply. So far, the nuclear and coal-based energy sources provided a
base load supply that satisfied the ground level of energy demand, whereas the energy
from natural gas was used more flexibly (peak load) to balance demand fluctuations, and
pumped storage served as a general balancing instrument of power supply and demand
(IRENA, 2015; SMARD.de, 2023). Due to implementation of the EEG, however, the use of
nuclear energy has decreased substantially and is in fact fully shutdown since April 2023.
Similarly, a decline of coal-based energy was initiated, although this was occasionally
outbalanced by an increase in power supply from natural gas. As the intermittent wind
and solar energy sources provide a rather unsteady and unpredictable supply, biomass
plant capacity was generally increased to handle demand peaks, while the potential for
expanding hydropower capacity is widely exhausted (UBA, 2023a).

Before turning to the detrending procedure in Section 4.3, four series are cleaned
from obvious outliers and level shifts, which are either induced by a planned shutdown
procedure, or presumably stem from recording errors or an official redefinition of the
energy source. First, the shutdown of three major plants of Nuclear.Energy at the end of
2021 is addressed by replacing the mean after the break point with the mean of the
two previous years. Similarly, the series Other.Conventionals is updated with respect to a
mean break at the early beginning of 2018. In the Biomass series, one week of outliers in
September 2017 is mean-corrected with the average of the two surrounding observations.
And last, one outlier at late October 2022 in the series Other.Renewables is replaced by the
mean of its neighboring values. All other particular characteristics of the data are assumed
to reflect either seasonal features or variations in the production of the corresponding
power type, indicating changing importance in the energy mix, and are thus left within
the data. Regarding the power consumption, no pre-processing is required.

To allow for better comparability of results, all series are further standardized to zero
mean and unit standard deviation. The resulting time series are displayed in the appendix
in Figure 4.11. Particular for the power series is the strong seasonal pattern that drives
all energy sources and the consumption, and which will be analyzed in detail in Section
4.3. When looking beyond the seasonal patterns, different degrees of persistence in the
series become apparent, which is subject of Section 4.4.
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4.3 Seasonal effects

All generation and consumption series feature nonstationarity in form of seasonal pat-
terns and trends. In this setting, a reliable estimation of the persistence of the series is
not possible. Therefore, a detailed detrending scheme is applied that is tailored to the
particular characteristics of the German electricity market, removing major trends and
seasonal effects from the data: a linear temporal trend, annual and semi-annual cycles
with possibly changing amplitude, influence of the different week days on power genera-
tion and consumption, and the impact of public holidays. Before turning to the detrending
scheme and its results in Sections 4.3.1 and 4.3.2, respectively, a visualization of the series’
development in the considered time period is given in Figure 4.1.

The circular plots allow to compare the annual dynamics of the time series across the
considered years. Without any trends, seasonality, or breaks within the data, one could
see stationary movement around a well-centered and properly round circle. In contrast,
a temporal trend is reflected by a shift of the circle over time, such that the two colors
representing start and end time are separately visible (e.g., as for the Brown.Coal series).
If there is a pronounced annual season, the circle becomes off-centered or even gets a
non-circular shape (e.g., as for Biomass). And further, an annual cutout in the circle can be
led back to holiday effects (e.g., as for Hard.Coal). As the depicted circular plots all deviate
from well-centered and properly round circles, they allow first insights on the German
energy mix and its seasonality and overall dynamics, while at the same time stressing the
need for thorough detrending of the power generation and consumption series.

Figure 4.1: Circular plots for the development of power generation and consumption over time,
before detrending (pre-processed and standardized series).
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4.3.1 Detrending procedure

In order to capture trends and seasonality, a flexible regression model is built which
contains different trends, cycles, and dummy variables that proved relevant for the German
energy market. Its full formula for any observation at time 𝑡 = 1, . . . , 𝑇 is given by

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 (4.1)

+
∑︁
𝑖=1,2

sin
(
2𝜋𝑡
𝜔𝑖

)
·
(
𝛼sin,𝑖 + 𝑡 · 𝛾sin,𝑖

)
+ cos

(
2𝜋𝑡
𝜔𝑖

)
·
(
𝛼cos,𝑖 + 𝑡 · 𝛾cos,𝑖

)
+

∑︁
𝑖=1,...,6

𝛿𝑖𝐷𝑖𝑡 +
∑︁

𝑖=1,...,19
[𝑖𝐻𝑖𝑡

+ 𝑥𝑡

with a total of 𝑝 = 34 possible regressors for detrending. The first two terms refer to
demeaning and linear detrending of the data. The trigonometric components then reflect
both an annual and semi-annual cycle

(
𝜔1 = 365.25, 𝜔2 = 365.25

2
)
which are flexibly

shifted in phase by adding up sine and cosine elements. The corresponding coefficients
𝛼sin,𝑖, 𝛼cos,𝑖 define the amplitude of the sine and cosine waves, while the trend interaction
terms with coefficients 𝛾sin,𝑖, 𝛾cos,𝑖 allow for a shifting amplitude over time. The variables
𝐷𝑖𝑡 provide binary indicators for the week days from Tuesday to Sunday, as varying labor
input unequivocally has an effect on power generation in at least some of the plant types
and on the overall demand. Similarly, 19 dummy variables 𝐻𝑖𝑡 catch the effect of major
public holidays in Germany, plus the days around Christmas and the turn of the year.3

The error term 𝑥𝑡 then includes all dynamics that are not captured by the given trends,
seasonal effects, or weekend or holiday effects.

As will be shown in Section 4.4, the power generation and consumption series, and
consequently also the error term 𝑥𝑡 from this regression setup, are long-range dependent.
Under long memory errors, the variance of the OLS estimator converges more slowly
to zero than under independent short-range errors (Beran, 1994; Yajima, 1988).4 Rather
than relying on possibly over-estimated 𝑡-statistics and under-estimated 𝑝-values, the most
suitable detrending mix from the regression model in equation (4.1) is therefore obtained
individually via best subset selection. There, the best model (in terms of minimal residual
sum of squares, RSS) containing 𝑘 regressors for 𝑘 = 1, . . . , 𝑝 is estimated with OLS (as,

3 More precisely, only those holidays are considered that have a nationwide scope or that apply to a larger
part of Germany, such as Fronleichnam, Reformationstag, and Allerheiligen. At late December, power
generation and consumption on 23rd and from 27th to 30th proved to be affected by the surrounding
holidays.

4 In general, if the regressors have no pole at the origin of the spectral density, as is the case in the given
detrending scenario, OLS still is asymptotically efficient. However, for finite samples it is reasonable to
find a strategy that circumvents any possible bias induced by long memory errors.
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Figure 4.2: Circular plots for the development of power generation and consumption over time,
after detrending.

e.g., outlined by James et al., 2013). Amongst all 𝑘 values, the final detrending model
for each series is chosen such that the Bayesian Information Criterion (defined in terms
of RSS as, e.g., by Greene, 2012) is minimized, in order to ensure the sparsest regression
setup possible for each series, while capturing its relevant detrending components.

The corresponding estimated 𝑥𝑡 are then used as the detrended series, and again
visualized in a circular plot in Figure 4.2. In comparison to Figure 4.1, the circles are
generally closer to the desired centered circular shape, suggesting mostly stationary series
and thus a reasonable base for analyzing their persistence in Section 4.4. Before proceeding
with the statistical analysis, however, light is shed on how the different trend and cycle
patterns drive each of the series.

4.3.2 Temporal patterns and trends

While Tables 4.3 and 4.4 in the appendix contain a full summary of the estimated coef-
ficients from the regression model in equation (4.1), Figure 4.3 visualizes the estimated
linear and cyclical components of the detrending system for all series, without the weekday
and holiday effects. The top plot refers to the aggregated generation and the consumption
series, and thus highlights the general transition of the German energy market (although
it has to be noted that the standardization mentioned in Section 4.2 prevents direct com-
parison of the trends’ levels and ranges). In terms of periodicity, a clear summer-winter
pattern is observable in the electricity demand, which is generally matched by the con-
ventional energy sources, but is gradually being replicated by the renewables. Regarding
the temporal trends, this insight can be confirmed by the overall decrease of power gen-
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Figure 4.3: Estimated trends and cyclical components from the detrending regression (4.1). Top:
Aggregated power generation and consumption. Middle: Conventional energy sources.
Bottom: Renewable energy sources.

eration from the conventionals and increase of the renewable sources. In general, energy
consumption has rather only decreased during summer and remains relatively stable over
winter seasons. With both the original and detrended time series in view (see Figures 4.11
and 4.12 in the appendix), however, this observation can likely be explained by two exter-
nal factors: the Covid-19 crisis that caused a nationwide shutdown of society and industry
in spring and summer 2020 (Buechler et al., 2022), and the Russian invasion of Ukraine in
2022 which was followed by a general appeal to save energy (Bundesregierung, 2023). In
comparison, the negative trend in total power generation presents itself as more credible,
judged by the appearance of the corresponding original and detrended time series.

Considering the separate conventional and renewable sources as displayed in the center
and bottom graphs of Figure 4.3, it becomes apparent that the relevance of the summer-
winter pattern strongly depends on the respective energy source, as does the position of
the seasonal peaks. For instance, the intermittent Photovoltaics generation has an anti-
cyclic role in comparison to other renewable and the conventional energies, as it strongly
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depends on the seasonally varying intensity of solar radiation. At the same time, Natu-
ral.Gas shows a shift towards a bimodal pattern, which can possibly be interpreted as a
confirmation of its peak load role within the energy mix that applies in phases of high
demand or low supply from the other energy sources, and further a pronounced positive
trend reflecting its role as a bridge technology during the transition from conventionals
to renewables. In contrast, the distinct negative trend of Nuclear.Energy and its flattening
of seasonal peaks mirrors the gradual shutdown of nuclear plants and their decreasing
importance in the energy mix. Similarly, a negative trend is apparent for Hard.Coal and
Brown.Coal, which matches the patterns observed from the aggregated series. Regarding
the general development of the renewables, the power generation from the intermittent
energy sources Wind.Offshore, Wind.Onshore, and Photovoltaics has increased accordingly,
while the other renewable sources have remained stable or slightly decreased over time.

Turning to the weekday and holiday effect represented by the binary variables 𝐷𝑖𝑡
and 𝐻𝑖𝑡 in equation (4.1), Figure 4.4 visualizes their estimated coefficients in form of a
heat map. There, colored tiles represent deviations from the base volume on Mondays
or on non-holidays, respectively. It becomes directly apparent that renewable energies do
generally not depend on weekday and holiday effects, whereas the conventional energy
production and the consumption have a strong seasonality in this sense. Whenever a

Figure 4.4: Heat map of the estimated weekday and holiday coefficients from the detrending
regression (4.1).
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weekday effect exists, the generic pattern is a lower power generation and consumption
on the weekend, which is intensified for the total generation and consumption by an
increased volume from Tuesdays to Thursdays, highlighting the overall weekday effect
that drives the German electricity market. Deviations from the generic weekday effect
can be found in the following series: Nuclear.Energy is barely reduced on the weekends,
confirming its past role as a base load energy source that is not easily adjusted to demand
peaks or generation shortages. Pumped.Storage is additionally reduced from Wednesdays
to Fridays, which matches its purpose as a balancing instrument when power supply
and demand deviate on the short-run. In contrast to the conventionals, the renewable
sources show basically no weekday effect, although some coefficients were inexplicably
estimated to be significantly different from 0: The use of Biomass is increased on Fridays
and Saturdays, while Hydropower and Other.Renewables are slightly reduced on Sundays.
Presumably, these peculiarities are related to nonstationarity properties of these series,
as will be discussed in Section 4.4. As for the holiday effect, a similar pattern emerges,
leaving the renewables with generally no dependence upon holidays, while the generation
of most conventional sources and the consumption are strongly decreased compared to
regular working days, especially around Christmas and New Year’s Eve. However, for
Nuclear.Energy and Pumped.Storage (and Other.Conventionals), this effect is negligible to
non-existent, which can be attributed to their respective roles as either a base load source
or a demand balancing instrument.

4.4 Fractional integration

After removing nonstationarity in form of linear and seasonal trends from the data, it is
possible to analyze the power generation and consumption series univariately with respect
to other nonstationarities and long-range dependence. The need for a model including
fractional integration becomes apparent when applying common tests for stationarity and
unit roots (Kwiatkowski et al., 1992; Dickey and Fuller, 1981), as both the 𝐼 (0) and the
𝐼 (1) null hypothesis, respectively, are rejected for all series at least at the 10% level (1%
for most series). This section covers thorough estimation of the fractional order of inte-
gration 0 < 𝑑 < 1 and its interpretation for the German energy mix. More specifically, the
commonly used local Whittle estimator is applied with a strategy for optimal bandwidth
selection, and the possibilities of short-range dependent noise components and spurious
long memory are investigated to minimize estimation uncertainty. Finally, a classification
of the energy sources according to their memory parameter is provided.
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4.4.1 Local Whittle estimation under optimal bandwidth selection

Long memory or long-range dependence refers to significant dependencies of time series
observations across large time lags. The strength of the long-range dependence is de-
scribed by the memory parameter 𝑑: For 𝑑 < 1/2, the process is said to have stationary
long memory, 𝑑 ≥ 1/2 describes nonstationary long memory, anti-persistence is given for
−1/2 < 𝑑 < 0, and 𝑑 = 0 reduces to the case of a weakly dependent short memory process.
A process is then defined to be fractionally integrated of type I if

𝑥𝑡 = (1 − 𝐿)−𝑑𝑣𝑡 , (4.2)

where 𝑣𝑡 is a stationary short memory sequence with continuous and bounded spectrum
and infinite past (Marinucci and Robinson, 1999). Accordingly, the series 𝑥𝑡 becomes
𝐼 (0) after fractional differencing of order 𝑑, where the fractional differencing operator is
defined as

(1 − 𝐿)𝑑 =
∞∑︁
𝑘=0

𝜋𝑘 (𝑑)𝐿𝑘 =
∞∑︁
𝑘=0

Γ(𝑘 − 𝑑)
Γ(−𝑑)Γ(𝑘 + 1) 𝐿

𝑘 (4.3)

based on the Gamma function Γ(·). A stationary long memory process is characterized by
a hyperbolic decay of the autocorrelation function 𝛾𝑥 (𝑘), 𝑘 ∈ Z, or, equivalently, a pole
at the origin of the spectral density 𝑓𝑥 (_) = 1

2𝜋
∑∞
𝑘=−∞ 𝛾𝑥 (𝑘) exp(−𝑖𝑘_), _ ∈ [−𝜋, 𝜋], of the

underlying data generating process, formally described as

𝛾𝑥 (𝑘) ∼ 𝐿𝛾 (𝑘) |𝑘 |2𝑑−1 as 𝑘 → ∞, (4.4)

𝑓𝑥 (_) ∼ 𝐿 𝑓 (_) |_ |−2𝑑 as _ → 0

with slowly varying functions 𝐿𝛾 (𝑘), 𝐿 𝑓 (_) (for details, see, e.g., the overview of Beran
et al., 2013).

For estimation of the memory parameter 𝑑, a natural choice is the local Whittle esti-
mator by Künsch (1987), which compares the periodogram 𝐼𝑥 around the origin to the
theoretical spectral density under long memory as stated in (4.4). It is defined as

𝑑 = argmin
𝑑
𝑅(𝑑) for 𝑅(𝑑) = log ©« 1𝑚

𝑚∑︁
𝑗=1

𝐼𝑥 (_ 𝑗 )
_−2𝑑
𝑗

ª®¬ + 1
𝑚

𝑚∑︁
𝑗=1

log_−2𝑑𝑗 , (4.5)

based on 𝐼𝑥 (_ 𝑗 ) = (2𝜋𝑇)−1
��∑𝑇

𝑡=1 𝑥𝑡 exp(−𝑖𝑡_)
��2 evaluated at the Fourier frequencies _ 𝑗 =

2𝜋 𝑗
𝑇

for the sample size 𝑇 , where 𝑗 = 1, . . . , 𝑚. In particular, the bandwidth 𝑚 defines
the degree of focus on the origin in the periodogram. Depending on the nature of the
underlying stationary process 𝑣𝑡 , the choice of bandwidth might largely affect the resulting
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estimate of the memory parameter, as will be shown for the power series in Section
4.4.2. For instance, whenever higher-frequent short-range noise components are present,
meaning 𝑣𝑡 can be described as an ARMA(𝑝, 𝑞) model with

Φ(𝐿)𝑣𝑡 = Θ(𝐿)Y𝑡 , (4.6)

where Φ(𝑧) = 1 − ∑𝑝

𝑖=1 𝜙𝑖𝑧
𝑖 and Θ(𝑧) = 1 − ∑𝑞

𝑗=1 \ 𝑗 𝑧
𝑗 and Y𝑡 ∼ 𝑖𝑖𝑑 (0, 𝜎2

Y ), the local
Whittle estimate can be biased because the underlying long memory spectral density does
not account for effects on these higher frequencies. Using a lower bandwidth for the
estimation would reduce the bias from ARMA noise, but at the same time increase the
variance due to the limited amount of information used in the estimation (Baillie and
Kapetanios, 2009; Arteche and Orbe, 2017).

Instead of choosing a fixed bandwidth, it is therefore reasonable to apply a data-driven
procedure for the bandwidth selection of each series.5 Arteche and Orbe (2017) propose
such a technique, where a bootstrap approximation of the estimation mean squared error
(MSE) is minimized to find the best bandwidth 𝑚∗ and its corresponding local Whittle
estimate 𝑑∗. Starting from an initial low-bandwidth estimate of the memory parameter 𝑑,
the procedure is based on the locally standardized periodogram

𝜐(_ 𝑗 ) = 𝐼𝑥 (_ 𝑗 )_2𝑑𝑗 . (4.7)

There, the impact of possible long memory on the original periodogram ordinates is re-
moved, in order to weaken the strong dependence structure that would contradict an
application of any bootstrap method, and to make it resemble the periodogram of a
weakly dependent series. Additionally, instead of applying the bootstrap to the scaled
periodogram globally, the remaining weak dependence structure is accounted for by re-
sampling its ordinates in a neighborhood around each of the Fourier frequencies. The
range of the neighborhood is defined by the resampling width 𝑘𝑛 that needs to be user-
chosen, depending on the shape of the initial local periodogram and the resulting MSE.
For each bootstrapped scaled periodogram, the long memory structure is then reintegrated
via _−2𝑑

𝑗
𝜐(_ 𝑗 ), and the result is used for local Whittle estimation on a range of bandwidths.

Comparing these bootstrapped memory estimates with the initial 𝑑 yields the MSE that is
minimized to obtain the best bandwidth. As the result still depends on a possibly biased
𝑑 input, these steps are embedded in an iterative procedure where the estimates 𝑑 and

5 As stressed by Baillie et al. (2012), directly estimating the ARFIMA(𝑝, 𝑑, 𝑞) model by Granger and
Joyeux (1980) and Hosking (1981) can be advantageous over semiparametric methods like the local
Whittle estimator. However, this approach is not followed here for two reasons. First, the comparison of
Baillie et al. (2012) is based on the outdated optimal bandwidth by Henry (2001) that is rarely used by
practitioners, and an analysis of the bootstrap technique by Arteche and Orbe (2017) is still pending.
Second, in an attempted use of the ARFIMA model, the nonstationarity of some of the detrended power
series caused misspecification issues that questioned the adequacy of a fully parametric approach.
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𝜐 are constantly updated with respect to the newest best bandwidth, stopping when the
decrease of MSE compared to the previous best bandwidth is negligible.

4.4.2 Memory estimates for the energy mix

The need for a sophisticated choice of bandwidth when applying the local Whittle es-
timator to the detrended power generation and consumption series becomes apparent
from Figure 4.5. There, local Whittle estimates are plotted for a range of commonly used
bandwidths 𝑚 ∈

{
⌊𝑇0.50⌋ = 50, . . . , ⌊𝑇0.75⌋ = 359

}
, with ⌊·⌋ returning the integer part of

its argument. Especially for the Nuclear.Energy and Biomass series, different bandwidths
result in a broad range of local Whittle estimates, from around 0.32 to 0.78 and from
0.33 to 0.62 for the two series, respectively, that would lead to very different conclusions
on their memory properties.

Hence, to obtain reliable estimates for the memory of the power series, the optimal
bandwidth selection as described in Section 4.4.1 is applied. Starting with an initial 𝑑
estimation based on the smallest bandwidth 𝑚 = ⌊𝑇0.50⌋, the MSE-optimal estimate 𝑑∗

is obtained from 1000 bootstrap replications. Since the choice of a suitable resampling
width for each series is not obvious from the work of Arteche and Orbe (2017), the
procedure is carried out for 𝑘𝑛 ∈ {10, 20, 35, 50, 50, 75, 100, 150, . . . , 850}. The resulting
local Whittle estimates 𝑑∗ for each 𝑘𝑛 and their 90% bootstrap confidence intervals are
displayed in Figure 4.6. For most series, the optimal-bandwidth memory estimate is stable

Figure 4.5: Local Whittle estimation as in (4.5) for different bandwidths 𝑚. Blue dashed lines
indicate 𝑚∗ and 𝑑∗ from the bootstrap bandwidth selection.
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Figure 4.6: MSE-optimal local Whittle estimates for different resampling widths 𝑘𝑛 according to
the bandwidth selection strategy by Arteche and Orbe (2017). Blue bands represent
the 90% bootstrap confidence interval.

across the range of resampling widths, except for the lower values of 𝑘𝑛 ≤ 75 that seem to
be rather inappropriate for the given sample size and compared to the considered range
of bandwidths. The series where the basic local Whittle estimate varied most with respect
to the bandwidth, i.e. Nuclear.Energy and Biomass, are the most influenced by the choice
of 𝑘𝑛.

For the final selection of 𝑘𝑛 for each series, the resulting MSE of the last iteration is
depicted in Figure 4.7 (for a reasonable choice of 𝑘𝑛 values). First, the irregular shape
of the MSE of Other.Conventionals for all resampling widths catches the eye, indicating
that the applied procedure is not suited for the series. Judging from the appearance of
the detrended series, it is subject to a persistence change or another form of structural
break which prevents proper estimation of a single memory parameter, and is therefore
dropped for the rest of the analysis. For most of the other series, a medium value of
𝑘𝑛 = 300 produces a throughout reasonable shape of MSE and falls into the range of
stable 𝑑∗ estimates, and is therefore fixed. However, confirming the picture from the
previous plots, the two series Nuclear.Energy and Biomass require a more careful choice
of the resampling width. In particular, their MSE shapes suggest lower values of 𝑘𝑛 to
obtain reasonable MSE minima, for which the reasons will be examined in Section 4.4.3.
Considering the concurrent increase in MSE when reducing the resampling width, the
respective values 𝑘𝑛 = 150 and 𝑘𝑛 = 200 are fixed as a trade-off.
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Figure 4.7: Bootstrap MSE of the bandwidth selection strategy by Arteche and Orbe (2017)
depending on the bandwidth 𝑚 and resampling width 𝑘𝑛.

Table 4.1 then summarizes the MSE-optimal bandwidths and the corresponding lo-
cal Whittle estimates. For comparison, the naive local Whittle estimate for a fixed high
bandwidth of 𝑚 = ⌊𝑇0.75⌋ is stated. In general, the estimates applying the MSE-optimal
bandwidth are rather close to this naive local Whittle estimate. However, especially for
Nuclear.Energy and Biomass, the choice of bandwidth has the expected large impact on
the resulting memory estimate. To obtain a better understanding of the dynamics of the
underlying process that complicate the local Whittle estimation and bandwidth selection,
the following subsection addresses the possibility of spurious long memory and bias from
short-range ARMA noise. An interpretation of the memory parameters is provided below
in Section 4.4.4.

4.4.3 Spurious long memory and ARMA noise

As the local Whittle estimator is based on periodogram ordinates close to the origin, it can
be upward biased in case of so-called spurious long memory, where low frequency contam-
inations such as level shifts or smooth trends falsely indicate long-range dependence. The
distinction of true stationary long memory processes with spectral density as defined in
equation (4.4) against the alternative of a process with low frequency contaminations can
be achieved by means of the test of Qu (2011). Its test statistic compares periodogram
ordinates close to the origin to the spectral density that would apply under a specific
local Whittle estimate 𝑑. Following the recommendations of Qu (2011), the applied band-
width for the test is set to 𝑚 = ⌊𝑇0.70⌋. This results in four detections of spurious long
memory that question the estimated memory parameters from Table 4.1: for the series
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Table 4.1: Results of the MSE-optimal bandwidth selection and corresponding local Whittle esti-
mates.

𝑘𝑛 𝑚∗ 𝑑∗
𝑚∗ 𝐶𝐼0.95 (𝑑∗) 𝑑⌊𝑇0.75 ⌋

Nuclear.Energy 150 129 ≈ ⌊𝑇0.62⌋ 0.6135 [0.5245, 0.7367] 0.7669
Brown.Coal 300 272 ≈ ⌊𝑇0.71⌋ 0.3587 [0.3060, 0.4340] 0.3474
Hard.Coal 300 274 ≈ ⌊𝑇0.72⌋ 0.3685 [0.3129, 0.4391] 0.3792
Natural.Gas 300 353 ≈ ⌊𝑇0.75⌋ 0.3894 [0.3326, 0.4623] 0.3879
Pumped.Storage 300 191 ≈ ⌊𝑇0.67⌋ 0.4075 [0.3032, 0.4562] 0.3675

Biomass 200 174 ≈ ⌊𝑇0.66⌋ 0.4912 [0.4253, 0.6046] 0.6224
Hydropower 300 336 ≈ ⌊𝑇0.74⌋ 0.6481 [0.5929, 0.7171] 0.6428
Wind.Offshore 300 236 ≈ ⌊𝑇0.70⌋ 0.1179 [0.0569, 0.2055] 0.1320
Wind.Onshore 300 212 ≈ ⌊𝑇0.68⌋ 0.0904 [0.0287, 0.1812] 0.1579
Photovoltaics 300 225 ≈ ⌊𝑇0.69⌋ 0.0978 [0.0434, 0.1849] 0.1661
Other.Renewable 300 359 ≈ ⌊𝑇0.75⌋ 0.6306 [0.5666, 0.6720] 0.6306

All.Conventional 300 213 ≈ ⌊𝑇0.68⌋ 0.2488 [0.1947, 0.3321] 0.3101
All.Renewable 300 220 ≈ ⌊𝑇0.69⌋ 0.0950 [0.0400, 0.1866] 0.1555
All 300 359 ≈ ⌊𝑇0.75⌋ 0.3031 [0.2445, 0.3583] 0.3031

Total.Load 300 359 ≈ ⌊𝑇0.75⌋ 0.3919 [0.3188, 0.4646] 0.3919

Nuclear.Energy, Brown.Coal, Biomass, and Wind.Offshore. Two of these four series stood
out before due to a large variation of the local Whittle estimate and its bootstrap MSE
with respect to the choices of bandwidth 𝑚 and resampling width 𝑘𝑛.

However, as the test of Qu (2011) only detects deviations from the standard long
memory spectral density, it can be distorted by short-range noise within the series, just
like the local Whittle estimator. Qu (2011) therefore suggests to apply the test to pre-
whitened series, where ARMA components for 𝑝, 𝑞 ≤ 1 are identified via estimation of an
ARFIMA(𝑝, 𝑑, 𝑞) model (Granger and Joyeux, 1980; Hosking, 1981) and the Akaike infor-
mation criterion, and then removed from the series by using the corresponding ARMA(𝑝, 𝑞)
residuals. After pre-whitening, Nuclear.Energy and Biomass are no longer identified to ex-
hibit spurious long memory. The evident presence of short-range noise components in
these two series explains their particular shapes of MSE for different resampling widths
and the need for low bandwidths, as were found by the bandwidth selection procedure.
Consequently, their memory estimates as stated in Table 4.1 are assumed to be reliable.
In contrast, spurious long memory in the two series Brown.Coal and Wind.Offshore is still
confirmed after pre-whitening, suggesting a level shift or another form of structural break.

With both the pre-processed and detrended series in view (Figures 4.11 and 4.12),
the presence of a level shift in Brown.Coal and a variance break in Wind.Offshore is quite
possible (although it has to be noted that other series could similarly be subject to struc-
tural breaks, merely judging from their plots). For Brown.Coal, a decline of the electricity
generation is apparent for the years 2019 and especially 2020, which can partially be
linked to the Covid-19 crisis and the associated lockdown periods, resulting in a lower
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electricity demand that apparently caused strong deviations from the regular use of brown
coal. However, two tests for detecting potential level shifts in the presence of long memory
(Shao, 2011; Iacone et al., 2014) denied the presence of mean breaks in any of the de-
trended power series. For Wind.Offshore, the plots instead suggest an increase of variance
over time, which can be related to the general gain of importance of offshore wind parks,
resulting in a higher absolute variation from the changed level.

For both series, relying on a different memory estimator that can account for low
frequency contaminations would be an obvious choice. However, the allegedly suitable
estimator by Hou and Perron (2014), which introduces a low-frequency component to
the spectral density representation, involves the same or aggravated bandwidth selection
problems as the local Whittle approach.6 Hence following the bandwidth recommendation
of Hou and Perron (2014) with 𝑚 = ⌊𝑇0.80⌋ results in slightly higher memory estimates
than 𝑑∗ (0.3730 for Brown.Coal and 0.1826 for Wind.Offshore), which generally questions
the benefits of increasing the flexibility in estimation by the additional low-frequency
component. Furthermore, the effect of spurious long memory on the optimal bandwidth
selection for the local Whittle estimator, i.e. on the local periodogram and the applied
local bootstrap procedure, is yet to be assessed, which leaves the possibility that rather
mild findings of spurious long memory have only negligible impact on the local Whittle
estimation when selecting a suitable bandwidth. Based on the lack of evidence and alter-
natives for spurious long memory in this scenario, the optimal-bandwidth local Whittle
estimates as stated in Table 4.1 are also maintained for these two series.

4.4.4 Implications of the memory estimates

Having a reliable estimate for the memory of power generation and consumption is not
only relevant for proper fractional differencing as needed in Section 4.5, or for selecting
suitable models in potential future research, but it can also provide valuable insights to
the German energy mix, as the degree of long-range dependence reflects the stability
and the effect of short-term adjustments of each energy source. Table 4.2 summarizes the
estimated memory parameters for the power generation series, and three groups of per-
sistence can be identified based on 𝑑∗ and their 95% bootstrap confidence intervals. The
mildest form of long-range dependence is found for the three renewable energy sources
that directly depend on the weather circumstances, i.e. both wind energy types and so-
lar energy. Detrending with respect to temporal trends and seasonal patterns reveals an

6 An attempt to modify the strategy of Arteche and Orbe (2017), such that the low-frequency contam-
inations are included in the local periodogram, was not successful. Apparently, the greater flexibility
caused by the additional parameter in the estimation by Hou and Perron (2014) causes irregular be-
havior of the MSE and therefore prevents a reliable minimization in the bootstrap procedure. Finding
an elaborate bandwidth selection strategy for their estimator would therefore be an interesting subject
for future research.



4 Germany’s Transition Towards Renewable Energies 56

Table 4.2: Classification of the power sources according to the estimated memory parameter 𝑑∗
after MSE-optimal bandwidth selection.

Conventional Renewable

0 < 𝑑∗ < 0.2 Wind.Offshore
Wind.Onshore
Photovoltaics

0.2 < 𝑑∗ < 0.5 Brown.Coal Biomass
Hard.Coal
Natural.Gas
Pumped.Storage

0.5 < 𝑑∗ < 0.7 Nuclear.Energy Hydropower
Other.Renewable

underlying process with low but existing autocorrelation over distant observations. Com-
pared to the higher persistence of the other generation series, this matches the general
characteristic of those three sources to be intermittent and rather unreliable. While pro-
viding a valuable contribution to the German energy mix and the transition to renewable
energies, this emphasizes the need for careful replacement of the conventional energy
sources in order to guarantee a secure energy supply.

In contrast, the majority of energy sources can be assigned to the range of medium
to high stationary long memory. This is explained by the comparably higher stability of
energy supply from the conventional sources but also from Biomass, which confirms its
potential role as a base load source and thus its importance in the transition towards
renewable energies. Showing an even higher degree of persistence, three series were
identified to lie in the nonstationary range of long memory.7 Regarding Hydropower and
Other.Renewables, the considerably higher memory estimate can presumably be attributed
to aggregation or mixture effects, as both series are built from combinations of very
different energy sources. For Hydropower in particular, water-storage power generation
plants are rather used for peak load energy supply and therefore reasonably associated
with a lower memory parameter, while run-of-river plants provide base load energy and are
likely linked to the commonly known high memory of rivers themselves. In contrast, the
high memory estimate of Nuclear.Energy can be explained by its low short-term variations
and its appearance to be almost piecewise constant, which is related to complicated control
systems of nuclear power plants and the associated rare adjusting to demand fluctuations.
Thus, a more sophisticated model with, for example, nonlinear components might be
worth considering for this series.

7 Note that consistency and asymptotic normality of the local Whittle estimation is still proven for the
given nonstationary values of 𝑑∗ (Velasco, 1999; Phillips and Shimotsu, 2004; Shao and Wu, 2007)
and confirmed for its bootstrap characteristics (Arteche and Orbe, 2016).
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The memory parameters of the aggregated power generation series and the total con-
sumption are estimated to substantially lower values than the separate power sources.
However, with 𝑑∗ = 0.0950 for the renewables and 𝑑∗ = 0.2488 for the conventional
energy sources, the renewable energies seem to have a lower persistence overall, driven
by the high share of intermittent wind and solar energy sources. The higher memory
estimates for total consumption and the demand are likely explained by the effect of ag-
gregation within the whole German electricity market. As a general implication from long
memory in the underlying processes of the power generation series, one can conclude that
external events have a persisting effect on the energy mix. Consequently, this suggests that
in the transformation towards renewable energies, even small or temporary steps in re-
placing the conventional energy sources might have a lasting effect on the German energy
mix and support the shutdown of high emission power generation.

4.5 Interdependencies and a multivariate perspective

So far, this paper provided a solely univariate analysis of the trends and memory prop-
erties of the different power generation series. The contribution of each energy source to
the German energy mix is hardly managed univariately, though, but subject to a complex
supply planning system. In this section, a first step in the multivariate direction is made,
in order to assess the interdependencies of the energy sources and to give directions for
future research on the German energy mix. As all series feature fractional integration,
a multivariate model allowing for fractional cointegration could be suitable, where time
series of equal memory possibly follow a common trend of lower fractional integration or-
der (for overviews, see, e.g., Leschinski et al., 2021; Hualde and Nielsen, 2022). However,
there are several difficulties involved in this approach. First, established semiparametric
models as, e.g., the one introduced by Souza et al. (2018) require a common bandwidth
in the memory estimation, which contradicts the results of Section 4.4. Then, even when
relying on a uniform bandwidth of 𝑚 = ⌊𝑇0.75⌋ for the cointegration model, no fractional
cointegration relation could be detected within those power generation series of equal
integration order with the applied methodology. Restricting the scope of this paper, the
search for a suitable model involving fractional cointegration or another type of interde-
pendencies between the different fractionally integrated power sources is left for future
research.

Nevertheless, in order to gain first insights on the multivariate structures of the power
data set, the cross-correlation of the series is examined. More precisely, cross-correlograms
of all combinations of the remaining eleven energy sources were generated, as they pro-
vide insights on the linear interdependencies of the series across different points in time.
Interestingly, the univariate detrending and adjacent fractional differencing with the esti-
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mated memory parameters 𝑑∗ result in almost all autocorrelations and cross-correlations
for lags greater than zero being fully erased. The remaining basic correlations without
temporal shifts are visualized in Figure 4.8.

Noticeably, the direction of correlations is divided into two groups. While the inter-
mittent and lower-persistence wind energy sources are positively correlated with each
other, they show strong negative dependencies with all other series. Similarly, the third
intermittent source Photovoltaics shows no or negative correlation to all other energy
sources, reflecting its anticyclic role in the energy mix. As these three energy types form
the main contributors to the renewable energies, the same holds for the aggregated
series All.Renewables. The remaining renewable sources, i.e. Biomass, Hydropower, and
Other.Renewables, show positive correlations with the conventional energies, suggesting
that these energy types are more likely able to mimic the supply pattern of the conven-
tionals. Hence, they can make a valuable contribution to the general transition towards
a renewable energy mix, whereas wind and solar energy have limitations in this regard.
It has to be noted, however, that this conclusion is drawn only from daily time series,
while considering intraday patterns could further add to understanding the possible sub-
stitutions in the energy market. Turning to the conventionals, the strongest correlations
are found in the main sources Brown.Coal, Hard.Coal, and Natural.Gas. Amongst these,
Brown.Coal has the highest correlation with Nuclear.Energy, which can be related to their

Figure 4.8: Correlation coefficients for the detrended and fractionally differenced series.
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roles as base load power sources. Unexpectedly, there is a strong positive linear depen-
dence of Natural.Gas with Brown.Coal and Hard.Coal, which contradicts its role as a peak
load and bridge technology, as both would involve a stable or increasing use of power
from Natural.Gas during the gradual shutdown of coal-powered plants. Considering the
energy demand, the picture is more heterogeneous. Positive correlations are found with
Hard.Coal, Wind.Offshore and Wind.Onshore, whereas the other energy sources are slightly
negatively correlated to the Total.Load series. However, an explanation for these findings
is yet to be found. Additionally, a more sophisticated approach to assessing the inter-
dependencies of the power generation series is still required to allow for more reliable
interpretations of the multivariate properties.

To illustrate the impact of trends, seasons and univariate autocorrelation, Figure 4.10
in the appendix additionally shows the correlations for the pre-processed series. Mainly
driven by the seasonal trends of the energy sources, these correlations paint a slightly dif-
ferent picture of their linear interdependencies. In particular, the shared seasonal pattern
of Hydropower and Photovoltaics gives the appearance of a stronger positive correlation
between the two series and a more distinct separation from all other energy sources.
Similarly, deviations in the results for Biomass and Other.Renewables cause a generally
more heterogeneous picture within the renewable energies, and Nuclear.Energy appears
to be disrupt the homogeneity of the conventional sources. Most striking, however, is the
seemingly different role of the conventional and renewable energies for the total power
generation: when only considering the pre-processed series, the correlations for the over-
all generation suggest a positive link with all sources that actually just share a more or
less similar summer-winter pattern in the seasonal structure. The differences in the results
compared to the detrended and fractionally differenced series highlight the relevance of
the applied univariate modeling strategy and the importance of incorporating its findings
into a multivariate model.

4.6 Conclusion

In this paper, the daily power generation from Germany’s twelve energy sources and to-
tal consumption in the years 2016 to 2022 is investigated, in order to contribute to the
understanding of the German energy mix and its implications for the transition towards
renewable energies. In a univariate setting, each power source is analyzed with respect to
seasonal patterns and temporal trends based on a detrending scheme that was specifically
tailored to the German energy market. As the detrended series feature long-range depen-
dence, a reliable memory estimate for each of the series is provided, which is based on the
well-established local Whittle approach and accounts for estimation uncertainty regarding
the choice of bandwidth and possible bias from spurious long memory and ARMA noise.
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Seeing behind the univariate seasons, trends, and fractional integration, a first step in the
multivariate direction is made, where the interdependencies of the twelve energy sources
are explained based on simple correlations of the detrended and differenced series.

The applied methods outline a modeling approach that handles the peculiarities of
each of the power generation and consumption series, and thereby provide insights into
the composition of the German energy mix over time. As the conventional energy sources
show a characteristic annual and weekly pattern that is closely linked to the demand, the
need for a careful combination of renewable energies in order to guarantee a secure and
reliable power supply in Germany becomes apparent. This is confirmed by three ranges
of long-range dependence that drive the twelve energy sources and reflect their stability
in the power generation: low persistence for the major renewable sources that provide an
intermittent supply (0 < 𝑑∗ < 0.2), pronounced long memory properties for the base load
and peak load sources (0.2 < 𝑑∗ < 0.5), and nonstationary long memory for the rarely
adjustable base load or aggregated power sources (0.5 < 𝑑∗ < 0.7). The unique role of
the intermittent wind and solar energy sources is further highlighted in the multivariate
setting, as these are found to be negatively correlated with the other series, despite of their
importance in the transition towards renewable energies. In summary, this emphasizes the
difficulties in replacing the conventional energy sources with a system of renewables that
provides the same capacity, reliability and controllability as the current energy mix.

While the obtained results convincingly reflect the dynamics of the German energy mix,
each step of the methodology bears potential for future work. First, the energy supply is
generally regulated at a higher frequency than what the daily data covers. Basing a similar
analysis on 15 minute interval data and accounting for intraday seasonality could further
contribute to understanding the substitution effects between conventional and renewable
energies. Similarly, the proposed detrending scheme does not consider any variations in
the seasonality and trends, although the ongoing transformation of the energy market
and potential introduction of new technologies to the energy mix will likely contradict the
validity of a fixed-parameter setting when future data is added to the sample. Considering
the memory estimation, the application to the power generation series recalled well-known
challenges regarding the bandwidth selection, and revealed the need for extending the
framework of Arteche and Orbe (2017) to spurious long memory. Finally, the correlation
analysis was only a first step towards a multivariate framework. A model that incorporates
the findings on seasonality and persistence of the univariate series and simultaneously
captures their interdependencies could offer further insights on the peculiarities of the
German energy mix and opportunities for replacing conventional energies in the long run.
For instance, the multivariate unobserved components approach as described by Hartl and
Jucknewitz (2022) could capture the different degrees of fractional integration and allow
for cointegration between the energy sources, while verifying the different characteristics
of the power sources with help of a factor model formulation.
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4.A Appendix

Figure 4.9: Composition of the German energy mix in 2016 and 2022.

Figure 4.10: Correlation coefficients for the pre-processed series.
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Figure 4.11: Power consumption and generation time series after pre-processing.



4 Germany’s Transition Towards Renewable Energies 63

Figure 4.12: Power consumption and generation time series after detrending.
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Table 4.3: Estimated coefficients for the trend and cycle components in the detrending regression
(4.1). The close-to-zero coefficient estimates for the trend and its interaction terms
are due to the large number of observations 𝑇 = 2557 and the corresponding high
values of the trend variable 𝑡, but are significantly different from zero.

constant trend annual cycle semi-annual cycle

𝛽0 𝛽1 �̂�sin,1 �̂�cos,1 𝛾sin,1 𝛾cos,1 �̂�sin,2 �̂�cos,2 𝛾sin,2 𝛾cos,2

Nuclear.Energy 0.88 -0.00065 -0.85 0.77 0.00035 -0.00020 0.19
Brown.Coal 1.01 -0.00063 0.30 -0.00018 -0.00004 0.00007
Hard.Coal 0.75 -0.00034 0.53 -0.00013 0.00006
Natural.Gas -0.58 0.00067 -0.18 0.46 0.00013 0.00017
Pumped.Storage 0.11 0.00025 0.29 0.22 -0.00013
Other.Conventionals 0.14 -0.28 1.09 0.00018 -0.00050
Biomass 0.09 -0.00010 0.57 0.94 -0.22

Hydropower 0.69 -0.00051 -1.25 -0.00004 0.00024 0.19
Wind.Offshore -0.53 0.00042 0.24 0.00022
Wind.Onshore -0.22 0.00018 0.44 0.00013 0.00010 0.00006
Photovoltaics -0.38 0.00030 0.13 -0.90 0.00007 -0.00022 -0.00008
Other.Renewables 0.37 -0.00027 0.38 0.70 0.00015 -0.15 -0.28 0.00011 0.00014

All.Conventional 1.05 -0.00058 -0.23 0.59 0.00010
All.Renewable -0.42 0.00034 0.00019 0.00011 0.00006 -0.00006
All 0.68 -0.00033 -0.10 0.86 0.00010 0.07 0.00006

Total.Load 0.61 -0.00014 0.71 0.00012 0.12 0.00004
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Table 4.4: Estimated coefficients for the binary weekday and holiday indicators in the detrending
regression (4.1).
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