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Abstract
In this thesis, we optimize different parts of high order finite element methods by application of
special functions and symbolic computation. In high order finite element methods, orthogonal
polynomials like the Jacobi polynomials are deeply rooted. A broad classical theory of these poly-
nomials is known. Moreover, with modern computer algebra software we can extend this knowl-
edge even further. Here, we apply this knowledge and software for different special functions to
derive new recursive relations of local matrix entries. This massively optimizes the assembly time
of local high order finite element matrices. Furthermore, the introduced algorithm is in optimal
complexity. Moreover, we derive new high order dual functions, which result in fast interpolation
operators. Lastly, efficient recursive algorithms for hanging node constraint matrices provided by
this new dual functions are given.
Keywords: High-order FEM, Special Functions, Symbolic Computation
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Nomenclature

Special Functions

Γ(·) Gamma function

B(·, ·) Beta function

Ln(x) Legendre polynomial

L̂n(x) Integrated Legendre polynomial

P(α,β)
n (x) Jacobi polynomial

P̂α
n (x) Integrated Jacobi polynomial

(a)n Pochhammer symbol

2F1

(
a, b
c

; x

)
Gaussian hypergeometric series

pFq

(
a1, . . . , ap

c1, . . . , cq
; x

)
Generalized hypergeometric series

Fp1 ,p2,p3
q1 ,q2 ,q3 Kampé de Fériet series

Functional Analysis

Ω Polygonal Lipschitz domain

∇ Gradient operator

∇∇ Modified gradient operator

curl Scalar curl operator in R2 or vectorial curl operator in R3

Curl Vectorial curl operator in R2

div Divergence operator

L2(Ω) Space of square integrable functions

H1(Ω), H(curl, Ω), H(div, Ω) Sobolev spaces on Ω

∥·∥H1 , ∥·∥H(div), ∥·∥H(curl) Induced norms

⟨·, ·⟩ L2 inner product

a(·, ·) Arbitrary (elliptic) bilinear form

iv



Finite Element Method

N Nédélec function

RT Raviart-Thomas function

u H1-conforming basis function

v H(curl)-conforming basis function

w H(div)-conforming basis function

□,△ Reference square or triangle

■,▲ Reference hexahedron or tetrahedron
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1. Introduction

The finite element method is broadly used in computer aided engineering, and has a number of
very different applications. It is very well known that applications like Navier-Stokes equations,
Maxwell’s equations or even elasticity can be handled. The classical mathematical formulation
is given by Ciarlet [Cia78]. Today, other classical mathematical literature can be found, see e.g.
[BS07, Bra13, GR94, EG21]. First work in the late 70s [SM78] indicated that with a rising number
of polynomial functions and their polynomial degree the convergence of finite element methods
greatly improves, if the solution is sufficiently locally smooth. Since then, high order finite ele-
ment methods have been established as one of the standard algorithms. Classical high order liter-
ature includes [SB91, Sch98, Mel02, Dem06, DKP+08, vSD04, KS13]. Free scientific software which
implements high order methods are for example NGSolve[Sch14], deal.II[ABF+22, ABD+21],
MFEM[mfe, AAB+21], Nektar++[CMC+15] or Hermes [VŠZ07].
It has been shown that high order finite element functions based on orthogonal polynomials ex-
hibit beneficial properties. E.g. they can be assembled very efficiently, see [Ors80]. Furthermore,
they have better element condition numbers compared to nodal basis functions, e.g. based on
Lagrangian polynomials, see [Ors80] and also [BGP89, MP96].
Therefore, the first part of this thesis focuses on special functions and orthogonal polynomials.
The main role throughout the thesis will be played by the Jacobi polynomial P(α,β)

n (x). In many
classical books, e.g. [Sze67, Rai71, Chi11, AAR99] it is shown that these polynomials fulfil certain
relations to other Jacobi polynomials, so-called contiguous relations or recurrence relations. Clas-
sically, those relations are derived with help of a series representation of the Jacobi polynomials.
To be precise, the Jacobi polynomials can be represented as a so-called hypergeometric series, which
will play a crucial role in section 2.2. From a theoretical point of view, products or integrals of
Jacobi polynomials have always been a highly researched topic. For example, the topic of lin-
earization of the product of two Jacobi polynomials has been discussed in [Hyl62, Gas70, Rah81].
Here the integral over three Jacobi polynomials is needed. More generally speaking, the integrals
over orthogonal polynomials were needed in different settings throughout the last two centuries,
which lead to the first tabulated systems by Bateman1, see [BE55]. Similar tabulated projects in-
clude e.g. [MOS66] and [AS65]. Today, such knowledge can be found online on sites like [DLM]
or [WF].
The first systematic techniques for the analysis of hypergeometric series, including the deriva-
tion of contiguous relations by application of differential operators, can be found in the work of
Gauss [GSB+66]. Generalizations to more general hypergeometric series have been done either by
a brute force approach, for examples of such an approach see the monograph by Rainville [Rai71],
or systematical, see e.g. Wilson [Wil78]. Today, such relations can be computed by computer al-
gebra. Sister Celine Fasenmyer [Fas47, Fas49] provided the first algorithmic groundwork for the
computation of such recursive relations. Later on, Wilf and Zeilberger [WZ90] rigorously proved
the correctness of this algorithm and extended it further. Today such algorithms are a standard

1Finished after his death under the editorship of Arthur Erdélyi

1



part of computer algebra system like Mathematica [Inc], Maple [Map] or Sage [S+YY].
We will derive new recursive relations throughout this thesis with the help of the
Mathematica packages Guess by Manuel Kauers [Kau09] and HolonomicFunctions by Christoph
Koutschan [Kou10]. While Guess tries to guess relations between the provided (exact) data,
HolonomicFunctions uses a telescoping technique to find annihilating formulations to prove such
relations. Similar guessing algorithms can be found e.g. in [SZ94, Kra01]. The holonomic systems
approach goes back to Zeilberger [Zei90a], but see also [Sab93, Chy00].
Furthermore, we applied Mathematica heavily in the background to double-check more tedious
computations.
After the rigorous introduction to (multivariate) hypergeometric series, we will change our focus
to high order finite element methods. In general, we have a problem of the form:

Problem 1.0.1
Find u ∈ V such that:

a(u, v) = F(v) for all v ∈ V

Here V is some Sobolev space, a(·, ·) some bilinear form and F(·) some linear form. Usual choices
for V include H1, H(curl) and H(div). We will mainly focus on the first two, but similar results
can be extended to the case of H(div). The methodology of describing those spaces with relations
to each other is given by the so-called De-Rham complex, which we will discuss in chapter 3, see
also [Mon03]. For the discretization, we need to apply different discrete De-Rham complexes and
different specially chosen basis. The idea of this special chosen elements goes back to Raviart and
Thomas [RT77] in the case of divergence conforming elements in 2D, and in 3D to Nédélec [Né86],
see also [GR86]. The origin of the curl conforming basis goes back to Nédélec. Those functions
were derived in two steps or two families of functions, see [Né80, Né86]. They are often also called
Whitney elements, compare [Whi57]. Similar constructions were also done by Mur [Mur92].
In a high order setting it has been shown in [BGP89] and [MP96], that the choice of basis func-
tions has a big influence on the condition number of the resulting system matrix. We follow the
classical ansatz of dividing all element functions into vertex, edge, face and interior functions, see
e.g. [SB91].
A high order L2-ansatz on triangles goes back to Dubiner2[Dub91] and were generalized by Kar-
niadakis and Sherwin [SK95] to an H1 setting in 2D and 3D, see also [KS13]. One of the popular
choices for the high order discretizations of H(curl) and H(div), was given by Sabine Zaglmayr
in her dissertation [Zag06]. We will base our construction on this and the follow-up works,
[BPZ13b, BPZ12]. Some of this work also goes back to [AC01]. Alternative sets of high order
curl or divergence functions can be found in [Dem06, DKP+08, vSD04, FKDN15].
Moreover, in this thesis we will derive a new assembly routine for high order element matri-
ces, by application of the results in section 2.2. With this we present an efficient element matrix
assembly algorithm based on orthogonal polynomials in optimal complexity O(pd). The state-
of-the-art algorithm, the so-called sum- factorization, [Ors80, MGS99, EM05], achieves only the
complexity O(pd+1). On the other hand sum factorization techniques are applicable to all reason-
able material functions. Experiments in [VSK10] seems to indicate, that the break even point of
sum-factorization techniques and classical numerical quadratures for certain differential opera-

2Although the orthogonality of those polynomials were already proven in [Pro57] unknown to Dubiner, see also
[Koo75, DX14].
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tors can be rather large for high order finite element method3.
Alternatives to the orthogonal polynomials, like Bernstein-polynomials, can lead to assembly rou-
tines in optimal complexity but at the price of higher condition numbers, see [AAD11]. Moreover,
some interesting techniques like recursive computation of inverse mass matrix blocks exist for
Bernstein polynomials, see [Kir17].
At last, we derive biorthogonal functions for H1 and H(curl) functions. Those biorthogonal func-
tions will speed up interpolation operations, e.g. for starting values in time dependent systems.
But they could also be applied as projection operators in a preconditioner setting. Here again,
knowledge of Jacobi polynomials takes a major role in the computation. An interesting applica-
tion is given in section 6.2, where we compute constraint matrices for hanging nodes. Although
the results have been published in [HPB22], we give a small extension to 3D.
The topic of efficient numerical solver and/or preconditioners will not be discussed here, since it
is a whole topic in itself. Summarizing the thesis is organized as follows:

Chapter 2 The first part 2.1 is an introduction to special functions like Γ(·) and B(·, ·) functions,
as well as hypergeometric series. The main actors of this thesis, the Jacobi polynomials
P(α,β)

n (x), are introduced. A small first result is given at the end of section 2.1.
After introduction of a multivariate generalization, one of the main results, theorem 2.2.9, is
introduced and proven in section 2.2. These introductions and results have been published
in [BHP23].
Some new results regarding the linearization of Jacobi polynomial are given in section 2.3.

Chapter 3 This chapter only recalls the basics of finite element methods. In more detail, we intro-
duce the variational framework. Moreover, since we are not only interested in the Sobolev
space H1 but in the spaces H(curl) and H(div) as well, all spaces and their commuting
diagram, the De-Rham complex, is introduced. Finally, we end this chapter with a small
collection of classical results for the convergence rates of higher order finite elements.

Chapter 4 In this chapter, a collection of basis functions for different variational spaces and
reference elements is laid out. We will focus on the basis functions in H1, H(curl) and
H(div) for quadrilateral, hexahedral, triangle and tetrahedron. Except for some small ad-
justments in edge or face functions, new results are first presented in section 4.2.8. Here we
modified existing basis functions for H(curl), such that those functions are in the so-called
Nédélec space of first kind.

Chapter 5 One of the main topics of this thesis is discussed here: The assembly of high or-
der finite elements in optimal complexity. The standard method and the so called sum-
factorization are introduced. We applied theorem 2.2.9 to derive new algorithms for the
computation of elements matrices in optimal complexity O(pd). Two small numerical ex-
periments are presented at the end of the chapter.

Chapter 6 In the first part of this chapter we derive dual or biorthogonal functions for functions
in H1 and H(curl) in 2D and in 3D. Furthermore we scale those functions, such that the re-
sulting diagonal matrix is constant. In section 6.2 we derive effective recursive relations for
the computation of constraint matrix for irregular meshes with hanging nodes. Section 6.2

3Which is no problem for pure spectral methods.
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has been published in [HPB22], except for some 3D generalization at the end of the chapter.
Throughout this section, we will readily apply different already introduced methods.

Appendix A The appendix contains additional results, with regard to multivariate hypergeomet-
ric functions, sparsity results and some further properties of Jacobi polynomials.

The main contribution in this thesis will be as follows:

Recursive relations of multivariate hypergeometric series New relations will thoroughly be in-
vestigated and proven.

Nédélec functions of first type We will modify the basis functions from [BPZ13b], such that
those functions fit back in the setting of Nédélec’s first and second family.

Assembly routine We will introduce an element assembly routine in optimal complexity

Biorthogonal functions We will derive biorthogonal functions in 2D and 3D for H1 and H(curl)
on different reference elements.

Efficient computation of hanging nodes We will consider efficient algorithms for the computa-
tion of constraint matrices for hanging nodes, and also for hanging edges and hanging faces
as well.

4



2. Special functions and orthogonal polynomials

The aim of this chapter is the thorough introduction of special functions and orthogonal polyno-
mials. Our main interest lies in the properties of Jacobi polynomials and of the integrals of their
products. Since some classical orthogonal polynomials like the Jacobi polynomials can be written
as so-called hypergeometric series, we will start with the introduction of these series.
Section 2.1 and section 2.2 are an extended version of previously published results, see [BHP23].

2.1. Hypergeometric series

The gamma function Γ(·) is defined by Eulers integral, i.e.

Γ(z) :=
∫ ∞

0
e−ttz−1 dt, Re(z) > 0.

It is analytic if z is finite, and its roots are 0 and −k for k ∈ N. If z ∈ N we can write Γ(z) = (z− 1)! .
Using the following form of the Euler integral, we define the beta function as

B(x, y) :=
∫ 1

0
tx−1(1 − t)y−1 dt. (2.1)

It is connected to the Gamma function by the following relation

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

.

Furthermore, we define the Pochhammer symbol (or rising factorial) as

(a)n = a(a + 1)(a + 2) . . . (a + n − 1) =
Γ(a + n)

Γ(a)
=

(a + n − 1)!
(a − 1)!

,

with (a)0 = 1. We denote the (Gaussian) hypergeometric function for arbitrary parameters a, b, c
where c /∈ −N0 by

2F1

(
a, b
c

; z

)
=

∞

∑
n=0

(a)n(b)nzn

(c)nn!
. (2.2)

Such a series converges on the circle |z| < 1 and it is terminating for all z if either a or b is zero or a
negative integer. On |z| = 1 the condition Re(c − a − b) > 0 is sufficient for absolute convergence.
Often the question arises if such a series is summable for z = 1. Example of such a summation
theorem was given by Gauss, see theorem 2.1.1. Proofs can be found e.g. in [Chi11, AAR99] or
[Rai71].
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Theorem 2.1.1 (Gaussian summation theorem)
If Re(c − a − b) > 0 and if c /∈ −N0, then

2F1

(
a, b
c

; z

)
:=

Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

.

Contiguous relations

Since (2.2) contains three parameters a, b and c we can try to connect the series to its neighbours,
where parameters are raised or lowered by 1. Those relations are called contiguous relations. We
will follow [Rai71] closely and present the basic concept of Gauß’ proof for such relations, since
it will be applied to more complex functions later on. For the sake of brevity we introduce the
following notation

F := 2F1

(
a, b
c

; z

)

F(a+) := 2F1

(
a + 1, b

c
; z

)

F(a−) := 2F1

(
a − 1, b

c
; z

)

and analogously for F(b+), F(b−), F(c+) and F(c−). Since all parameters are defined by Pochham-
mer symbols, they are connected to their neighbours by simple arguments, e.g.

(a + 1)n =
(a + n)!

(a)!
=

a + n
a

(a + n − 1)!
(a − 1)!

=
a + n

a
(a)n.

If we set
δn =

(a)n(b)nzn

(c)nn!
,

we can then write

F(a+) =
∞

∑
n=0

a + n
a

δn, F(a−) =
∞

∑
n=0

a − 1
a − 1 + n

δn,

F(b+) =
∞

∑
n=0

b + n
b

δn, F(b−) =
∞

∑
n=0

b − 1
b − 1 + n

δn,

F(c+) =
∞

∑
n=0

c
c + n

δn, F(c−) =
∞

∑
n=0

c − 1 + n
c − 1

δn.

Since all relations depend closely on the sum index n we need to interact with zn. Thus we intro-
duce the Euler differential operator θ = z ∂

∂z . Applied to zn it yields θzn = nzn. If we add a to the
operator and scale everything by a we get

(θ + a)F =
∞

∑
n=0

(a + n)δn = a
∞

∑
n=0

(a + n)
a

δn = aF(a+). (2.3)

6



Similarly we can derive the relations

(θ + b)F = bF(b+) (2.4)

(θ + c − 1)F = (c − 1)F(c−).

By directly applying θ to F and some simple combinatorical arguments we get the relation

(1 − z)θF = (a + b − c)zF +
(c − a)(c − b)

c
zF(c+).

Now all equations have in common that the left-hand site depends on θ. By subtracting (2.4) from
(2.3), we get the contiguous relation

(a − b)F = aF(a+) − bF(b+).

This is the first of 15 contiguous relations for the Gaussian hypergeometric series, although all
can be derived by some linear combinations as shown.

Generalized hypergeometric function

The Gaussian hypergeometric series is only depending on the parameters a, b and c. Additional
parameters generalize this function.

Definition 2.1.1 (Generalized hypergeometric function)
Let bi /∈ −N0, then the function

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq
; z

)
:=

∞

∑
n=0

p
∏
i=1

(ai)n

q
∏
j=1

(bj)n

· zn

n!

is called generalized hypergeometric function.

The series terminates if −ai ∈ N0 for some i ∈ {1, . . . , p}. The function converges if either p ≤ q
and z is finite or if p = q + 1 and |z| ≤ 1. It diverges if p > q + 1, except if it terminates as mentioned
before.

Definition 2.1.2 (Balanced hypergeometric series)
A generalized hypergeometric series is called Saalschützian (or balanced) if

q

∑
j=0

bj −
p

∑
i=0

ai = 1.

It is called s-balanced, if
q

∑
j=0

bj −
p

∑
i=0

ai = s.

A Saalschützian hypergeometric 3F2 is summable by the Pfaff-Saalschütz theorem, see e.g.
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[AAR99, Rai71] or [Sla66] for the proof.

Theorem 2.1.2 (Pfaff-Saalschütz theorem)
If n ∈ N

3F2

(
−n, a, b

c, 1 − c + a + b − n
; 1

)
=

(c − a)n(c − b)n

(c)n(c − a − b)n
.

This theorem has been extended in [RR11] and [KR12]. Summation theorems for higher p and q
exist, e.g. Dougalls summation [Dou06], but further assumptions on ai and bi are needed.
See e.g. [Bai64, Sla66] or [AAR99] for more summations and information.

2.1.1. Jacobi Polynomials

The Jacobi polynomials are defined for α, β > −1 by the hypergeometric 2F1 series

P(α,β)
n (x) =

(1 + α)n

n! 2F1

(
−n, n + α + β + 1

1 + α
;

1 − x
2

)
. (2.5)

For α = β = 0 they are the Legendre polynomials and for α = β they are a scaled version of the Gegen-
bauer polynomials, which include the Chebychev polynomials for α = β = 1

2 . Due to the terminating
property of hypergeometric series in (2.5), P(α,β)

n is a polynomial of degree n and P(α,β)
n (1) = (α+1)n

n! .
Moreover the property

P(α,β)
n (x) = (−1)nP(β,α)

n (−x) (2.6)

yields in the representation

P(α,β)
n (x) =

(−1)n(1 + β)n

n! 2F1

(
−n, n + α + β + 1

1 + β
;

1 + x
2

)
. (2.7)

Alternatively they can be defined by the Rodrigues formula

P(α,β)
n (x) =

(−1)n(1 − x)−α(1 + x)−β

2nn!
dn

dxn

[
(1 − x)n+α(1 + x)n+β

]
,

see e.g. [Sze67, Rai71, Chi11, AS65] or [AAR99]. All definitions define the same polynomials. The
Jacobi polynomials are orthogonal with respect to the weight function w(α,β)(x) = (1 − x)α(1 + x)β.
Thus ∫ 1

−1
P(α,β)

n (x)P(α,β)
m (x)w(α,β)(x) dx =

 2α+β+1

2n+α+β+1
Γ(n+α+1)Γ(n+β+1)

n! Γ(n+α+β+1) n = m,

0 n ̸= m

holds.
Since Jacobi polynomials are orthogonal polynomials on a real interval with a positive weight
function, they are bound to have a three term recursion by Favard’s Theorem see e.g. [AAR99].
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For the Jacobi polynomials the three term recursion is given by

2n(α + β + n)(α + β + 2n − 2)P(α,β)
n (x) =

(α + β + 2n − 1)
[
α2 − β2 + x(α + β − 2n)(α + β + 2n − 2)

]
P(α,β)

n−1 (x)

− 2(α + n − 1)(β + n − 1)(α + β + 2n)P(α,β)
n−2 (x).

(2.8)
Furthermore since P(α,β)

n (x) is described by a Gaussian hypergeometric function, we can apply all
contiguous relations to derive relations between Jacobi polynomials of different degree and/or
different parameters. The following lemma is a collection of relations between Jacobi polynomials
as they can be found in [Rai71, Chapter 16].

Lemma 2.1.3
For α, β > −1 and n ∈ N holds

(α + β + n)P(α,β)
n (x) = (β + n)P(α,β−1)

n (x) + (α + n)P(α−1,β)
n (x)

1
2

(2 + α + β + 2n)(x − 1)P(α+1,β)
n (x) = (n + 1)P(α,β)

n+1 (x) − (1 + α + n)P(α,β)
n (x)

1
2

(2 + α + β + 2n)(x + 1)P(α,β+1)
n (x) = (n + 1)P(α,β)

n+1 (x) + (1 + β + n)P(α,β)
n (x)

(α + β + 2n)P(α,β−1)
n (x) = (α + β + n)P(α,β)

n (x) + (α + n)P(α,β)
n−1 (x)

(α + β + 2n)P(α−1,β)
n (x) = (α + β + n)P(α,β)

n (x) − (β + n)P(α,β)
n−1 (x)

2P(α,β)
n (x) = (1 + x)P(α,β+1)

n (x) + (1 − x)P(α+1,β)
n (x)

P(α,β)
n−1 (x) = P(α,β−1)

n (x) − P(α−1,β)
n (x).

The k-th derivative of Jacobi polynomials can be written as

dk

dxk P(α,β)
n (x) = 2−k(1 + α + β + n)kP(α+k,β+k)

n−k (x). (2.9)

In the application of Jacobi polynomials in high order finite element methods it is often useful to
define integrated Jacobi polynomials as follows

P̂(α,0)
n (x) =

∫ x

−1
P(α,0)

n−1 (t) dt.

Integrating (2.9) with k = 1 yields the following relation between Jacobi and integrated Jacobi
polynomials

P̂(α,0)
n (x) =

2
n + α − 1

P(α−1,−1)
n (x)

and for the integrated Legendre polynomials

L̂n(x) = P̂(0,0)
n (x) =

2
n − 1

P(−1,−1)
n (x).

Although Jacobi polynomials in their hypergeometric form are not clearly defined for negative
parameters α and β, they can be generalized as can be seen in [Sze67], see also [GSW09] or [Xu17].
One needs to be careful, otherwise a reduction in the polynomial degree due to the Pochhammer
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Figure 2.1.: Legendre polynomials and integrated Legendre polynomials.

symbols can happen for certain polynomial degrees. Following [Sze67], we thus write

P̂(α,0)
n (x) =

2
n + α − 1

P(α−1,−1)
n (x) =

1 + x
n

P(α−1,1)
n−1 (x) (2.10)

and for the integrated Legendre polynomials

L̂n(x) =
2

n − 1
P(−1,−1)

n (x) =
x2 − 1

2(n − 1)
P(1,1)

n−2 (x). (2.11)

The Legendre polynomials and their integrated variant are depicted in Figure 2.1.

Remark 1
The so called generalized Jacobi polynomials, see e.g. [GSW09], are thus identical to the integrated
Jacobi polynomial except for a scaling, which depends on the polynomial degree n and the pa-
rameter α.

2.1.2. Integral product of Jacobi polynomials

As we see later on, we are interested in efficiently evaluating integrals of the form

In,m :=
∫ 1

1
(1 − x)µ (1 + x)ν P(α,β)

n (x)P(ρ,δ)
m (x) dx. (2.12)

Usually this is done by a numerical quadrature, but due to the hypergeometric basis, we can de-
rive recurrence formulas between neighbours of In,m with respect to n and m.
Such recursion formulas can be calculated by symbolic software. Examples of such software-
packages are SumCracker [Kau05, Kau06] or Guess [Kau09], both written in Mathematica [Inc].
Guessing is a well known technique, where the aim is to give a plausible hypothesis about rela-
tions of an infinite sequence, see e.g. [HR11, Kau13] or [SZ94]. Let us show the application of the
package Guess on an example.
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Example 2.1.1
Let β = δ = ν = 0. Then the integral (2.12) reduces to

In,m :=
∫ 1

1
(1 − x)µ P(α,0)

n (x)P(ρ,0)
m (x) dx. (2.13)

To connect In,m of different degrees n, m in a recurrence formula, we will integrate In,m

exactly for different n, m, α, ρ, µ. Guess takes this multivariate table as input and returns a
possible hypothesis for such recurrence formulas. The following is a coding example for
such a task

In[1]:= data = ParallelTable[Integrate[(1 − x)µJacobiP[n, α, 0, x] JacobiP[m, ρ, 0, x], {x,−1, 1}], {n, 2, 10},

{α, 0, 10}, {m, 2, 10}, {ρ, 0, 10}, {µ, 0, 4}]

In[2]:= GuessMultRE[data, Flatten[Table[F[n + a1, α, m + a2, ρ, µ], {a1, 0, 1}, {a2, 0, 1}]], {n, α, m, ρ, µ}, 1,

StartPoint → {2, 0, 2, 0, 0}]

Out[2]= {−(1 + m + n + α − µ + ρ)F[n, α, m, ρ, µ] + (1 + m − n − α + µ)F[n, α, 1 + m, ρ, µ] − (−1 + m − n − µ +

ρ)F[1 + n, α, m, ρ, µ] + (3 + m + n + µ)F[1 + n, α, 1 + m, ρ, µ]}

Note that we specified the structure of the recursion in the second option of the command
GuessMultRE. We allowed a shift by one in both directions, which corresponds with a shift
in the polynomial order n and m. The third option specifies the order of the coefficients in
the exact table data. With the next option we give the polynomial order for the coefficients,
i.e. here it is 1, which means that we search for a linear recurrence relation. The last option
just specifies the starting number of the variables, i.e. we start with n, m = 2 and α, ρ, µ = 0.

The example yields the following conjecture

Conjecture 1
Let In,m be as in (2.13), then the following recurrence relation holds

(2.14)(3 + m + n + µ)In+1,m+1 = (−1 + m − n − µ + ρ)In+1,m + (−1 − m + n + α − µ)In,m+1
+ (1 + m + n + α − µ + ρ)In,m

At this stage relation (2.14) is only a conjecture, since we only guessed this relation. A proof of this
conjecture can be done by symbolic computation as well. One could use the package
HolonomicFunctions [Kou10] to show that In,m is holonomic1 and find the annihilating operator,
which is just equation (2.14). Alternatively, one could use the package SumCracker [Kau05] to
proof this conjecture.
Instead of going into more details of the symbolic proofs, we will instead focus on an analytic
proof. Since In,m is not feasible in the form (2.13), we start by rewriting the equation in terms of
hypergeometric functions. Due to (2.5) we can write (2.13) as

In,m =
2µ(α + 1)n(ρ + 1)m

n! m!

n

∑
l=0

m

∑
r=0

(−n)l(n + α + 1)l(−m)r(m + ρ + 1)r

(α + 1)l(ρ + 1)rl! r!

∫ 1

−1

(
1 − x

2

)µ+r+l

dx. (2.15)

1An univariate infinite sequence (an)∞
n=0 is called holonomic if there exist an r ∈ N and univariate polynomials

p0, . . . , pr , s.t. p0(n)an + p1(n)an+1 + · · · + pr(n)an+r = 0. In the multivariate case this is extended by a definition by
the power series.
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The integral term in (2.15) simplifies by using the definition of the beta integral (2.1) to

∫ 1

−1

(
1 − x

2

)µ+r+l

dx =
2

µ + r + l + 1
.

Now we can rewrite the right-hand side in terms of Pochhammer symbols, i.e.

2
µ + r + l + 1

= 2
(µ + r + 1)l

(µ + r + 2)l

Γ(µ + r + 1)
Γ(µ + r + 2)

.

To use the Pfaff-Saalschütz theorem, we separate both sums again

In,m =
2µ+1(α + 1)n(ρ + 1)m

n! m!

m

∑
r=0

(−m)r(m + ρ + 1)r

(ρ + 1)rr!
Γ(µ + r + 1)
Γ(µ + r + 2)

n

∑
l=0

(−n)l(n + α + 1)l(µ + r + 1)l

(α + 1)l(µ + r + 2)l l!
. (2.16)

The innermost sum is now summable by the Pfaff-Saalschütz theorem with

a = n + α + 1,

b = µ + r + 1,

c = µ + r + 2.

It follows with 1 − c + (a + b) − n = 1 − (µ + r + 2) + (n + α + 1) + (µ + r + 1) − n = α + 1, that

n

∑
l=0

(−n)l(n + α + 1)l(µ + r + 1)l

(α + 1)l(µ + r + 2)l l!
=

(µ + r + 2 − n − α − 1)n(1)n

(µ + r + 2)n(−n − α)n

Application to (2.16) yields

In,m =
2µ+1(α + 1)n(ρ + 1)m

n! m!

m

∑
r=0

(−m)r(m + ρ + 1)r

(ρ + 1)rr!
Γ(µ + r + 1)
Γ(µ + r + 2)

(µ + r + 1 − n − α)n(1)n

(µ + r + 2)n(−α − n)n
.

We rewrite the negative Pochhammer symbols by the combinatorical argument

(a − n)n = (−1)n(1 − a)n

and
(a − n)N =

(1 − a)n(a)N

(1 − a − N)n
, (a + n)N =

(a)N(a + N)n

(a)n
(2.17)

with (1)n = n! , see e.g. [Sla66, p. 239 Appendix I].
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In detail, we rewrite the sum by

In,m =
2µ+1(α + 1)n(ρ + 1)m

n! m!

m

∑
r=0

(−m)r(m + ρ + 1)r

(ρ + 1)rr!
Γ(µ + r + 1)
Γ(µ + r + 2)

(−1)n(α − (µ + r))n(1)n

(µ + r + 2)n(−1)n(1 + α)n
,

=
2µ+1(ρ + 1)m

m!

m

∑
r=0

(−m)r(m + ρ + 1)r

(ρ + 1)rr!
Γ(µ + r + 1)
Γ(µ + r + 2)

(α − (µ + r))n

(µ + r + 2)n

=
2µ+1(ρ + 1)m

m!

m

∑
r=0

(−m)r(m + ρ + 1)r

(ρ + 1)rr!
(µ + 1)rΓ(µ + 1)
(µ + 2)rΓ(µ + 2)

(α − (µ + r))n

(µ + r + 2)n

(2.17)
=

2µ+1(ρ + 1)m

m!

m

∑
r=0

(−m)r(m + ρ + 1)r

(ρ + 1)rr!
(µ + 1)rΓ(µ + 1)
(µ + 2)rΓ(µ + 2)

(1 − α + µ)r(α − µ)n

(1 − α + µ − n)r

(µ + 2)r

(µ + 2)n(µ + 2 + n)r

=
2µ+1(ρ + 1)m(α − µ)n

(µ + 1)n+1m!

m

∑
r=0

(−m)r(m + ρ + 1)r

(ρ + 1)rr!
(1 − α + µ)r

(1 − α + µ − n)r

(µ + 1)r

(µ + 2 + n)r

=
2µ+1(ρ + 1)m(α − µ)n

(µ + 1)n+1m! 4F3

(
−m, m + ρ + 1, 1 − α + µ, µ + 1
ρ + 1, 1 − α + µ − n, µ + 2 + n

; 1

)

Although the 4F3 is Saalschützian, the summation theorem in [KR12] is not applicable. Those
summation theorems need a special form of the coefficients, which is not given in this case. Clas-
sical results by Whipple’s transformation followed by Dougalls summation [Bai64], only works
in special cases like n = m.
But the summability is not needed. Here, we can derive relations with a brute force method:
We compare contiguous relations and solve for the unknown coefficients. Due to the guessed
recursion, we know a priori that we need relation of the form

c0 In+1,m+1 + c1 In,m+1 + c2 In+1,m + c3 In,m = 0. (2.18)

Thus, we start by deriving the relations of the 4F3. We introduce the following notation

4F3

(
−m, m + ρ + 1, 1 − α + µ, µ + 1
ρ + 1, 1 − α + µ − n, µ + 2 + n

; 1

)
=

∞

∑
k=0

(−m)k(m + ρ + 1)k(1 − α + µ)k(1)k

(ρ + 1)k(1 − α + µ − n)k(µ + 2 + n)k

1
k!︸ ︷︷ ︸

=:Φk

.

If we raise one of the parameters we can give the change of the summand in terms of Φk. The
change of n → n + 1 after equating the Pochhammer symbols is as follows

4F3

(
−m, m + ρ + 1, 1 − α + µ, µ + 1

ρ + 1,−α + µ − n, µ + 3 + n
; 1

)
=

∞

∑
k=0

(k − α + µ − n)(2 + n + µ)
(−α + µ − n)(2 + n + µ + k)

Φk

and for m → m + 1

4F3

(
−(m + 1), m + ρ + 2, 1 − α + µ, µ + 1

ρ + 1, 1 − α − n, µ + 2 + n
; 1

)
=

∞

∑
k=0

(−m − 1)(m + ρ + 1 + k)
(k − m − 1)(m + ρ + 1)

Φk.

With an analogue formulation for n → n + 1, m → m + 1, we insert those relations into (2.18) such
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that

0 =
∞

∑
k=0

(
c0

(m + ρ + 1 + k)(k − α + µ − n)
(k − m − 1)(2 + n + µ + k)

+ c1
(k − α + µ − n)
(2 + n + µ + k)

+ c2
(m + ρ + 1 + k)

(k − m − 1)
+ c3

)
Φk

holds. Note that we included all terms which are independent on k into the coefficients ci. Next
we expand the fractions in the same denominator and search for the root of all summands. Thus,

0 = c0(m + ρ + 1 + k)(k − α + µ − n) + c1(k − α + µ − n)(k − m − 1)
+ c2(m + ρ + 1 + k)(2 + n + µ + k) + c3(k − m − 1)(2 + n + µ + k).

Since this is a polynomial in k, all monomials 1, k, k2 need to be zero. Thus, we get three equations
which need to be fulfilled, namely

k2(c0 + c1 + c2 + c3) = 0

k (c0(m + ρ − α + µ − n + 1) − c1(m + α + n − µ + 1) + c2(n + µ + m + ρ + 3) + c3(n + µ − m + 1)) = 0

(c0(m + ρ + 1)(−α + µ − n) + c1(α − µ + n)(m + 1) + c2(m + ρ + 1)(2 + n + µ) − c3(m + 1)(2 + n + µ)) = 0.

This leads to the underdetermined system

 1 1 1 1
(m + ρ − α + µ − n + 1) −(m + α + n − µ + 1) (n + µ + m + ρ + 3) (n + µ − m + 1)
(m + ρ + 1)(−α + µ − n) (α − µ + n)(m + 1) (m + ρ + 1)(2 + n + µ) −(m + 1)(2 + n + µ)




c0

c1

c2

c3

 =

0
0
0


where we can choose c0 = 1 and transform the right-hand side as follows 1 1 1
−(m + α + n − µ + 1) (n + µ + m + ρ + 3) (n + µ − m + 1)

(α − µ + n)(m + 1) (m + ρ + 1)(2 + n + µ) −(m + 1)(2 + n + µ)


c1

c2

c3

 =

 −1
−(m + ρ − α + µ − n + 1)
−(m + ρ + 1)(−α + µ − n)


The solution of this system is

c1 =
m + n + ρ − µ − 1

3 + m + n + µ
,

c2 =
n + α − m − µ − 1

3 + m + n + µ
,

c3 = −1 + m + n + α + ρ − µ

3 + m + n + µ
.

If we rescale everything including c0 by (3 + m + n + µ) we have proven conjecture 1.
A generalization with arbitrary coefficients ν, β, δ is not possible due to the loss of summability.
Since the general Euler integral

∫ 1

−1
(1 − x)µ+l+r(1 + x)ν dx = B(µ + l + r + 1, ν + 1) =

(µ + r + 1)l

(µ + ν + r + 1)l

Γ(µ + r + 1)Γ(ν + 1)
Γ(µ + ν + r + 2)

,

we see that the inner summand is (ν − β + 1)-balanced. Thus, the inner sum is not summable in
all generality, since there is no such summing theorem. If β = δ = ν and α = ρ = µ the series
is summable and one is able to prove orthogonality of the Jacobi polynomials, as can be seen in
[AB95].
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2.2. Kampé de Fériet Series

It is well known that the concept of hypergeometric series can be extended to the multivariate
case. Examples of such series include the Appell series[App25], an extension of the Gaussian

2F1, the Kampé de Fériet Series [AK26], or the Humber series [Hum26]. A collection of such and
further series can be found, e.g. in [EMOT54, Ext76, SK85].

Definition 2.2.1 (Kampé de Fériet series)
For p1, p2, p3, q1, q2, q3 ∈ N and coefficients (a1, . . . aq1), (b1, . . . bp1), . . . arbitrarily the series

Fp1;p2;p3
q1;q2;q3 =

∞

∑
n,m=0

∏
p1
i=1(ki)n+m ∏

p2
i=1(ai)n ∏

p3
i=1(bi)m

∏
q1
i=1(li)n+m ∏

q2
i=1(ci)n ∏

q3
i=1(di)m

xnym

n! m!

is called Kampé de Fériet series.

A Kampé de Fériet series diverges if one of the li, ci, di is zero or a negative integer. It is termi-
nating if one of the ki, ai, bi is zero or a negative integer. More information regarding convergence
can be found e.g. in [Ext76].
The notation was introduced by Burchnall and Chaundy [BC40, BC41]. Although (2.12) is not
summable for arbitrary coefficients, we can still represent it in terms of a Kampé de Fériet series

F := In,m = 2µ+ν+1 (α + 1)n(ρ + 1)mB(ν + 1, µ + 1)
n! m!

F1;2;2
1;1;1

(
µ + 1 ; −n n + α + β + 1 ; −m m + ρ + δ + 1

µ + ν + 2 ; α + 1 ; ρ + 1
; 1; 1

)
.

(2.19)

Here F converges due to the negative coefficients −m and −n. We use the simple notation of
contiguous relations as we have seen in the 2F1 case. We denote a shift of parameters by unity as
follows,

F(α+) =2µ+ν+1 (α + 2)n(ρ + 1)mB(ν + 1, µ + 1)
n! m!

F1;2;2
1;1;1

(
µ + 1 ; −n n + α + β + 2 ; −m m + ρ + δ + 1

µ + ν + 2 ; α + 2 ; ρ + 1
; 1; 1

)

F(ν+) =2µ+ν+2 (α + 1)n(ρ + 1)mB(ν + 2, µ + 1)
n! m!

F1;2;2
1;1;1

(
µ + 1 ; −n n + α + β + 1 ; −m m + ρ + δ + 1

µ + ν + 3 ; α + 1 ; ρ + 1
; 1; 1

)
and so on.

Recurrence Relations

We can now directly derive recurrence relations for (2.19) by using the recurrence relations of
lemma 2.1.3.
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Corollary 2.2.1
Let α, β, µ, ν > −1 and n ∈ N, then holds

(α + β + n)F = (β + n)F(β−) + (α + n)F(α−),

−1
2

(2 + α + β + 2n)F(α+, µ+) = (n + 1)F(n+) − (1 + α + n)F, (2.20)

1
2

(2 + α + β + 2n)F(β+, ν+) = (n + 1)F(n+) + (1 + β + n)F, (2.21)

(α + β + 2n)F(β−) = (α + β + n)F + (α + n)F(n−), (2.22)

(α + β + 2n)F(α−) = (α + β + n)F − (β + n)F(n−), (2.23)

2F = F(ν+, β+) + F(µ+, α+),

F(n−) = F(β−) − F(α−).

Furthermore there are also 7 analogue recurrence formulas in m, ρ and δ, where

(ρ + δ + 2m)F(δ−) = (ρ + δ + m)F + (ρ + m)F(m−)

is one of them.
Moreover, we can derive more recurrence relations by linear combinations of the above.

Corollary 2.2.2
The following recurrence formula holds,

0 = − 2(1 + α + n)F − (1 + β + n)F(α+) + (2 + α + β + 2n)F(α+, µ+)

− (α + β + 1)F(n+) + (2 + α + β + n)F(n+, α+)
(2.24)

Proof. The equation is just a linear combination of (2.20) and (2.23). Start by transforming (2.20)
and (2.23) with α → α + 1, n → n + 1,

0 = (2 + α + β + 2n)F(α+, µ+) − 2(n + 1)F(n+) − 2(1 + α + n)F,

0 = −(α + β + 2n + 3)F(n+) − (β + n + 1)F(α+) + (α + β + n + 2)F(n+, α+).

Adding these equations lead to (2.24).

One important, but rather trivial relation is given by

2F = F(ν+) + F(µ+), (2.25)

which follows from 2P(α,β)
n (x) = (1 + x)P(α,β)

n (x) + (1 − x)P(α,β)
n (x).

The following relations are proven in appendix A.1 by using a generalized form of (2.19). Set
x = y = 1 in lemma A.1.2 and A.1.3, then the following corollary holds.
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Corollary 2.2.3
Let α, β, ρ, δ, µ, ν > −1 and m, n ∈ N, then holds

(n + m + µ + ν + 4)F(n+, m+, ν+) =(α + n + 1)F(m+, β+, ν+) + (ρ + m + 1)F(n+, δ+, ν+)

+ 2(ν + 1)F(n+, m+), (2.26)

(n + α + β + m + ρ + δ − µ − ν + 1)F =(n + α + β + 1)F(β+) + (m + ρ + δ + 1)F(δ+) + 2νF(ν−).
(2.27)

Since the weights in the Jacobi polynomials are interchangeable, see (2.6), the following two rela-
tions can be derived as well.

Corollary 2.2.4
Let α, β, ρ, δ, µ, ν > −1 and m, n ∈ N, then holds

(n + m + µ + ν + 4)F(n+, m+, µ+) = − (β + n + 1)F(m+, α+, µ+) − (δ + m + 1)F(n+, ρ+, µ+)

+ 2(µ + 1)F(n+, m+), (2.28)

(n + α + β + m + ρ + δ − µ − ν + 1)F =(n + α + β + 1)F(α+) + (m + ρ + δ + 1)F(ρ+) + 2µF(µ−).
(2.29)

Proof. See lemmas A.1.5 and A.1.6 and set x = y = 1.

5 - point recurrence relation There are some known starlike recurrence relations, see [PPSS06].
Those can be derived in this context as follows.

Corollary 2.2.5
Let α, β, ρ, δ, µ, ν > −1 and m, n ∈ N, then holds the mixed recurrence relations

(2.30)(2m + ρ + δ + 1) ((n + 1)F(n+, α−) − (α + n)F(α−))
= (2n + α + β + 1)

(
(m + 1)F(m+, ρ−) − (ρ + m)F(ρ−)

)
and

(2.31)(2m + ρ + δ + 1)
(
(n + 1)F(n+, β−) − (β + n)F(β−)

)
= (2n + α + β + 1) ((m + 1)F(m+, δ−) − (δ + m)F(δ−))

Proof. Take (2.20) and replace α by α − 1 to derive

F(µ+) =
−2

2n + α + β + 1
((n + 1)F(n+, α−) − (α + n)F(α−)) .

Also replace ρ by ρ − 1 in the analog to (2.20) w.r.t. m, ρ, δ to derive

F(µ+) =
−2

2m + ρ + δ + 1
((m + 1)F(m+, ρ−) − (ρ + m)F(ρ−)) .

Setting both right-hand sides equal yields (2.30). The second mixed relation follows analogously
from the recursion formula (2.21).
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The mixed relations (2.30) and (2.31) yield some 5-point recurrence relations with support
(m, n), (m − 1, n), (m + 1, n), (m, n − 1), (m, n + 1), see also [PPSS06].

Theorem 2.2.6

(2m + ρ + δ)3[(n + 1) ((n + α + β + 1)(2n + α + β)F(n+) + (n + α + 1)F)

+ (β + n) ((n + α + β)F + (n + α)F(n−))]

=(2n + α + β)3[(m + 1) ((m + ρ + δ + 1)(2m + ρ + δ)F(m+) + (m + ρ + 1)F)

+ (m + δ) ((m + ρ + δ)F + (m + δ)F(m−))],

(2.32)

(2m + ρ + δ)3[(n + 1) ((n + α + β + 1)(2n + α + β)F(n+) − (n + β + 1)F)

− (α + n) ((n + α + β)F − (n + β)F(n−))]

=(2n + α + β)3[(m + 1) ((m + ρ + δ + 1)(2m + ρ + δ)F(m+) − (m + δ + 1)F)

+ (m + ρ) ((m + ρ + δ)F + (m + ρ)F(m−))],

(2.33)

(2m + ρ + δ)3[(n + 1) (2(n + α + β + 1)(2n + α + β)F(n+) + (α − β)F)

+ ((β − α)(n + α + β)F + (n + α)(n + β)F(n−))]

=(2n + α + β)3[(m + 1) (2(m + ρ + δ + 1)(2m + ρ + δ)F(m+) + (ρ − δ)F)

+ ((δ − ρ)(m + ρ + δ)F + (m + ρ)(m + δ)F(m−))]

(2.34)

Proof. Take the first mixed relation (2.30) and replace all series by (2.23), this yields the first equa-
tion. The second equation follows by using (2.31) with (2.22). Lastly, the equation (2.34) can be
derived by linear combination of (2.32) and (2.33)

Alternatively one can use the 3-term recursion (2.8) to prove the same result as in [PPSS06].

Recurrence relation Multiple recurrence relations similar to (2.14) can be proven.

Lemma 2.2.7
Let F = In,m, where In,m is as in (2.19). Then the following recurrence relation holds

(n + α + β + 1)(m + ρ + δ + 1) ((n + m + µ + ν + 4)F(n+, m+, ν+) − 2(ν + 1)F(n+, m+))

=(α + n + 1)(m + ρ + δ + 1) ((n + α + β − m − µ − ν − 2)F(m+, ν+) + 2(ν + 1)F(m+))

+ (ρ + m + 1)(n + α + β + 1)((−n + m + ρ + δ − µ − ν − 2)F(n+, ν+) + 2(ν + 1)F(n+))

+ (ρ + m + 1)(α + n + 1)((n + α + β + m + ρ + δ − µ − ν)F(ν+) + 2(ν + 1)F).

(2.35)

Proof. Start with equation (2.26)

(n + m + µ + ν + 4)F(n+, m+, ν+)− 2(ν + 1)F(n+, m+) = (α + n + 1)F(m+, β+, ν+) + (ρ + m + 1)F(n+, δ+, ν+).
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Replace both terms of the RHS by using shifted versions of equation (2.27), i.e.

(n + α + 1)
(n + α + β + 1)

(n + α + β + 1)F(m+, β+, ν+)

=
(n + α + 1)

(n + α + β + 1)
[(n + α + β + m + ρ + δ − µ − ν + 1)F(m+, ν+)

− (m + ρ + δ + 2)F(m+, δ+, ν+) + 2(ν + 1)F(m+)],

(2.36)

and
(m + ρ + 1)

(m + ρ + δ + 1)
(m + ρ + δ + 1)F(n+, δ+, ν+)

=
(m + ρ + 1)

(m + ρ + δ + 1)
[(n + α + β + m + ρ + δ − µ − ν + 1)F(n+, ν+)

− (n + α + β + 2)F(n+, β+, ν+) + 2(ν + 1)F(n+)].

(2.37)

Moreover use the shifted relation (2.22) for the middle part of the last two equations, i.e.

(m + ρ + δ + 2)F(m+, δ+, ν+) = (2m + ρ + δ + 3)F(m+, ν+) − (m + ρ + 1)F(δ+, ν+) (2.38)

(n + α + β + 2)F(n+, β+, ν+) = (2n + α + β + 3)F(n+, ν+) − (n + α + 1)F(β+, ν+). (2.39)

Lastly replace the remaining terms by a shifted version of (2.27),

(n + α + 1)
(n + α + β + 1)

(m + ρ + 1)F(δ+, ν+) +
(m + ρ + 1)

(m + ρ + δ + 1)
(n + α + 1)F(β+, ν+)

=
(n + α + 1)(m + ρ + 1)

(n + α + β + 1)(m + ρ + δ + 1)
((n + α + β + 1)F(β+, ν+) + (m + ρ + δ + 1)F(δ+, ν+))

=
(n + α + 1)(m + ρ + 1)

(n + α + β + 1)(m + ρ + δ + 1)
((n + α + β + m + ρ + δ − µ − ν)F(ν+) + 2(ν + 1)F)

The claim follows from combining the above with the remaining terms of (2.36), (2.37), (2.38) and
(2.39).

Since α and β or ρ and δ are interchangeable, the following lemma can be proven by using (2.28)
and (2.29) instead of (2.26) and (2.27).

Lemma 2.2.8
Let F = In,m, where In,m is as in (2.19). Then the following recurrence relation holds

(n+α + β + 1)(m + ρ + δ + 1) ((n + m + µ + ν + 4)F(n+, m+, µ+) − 2(µ + 1)F(n+, m+))

= − (β + n + 1)(m + ρ + δ + 1) ((n + α + β − m − µ − ν − 2)F(m+, µ+) + 2(µ + 1)F(m+))

− (δ + m + 1)(n + α + β + 1) ((−n + m + ρ + δ − µ − ν − 2)F(n+, µ+) + 2(µ + 1)F(n+))

+ (δ + m + 1)(β + n + 1) ((n + α + β + m + ρ + δ − µ − ν)F(µ+) + 2(µ + 1)F) .

(2.40)

Both of these recursion formulas have the drawback, that terms with ν + 1 or µ + 1 vanish only
for ν = −1 or µ = −1, which correspond to the special cases (1 + x)0 or (1 − x)0. If the steps of the
proof are slightly adjusted, a recursion formula, which reduces to a smaller form for more cases,
can be proven. The following theorem is the main result of this chapter.
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Theorem 2.2.9 (Main recurrence theorem)
Let F = In,m, where In,m is as in (2.19). Then the following recurrence relation holds

(n+1)(m + 1) ((n + m + µ + ν + 4)F(n+, m+, ν+) − 2(ν + 1 − β − δ)F(n+, m+))

=(n + β + 1)(m + 1) ((n + α + β − m − µ − ν − 2)F(m+, ν+) + 2(ν + 1 − β − δ)F(m+))

+ (n + 1)(m + δ + 1) ((−n + m + ρ + δ − µ − ν − 2)F(n+, ν+) + 2(ν + 1 − β − δ)F(n+))

+ (n + β + 1)(m + δ + 1) ((n + α + β + m + ρ + δ − µ − ν)F(ν+) + 2(ν + 1 − β − δ)F) .

(2.41)

Proof. Again start with recursion (2.26), i.e.

(n + m + µ + ν + 4)F(n+, m+, ν+) − 2(ν + 1)F(n+, m+)

= (α + n + 1)F(m+, β+, ν+) + (ρ + m + 1)F(n+, δ+, ν+).

Now add 2(β + δ)F(n+, m+) to both sides and multiply by the factor (n + 1)(m + 1) on both sides.
Thus,

(n + 1)(m + 1) ((n + m + µ + ν + 4)F(n+, m+, ν+) − 2(ν + 1 − β − δ)F(n+, m+))

=(n + 1)(m + 1)((α + n + 1)F(m+, β+, ν+)

+ (ρ + m + 1)F(n+, δ+, ν+) + 2(β + δ)F(n+, m+))

= RHS .

Instead of multiplying with 1, as in the proof for (2.35), we will add a 0 to expand the RHS. Hence,

RHS =(n + 1)(m + 1)
(

(n + α + β + 1)F(m+, β+, ν+) + (m + ρ + δ + 1)F(n+, δ+, ν+)

− (βF(m+, β+, ν+) + δF(n+, δ+, ν+)) + 2(β + δ)F(n+, m+)
)

=(n + β + 1)(m + 1)(n + α + β + 1)F(m+, β+, ν+) + (n + 1)(m + δ + 1)(m + ρ + δ + 1)F(n+, δ+, ν+)

− β(m + 1)(n + α + β + 1)F(m+, β+, ν+) − δ(n + 1)(m + ρ + δ + 1)F(n+, δ+, ν+)

− β(n + 1)(m + 1)F(m+, β+, ν+) − δ(n + 1)(m + 1)F(n+, δ+, ν+)

+ 2(n + 1)(m + 1)(β + δ)F(n+, m+).

After adding up the additional terms, recurrence relation (2.21) can be used. This gives

RHS =(n + β + 1)(m + 1)(n + α + β + 1)F(m+, β+, ν+) + (n + 1)(m + δ + 1)(m + ρ + δ + 1)F(n+, δ+, ν+)

− 2β(m + 1) ((n + 1)F(n+, m+) + (n + β + 1)F(m+))

− 2δ(n + 1)((m + 1)F(n+, m+) + (m + δ + 1)F(n+)) + 2(n + 1)(m + 1)(β + δ)F(n+, m + 1)

=(n + β + 1)(m + 1)(n + α + β + 1)F(m+, β+, ν+) + (n + 1)(m + δ + 1)(m + ρ + δ + 1)F(n+, δ, ν+)

− 2β(m + 1)(n + β + 1)F(m+) − 2δ(n + 1)(m + δ + 1)F(n+).
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Now use the mixed relation (2.27)

RHS =(n + β + 1)(m + 1)

[(n + α + β + m + ρ + δ − µ − ν + 1)F(m+, ν+) + 2(ν + 1)F(m+) + (m + ρ + 1)F(δ+, ν+)]

+ (n + 1)(m + δ + 1)

[(n + α + β + m + ρ + δ − µ − ν + 1)F(n+, ν+) + 2(ν + 1)F(n+) + (n + α + 1)F(β+, ν+)]

− 2β(m + 1)(n + β + 1)F(m+) − 2δ(n + 1)(m + δ + 1)F(n+)

=(n + β + 1)(m + 1)

[(n + α + β + m + ρ + δ − µ − ν + 1)F(m+, ν+) + 2(ν + 1 − β − δ)F(m+) + (m + ρ + 1)F(δ+, ν+)]

+ (n + 1)(m + δ + 1)

[(n + α + β + m + ρ + δ − µ − ν + 1)F(n+, ν+) + 2(ν + 1 − β − δ)F(n+) + (n + α + 1)F(β+, ν+)]

+ 2δ(n + β + 1)(m + 1)F(m+) + 2β(n + 1)(m + δ + 1)F(n+).

Consider only a part of the RHS to shorten the notation. Begin by transforming F(n+) or F(m+)
back to the form F(β+, ν+) or F(δ+, ν+) by equation (2.21), i.e.

(n + β + 1)(m + 1)(m + ρ + 1)F(δ+, ν+) + (n + 1)(m + δ + 1)(n + α + 1)F(β+, ν+)

+ 2δ(n + β + 1)(m + 1)F(m+) + 2β(n + 1)(m + δ + 1)F(n+)

=(n + β + 1)(m + 1)(m + ρ + 1)F(δ+, ν+) + (n + 1)(m + δ + 1)(n + α + 1)F(β+, ν+)

+ δ(n + β + 1)(2m + ρ + δ + 2)F(δ+, ν+) + β(m + δ + 1)(2n + α + β + 2)F(β+, ν+)

+ 2δ(n + β + 1)(m + δ + 1)F + 2β(n + β + 1)(m + δ + 1)F

=(m + 1)(n + β + 1)(m + ρ + δ + 1)F(δ+, ν+) + (n + 1)(m + δ + 1)(n + α + β + 1)F(β+, ν+)

+ δ(n + β + 1)(m + ρ + δ + 1)F(δ+, ν+) + β(m + δ + 1)(n + α + β + 1)F(β+, ν+)

+ 2β(n + β + 1)(m + δ + 1)F

=(m + δ + 1)(n + β + 1)(m + ρ + δ + 1)F(δ+, ν+) + (n + β + 1)(m + δ + 1)(n + α + β + 1)F(β+, ν+)

+ 2β(n + β + 1)(m + δ + 1)F.

In the last step use again (2.27), then the claim follows.

Setting ν = −1, β = δ = 0 and α = ρ in (2.41) annihilates the coefficient (ν + 1 − β − δ) and thus
reduces (2.41) to

(n + 1)(m + 1) ((n + m + 3)F(n+, m+)) =(n + 1)(m + 1) ((n + α − m − 1)F(m+))

+ (n + 1)(m + 1) ((−n + m + α − 1)F(n+))

+ (n + 1)(m + 1) ((n + m + 2α + 1)F) ,

which is again conjecture 1.
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Corollary 2.2.10
If ν + 1 = β + δ equation (2.41) reduces to

(n + 1)(m + 1) ((n + m + µ + ν + 4)F(n+, m+, ν+))

=(n + β + 1)(m + 1) ((n + α + β − m − µ − ν − 2)F(m+, ν+))

+ (n + 1)(m + δ + 1) ((−n + m + ρ + δ − µ − ν − 2)F(n+, ν+))

+ (n + β + 1)(m + δ + 1) ((n + α + m + ρ − µ − 1)F(ν+)) .

(2.42)

Remark 2
The case ν + 1 = β + δ corresponds to the integrated Jacobi polynomials P̂α

n (x) = 1−x
n P(α−1,1)

n−1 (x),
where β = δ = 1, ν = 1, n ≥ 2, α > 1.

2.3. Recurrence relations for the integral of three Jacobi polynomials

An integral of the product of three Jacobi polynomials appear in different topics. In the numerical
application, these kinds of integrals appear in the context of non-constant material functions, e.g.
in section 5.4. They also appear in the convection term of the Navier-Stokes equations. Further-
more, from a theoretical viewpoint, those integrals are needed in the linearization of products of
Jacobi polynomials.

Linearization of products of Jacobi polynomials

The problem of linearizing products of Jacobi polynomials has been studied intensively in the last
century. The classical results e.g. by Gasper [Gas70], Hylleraas [Hyl62], Koornwinder [Koo78]
and Rahman [Rah81] were extended e.g. in [Tch14] or [AE15]. The list of works regarding lin-
earization of products of orthogonal polynomials is far from being complete.
Using symbolic packages, we are able to contribute some new recursive relations for the lineariza-
tion coefficients, which helps to make the linearization more feasible. Those recurrence relations
will find application in section 5.4 although it is not directly connected to the linearization prob-
lem. Another approach using symbolic computation can be found in [CK10], where the product
of two Jacobi polynomials for a certain set of parameters is represented as Kampé de Fériet series.
The classical linearization problem as e.g. in [Gas70] reads as follows

Problem 2.3.1
Find the coefficients g(k, m, n; α, β) in the expansion formulation

P(α,β)
n (x)P(α,β)

m (x) =
n+m

∑
k=|n−m|

g(k, m, n; α, β)P(α,β)
k (x). (2.43)

This problem is easily solved. Multiply each side by (1 − x)α(1 + x)βP(α,β)
k (x) and integrate from

−1 to 1. Then the coefficients g(k, m, n; α, β) can each be computed by the integral of a product
of three Jacobi polynomials. If we replace in (2.43) the Jacobi polynomials by their (at x = 1)

normalized version R(α,β)
n (x) = P(α,β)

n (x)
P(α,β)

n (1)
, the presentation simplifies, see e.g. [Rah81]. Thus,
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g(k, m, n; α, β) =
2−(α+β+1)Γ(α + β + 1)(α + 1)k(α + β + 1)k(2k + α + β + 1)

Γ(α + 1)Γ(β + 1)k! (β + 1)k
F(k, m, n, α, β),

where
F(k, m, n, α, β) =

∫ 1

−1
(1 − x)α(1 + x)βR(α,β)

n (x)R(α,β)
m (x)R(α,β)

k (x) dx.

We are now interested in finding some recurrence relations for F. As we have seen in the case
of theorem 2.2.9 finding linear recurrence relations independent of α, β, works only for special
cases. We again denote a parameter raised by unity as before, e.g. F(n+). We find the following
corollaries again by application of Guess.

Corollary 2.3.1
Let β = 0, then the following recurrence relation holds

c0F(α+, n+, m+, k+) = (k − m − n − 2)F(n+, m+) − (k − m + n + 2)F(n+, k+)
+ (α + k + m − n)F(n+) − (k + m − n + 2)F(m+, k+)
+ (k − m + n + α)F(m+) − (k − m − n − α)F(k+) + (k + m + n + 2α + 2)F,

where c0 = (4 + α + k + m + n).

A quadratic recurrence relation is given for the integrated Jacobi polynomials. We recall that
P̂(α,0)

n (x) = (1+x)
n P(α−1,1)

n−1 (x). Then we search for g̃(k, m, n; α, β) such that

P̂(α,β)
n (x)P̂(α,β)

m (x) =
n+m

∑
k=|n−m|

g̃(k, m, n; α, β)P̂(α,β)
k (x).

Instead of multiplying both sides with an integrated Jacobi polynomial, we multiply both sides
with the weighted Jacobi polynomial (1 − x)α−1P(α−1,1)

k−1 . Now we again have orthogonality on the
right-hand side such that

g̃(k, m, n; α, β) =
(∫ 1

−1
(1 − x)α−1(1 + x)P(α−1,1)

k−1 (x)P(α−1,1)
k−1 (x) dx

)−1

F̃(k, m, n, α)

where

F̃(k, m, n, α) =
∫ 1

−1
(1 − x)α−1(1 + x)P̂(α,0)

n (x)P̂(α,0)
m (x)P(α−1,1)

k−1 (x) dx. (2.44)

This method of multiplication with the right dual functions will be heavily applied in section 6.1.

Corollary 2.3.2
The following recurrence relation holds for F̃(k, m, n, α) as in (2.44)

c̃0F̃(n+, m+, k+) = (α + k)(k − m − n − 2)F̃(n+, m+) − (1 + α + k)(k − m + n + 3)F̃(n+, k+)
+ (α + k)(k + m − n + α − 2)F̃(n+) − (1 + α + k)(3 + k + m − n)F̃(m+, k+)
+ (α + k)(k − m + n + α − 2)F̃(m+)
+ (1 + α + k)(m + n − k + α − 3)F̃(k+) + (α + k)(m + n + k + 2α − 2)F̃,

where c̃0 = (1 + α + k)(3 + α + k + m + n).
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3. High order finite element method

3.1. Sobolev Spaces

Let Ω be a polynomial Lipschitz domain in Rd. As usual we denote the Lebesgue-integral of f by∫
Ω

f (x) dx.

We define
L2(Ω) := { f : ∥ f ∥L2(Ω) < ∞},

where

∥ f ∥L2(Ω) :=
(∫

Ω
| f (x)|2 dx

) 1
2

.

We denote by Dα =
(

∂
∂x1

)α1
. . .
(

∂
∂xn

)αn
the weak multivariate derivative, where |α| = ∑n

i=1 αi.

Using the weak derivative we generalize the L2-norm to the space which include derivatives.

Definition 3.1.1 (Sobolev space)
For k ∈ N the space

Hk(Ω) := { f ∈ L2(Ω) : ∥ f ∥Hk(Ω) < ∞}

is called Sobolev space with the Sobolev norm

∥ f ∥Hk(Ω) :=

(
∑
|α|≤k

∥Dα∥2
L2(Ω) dx

) 1
2

Indeed it can be shown that the Sobolev norms are actual norms and that Hk(Ω) is a Hilbert space.
One usually defines the corresponding semi-norm for technical reasons as follows

| f |Hk(Ω) =

(
∑
|α|=k

∥Dα f ∥2
L2(Ω)

) 1
2

,

where f ∈ Hk(Ω). Before we introduce the relevant function spaces, let us recall the relevant
differential operators.
The gradient operator ∇ is defined for a scalar function ν : Ω → R as

∇ν =
(

∂ν

∂x1
, . . . ,

∂ν

∂xd

)⊤
,

where ∂
∂xi

denotes the weak derivatives.
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For vector valued functions v : Ω → Rd we define the divergence as

div v = ∇ · v :=
∂v1

∂x1
+ · · · +

∂vd

∂xd
.

Furthermore, we define the curl-operator, which has different definitions for R2 and R3. More-
over, it has 2 definitions for R2. Let ν : Ω → R then the vector Curl maps a scalar onto a vector,
i.e.

Curl ν :=
(

∂ν

∂x2
,− ∂ν

∂x1

)⊤
.

The scalar curl operator maps vectorial functions v : Ω → R2 onto scalar functions, i.e.

curl v = ∇× v :=
∂v2

∂x1
− ∂v1

∂x2
.

Both definitions of the curl operator are just special cases of the curl operator in R3. It is defined
for a vector v : Ω → R3 as

curl v = ∇× v :=
(

∂v3

∂x2
− ∂v2

∂x3
,

∂v1

∂x3
− ∂v3

∂x1
,

∂v2

∂x1
− ∂v1

∂x2

)⊤
,

where we get the scalar two-dimensional curl operator by using the vector field E = (e1, e2, 0) and
the vector curl operator by using the vector field E = (0, 0, e3).
The relevant functional spaces are provided in the next definition.

Definition 3.1.2 (Important Spaces)
Let Ω be a non-empty subset in Rd, where d = 2, 3.

L2(Ω) = {u :
∫

Ω
|u|2 dx ≤ ∞},

H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ (L2(Ω))d},

H(div, Ω) = {u⃗ ∈ (L2(Ω))d : div u⃗ ∈ L2(Ω)},

H(curl, Ω) = {u⃗ ∈ (L2(Ω))2 : curl u⃗ ∈ L2(Ω)} if Ω ⊂ R2,

H(curl, Ω) = {u⃗ ∈ (L2(Ω))3 : curl u⃗ ∈ (L2(Ω))3} if Ω ⊂ R3,

and define the corresponding inner products as

⟨u, v⟩0 =
∫

Ω
uv dx,

⟨u, v⟩1 =
∫

Ω
∇u · ∇v dx + ⟨u, v⟩0,

⟨u⃗, v⃗⟩div =
∫

Ω
div u⃗ · div v⃗ dx +

∫
Ω

u⃗ · v⃗ dx,

⟨u⃗, v⃗⟩curl =
∫

Ω
curl u⃗ · curl v⃗ dx +

∫
Ω

u⃗ · v⃗ dx.

We denote the induced norms by ∥·∥0, ∥·∥1, ∥·∥div and ∥·∥curl respectively.
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Let Ω be a simple connected Lipschitz domain1, then this function spaces are related. This relation
can be written short in the De-Rham complex (3.1), which summarizes the relation between the
differential operator.
It forms an exact sequence and reads as follows,

R
id→ H1(Ω) \ R

∇→ H(curl, Ω) curl→ H(div, Ω) div→ L2(Ω) 0→ {0}. (3.1)

This relation can be easily seen. Assume that p ∈ H1(Ω), then ∇p ∈ H(curl, Ω), since
curl(∇p) = 0 ∈

(
L2(Ω)

)3 and ∇p ∈
(

L2(Ω)
)3 per definition. Analogously, if u ∈ H(curl, Ω), then

curl(u) ∈ H(div, Ω).
To incorporate boundary conditions, we need the trace of a function v on the boundary of the
domain. If v ∈ C∞(Ω) it can be evaluated pointwise, but if v is an element of an arbitrary func-
tional space, e.g. L2(Ω), this is not reasonable, since v is not a single function any more. It is an
equivalence class of functions, which may differ from each other on a subset of measure zero.
By the Gauß and the trace theorem, we can extend the restriction of v|∂Ω uniquely to the whole
domain by the so-called trace operator. For details, see e.g. [AV96, CDZ00, Mon03].
We define the space with essential boundary conditions as

H1
0(Ω) := {u ∈ H1(Ω) : tr∂Ω(u) = 0},

where tr|∂Ω is the trace operator on the boundary of the domain. Partial boundary condition are
denoted by

H1
0;ΓD

(Ω) := {u ∈ H1(Ω) : trΓD (u) = 0}.

With different trace operators for H(curl, Ω) and H(div, Ω) we can define the spaces

H0(div, Ω) := {u ∈ H(div, Ω) : tr(div)
∂Ω (u) = 0},

= {u ∈ H(div, Ω) : u · n⃗ = 0},

and
H0(curl, Ω) := {u ∈ H(curl, Ω) : tr(curl)

∂Ω (u) = 0},

= {u ∈ H(curl, Ω) : u × n⃗ = 0},

where n⃗ denotes the outward normal vector. Similar relations to (3.1) can be achieved for the
spaces with essential boundary conditions, i.e.

H1
0(Ω) ∇→ H0(curl, Ω) curl→ H0(div, Ω) div→ L2(Ω) \ R. (3.2)

Important properties of this operator are summarized in the following theorem:

Theorem 3.1.1 (Theorema 7 of [Ces96])
The diagrams (3.1) and (3.2) have the property that the range of one operator is contained
in the kernel of the one following it in the sequence. The range space of each operator is a
closed subspace of the appropriate kernel with finite codimension.

asee also [Mon03]

1This assumption can be further relaxed, see e.g. [ABDG98, Mon03].
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We refer the readers e.g. to [Mon03] for more details.
In the following, if it is obvious which domain is of interest we will neglect the domain for the
sake of brevity, e.g. we just write H1

0 or H(div).

3.2. Variational Formulation

We follow [Dem06] and start with the geometry. Let Ω be a bounded Lipschitz domain in
Rd, d = 2, 3. We denote by ΓD, ΓN , ΓR subsets of the boundary ∂Ω corresponding to either im-
posed Dirichlet, Neumann or Robin boundary condition. An arbitrary boundary value problem
in the classical formulation reads:

Problem 3.2.1
Find u(x), x ∈ Ω̄ such that

−div(A(x)∇u(x)) + b⃗(x) · ∇u(x) + c(x)u(x) = f (x) in Ω,

u = uD(x) on ΓD,

A(x)∇u(x) · n⃗ = g(x) on Γn,

A(x)∇u(x) · n⃗ − β(x)u(x) = g(x) on ΓR.

(3.3)

Here n is the exterior normal vector. The left-hand side of the first equation denotes a differential
operator Lu, with coefficient functions A(x) ∈ Rd×d, b⃗(x) ∈ Rd and c(x) ∈ R. Those are called ma-
terial functions and for the most parts of this thesis are assumed to be constant or at least piecewise
constant. We will discuss the non-constant variant in section 5.4. The functions f (x), uD(x), g(x)
on the right-hand side are called load data. If the matrix A(x) is symmetric positive definite for
all x ∈ Ω the partial differential equation is called elliptic. Classical solutions, which means so-
lution u ∈ C2(Ω) ∩ C1(Ω̄), exist if Ω is sufficiently smooth and further assumptions are fulfilled,
see [Rud87]. Here, we introduce the variational formulation of such a boundary value problem.
Later on, we will use finite element methods to approximate the corresponding weaker solution
of the boundary value problem.
The variational form is derived by multiplication with a test function v(x) and integration over
the domain Ω, such that

−
∫

Ω
div(A(x)∇u(x))v(x) + b⃗(x) · ∇u(x)v(x) + c(x)u(x)v(x) dx =

∫
Ω

f (x)v(x) dx.

We shift one of the differentiations onto the test function v(x) by integration by parts and obtain∫
Ω

A(x)∇u(x)∇v(x) + b⃗(x) · ∇u(x)v(x) + c(x)u(x)v(x) dx −
∫

Γ
a(x)(∇u · n)v(x) ds

=
∫

Ω
f (x)v(x) dx.

Neumann and Robin boundary conditions can now be incorporated naturally in this form. On
the Dirichlet part of the boundary we have no information on the derivative of the function, thus
we only test with functions which are zero on ΓD, i.e.

v(x) = 0 x ∈ ΓD.
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Since we integrated over the domain Ω we need that u(x) and v(x) as well as their differentiation
is square integrable. Thus, the natural choice for the functional space is H1

0,ΓD
(Ω).

Model problems

Our boundary value problem in variational form reads:

Problem 3.2.2
Find u ∈ H1

0,ΓD
(Ω) such that

∫
Ω

A∇u · ∇v + b⃗ · ∇uv + cuv dx +
∫

ΓR

βuv ds =
∫

Ω
f v dx +

∫
ΓN∪ΓR

gv ds ∀v ∈ H1
0,ΓD

(Ω)

This problem is called diffusion convection reaction equation and models different phenomena in
physic, chemistry or biology. For the ease of presentation, we consider homogeneous Dirichlet
boundary conditions:

Problem 3.2.3
Find u ∈ H1

0(Ω) such that∫
Ω

A∇u · ∇v + b⃗ · ∇uv + cuv dx =
∫

Ω
f v ∀v ∈ H1

0(Ω)

Similar model problems for H(div) and H(curl) follow from applications e.g. in fluid dynamics,
electromagnetics or elasticity. We state them here without derivation and refer to standard litera-
ture like [EGK08, GR86, BF91] or [Mon03].
The following H(curl) problem arises in the context of time harmonic Maxwell’s equations.

Problem 3.2.4
Find u⃗ ∈ H0(curl) such that∫

Ω
curl u⃗ · curl v⃗ + u⃗ · v⃗ dx =

∫
Ω

f⃗ · v⃗ dx ∀v⃗ ∈ H0(curl). (3.4)

Moreover a similar homogeneous model problem for H(div) is given by:

Problem 3.2.5
Find u⃗ ∈ H0(div) such that∫

Ω
div u⃗ div v⃗ + u⃗ · v⃗ dx =

∫
Ω

f⃗ · v⃗ dx ∀v⃗ ∈ H0(div). (3.5)

3.3. FEM

We will introduce the finite element method following Szabó and Babuška [SB91], see also the
monograph by Schwab [Sch98]. The main difference to the classical definition by Ciarlet [Cia78]
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lies in the derivation of shape function. While the former approach introduces those shape func-
tions in higher dimensions by geometrical arguments, the latter introduces those with respect to
the nodes of the finite elements.
As we have seen in the last section, we typically have a problem of the form:

Problem 3.3.1
Find u ∈ X such that

a(u, v) = F(v) ∀v ∈ Y.

Here X and Y denote some infinite dimensional function spaces, a(·, ·) is a bilinear or sesquilin-
ear form and F(·) is a linear form, as e.g. in (3.3), (3.4) or (3.5). Since we work on computer
architecture, we have limited resources and can’t therefore work with an infinite number of lin-
ear independent functions. For the FEM approach (or Galerkin ansatz) we take a finite subspace
S ⊂ X(Ω) of dimension N. The dimension N is called number of degrees of freedom. Since S is finite,
we can find a finite number of basis functions ϕ1, . . . , ϕN , which span S. We can now represent
every function ũ ∈ S uniquely by

ũ =
N

∑
i=1

ciϕi,

where ci are real or complex numbers.

Definition 3.3.1 (Finite element approximation)
Let X̃ ⊂ X and Ỹ ⊂ Y have the finite dimension N. We call ux a finite element approxima-
tion to problem 3.3.1, if

ux ∈ X̃, s.t. a(ux, v) = F(v) ∀v ∈ Ỹ.

Here X̃ is called trial space and Ỹ is called test space. Elements of X̃ are called trial func-
tions and elements of Ỹ are called test functions.

In a general finite element approach, usually the subspace S is constructed by splitting Ω in sub-
domains. A mesh T is a partition of Ω in non-overlapping subdomains. These subdomains are
usually simple geometrical structures, e.g. intervals in 1D, or quadrilaterals and triangles in 2D.
A mesh is called regular, if two elements Ti and Tj only share a vertex or an element edge. If the
mesh consists only out of quadrilaterals, one considers irregular meshes for local refinement as
well. This usually means that a vertex is not shared by another adjacent element, for more details
see section 6.2.
In 3D a mesh consists either out of cubes or tetrahedron. An irregular mesh contains hanging
nodes, edges, and faces. If a conforming regular mesh consists of cubes and tetrahedron, it con-
sists of prisms and pyramids as well, see e.g. [FKDN15]. All definitions in 3D are defined analo-
gously to the 2D case.
Let

Pk := {p(x)|p(x) = ∑
|α|≤k

aα x⃗α, aα ∈ R},
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where Pk is called the space of polynomials of total degree k. Additionally we introduce

Qk := {p(x)|p(x) = ∑
α1≤k

. . . ∑
αi≤k

aαxα1
1 . . . xαd

d , aα ∈ R},

as the space of polynomials with maximal polynomial degree k. Then we define the subspace

S p,l(Ω, T ) = {u ∈ Cl−1(Ω): u|Ωj∈ Pp, Ωj ⊂ T },

on simplical mesh, and similar

Ŝ p,l(Ω, T ) = {u ∈ Cl−1(Ω): u|Ωj∈ Qp, Ωj ⊂ T },

on a quadrilateral or hexahedral mesh. In the following, we will omit the notational difference
between these types of meshes.
Different basis for these subspaces can be chosen, depending on the dimension, the triangulation
and the kind of boundary value problem. Different explicit choices are given in chapter 4.
By inserting the chosen basis functions into our bilinear form, we can derive a linear system. In
most applications one chooses X̃ = Ỹ, i.e. then

F(ϕj) = a(u, ϕj) =
N

∑
i=1

cia(ϕi, ϕj) =
[
Ki,j
]n

i=1 c⃗, for all ϕj ∈ S p,l .

and equivalently
f⃗ = Kc⃗.

All the choices of S p,l will be given as local basis functions on a standard reference domain. We
will then map from an arbitrary domain to the standard domain, see the next section. To construct
a globally continuous solution, we will need to reinforce continuity. This is done in the choice of
our basis functions, depending on the function space. Alternatively, this could be done by meth-
ods like discontinuous Galerkin methods see e.g. [ABCM02, PE12, HW08] or mortar methods see
e.g. [MMP88, Woh01].
After the local assembly, which will be discussed in section 5.3, we need a local to global oper-
ation. Meaning, that we need to assemble the local matrices into a global system matrix2. First
we determine the connectivity of the basis functions at the interfaces depending on the respec-
tive functional space, then we assemble those connectivity relations into a Boolean array B. We
assemble the global matrix by application of B. Basis functions without connectivity relations, i.e.
so-called interior or bubble functions are usually eliminated before or directly after the assembly
routine by static condensation, see e.g. [Guy65, KS13].

3.3.1. Transformations

In finite elements, we usually define so-called standard or reference elements and transform be-
tween those and an arbitrary finite element in our mesh. Since we work on an arbitrary setting,
we still need to ensure that our transformed functions have a well-defined ∇, curl or div operator,
see among other authors the monograph by Monk [Mon03]. Assume K is a bounded domain in
R3 and K̂ is our reference domain, also a bounded domain in R3. Let FK : K̂ → K be a continu-

2Although there are also some matrix-free methods, see e.g. [MGS99, EM05, KS13]
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ously one to one map.
If we apply FK onto a function û ∈ H1(K̂), we transform it to a scalar function u on K by

u ◦ Fk = û. (3.6)

The gradient is then transformed by the chain rule as

∇u = (dFk)−⊤∇̂û,

where ∇̂ denotes the gradient, w.r.t the coordinate system on K̂, and dFK is the Jacobian matrix.
See [Cia78] for a proof.
On the other hand, vectorial functions need to be transformed more carefully. Take a function
v̂ ∈ H(curl, K̂), which we want to transform to a function v ∈ H(curl, K).
Then v̂ must be transformed by

v ◦ FK = (dFK)−⊤v̂, (3.7)

since ∇u and ∇̂û, as in (3.6), are also in H(curl, K) or H(curl, K̂) respectively. We cite the following
results from [Mon03], but these can also be found in the work of [Dub00] and [Coh02].

Lemma 3.3.1 (See [Mon03, Lemma, 3.57])
Let v and v̂ be related by (3.7), where Fk : K̂ → K is a continuously differentiable, invertible
and surjective mapping. Let [curl(v)] denote the 3 × 3 matrix with

[curl(v)]i,j =
∂vi

∂xj
−

∂vj

∂xi
.

Then
[curl(v)] ◦ FK = (dFK)−⊤[curl(v)](dFK)−1.

This directly leads to the following corollary

Corollary 3.3.2 (See [Mon03, Corollary, 3.58])
Under the conditions of lemma 3.3.1 and let v̂ ∈ H(curl, K̂). If v and v̂ are related by (3.7),
then v ∈ H(curl, K) and

curl(v) ◦ FK =
1

det(dFK)
dFK∇̂ × v̂. (3.8)

Moreover we can state similar results for the divergence operator.
For a function v̂ ∈ H(curl, K̂) we have ∇̂ × v̂ ∈ H(div, K̂). Thus a function ŵ ∈ H(div, K̂) is
transformed to w ∈ H(div, K) by

w ◦ FK =
1

det(dFK)
dFKŵ. (3.9)

This is again a reasonable transformation. We again cite the following lemma from [Mon03].
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Lemma 3.3.3 (See [Mon03, Lemma, 3.59])
If w and ŵ are differentiable functions related by (3.9), where FK : K̂ → K is a continuously
differentiable, invertible and surjective mapping. Then

∇ · w =
1

det(dFK)
∇̂ · ŵ.

Thus, if ŵ ∈ H(div, K̂) then w ∈ H(div, K).

The reduction and application to 2D is straightforward. There is no problem for Curl(v) ∈ R2,
but the transformation (3.8) for curl(u⃗) = ( ∂u2

∂x1
− ∂u1

∂x2
) reduces to

curl(v) =
1

det(dFk)
curl(v̂).

The proofs of all results above can be found, as mentioned, in [Mon03].

3.3.2. Discrete De-Rham complex

For the derivation of finite elements for the Sobolev spaces H(curl) and H(div), the De-Rham
complex (3.1) is of upmost importance. But the derivation of the exact discrete spaces is not
that easy. Based on the work by Nédélec [Né80, Né86] and the monograph by Monk [Mon03],
we will discuss the discrete spaces for H(curl) in more detail, since we will introduce some new
tweaks to the high order H(curl) basis functions in chapter 4. For the discrete space for H(div),
we refer the reader to standard literature, e.g. [GR86, Mon03, Dem06, EG21]. In 2D and in 3D this
discretization of the H(curl) basis functions leads to both families of the simplicial edge elements
of Nédélec [Né80, Né86]3. The discrete De-Rham complex is given in fig. 3.1, where we denoted
by U ⊂ H1(Ω), V ⊂ H(curl, Ω), W ⊂ H(div, Ω) and Z = L2(Ω) the suitable subset of our Sobolev
spaces. Furthermore, we denote by Uh, Vh, Wh, Zh the finite element spaces and by πh, rh, wh, Ph

the respective interpolation operators.

H1(Ω) H(curl, Ω) H(div, Ω) L2(Ω)

U V W Z

Uh Vh Wh Zh

∇ ∇× ∇·

⊂

πh

⊂

rh

⊂

wh Ph

∇ ∇× ∇·

Figure 3.1.: Discrete De-Rham complex in 3D

The commuting diagram fig. 3.1 can be read as follows: E.g. if we take a function v ∈ H(curl) and
apply the curl operator to it, the resulting functions is part of the Sobolev space H(div), further-
more by application of the interpolating operator wh this function is in the finite element space
Wh. Moreover since this is a commuting diagram, we can first interpolate v onto the finite element

3For the hexahedral case, only the first family of Nédélecs functions are part of the discrete De-Rham complex,
[Mon03, Dem06]
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space Vh by rh and then apply the curl operator to achieve the same finite element function, i.e.

curl(rhv) = wh curl(v).

We will not discuss the interpolating operators in any more detail and refer to [Mon03] and refer-
ences therein.
The div-conforming finite element space Wh is given by Nédélec [Né80] as a three-dimensional
extension of the Raviart-Thomas functions [RT77].
For the discrete space Vh we first introduce the following additional polynomial space

P̃k := { p̃(x)| p̃(x) = ∑
|α|=k

aα x⃗α, aα ∈ C},

where P̃k is called the space of homogeneous polynomials of total degree exactly k. Furthermore
α denotes the usual multi-index.
Furthermore, we introduce the space of homogeneous vector polynomials as

Sk = { p⃗ ∈ (P̃k)3 |⃗x · p⃗ = 0},

where the dimension of Sk is dim(Sk) = k(k + 2). Then the Nédélec space of first kind is given by

Rk := (Pk−1)3 ⊕ Sk (3.10)

An important property of the space Rk is that functions v ∈ Rk are transformed invariantly by
corollary 3.3.2. Thus, we can define the finite element space as

Vh := {v ∈ H(curl, Ω)|v|K ∈ Rk ∀K ∈ T }. (3.11)

It has been shown by Nédélec [Né80, Né86] that this discretization leads to a suboptimal L2 error
estimate of O(hk) instead of O(hk+1). This property is to be expected since the dimension of Rk is
smaller than (Pk)3. This motivates the choice

V(2)
h := {v ∈ H(curl, Ω)|v|K ∈ (Pk)3 ∀K ∈ T }, (3.12)

which is called Nédélec space of second kind. In Figure 3.2 we see the second discrete De-Rham

H1(Ω) H(curl, Ω) H(div, Ω) L2(Ω)

U V W Z

U(2)
h V(2)

h W(2)
h Zh

∇ ∇× ∇·

⊂

πh

⊂

rh

⊂

wh Ph

∇ ∇× ∇·

Figure 3.2.: Second discrete De-Rham complex in 3D

complex, which incorporates the discrete Nédélec space of second kind, where W(2)
h denotes a sec-

ond divergence conforming family, which we will not discuss here, but can be found in [Mon03].
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The appropriate scalar space is given by

U(2)
h = {ph ∈ H1(Ω)|ph|K∈ Pk+1 for all K ∈ T }.

The interpolation operators are denoted by the same symbols as before.
Theoretically we could use any suitable basis of (Pk)3, but in the case of a tetrahedral mesh the
polynomial degree of our choice would drop by three from the start of the De-Rham complex to
the end, i.e.

R
id−→ Pk+1

∇−→ (Pk)3 curl−−→ (Pk−1)3 div−→ Pk−2 −→ {0},

see [DKP+08]. To get the full polynomial space in H(curl) we need to start with polynomials Pk+1

in our discrete sequence. When considering e.g. Maxwells equations, this drop in polynomial
degree causes different approximation orders in the electric and the magnetic field.
On the other hand, we could also enrich the discrete H(curl) space by the decomposition (3.10).
This would lead back to the first Nédélec space. To circumvent the missing degrees of freedom,
we can use the following Helmholtz decomposition for the first Nédélec space, i.e.

(Pk)3 = Rk−1 ⊕∇P̃k+1, (3.13)

see [Mon03]. Thus, by adding the gradients, we have the right polynomial order. In other words,
the Nédélec space of the second kind can be constructed by the first kind and by the addition
of the gradients, without touching the discrete H1 space. Since the standard error estimates,
including the appropriate interpolation operators, are done for the standard Nédélec spaces, it is
desirable to use this decomposition. Furthermore, the first space is transformational invariant. In
chapter 4 we modify the construction by Sabine Zaglmayr [Zag06] to fit back into this framework.
Keep in mind that the second Nédélec family on hexahedrons does not fit the exact De-Rham
sequence and is thus not discussed here. That the exact sequence can’t be ignored has been shown,
e.g. in [BCDD06], where Nédélec’s second hexahedron leads to non-physical eigenvalues.

3.3.3. hp-fem

We will summarize shortly the theoretical advantage of high order finite element methods, see
e.g. [SB91, Sch98, Mel02]. For a practical guide including implementation, see e.g. [Dem06,
DKP+08, KS13].
Consider the standard stationary heat equation on a polygonal domain Ω ∈ R2 :

Problem 3.3.2
Find u ∈ H1

0(Ω) such that∫
Ω
∇u · ∇v dx =

∫
Ω

f v dx ∀v ∈ H1
0(Ω),

where f : Ω → R is sufficiently smooth.

Let uex be the exact solution. We denote by λ some measure of smoothness of the exact solution,
see e.g. [SB91, Sch98, Mel02] for details. If there are no singularities on the boundary of the
solution domain or in the solution domain itself, the parameter λ → ∞.
Let u f e denote the finite element solution, then we measure the error of our approximation in the
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energy norm, i.e.
∥e∥E(Ω) =

∥∥uex − u f e
∥∥

E(Ω),

where

∥u∥E(Ω) :=

√
1
2

a(u, u).

We are usually interested in the convergence of our solution, which means under which condi-
tions and in which manner, does

∥e∥E(Ω) → 0?

In the usual (low order) finite elements, see e.g. [Cia78, Bra13, BS07], such convergences rates are
given with respect to the element size and the polynomial order. But this assumes that we have
a constant polynomial order on all elements. We will give the convergence rates with respect to
the degrees of freedom, such that we can compare these rates with each other.
We distinguish 3 refinement strategies. The first one, the h-refinement, introduces more degrees
of freedom by splitting all (or only some) elements in more elements. For triangular grids this
can be done e.g. by either the red-green refinement or the newest-vertex-bisection, see [Bey98].
In this case, the convergence rate for our model problem is given by

∥e∥E(Ω) ≤
k

Nβ
, (3.14)

where k and β are some positive constants, and N is the number of degrees of freedom.
For a uniform refinement, i.e. a refinement of all elements, we can determine

β =
1
2

min(p, λ). (3.15)

This means the rate of refinement is bounded by the smoothness of the solution and the poly-
nomial order of our elements. It is possible to construct a sequence of meshes such that we are
able to drop the parameter λ from (3.15). For this, one needs to develop heavily refined elements
towards any singularities, such that the error is almost the same on each element. For such a
non-uniform refinement, we can write

β =
1
2

p.

This can be done e.g. by an error estimator adaptively, see e.g. [Bra13].
The second refinement strategy, the p-refinement, is to keep the mesh constant, and only refine
the polynomial degree on each (or some) elements.
If there are no singularities inside the solution domain or the boundary thereof, then the conver-
gence rate is of exponential form, i.e.

∥e∥E(Ω) ≤
k

exp(γNθ)
, (3.16)

where k, γ and θ are positive constants, θ ≥ 1
2 .

This exponential convergence rate estimate only holds as long as uex is analytic. If we consider
singularities, the convergence rate becomes algebraic again.
In such cases β in (3.14) is

β =
1
2

λ,
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if the singularity is in the domain or
β = λ,

if the singularity is on a boundary node, [SB91, Yos12].
The third refinement strategy4, the hp-refinement, is a combination of both. Optimal meshes
are refined to the singularities. The polynomial degree of the element is raised the further we
are away from the singularity. The reasoning behind this is very simple. We have seen that
we can drop the dependency of the smoothness if we refine heavily towards the singularities.
Furthermore, with raising distance towards the singularity, we expect that the exact solution is
smooth in these parts. See e.g. [GB86a, GB86b, SB91, Sch98, Mel02] for more details.
These relations are collected in table 3.1, where the categories are defined as follows:

• Category A: uex is analytic everywhere on the domain including the boundaries

• Category B: uex is analytic everywhere including the boundaries, except a finite number of
points.

• Category C: Neither A nor B.

Category h p hp

A
algebraic
β = p/2

exponential
θ ≥ 1/2

exponential
θ ≥ 1/2

B
algebraic

β = 1
2 min(p, λ)

algebraic
β = λ

exponential
θ ≥ 1/3

C
algebraic

β > 0
algebraic

β > 0
algebraic5

Table 3.1.: Asymptotic rate of convergence in 2 dimensions for H1(Ω), see [SB91, GB86c, Sch98]
and also [Yos12]

Similar results can be achieved in 3D, although now different types of singularities need to be
investigated. We refer to [SA96] and references thereof. For the case of singular edges, see [SS18].
For extension to optimal control, see [WW16].
Optimal (or exponential) convergence rates have not been proved yet for the case of H(curl) or
H(div) conforming elements, but have been seen in many numerical works, see e.g. [Dem06,
DKP+08].
Since the convergence rates depend on the kind of singularity, it is not trivial to define those for
H(curl) or H(div) conforming elements, and neither to predict them.
In 2D and in the case of H(curl) conforming elements, optimal p-interpolation errors can be found
in [BH09]. See also [Né86] and [Mon03] for the classical interpolation error results by Nédélec.
The hp-refinement can be done in adaptive fashion as well. See e.g. [MW01] for a residual error
estimator. For a survey of different hp-refinement schemes and their comparison, see [MM14].
In the next section we will discuss different basis functions for all kind of elements in 2D and 3D,
including their geometrical properties.

4Possible other refinement strategies, like the r-refinement, where mesh points are moved in each step, are not con-
sidered.

5Faster rates are possible, if one can use the structure of uex
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4. A list of basis functions

Given a functional space, e.g. H1, and a conforming discrete space Wp of order p, denote by S p,l

the basis of shape functions spanning the discrete space. It is hierarchical if S p,l ⊂ S p+1,l . We
enrich a hierarchical space by adding more shape functions. For elements of different order pl

at least some polynomials will match. For the p-adaptivity, this is an important feature, where
different polynomial orders on neighbouring elements can happen. In the following, we will
summarize the compatibility ideas as collected in [FKDN15]. But note that most of this are to be
found e.g. in more detail in [SB91, SK95, AC01, BS06, BP07, Zag06, BPZ12, BPZ13b] and compu-
tational details can e.g. be found in [KS13, Dem06, vSD04].
It is of upmost importance for a conforming discrete space that the orientation of edge functions
on adjacent elements point in the same direction. Broadly speaking, this can be done by a trans-
formation with −1, where global and local orientation does not match, see e.g. [SK95, BS06]. An
alternative approach is to include the orientation directly into the shape functions, such functions
are called orientation embedded, see [GD10, FKDN15].
In the following, we will omit the problem of orientation to not overcomplicate notation.
The notation in the following chapter is as follows: We denote by u a function in H1, by v a
function in H(curl) and by w a function in H(div). With the symbols □,△ we denote, that a func-
tion is based on a quadrilateral or a triangle. By ■,▲, we denote a hexahedron or a tetrahedron,
respectively. For example, the function v△ij is a H(curl) conforming basis function on a triangle.

4.1. Traces and compatibility

Our shape functions need to fulfil certain conditions for global continuity depending on the func-
tional space. Therefore, each energy space has a different definition of the boundary trace. Those
read on a polyhedral element:

• The H1 trace is the functional value at the boundary of the element. It may take values at
the vertices, edges and in 3D at the faces.

• The trace of H(curl) is the tangential component of the vector valued functions at the ele-
ment boundary. Only edge and face functions need to be considered, since vertex functions
have no concept of trace.

• Traces of the H(div) are the normal component of vector valued functions at the boundary.
Although edge traces have a definition in 2D, they don’t exist in 3D. In 3D only face traces
are considered.

To keep notation simple, we can embed shape functions in a dimensional hierarchy. This means
e.g. the trace of a 2D H1-edge function is a 1D H1-shape functions. Furthermore, the boundary
trace needs to be continuous to the neighbouring element. Depending on the spatial dimension,
we only consider the following functions in each dimension:
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1. 1D: vertex and edge functions,

2. 2D: vertex, edge and face functions,

3. 3D: vertex, edge, face and interior functions.

To fulfil compatibility, shape functions need to have certain basic properties.

Shape functions in 1D

Vertex functions: The vertex functions need to vanish on the unassociated vertex and take the
value 1 at their respective vertex. To guarantee hierarchy in p, they are restricted to the linear
case.
Edge functions: Edge functions are zero on both vertices and are polynomials of order p in the
interior of the segment. They are also called bubble functions.

Shape function in 2D

Shape function for H1 in 2D

Quadrilateral and triangle are the only two 2D elements which we discuss. Their boundary is
decomposed in vertices and edges.
Vertex functions: Independent of the element type, the vertex functions vanish on all unassociated
vertices and edges. The trace of a vertex function on an adjacent edge should again be the 1D
vertex function. They have a bilinear decay on quadrilaterals and a linear decay for a triangle.
Edge functions: Edge functions are designed such that they vanish on all other edges and uncon-
nected vertices. The trace of an edge function should again be a 1D edge function. Furthermore,
they should be designed to have a linear decay for the quadrilateral element, though the triangle
is more complicated.
Face functions: Face functions vanish on the boundary of the element and are thus naturally com-
patible in 2D.

Shape function for H(curl) in 2D

As mentioned before H(curl)-function have no notion of vertex functions, thus only edge and face
functions are relevant.
Edge functions: The edge functions must be constructed such that the trace of an edge function
vanish on all other edges. Additionally, the trace of the edge function should be a 1D L2 edge
function of order p. Each of the components should decay linearly on the quadrilateral or in the
same order as in the H1-case on the triangle.
Face functions: The face functions have a vanishing tangential trace on all edges.

Shape function for H(div) in 2D

The H(div) basis functions are just the rotation of the corresponding H(curl) functions.

38



Shape functions in 3D

Shape functions for H1 in 3D

We will only discuss the hexahedron and the tetrahedron. For the prism and pyramid, see Nigam
and Phillips [NP12] or Fuentes et al. [FKDN15]. The hexahedron and tetrahedron have been
thoroughly investigated in [KS13, Zag06, BP07].
Vertex function: Again all vertex function vanish on all other unassociated vertices, edges, and
faces. Additionally, the trace of a vertex function over an adjoined face, should be a 2D H1 vertex
function.
Edge function: Edge functions vanish on all other edges and disjointed faces. The trace of an edge
function should be a 2D edge function.
Face function: Face functions vanish on all other faces, and the trace of the face function is again a
2D face function.
Interior function: Interior functions only takes values in the interior of the element and vanish on
the boundary.

Shape functions for H(curl) in 3D

Edge functions: In 3D the tangential trace vanishes on all other edges and disjointed faces. On the
associated edge the trace is a 2D H(curl) functions, except for some orientation factor.
Face functions: The tangential trace of a face function vanishes on all other faces. The trace on the
associated face is exactly a 2D function, except for some orientation.
Interior functions: Interior functions have a vanishing trace on all faces.

Shape functions for H(div) in 3D

Face functions: The normal trace of the face function vanishes on all other faces and the trace on
the associated edge is a L2 face function, except for some orientation.
Interior functions: The interior functions have a vanishing normal component on all faces.

4.2. Collection of shape functions

Instead of defining all those shape functions on an arbitrary element, one usually uses a pullback
to a master element. This is usually done by an affine linear transformation, but in the case of
H(curl) or H(div) functions one needs to apply a Piola transformation, see section 3.3.1.
In the following, we will collect shape functions on their respective master element. Usually these
elements are defined by their barycentric coordinates, see e.g. [Zag06, Dem06, FKDN15]. But this
complicates the application of the techniques of section 5.3, thus we will use the non-barycentric
variant.
Furthermore, let ∇ denote the gradient as usual, i.e. for a function

f (⃗x) =
n

∏
i=1

fi (⃗x), n ∈ N (4.1)
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the gradient can be written out as

∇ f =
n

∑
k=1

(
n

∏
i=1
i ̸=k

fi (⃗x))∇ fk (⃗x).

In the context of H(div) and H(curl) functions, we apply a slightly modified gradient operator.

Definition 4.2.1
Let f : Rd → R be the product of multiple functions, i.e. f = Πn

i=1 fi, n ∈ N. Then, we
introduce

∇∇l( f (⃗x)) :=
n

∑
k=1
k ̸=l

(
n

∏
i=1
i ̸=k

fi (⃗x))∇ fk (⃗x) − (
n

∏
i=1
i ̸=l

fi (⃗x))∇ fl (⃗x).

In short, we defined a differential operator, which is just the gradient except for a sign change at
the l-th part of the sum. E.g. let f = f1 · f2, then ∇∇2 f = (∇ f1) f2 − f1(∇ f2).

Corollary 4.2.1
For a function f : Ω ⊂ R2 → R as in (4.1) holds

curl(∇∇l( f (⃗x))) = −2 Curl(
n

∏
i=1
i ̸=l

fi (⃗x))∇ fl (⃗x)

Proof. We rewrite the equation as follows

curl(∇∇l( f (⃗x))) = curl

∇ f (⃗x) − 2(
n

∏
i=1
i ̸=l

fi (⃗x))∇ fl (⃗x)

 = −2 curl(
n

∏
i=1
i ̸=l

fi (⃗x)∇ fl (⃗x)),

= −2

 d
dx2

( n

∏
i=1
i ̸=l

fi (⃗x)
d

dx1
fl (⃗x)

)
− d

dx1

( n

∏
i=1
i ̸=l

fi (⃗x)
d

dx2
fl (⃗x)

)
= −2

 d
dx2

( n

∏
i=1
i ̸=l

fi (⃗x)
)

d
dx1

fl (⃗x) − d
dx1

( n

∏
i=1
i ̸=l

fi (⃗x)
)

d
dx2

fl (⃗x)


= −2 Curl(

n

∏
i=1
i ̸=l

fi (⃗x))∇ fl (⃗x).

A similar result can be given for R3.
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Corollary 4.2.2
For a function f (⃗x) : Ω ⊂ R3 → R as in (4.1) holds

curl(∇∇l( f (⃗x))) = −2 curl
( z

∏
i=1
i ̸=l

fi (⃗x)∇ fl (⃗x)
)

Proof. The proof follows as in the 2D-case.

Remark 3
We can write corollary 4.2.2 out as

−2 curl
( z

∏
i=1
i ̸=l

fi (⃗x)∇ fl (⃗x)
)

=



d
dx2

z
∏
i=1
i ̸=l

fi (⃗x) d
dx3

fl (⃗x) − d
dx3

z
∏
i=1
i ̸=l

fi (⃗x) d
dx2

fl (⃗x)

d
dx3

z
∏
i=1
i ̸=l

fi (⃗x) d
dx1

fl (⃗x) − d
dx1

z
∏
i=1
i ̸=l

fi (⃗x) d
dx3

fl (⃗x)

d
dx1

z
∏
i=1
i ̸=l

fi (⃗x) d
dx2

fl (⃗x) − d
dx2

z
∏
i=1
i ̸=l

fi (⃗x) d
dx1

fl (⃗x)


.

4.2.1. H1 on a segment, quadrilateral, and hexahedron

As mentioned in the beginning of the last section, we define vertex function as functions with
a linear decay towards the unassociated vertex, i.e. hat functions. For the edge functions, we
choose integrated Legendre polynomials, since the derivatives are Legendre polynomials and the
integrated Legendre polynomials are naturally zero at the vertices. See e.g. [SB91].

Table 4.2.1: H1 element on the segment

Let the master element be I = (−1, 1). We define the affine pair of coordinates by

λ0(s) =
1 + s

2
, λ1(s) =

1 − s
2

.

Vertex functions

uv
1(x) = λ0(x), uv

2(x) = λ1(x)

Edge functions

uE
i (x) = L̂i (x) , 2 ≤ i ≤ p.

Remark 4
For the edge functions x could be replaced by an auxiliary function λ⃗ab(x) which involves the
local ordering from the vertex with number a to the vertex with number b. This simplifies imple-
mentations routines, see [GD10, FKDN15] for details.

The sparsity pattern of the associated element mass and stiffness matrix can easily be determined.
Recall that

(2i − 1)L̂i(x) = Li(x) − Li−2(x), for i ≥ 2 (4.2)
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Then the following corollary is easily proven, see [SB91].

Corollary 4.2.3

Let I = (0, 1) and consider u⃗e =
(

ue
2(x), . . . , ue

p(x)
)⊤

. Then

Me
i,j =

∫ 1

0
ue

i (x)ue
j (x) dx = 0, if i ̸= j or |i − j| ̸= 2 ∀i, j ≥ 2

and

Ke
i,j =

∫ 1

0

d
dx

ue
i (x)

d
dx

ue
j (x) dx = 0, if i ̸= j ∀i, j ≥ 2.

The first part is shown by using (4.2) and the second equation is just the Legendre orthogonality.
This construction can be extended to the quadrilateral by applying a tensor product structure. We
now define face functions, see table table 4.2.2 for the collected list of functions.

Table 4.2.2: H1 element on a quadrilateral

Let the master element be □ = (−1, 1)2. Define the affine pair:

λ0(s) =
1 + s

2
, λ1(s) =

1 − s
2

,

Vertex functions

uv
a,b(x1, x2) = λa(x1)λb(x2) for a = 0, 1 and b = 0, 1.

Edge functions

For i = 2, . . . , p

u□,E
i,c (x1, x2) = λc(xa) L̂i (xb) , for (a, b) = (1, 2), (2, 1)

c = 0, 1

Face functions

For 2 ≤ i, k ≤ p
u□

ik(x1, x2) = L̂i(x1)L̂k(x2),

To compute the sparsity pattern of the respective shape functions on the master element use again
(4.2). We will only state the sparsity pattern of the face functions, but similar corollaries can easily
be computed for the edge-edge and the edge-face blocks, see [SB91].

42



Corollary 4.2.4
Let □ = (−1, 1)2 be the master element. For the entries of the mass matrix w.r.t. the face
functions, holds

Mi,j =
∫

Q
u□

i,k(x1, x2)u□
j,l(x1, x2) dx1 dx2 = 0 if either |i − j| ̸= 0, 2,

or |k − l| ̸= 0, 2,

for all i, j, k, l ≥ 2.
Furthermore, let C ∈ R2×2. For the face entries of the element stiffness matrix

Ki,k,j,l =
∫

Q
(C∇u□

i,k(x1, x2)) · ∇u□
j,l(x1, x2) dx1 dx2

holds
Ki,k,j,l = 0 if either |i − j| ≥ 0, 2,

or |k − l| ≥ 0, 2.

We follow the same principle for 3D and define the shape functions by a tensorial product.

Table 4.2.3: H1 element on a hexahedron

Let the master element be ■ = (−1, 1)3. Define the affine pair

λ0(s) =
1 + s

2
, λ1(s) =

1 − s
2

Vertex functions:

For i = 1, . . . , 8

uv
i (x1, x2, x3) = λα(x1)λβ(x2)λγ(x3), α, β, γ = 0, 1

Edge functions:

For i = 1, . . . , p − 1

u□,E
i,α,β(x1, x2, x3) = λβ(xa)L̂i(xb)λα(xc), α, β = 0, 1

(a, b, c) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

Face functions:

For i, j = 2, . . . , p

u□
ij,α(x1, x2, x3) = λα(xa)L̂i(xb)L̂j(xc), α = 0, 1

(a, b, c) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

Interior functions:

For i, j, k = 2, . . . , p
u■

i,j,k(x1, x2, x3) = L̂i(x1)L̂j(x2)L̂k(x3)
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The derivation of the sparsity pattern is analogously to the previous cases.

4.2.2. H(curl) and H(div) on a quadrilateral

As we have seen in the last chapter, we have two different choices for the discretization of H(curl)
functions: Functions of Nédélec’s first or second family. Since we didn’t discuss the respective
spaces for the quadrilateral, we will keep the explanation short.
There are two popular choices for hierarchical basis functions based on orthogonal polynomials.
The first one is e.g. discussed in the dissertation of Sabine Zaglmayr [Zag06], and corresponds
to the second family of Nédélec’s functions. The second choice is the orientation embedded ver-
sion, as presented e.g. by Fuentes et al. [FKDN15], this is purely based on the first family of
Nédélec’s functions. The advantage of the first choice is that part of the shape functions are curl-
or divergence-free and the rest of the stiffness matrix results in an almost diagonal matrix. Since
they are part of Nédélec’s second family, one needs to be careful regarding the discrete De-Rham
complex, see [Mon03, Dem06]. On the other hand, the advantage of the orientation embedded
shape functions is the easy handling of local orientation and the dimensional hierarchy. We will
focus on the first type of functions, which we will call sparsity optimized.
The choice of integrated Legendre polynomials or the gradient thereof goes back to [AC01].

Table 4.2.4: Sparsity optimized H(curl) shape functions on the quadrilateral

Let □ = (−1, 1)2 be the master element and uv
a,b, uE

i,c, u□
ik be the H1 shape functions on the

quadrilateral.
Define the auxiliary function

µ⃗01(s) = λ1(s)∇λ0(s) − λ0(s)∇λ1(s).

Edge functions

Lowest-order edge function:

vN0
a,b (x1, x2) = λc(xb )⃗µ01(xa), for (a, b) ∈ {(1, 2), (2, 1)}

c = 0, 1

Higher-order edge functions: For 2 ≤ i ≤ p

v□,E
i,c (x1, x2) = ∇u□,E

i,c (xa, xb) for (a, b) ∈ {(1, 2), (2, 1)}

c = 0, 1

Face functions:

For 2 ≤ i, j ≤ p
v□,I

ik (x1, x2) = ∇u□
ij (x1, x2)

v□,I I
ik (x1, x2) = ∇∇2u□

ij (x1, x2)

For 2 ≤ i ≤ p
v□,I I I

i (x1, x2) = L̂i(x2)∇x1, v□,I I I
i+p (x1, x2) = L̂i(x1)∇x2.
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Note that ∇∇2u□
ik =

(
∇L̂i(x1)

)
L̂i(x2) − L̂i+1(x1)

(
∇L̂i(x2)

)
.

The sparsity pattern of the blocks in the mass matrix are the same as for the stiffness matrix of the
H1 case on the quadrilateral.
On the other hand the respective stiffness matrix vanishes for v□,E

i and v□,I
ik since

curl(∇( f (⃗x)) = 0,

for any function f (⃗x) by definition of the differential operators. For the remaining functions vI I
ik

and vI I I
i the resulting stiffness matrix is a diagonal matrix, since

curl(v□,I I
ik )(x1, x2) = −2Li−1(x1)Lj−1(x2),

due to corollary 4.2.1 and analogously for vI I I
i .

The H(div) basis functions in 2D are just a 90 degree rotated version of the H(curl) functions, i.e.

wi =

(
0 1
−1 0

)
vi.

An alternative set of face-based functions can be given by

v□,I
ij =

(
0

L̂j(x1)Li(x2)

)

v□,I I
ij =

(
L̂j(x2)Li(x1)

0

)
,

which is a special case of the orientation embedded variant by [FKDN15].
Note that the sparsity optimized functions can be interpreted as a linear combination of this al-
ternative set. This fact will play a crucial role in the derivation of dual function in section 6.1.

4.2.3. H(curl) and H(div) on a hexahedron

As in the quadrilateral case, we state the sparsity optimized variant by Zaglmayr [Zag06]. Again,
this corresponds to the second family of Nédélec’s functions. Similar to the two-dimensional case,
the sparsity optimized variant is a linear combination of an alternative simpler set. An important
implementational detail is that all edge and face functions can be calculated by already imple-
mented 2D functions.
Furthermore, a big advantage of the sparsity optimized variant is that part of the functions are
again curl-free. We recall that we enriched our discrete H(curl) space by the gradients, as pre-
sented by Nédélec. Those gradients are obviously curl-free. A similar behaviour is achieved for
the second discrete divergence conforming H(div) space of Nédélec. We enrich the space by the
curl of functions from the H(curl) space, those are naturally divergence-free.
This curl or divergence freedom massively reduces the needed degrees of freedom for the ele-
ment sparsity matrix.
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Table 4.2.5: Sparsity optimized H(curl) shape functions on the hexahedron

Let ■ = (−1, 1)3 be the master element and uv
a,b, uE

i , u□
ik and u■

ijk be the H1 shape functions
on the hexahedron, see table 4.2.3.
Define the auxiliary function

µ⃗01(s) = λ1(s)∇λ0(s) − λ0(s)∇λ1(s).

Edge functions

Lowest-order edge function:

For (a, b, c) = (1, 2, 3), (2, 3, 1), (3, 1, 2) and d = 0, 1, e = 0, 1

vN0
a,b = λe(xc)λd(xb )⃗µ01(xa)

Higher-order edge functions:

For 2 ≤ i ≤ p

v□,E
i,α,β(x1, x2, x3) = ∇u□,E

i,α,β(xa, xb, xc), α, β = 0, 1

(a, b, c) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

Face functions:

For 2 ≤ i, j ≤ p

v□,I
ij,α (x1, x2, x3) = ∇u□

ij,α(xa, xb, xc), for α = 0, 1

v□,I I
ij,α (x1, x2, x3) = ∇∇2u□

ij,α(xa, xb, xc), and (a, b, c) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

For 2 ≤ i ≤ p

v□,I I I
i,α (x1, x2, x3) = L̂i+1(xa)λα(xb)∇µ⃗01(xc), for α = 0, 1

and (a, b, c) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

Interior functions:

For 2 ≤ i, j, k ≤ p
v■,I

ijk (x1, x2, x3) = ∇u■
ijk(x1, x2, x3)

v■,I I
ijk (x1, x2, x3) = ∇∇2u■

ijk(x1, x2, x3)

v■,I I I
ijk (x1, x2, x3) = ∇∇3u■

ijk(x1, x2, x3)

For 2 ≤ i, j ≤ p

v■,IV
ij (x1, x2, x3) = L̂i(xa)L̂j(xb)∇xc, for (a, b, c) = {(1, 2, 3), (2, 3, 1), (3, 2, 1)}

For the case of H(div) on the hexahedron we apply similar arguments. Due to the De-Rham-
complex, we derive H(div) basis functions by application of the curl(·) differential operator only
to the non-curl-free H(curl) basis functions, since the gradients vanish under the curl operator.
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As we have seen for the H(curl) basis functions, we need to fill up our polynomial space to gain
the full order of the interpolation error1. This is described in the following: The type II basis
functions of the H(curl) are given in the sparsity optimized case by

v■,I I
ijk = (∇L̂i(x))L̂j(y)L̂k(z) − L̂i(x)(∇L̂j(y))L̂k(z) + L̂i(x)L̂j(y)(∇L̂k(z))

If we apply the curl-operator we get

curl(v■,I I
ijk ) = curl(Li−1(x)L̂j(y)L̂k(z)ex) − curl(L̂i(x)Lj−1(y)L̂k(z)ey) + curl(L̂i(x)L̂j(x)Lk−1(z)ez)

=Li−1(x)L̂j(y)Lk−1(z)ey − Li−1(x)Lj−1(y)L̂k(z)ez + L̂i(x)Lj−1(y)Lk−1(z)ey

− Li−1(x)Lj−1(y)L̂k(z)ez + L̂i(x)Lj−1(y)Lk−1(z)ex − Li−1(x)L̂j(y)Lk−1(z)ey

=2 L̂i(x)Lj−1(y)Lk−1(z)ex − 2 Li−1(x)Lj−1 L̂k(z)ez.

Analogously we get the second type of divergence-free functions by

curl(v□,I I I
ijk ) = 2 Li−1(x)L̂j(y)Lk−1(z)ey − 2 Li−1(x)Lj−1(y)L̂k(z)ez.

To complete the space we introduce a modified curl operator for a vector function v : Ω → R3,
i.e.

c̃url(v) :=
(

∂v3

∂x2
+

∂v2

∂x3
,

∂v1

∂x3
+

∂v3

∂x1
,

∂v2

∂x1
+

∂v1

∂x2

)⊤
.

Applied to our curl-free functions v□,I
ijk yields

c̃url(v□,I
ijk ) = L̂i(x)Lj−1(y)Lk−1(z) ex + Li−1(x)L̂j(y)Lk−1(z) ey + Li−1(x)Lj−1(y)L̂k(z) ez,

which are obviously linear independent of our introduced divergence-free functions. We fill the
space with the remaining degrees of freedom by setting i, j or k equal to 1 and applying either the
curl or the c̃url operator. This corresponds to Nédélec’s second family of divergence conforming
elements.

1For an analogous result to (3.13), see [Mon03]
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Table 4.2.6: Sparsity optimized H(div) shape functions on the hexahedron

Let ■ = (−1, 1)3 be the master element and vv
a,b, vE

i , v□ik and v■i,j,k be the H(curl) shape func-
tions on the hexahedron, see table 4.2.5.
Define the auxiliary function

µ⃗01(s) = λ1(s)∇λ0(s) − λ0(s)∇λ1(s).

Face functions:

Lowest-order Raviart Thomas RT 0 functions

wRT 0
a,c (x1, x2, x3) = −(∇λc(xa))xa, for a = 1, 2, 3 and c = 0, 1.

Higher-order face functions: For 2 ≤ i, j ≤ p

w□,I
ij,α (x1, x2, x3) = curl

(
v□,I I

ij,α (xa, xb, xc)
)

, (a, b, c) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

For 2 ≤ i ≤ p

w□,I I
i,α (x1, x2, x3) = curl

(
v□,I I I

i,α (xa, xb, xc)
)

, (a, b, c) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

w□,I I
i+p,α(x1, x2, x3) = curl

(
v□,I I I

i,α (xa, xb, xc)
)

, α = 0, 1

Interior functions:

Divergence-free functions:
For 2 ≤ i, j, k ≤ p

w■,Ia
ijk (x1, x2, x3) = curl

(
v■,I I

ijk (x1, x2, x3)
)

w■,Ib
ijk (x1, x2, x3) = curl

(
v■,I I I

ijk (x1, x2, x3)
)

For 2 ≤ i, j ≤ p

w■,Ic
ij (x1, x2, x3) = curl

(
v□,IV

ij (xa, xb, xc)
)

, for (a, b, c) = {(1, 2, 3), (2, 3, 1), (3, 2, 1)}

Non-divergence-free functions:
For 2 ≤ i, j, k ≤ p

w■,I Ia
ijk (x1, x2, x3) = c̃url

(
v■,I

ijk (x1, x2, x3)
)

For 2 ≤ i, j ≤ p

w■,I Ib
ij (x1, x2, x3) = c̃url

(
v□,IV

ij (xa, xb, xc)
)

, for (a, b, c) = {(1, 2, 3), (2, 3, 1), (3, 2, 1)}

For 2 ≤ i ≤ p

w■,I I I
i (x1, x2, x3) = c̃url

(
v□,I I I

i,0 (xa, xb, xc)
)

, for (a, b, c) = {(1, 2, 3), (2, 3, 1), (3, 2, 1)}
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(0, 1)
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η = 2x

1−y
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(1, 1)(−1, 1)

y

η

Figure 4.1.: Duffy transformation

4.2.4. H1 on a triangle

Although a triangle does not inhibit a natural tensorial structure, it has as a similar structure.
Following Dubiner [Dub91] and Karniadakis and Sherwin [SK95] we map a triangle to a quadri-
lateral. This transformation is called Duffy-transformation [Duf82]. That this a good-natured
transformation, see e.g. [EM05].
Consider the reference element △ with vertices (−1, −1), (1, −1) and (0, 1). Then the Duffy trans-
formation is given by

D2 : △ → □

(x, y) 7→ (η, y)
(4.3)

where η = 2x
1−y , see Figure 4.1.

High order L2 basis functions on a triangle were found first by Dubiner [Dub91] by application of
the Duffy transformation. Note that, this basis functions are identical to the classical multivariate
orthogonal polynomials found by Proriol [Pro57]. A modification from L2 to H1 was found by
Karniadakis and Sherwin [SK95]. A variant of this basis was given by Beuchler and Schöberl
[BS06]. But it was later shown by Beuchler and Pillwein [BP08] that the basis by Karniadakis and
Sherwin is optimal in the sense of sparsity. These functions are given in table 4.2.7.

0 50 100 150 200

nz = 3085

0

50

100

150

200

(a) Mass matrix, p = 20

0 50 100 150 200

nz = 4501

0

50

100

150

200

(b) Stiffness matrix, p = 20

Figure 4.2.: Sparsity pattern of local triangular element matrix
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Table 4.2.7: H1-basis on a triangle

Let △ be the reference triangle with vertices (−1, −1), (1, −1) and (0, 1) and edges E1, E2, E3.
The barycentric coordinates are then given by

λ0(x, y) =
1 − 2x − y

4
, λ1(x, y) =

1 + 2x − y
4

, λ3(x, y) =
1 + y

2

Vertex functions

u△,v
a (x, y) = λa, a = 0, 1, 2

Edge functions

For 2 ≤ i ≤ p :

u△,E1
i (x, y) = L̂i

(
2x

1 − y

)(
1 − y

2

)i

u△,E2
i (x, y) =

1
2

(
1 − 2x

1 − y

)
L̂i(y),

u△,E3
i (x, y) =

1
2

(
1 +

2x
1 − y

)
L̂i(y)

Face functions

For i ≥ 2, j ≥ 1 and i + j ≤ p :

u△,I
ij (x, y) = L̂i

(
2x

1 − y

)(
1 − y

2

)i

P̂2i
j (y) (4.4)

Note that L̂i

(
2x

1−y

) (
2x

1−y

)i
is a polynomial of order i. Furthermore u△,E2

i and u△,E3
i are also poly-

nomials of order i, which can be shown by(
1 ± 2x

1 − y

)
L̂i(y) =

(
1 ± 2x

1 − y

)
y − 12

2(i − 1)
P(1,1)

i−2 = (y − 1 ∓ 2x)(1 + y)P(1,1)
i−2 (y).

To show that all edges have the same trace insert η = 2x
1−y = ±1 or y = −1.

An alternative set of edge functions can be given by using barycentric (or alternatively area)
coordinates. For an edge Ek = [λe1 , λe2] those functions are given by

u△,Ek
i = L̂i

(
λe2 − λe1

λe2 + λe1

)
(λe2 + λe1)

i , (4.5)

and are applied e.g. in [FKDN15] and [BPSZ12]. An example of such an implementation can
be found in Ngsolve [Sch14]. Those edge functions have the advantage that they are simpler to
implement, since any change in the edge orientation can be handled by swapping the order of the
vertices.
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The gradient of u△,I
ij is given by

∇u△,I
ij (x, y) =

 Li−1

(
2x

1−y

) (
1−y

2

)i−1
P̂2i

j (y)

1
2 Li−2

(
2x

1−y

) (
1−y

2

)i−1
P̂2i

j (y) + L̂i

(
2x

1−y

) (
1−y

2

)i
P(2i,0)

j−1 (y)

 . (4.6)

The first component is straight forward. The second component can be derived by a classical
differential recurrence relation ([Rai71] eq. 87.6), i.e.

(x2 − 1)
d
dx

Ln−1(x) = nxLn(x) − nLn−1(x), (4.7)

and thus

d
dy

L̂j

(
2x

1 − y

)(
1 − y

2

)i

=
1
2

(
2x

1 − y

)
Li−1

(
2x

1 − y

)(
1 − y

2

)i−1

− i
2

L̂i

(
2x

1 − y

)(
1 − y

2

)i−1

=
1
2

ηLi−1(η)
(

1 − y
2

)i−1

− η2 − 1
2(i − 1)

d
dη

Li−1(η)
(

1 − y
2

)i−1

=
1
2

Li−2(η)
(

1 − y
2

)i−1

,

where η =
(

2x
1−y

)
, see also [BS06].

First sparsity results were given by Karniadakis and Sherwin in [SK95]. The complete sparsity
pattern was proven by Beuchler and Schöberl [BS06], for a slightly suboptimal basis. The sparsity
results for the optimal basis were given in [BP08], see also [BPSZ12]. This results can be proven
similar to quadrilateral case, but more orthogonality condition need to be checked. Alternatively,
one can do this by symbolic software as e.g. described in [BP07].
As in the quadrilateral case we denote by MI the interior block of the mass matrix, i.e.

MI
ij,kl =

[∫
△

u△
ij (x, y) · u△

kl (x, y)d(x, y)
]

ij,kl
, (4.8)

and by K I the interior block of the stiffness matrix, i.e.

K I
ij,kl =

[∫
△
∇u△

ij (x, y) · D∇u△
kl (x, y)d(x, y)

]
ij,kl

, D ∈ R2×2 and constant. (4.9)

Lemma 4.2.5 (Sparsity pattern on the reference triangle)
Let u△

ij (x, y) be defined as in (4.4) for i ≥ 2, j ≥ 1, i + j ≤ p. The matrices MI and K I have
O(p2) non-zero entries. More precisely

MI
ij,kl = 0 if |i − k|> 2 or |i + j − k − l|> 3

and
K I

ij,kl = 0 if |i − k|> 2 or |i + j − k − l|> 1

The proof is based on [BS06] and is given in [BP08]. The sparsity pattern can be seen in Figure 4.2.
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4.2.5. H(curl) and H(div) on a triangle

The ideas from the quadrilateral case carry on to the triangular case. We define our basis func-
tions for the H(curl) by the differential operators ∇ and ∇∇, see [BPZ12] and [BPZ13b]. Keep in
mind that the application of the operator ∇∇ does not necessarily yield Nédélec functions of the
first kind. A fix for this is presented at the end of the chapter.
As in the quadrilateral case, the sparsity optimized variant has a curl-free part given by the gra-
dient. Again, the functions in H(div) in 2D are just the rotated variants of the H(curl) basis
functions.

Table 4.2.8: H(curl)-basis on a triangle

On the reference triangle △ with vertices (−1, −1), (1, −1) and (0, 1), and edges E1, E2, E3. Let

λ1(x, y) =
1 − 2x − 4

2
, λ2(x, y) =

1 + 2x − y
4

, and λ3(x, y) =
1 + y

2

Edge functions

Lowest-order functions: For (a, b) = {(1, 2), (2, 3), (3, 1)} let

v△,N0
a (x, y) = ∇(λb(x, y))λa(x, y) − λb(x, y)∇(λa(x, y))

Higher-order edge based functions: For 2 ≤ i ≤ p and m = 1, 2, 3

v△,Em
i (x, y) = ∇u△,Em

i (x, y)

Face functions

Let

fi(x, y) := L̂i

(
2x

1 − y

)(
1 − y

2

)i

gij(y) := P̂2i
j (y)

then for 2 ≤ i, 1 ≤ j and i + j ≤ p

v△,I
ij (x, y) = ∇u△,I

ij (x, y) = (∇ fi(x, y))gij(y) + fi(x, y)∇gij(y)

v△,I I
ij (x, y) = ∇∇2u△,I

ij (x, y) = (∇ fi(x, y))gij(y) − fi(x, y)∇gij(y)

v△,I I I
1j (x, y) = v△,N0

1 (x, y)P̂3
j (y)

For the sparsity pattern of the H(curl) element mass matrix we apply lemma 4.2.5. It holds that
one of the main blocks of the H(curl) mass matrix is the stiffness matrix of the H1 case. Moreover,
note that for the other blocks the change in sign of the differential operator ∇∇2, does not influence
the sparsity pattern.
The stiffness matrix has only few non-zero blocks, since curl(∇(·)) = 0 per definition. For the curl
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z
y

x

z
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Figure 4.3.: Reference tetrahedron with edge notation on the left and face notation on the right

of type II functions follows with corollary 4.2.1

curl2 ∇∇u△
ij = −2 curl(gi(x, y))∇hij(y)

= −2

 Li−2

(
2x

1−y

) (
1−y

2

)i−1

−Li−1

(
2x

1−y

) (
1−y

2

)i−1


⊤(

0
P(2i,0)

j−1 (y)

)

= 2Li−1

(
2x

1 − y

)(
1 − y

2

)i−1

P(2i,0)
j−1 (y).

(4.10)

Thus the remaining non-zero blocks yield a tridiagonal matrix. If we choose h̃j(y) = P̂2i−1
j (y)

instead of hj(y), we get a diagonal matrix. But this yields a worse sparsity pattern of the mass
matrix and more importantly we need the choice of at least 2i as Jacobi index due to technical
reasons in section 6.1.

4.2.6. H1 on a tetrahedon

Let the reference element tetrahedron ▲ be defined by the vertices (−1, −1, −1), (1, −1, −1), (0, 1, −1)
and (0, 0, 1), see Figure 4.3. On the left-hand side we denoted the numeration of edges, while on
the right-hand side the face numeration is denoted. Furthermore, integration on the tetrahedron
is similar to the triangle. First transform the tetrahedron ▲ to the reference hexahedron ■, then
use the tensorial structure to integrate in each coordinate dimension. The Duffy transformation
on the tetrahedron, see Figure 4.4, is given by

D3 : ▲ → ■

(x, y, z) 7→ (η, χ, z),
(4.11)

where

η =
4x

1 − 2y − z

χ =
2y

1 − z
.

The functional determinant of the Jacobian of the Duffy transformation is

det(dD3) =
1 − χ

2

(
1 − z

2

)2

.
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Again, this needs to be considered for the optimal Jacobi indices. The here used construction of

(-1,-1,-1)

(0,0,1)

(1,-1,-1)

(0,1,-1)

D(x, y, z)

(-1,-1,-1)

(-1,1,-1)

(-1,-1,1)

(-1,1,1)

(1,-1,-1)

(1,1,-1)

(1,-1,1)

(1,1,1)

x

z
y

η

z
χ

Figure 4.4.: Duffy transformation in 3D

the H1 conforming basis was given in [BP07], but see also [KS13]. Note that the definitions in
the edge and face functions make sense, since the integrated Legendre polynomials removes the
singularities. For example,(

1 − 2y
1 − z

)
L̂i(z) =

(
1 − 2y

1 − z

)
1 − z2

2(i − 1)
P(1,1)

i−2 (z),

and so on.
By using the tensorial structure and properties of the orthogonal polynomial, one can again de-
termine the sparsity pattern. This computation gets very tedious for the stiffness matrix, and is
usually done by computer algebra, like mathematica [Inc]. The relevant results can be found in
[BP07, BP08]. In Figure 4.5 the sparsity pattern of the tetrahedron can be found. Furthermore, in
appendix A.2 we collected some partial sparsity results, which will be relevant in section 5.3.
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Table 4.2.9: H1-basis on a tetrahedron

Let ▲ be the reference tetrahedron with vertices (−1, −1, −1), (1, −1, −1), (0, 1, −1) and (0, 0, 1).
Denote by E1, . . . , E6 and F1, . . . , F4 the edges and the faces, respectively, see Figure 4.3.
The barycentric coordinates are then given by

λ0/1(x, y, z) =
1 ± 4x − 2y − z

4
, λ2(x, y, z) =

1 + 2y − z
2

, λ3(x, y, z) =
1 + z

2

Vertex functions

u▲,v
a (x, y, z) = λa, a = 0, 1, 2, 3

Edge functions

For 2 ≤ i ≤ p :

u▲,E1
i (x, y, z) = L̂i

(
4x

1 − 2y − z

)(
1 − 2y − z

4

)i

u
▲,E2/3
i (x, y, z) =

1
2

(
1 ± 4x

1 − 2y − z

)
L̂i

(
2y

1 − z

)(
1 − z

2

)i

,

u
▲,E4/5
i (x, y, z) =

1
4

(
1 ± 4x

1 − 2y − z

)(
1 − 2y

1 − z

)
L̂i(z)

u▲,E6
i (x, y, z) =

1
2

(
1 +

2y
1 − z

)
L̂i(z)

Face functions

For i ≥ 2, j ≥ 1 and i + j ≤ p :

u▲,F1
ij (x, y, z) = L̂i

(
4x

1 − 2y − z

)(
1 − 2y − z

4

)i

P̂2i
j

(
2y

1 − z

)(
1 − z

2

)j

u
▲,F2/3
ij (x, y, z) =

1
4

(
1 ± 4x

1 − 2y − z

)(
1 − 2y

1 − z

)
L̂i

(
2y

1 − z

)(
1 − z

2

)i

P̂2i
j (z)

u▲,F4
ij (x, y, z) = L̂i

(
4x

1 − 2y − z

)(
1 − 2y − z

4

)i

P̂2i
j (z)

Interior functions

For i = j + k ≤ p and i ≤ 2, j, k ≥ 1 :

u▲,I
ijk (x, y, z) = L̂i

(
4x

1 − 2y − z

)(
1 − 2y − z

4

)i

P̂2i
j

(
2y

1 − z

)(
1 − z

2

)i

P̂2i+2j
k (z)

Again an alternative set of edge and face functions can be defined by the barycentric coordinates,
see e.g. [BPSZ12, FKDN15]. Although they are simpler to implement than the given edge func-
tions above, they do not exhibit the same kind of underlying orthogonal structure2. This kind of
structure will again be relevant in section 5.3.

2Additionally, they have a slightly worse element condition number.
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On the other hand, for the here presented version of edge and face functions, the inclusion of
orientation needs to be done very carefully.

1 500 1000 1539

1

500

1000

1539

1 500 1000 1539

1

500

1000

1539

Figure 4.5.: Sparsity pattern of the local tetrahedral mass matrix on the reference element for p =
19

4.2.7. H(curl) and H(div) on a tetrahedron

The here used concept of the basis functions for H(curl) and H(div) is based on the work by
Zaglmayr [Zag06], see also [BPZ12] and [BPZ13b]. The construction idea is the same as in the
hexahedral case. We derive interior functions by application of the differential operators ∇,∇∇2

and ∇∇3. Face and edge functions follow from the two-dimensional case. Again the operators ∇∇2

and ∇∇3 will not give us Nédélec functions of type I, but we will correct this later on.
The functions are given in table 4.2.10.
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Table 4.2.10: H(curl)-basis on a tetrahedron

Let ▲ be the reference tetrahedron with vertices (−1, −1, −1), (1, −1, −1), (0, 1, −1) and (0, 0, 1).
The barycentric coordinates are then given by

λ0,1(x, y, z) =
1 ± 4x − 2y − z

8
, λ2(x, y, z) =

1 + 2y − z
4

, λ3(x, y, z) =
1 + z

2

Edge functions

Let Em = [e1, e2] be the edge with vertices λe1 and λe2 .
The lowest order Nédélec functions:

v▲,Em
1 = ∇λe1 λe2 − λe1∇λe2

Higher order edge functions:
For 2 ≤ i ≤ p :

v▲,Em
i (x, y, z) = ∇u▲,Em

i (x, y, z)

Face functions

Let Fm = [s1, s2, s3] be the face with vertices λs1 , λs2 and λs3 .
Lowest order Nédélec functions:
For 1 ≤ j ≤ p − 1 :

v▲,Fm
1j = (∇λs1 λs2 − λs1∇λs2) P̂1

j (λs3 − λs2 − λs1)

Gradient based face functions:
For i ≥ 2, j ≥ 1 and i + j ≤ p :

v▲,Fm ,I
ij = ∇u▲,Fm

ij

Non-gradient based face functions:
For i ≥ 2, j ≥ 1 and i + j ≤ p :

v▲,Fm ,I I
ij (x, y, z) = ∇∇2u▲,Fm

ij (x, y, z)

Interior functions

Gradient based interior functions for i = j + k ≤ p and i ≤ 2, j, k ≥ 1 :

v▲,I
ijk (x, y, z) = ∇u▲

ijk(x, y, z)

Non-gradient based interior functions

v▲,I I
ijk (x, y, z) = ∇∇2u▲,C

ijk (x, y, z)

v▲,I I I
ijk (x, y, z) = ∇∇3u▲,C

ijk (x, y, z)

v▲,IV
1jk (x, y, z) = v▲,E1

1 P̂3
j

(
2y

1 − z

)(
1 − z

2

)j

P̂2j+2
k (z)

(4.12)
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For the H(div) conforming functions, we need to construct the divergence conforming
Nédélec space [Né86, Mon03], also called the Raviart-Thomas-Nédélec space. Following the con-
struction of the De-Rham complex, we first construct H(div) conforming functions by application
of the c̃url operator and enrich the space with the curl of the non-curl-free H(curl) functions3.
Those functions are given in table 4.2.11.

Table 4.2.11: H(div)-basis on a tetrahedron

Let ▲ be the reference tetrahedron with vertices (−1, −1, −1), (1, −1, −1), (0, 1, −1) and (0, 0, 1).
The barycentric coordinates are then given by

λ0,1(x, y, z) =
1 ± 4x − 2y − z

8
, λ2(x, y, z) =

1 + 2y − z
4

, λ3(x, y, z) =
1 + z

2

Face functions

Let Fm = [s1, s2, s3] be the face with vertices λs1 , λs2 and λs3 .

w▲,Fm
0 (x, y, z) = λs1∇λs2 ×∇λs3 + λs2∇λs3 ×∇λs1 + λs3∇λs1 ×∇λs2

w▲,Fm
1j (x, y, z) = curl(v▲,Fm

1j (x, y, z))

w▲,Fm
ij (x, y, z) = curl(v▲,Fm

ij (x, y, z))

Interior functions

Non-divergence-free functions:

w▲,I
ijk (x, y, z) = c̃url(v▲,I

ijk (x, y, z))

w▲,I
1jk (x, y, z) = c̃url(v▲,IV

1jk (x, y, z))

w▲,I
10k(x, y, z) = 4w▲,F1

1j (x, y, z)P̂3
k (z)

Divergence-free face functions:

w▲,I I
ijk (x, y, z) = curl(v▲,I I

ijk (x, y, z))

w▲,I I I
ijk (x, y, z) = curl(v▲,I I I

ijk (x, y, z))

w▲,IV
1jk (x, y, z) = curl(v▲,IV

1jk (x, y, z))

Sparsity results can be found in [BPZ13b] for the H(curl) conforming functions and in [BPZ12]
for the divergence-conforming functions.

3This functions need to be modified as in the H(curl) case. This is part of future work and not described in this thesis,
although similar techniques as in the next section apply.

58



4.2.8. New H(curl) basis functions on a triangle and a tetrahedron

Since v△ij (x, y) are not Nedelec conforming basis functions, we need to modify those. We introduce
the following auxiliary notation in 2D

fi(x, y) := L̂i

(
2x

1 − y

)(
1 − y

2

)
gij(x, y) := P̂2i

j (y)

and in 3D

fi(x, y, z) := L̂i

(
4x

1 − 2y − z

)(
1 − 2y − z

4

)i

gij(x, y, z) := P̂2i
j

(
2y

1 − z

)(
1 − z

2

)j

hijk(x, y, z) := P̂2i+2j
k (z)

Recall the space

P̃k = {homogeneous polynomials of total degree exactly k in Rd}.

In our constructions for the H(curl) conforming functions, we followed Nédélec’s construction.
By using the ∇∇2 operator, we defined non-curl-free functions and enriched this space by the gra-
dients. But those interior functions, defined by the operator ∇∇2, do not split into a homogeneous
and a non-homogeneous part, as needed by the Nédélec space of first order.
For the triangle we redefine our type II functions as

v△,N
ij (x, y) = (∇ fi(x, y))gij(x, y) − i

j
fi(x, y)∇gij(x, y). (4.13)

Those are in the first Nédélec space Rk, as can be seen in the following lemma:

Lemma 4.2.6
Let i + j ≤ p, with i ≥ 2, j ≥ 1, then

v△,N
ij (x, y) ∈ Rp−1,

with Rk = (Pk−1)2 ⊕ Sk, where Sk = {p ∈ (P̃k)2 |⃗x · p = 0}, where x⃗ = (x, y)⊤.

Proof. First recall the following relation

(1 + x)P(α,β+1)
n (x) + (1 − x)P(α+1,β)

n = 2P(α,β)
n (x) (4.14)
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For the first component of v△,N
ij (x, y) holds

d
dx

(
L̂i

(
2x

1 − y

)(
1 − y

2

)i

P̂2i
j (y)

)
= Li−1

(
2x

1 − y

)(
1 − y

2

)i−1

P̂2i
j (y)

(2.10)
= Li−1

(
2x

1 − y

)(
1 − y

2

)i−1 (1 + y)
j

P(2i−1,1)
j−1 (y)

(4.14)
=

1
j

Li−1

(
2x

1 − y

)(
1 − y

2

)i−1 (
2P(2i−1,0)

j−1 (y) − (1 − y)P(2i,0)
j−1 (y)

)
=

y
j

Li−1

(
2x

1 − y

)(
1 − y

2

)i−1

P(2i,0)
j−1 (y)︸ ︷︷ ︸

∈Pp−1 or ∈y·Pp−2

+
1
j

Li−1

(
2x

1 − y

)(
1 − y

2

)i−1 (
2P(2i−1,0)

j−1 (y) − P(2i,0)
j−1 (y)

)
︸ ︷︷ ︸

∈Pp−2

.

The second component follows analogously.

d
dy

(
L̂i

(
2x

1 − y

)(
1 − y

2

)i
)

P̂2i
j (y) − i

j
L̂i

(
2x

1 − y

)(
1 − y

2

)i d
dy

P̂2i
j (y)

=
x

1 − y
Li−1

(
2x

1 − y

)(
1 − y

2

)i−1

P̂2i
j (y)

− i
2

L̂i

(
2x

1 − y

)(
1 − y

2

)i−1

P̂2i
j (y) − i

j
L̂i

(
2x

1 − y

)(
1 − y

2

)i

P(2i,0)
j−1 (y)

(4.14)
=

x
j

Li−1

(
2x

1 − y

)(
1 − y

2

)i−2 (
2P(2i−1,0)

j−1 (y) − (1 − y)P(2i,0)
j−1 (y)

)
− i

2j
L̂i

(
2x

1 − y

)(
1 − y

2

)i−1 (
2P(2i−1,0)

j−1 (y) − (1 − y)P(2i,0)
j−1 (y)

)
− i

j
L̂i

(
2x

1 − y

)(
1 − y

2

)i

P(2i,0)
j−1 (y)

= − x
j

Li−1

(
2x

1 − y

)(
1 − y

2

)i−1

P(2i,0)
j−1 (y)

+
2x
j

Li−1

(
2x

1 − y

)(
1 − y

2

)i−1

P(2i−1,0)
j−1 (y) − 2

j
L̂i

(
2x

1 − y

)(
1 − y

2

)i−1

P(2i−1,0)
j−1 (y)

= − x
j

Li−1

(
2x

1 − y

)(
1 − y

2

)i−1

P(2i,0)
j−1 (y)︸ ︷︷ ︸

∈Pp−1 or ∈(−x)·Pp−2

+
2
j

Li−2

(
2x

1 − y

)(
1 − y

2

)i−1

P(2i−1,0)
j−1 (y)︸ ︷︷ ︸

∈Pp−2

Alternatively one could use the formulation

ṽ△,N
ij (x, y) = j (∇ fi(x, y))gij(x, y) − i fi(x, y)∇gij(x, y).

The same problem holds for the three-dimensional case on the tetrahedron. Instead of proving
everything in one go, as for the 2D case, we apply a more constructive approach. The idea is very
simple: We first investigate the influence of x⃗· on the gradient of our auxiliary functions f , g, h,
and then recombine those, such that the highest polynomial order vanishes under multiplication
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with x⃗. Therefore, the following auxiliary lemmas are introduced.

Lemma 4.2.7
Let x⃗ = (x, y, z)⊤, then

x⃗ · (∇ fi(x, y, z))gij(x, y, z)hijk(x, y, z) = i u▲
ijk(x, y, z) + p(x, y, z)︸ ︷︷ ︸

∈Pp−1

,

for i + j + k ≤ p.

Proof. It is enough to show that

x⃗ · ∇ fi = i L̂i

(
4x

1 − 2y − z

)
(1 − 2y − z)i + Ri−1,

where Ri−1 ∈ Pi−1. Let

f̃i(x, y, z) =

 Li−1(η)
1
2 Li−2(η)
1
4 Li−2(η)

 ,

with ∇ fi(x, y, z) = f̃i(x, y, z)
(

1−2y−z
4

)i−1
and η =

(
4x

1−2y−z

)
.

x⃗ · f̃i(x, y, z) =
(

xLi−1 (η) +
y
2

Li−2 (η) +
z
4

Li−2 (η)
)

=
1
4
(4xLi−1 (η)− (1 − 2y − z)Li−2 (η) + Li−2 (η))

=
1 − 2y − z

4

(
4x

1 − 2y − z
Li−1 (η)− Li−2 (η) +

1
1 − 2y − z

Li−2 (η)

)
By application of the recursion

i L̂i(x) = xLi−1(x) − Li−2(x),

see [BS06], we can simplify the last term to

x⃗ · f̃i(x, y, z) = i
(

1 − 2y − z
4

)
L̂i (η) +

1
4

Li−2 (η)

and thus

x⃗ · ∇ fi(x, y, z) = i
(

1 − 2y − z
4

)i

L̂i

(
4x

1 − 2y − z

)
︸ ︷︷ ︸

fi(x,y,z)

+
1
4

(
1 − 2y − z

4

)i−1

Li−2

(
4x

1 − 2y − z

)
︸ ︷︷ ︸

∈Pi−1
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Lemma 4.2.8
Let x⃗ = (x, y, z)⊤, then

x⃗ · fi(x, y, z)(∇gij(x, y, z))hijk(x, y, z) = j u▲
ijk(x, y, z) + p(x, y, z)︸ ︷︷ ︸

∈Pp−1

,

for i + j + k ≤ p.

Proof. Let

g̃ij(x, y, z) =


0

P(2i,0)
j−1

(
2y

1−z

)
( y

1−z

)
P(2i,0)

j−1

(
2y

1−z

)
− j

2 P̂2i
j

(
2y

1−z

)
 ,

where ∇gij(x, y, z) = g̃ij(x, y, z) (1 − z)j−1 . We write the scalar product as follows

x⃗ · g̃ij(x, y, z) = yP(2i,0)
j−1

(
2y

1 − z

)
+
(

yz
1 − z

)
P(2i,0)

j−1

(
2y

1 − z

)
− z

j
2

P̂2i
j

(
2y

1 − z

)
=

y
1 − z

P(2i,0)
j−1

(
2y

1 − z

)
− z

j
2

P̂2i
j

(
2y

1 − z

)
From [BP07] the relation

ηP(α,0)
j−1 (η) − jP̂α

j (η) =
1

2j + α − 2

(
−αP(α,0)

j−1 (η) + (2j − 2)P(α,0)
j−2 (η)

)
(4.15)

is known. Thus we apply the relation as follows

x⃗ · g̃ij(x, y, z) =
y

1 − z
P(2i,0)

j−1

(
2y

1 − z

)
− z

j
2

P̂2i
j

(
2y

1 − z

)
=

y
1 − z

P(2i,0)
j−1

(
2y

1 − z

)
− j

2
P̂2i

j

(
2y

1 − z

)
+ (1 − z)

j
2

P̂2i
j

(
2y

1 − z

)
= (1 − z)

j
2

P̂2i
j

(
2y

1 − z

)
+ R̃j−1(x, y, z).

After multiplication with (1 − z)j−1, it follows that

x⃗ · ∇gij(x, y, z) = j
(

1 − z
2

)j

P̂2i
j

(
2y

1 − z

)
︸ ︷︷ ︸

gij(x,y,z)

+ Rj−1(x, y, z)︸ ︷︷ ︸
∈Pj−1

.
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Lemma 4.2.9
Let x⃗ = (x, y, z)⊤, then

x⃗ · fi(x, y, z)gij(x, y, z)(∇hijk(x, y, z)) = k u▲
ijk(x, y, z) + p(x, y, z)︸ ︷︷ ︸

∈Pp−1

,

for i + j + k ≤ p.

Proof. Consider

∇hijk(x, y, z) =

 0
0

P(2i+2j,0)
k−1 (z)

 .

We can modify the scalar product by

x⃗ · ∇hijk(x, y, z) = zP(2i+2j,0)
k−1 (z)

(4.15)
= k P̂2i+2j

k (z)︸ ︷︷ ︸
hijk(x,y,z)

+ Rk−1︸︷︷︸
∈Pk−1

.

We apply the results of lemmas 4.2.7 to 4.2.9 to a general polynomial function of the type

ϕijk(x, y, z) = c1∇ f gh + c2 f∇gh + c3 f g∇h, ∈
(

Pi+j+k−1
)3

. (4.16)

Thus the relation
x⃗ · ϕijk(x, y, z) = (c1 i + c2 j + c3 k)u▲

ijk + Ri+j+k−1 (4.17)

holds. If (c1 i + c2 j + c3 k) = 0 the polynomial ϕijk(x, y, z) is a Nédélec function of first kind. One
possible (non-unique) set of linear independent functions is given by,

v▲,I I,N
ijk := j∇( fi)gijhijk − i fi∇(gij)hijk,

v▲,I I I,N
ijk := k ∇( fi)gijhijk − i figij∇(hijk).

(4.18)

We summarize our results in the following theorem.

Theorem 4.2.10
Let i + j + k ≤ p with i ≥ 2, j, k ≥ 1, then the functions v▲,I

ijk (x, y, z), v▲,IV
1jk (x, y, z) as in

(6.22) and v▲,I,N
ijk (x, y, z), v▲,I I I,N

ijk (x, y, z) as in (4.18) are a basis of H(curl,▲). Furthermore

v▲,I
ijk (x, y, z) are Nédélec functions of second kind, while v▲,I,N

ijk (x, y, z), v▲,I I I,N
ijk (x, y, z) and

v▲,IV,N
1jk (x, y, z) are Nédélec functions of first kind.

In the case of H(div) conforming basis functions, it needs to be shown that those functions are
part of the Raviart-Thomas-Nédélec space of the first kind. This is postponed to future work.

63



5. Computation of local finite element matrices

Entries of finite element matrices can be computed by application of high order multidimensional
quadrature or cubature rules. This naive approach is highly cost intensive. Under the assumption
of a tensorial or tensorial-like structure, the problem can be reduced to multiple one dimensional
integrals.
Furthermore, the state-of-the-art method for the efficient computation of finite element entries is
the so-called sum factorization method introduced by Orszag [Ors80] for spectral element meth-
ods. It was extended e.g. by [SK95, MGS99] and [EM05] for high order finite element methods,
which leads to almost optimal complexity under the assumption of sparsity. In the context of it-
erative solvers, the sum factorization approach can be used to define a matrix-free matrix-vector
product.
We will introduce a new approach which computes the finite element matrices in optimal com-
plexity, under the assumption of piecewise constant material functions. This new approach is
based on the recursive relations of theorem 2.2.9. Moreover, this approach computes the ele-
ment matrices directly. A direct computation of the element matrices has the advantage, that it
can be reapplied, e.g. in a non-linear finite element method. Furthermore, a p-refinement on
the same cell can be achieved in optimal complexity as well. This is one of the few algorithms
which achieve optimal complexity. An algorithm for a basis based on Bernstein polynomials can
be found, e.g. in [AAD11, AF18]. This algorithm achieves optimal complexity even for smooth
non-constant material functions, but has a rapidly increasing condition number.
For this chapter, we will solve all integrals on the cube. Thus, we first need to transform all func-
tions on a tetrahedron by the Duffy transformation D3 onto a cube. In the following, we consider
different algorithms to set up the local mass and stiffness matrix M and K.

5.1. Standard algorithm

Let Φ = {ui|i = 1, . . . , N} be an arbitrary set of shape function, then the local mass and stiffness
matrix are given by

Mij :=
[∫

T
ui (⃗x)uj (⃗x)dx⃗

]
,

Kij :=
[∫

T
(A∇ui (⃗x)) · uj (⃗x)dx⃗

]
,

where A is a constant matrix and T is any of the reference elements □,△,■ or ▲. The standard
algorithm for setting up the stiffness matrix is the application of 1D Gaussian quadrature rules
in each direction. The Jacobian determinant |det(dDd)| of the Duffy transformation Dd (4.3) or
(4.11) can be incorporated by application of a Gauss-Jacobi quadrature. The algorithm is stated
in algorithm 1.
Assuming we have the same polynomial order p in each direction, we need pd quadrature points.
Since we have N2 entries the resulting asymptotic complexity is at least O(N2 pd). For a triangle
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Algorithm 1 Computation of the entries Kij

1: Choose Gaussian quadrature rule for each direction: GQ(i) = {(η(i)
0 , ω(i)

0 ), . . . , (η(i)
qi , ω(i)

qi )},
2: Set GQ = GQ(1) × . . . × GQ(d).
3: Initialize Kij = 0,
4: for all η, ω ∈ GQ do
5: Set

Kij += ω
(
∇̃(ui ◦ Fk) · A∇̃(uj ◦ Fk)

)
|η for all 1 ≤ i, j ≤ N

6: end for

we have N = 1
2 (p − 1)(p − 2) and for a tetrahedron N = 1

6 (p − 1)(p − 2)(p − 3) shape functions,
i.e. the asymptotic complexity on a triangle and tetrahedron is O(p3d). Under the assumption of a
constant matrix A, we get sparsity for a chosen special basis, and such we only have to integrate
the pd non-zero entries. The complexity then reduces to O(p2d).

5.2. Sum factorization

The sum factorization is a reordering approach of the standard algorithm. Denote by Φ△ the
basis of the H1 on the triangle and Φ▲ on the tetrahedron. We follow Eibner and Melenk [EM05]
to rewrite the gradient in tensorial-like structure as well.

Corollary 5.2.1 (Eibner/Melenk 2005)
For d = 2, 3 let u△ and u▲ be given as in tables 4.2.7 and 4.2.9. Then the entries of the
stiffness matrix K can be computed as

Kij =
∫

Qd
(∇̃uj · Ĉ∇̃ui)|det dDd|dΩ =

d

∑
r,r′=1

∫
Qd

∇̃r′ ujĈr′r∇̃rui|det dDd|dΩ,

where

∇̃ui =


[

1
(1−η2)

∂u
∂η1

, ∂u
η2

]⊤
for d = 2[

1
(1−η2)(1−η3)

∂u
∂η1

, 1
(1−η3)

∂u
∂η2

, ∂u
η3

]⊤
for d = 3

is polynomial and

Ĉ := M−1
d (A ◦ Dd)M−⊤

d , M−1
2 :=

[
2 2(1 + η1)
0 1

]
, M−1

3 :=

4 2(1 + η1) 2(1 + η1)
0 2 (1 + η2)
0 0 1

 .

We now have a tensorial structure for our gradients. Since our (transformed) shape functions
and their gradients are of tensorial type structure, we can first compute auxiliary fields and then
perform the summation in a more optimal order. Consider for example the mass matrix M on
the triangle. The entry Mn,m, where (n, m) = (n(i, j), m(i′, j′)) can be computed in the standard

65



approach as

Mn,m =
∫ 1

−1
L̂i(η1)L̂i′(η1)dη1

∫ 1

−1

(
1 − η2

2

)i+i′+1

P̂2i
j (η2)P̂2i′

j′ (η2)dη2

≈
p

∑
q1=0

ωq1 L̂i(η̂p1)L̂i′(η̂p1)
p

∑
q2=0

ωq2 P̂j(η̂q2)P̂j′(η̂q2).

On the other hand, by the sum factorization ansatz we first compute both sums for all indices and
then get the entries by reading out the entries of the auxiliary fields. By this approach, we save
us the repetitive computation of the first sum.
All entries of this auxiliary arrays for the tetrahedron can be computed in optimal complexity
O(p3), but only in suboptimal complexity O(p3) in 2D for the triangle, see [BPZ13a].
By corollary 5.2.1, the tensorial structure extends to the gradients of the shape functions on sim-
plices. For the tetrahedron we write

u▲,T
ijk ◦ D3 = gT,i(η1)gT,i,j(η2)gT,i,j,k(η3), (5.1)

where T denotes the type of function, i.e. vertex, edge, face or interior. We use an analogous no-
tation for the gradient as well. For the stiffness matrix this leads to algorithm 2 in 3D, which has
a complexity of O(p2d+1), see [MGS99, EM05] for a detailed analysis. The algorithm in 2D follows
by the same ideas. See also [VSK10] for a runtime comparison for low and high order discretiza-
tions. Under the assumption that A is constant, we can use sparsity to reduce the numerical costs.
Since we have pd non-zero entries instead of p2d, the complexity is only O(pd+1). Although this
could be reduced to optimal complexity in 3D, i.e. O(p3), this asymptotic advantages are only
observable for high polynomial orders due to high coefficients in the complexity, see [BPZ13a].
For an application in an iterative solver like a CG- or GMRES-method, the sum factorization can
be used to calculate the matrix-vector product in O(pd+1) operations independent of the choice of
material functions A. But it has been shown in [VSK10] that the break-even point of the matrix-
free sum-factorization approach and an approach where the local matrix is computed is depen-
dent on the differential operator and the chosen reference element. E.g. they have shown for the
Helmholtz operator on a mesh, consisting of triangles, it is as high as p = 27, which may be a low
polynomial degree for a spectral method, but is a high polynomial degree for a hp-FEM method.
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Algorithm 2 Sum factorization for the entries Kij

1: Choose quadrature rules
GQi = {(η(i)

li
, ω(i)

li
)|li = 0, . . . , qi}

which incorporates |det(dD3)|.
2: for all 1 ≤ r ≤ 3 and types of shape functions T do
3:

∇̃ru▲,T
ijk = g̃(1)

T,r,i(η1)g̃(2)
T,r,i,j(η2)g̃(3)

T,r,i,j,k(η3)

4: end for
5: for all 1 ≤ r ≤ 3, all types T and all (i, j, k) depending on T do
6: Compute the auxiliary arrays:

G(1)[T, r, i, l1] = g̃(1)
T,r,i(η

(1)
l1

)

G(2)[T, r, i, j, l2] = g̃(2)
T,r,i,j(η

(2)
l2

)

G(3)[T, r, i, j, k, l3] = g̃(3)
T,r,i,j,k(η(3)

l3
)

7: end for
8: for 1 ≤ r, r′ ≤ 3, and 0 ≤ li ≤ qi do
9: Compute the auxiliary array

Ĉ[r′, r, l1, l2, l3] = Ĉ(r′ ,r)(η
(1)
l1

, η(2)
l2

, η(3)
l3

)

10: end for
11: Initialize K = 0
12: for all 1 ≤ r, r′ ≤ 3 and all types T, T′ do
13: Compute :

H(1)[i, i′, l3, l2] =
q1

∑
l1=0

G(1)[T, r, i, l1]G(1)[T′, r′, i′, l1]Ĉ[]r′, r, l1, l2, l3]ω(1)
l1

,

H(2)[i, i′, j, j′, l3] =
q2

∑
l2=0

G(2)[T, r, i, j, l2]G(2)[T′, r′, i′, j′, l2]H(1)[i, i′, l3, l2]ω(2)
l2

and

K[T, i, j, k][T′, i′, j′, k′] +=
q3

∑
l3=0

G(3)[T, r, i, j, k, l3]G(3)[T′, r′, i′, j′, k′, l3]H(2)[i, i′, j, j′, l3]ω(3)
l3

14: end for
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5.3. Recursion formulas

Let A be elementwise constant, then we can assume sparsity of our mass and stiffness matrices.
Under this assumption, we derive a new ansatz for the computation of finite element matrices,
which has optimal complexity. Let

I(a,b,µ)
n,m =

∫ 1

−1
(1 − x)µP(a,0)

n (x)P(b,0)
m (x) dx,

J(a,b,µ)
n,m =

∫ 1

−1
(1 − x)µP̂a

n(x)P(b,0)
m (x) dx,

K(a,b,µ)
n,m =

∫ 1

−1
(1 − x)µP̂a

n(x)P̂b
m(x) dx,

(5.2)

and

c⃗(n, m, µ, ν, α, β, ρ, δ) :=


n + m + µ + ν + 4

n + α + β − m − µ − ν − 2
m + ρ + δ − n − µ − ν − 2

n + m + α + β + ρ + δ − µ − ν

 , (5.3)

then the following corollaries are a direct consequence of theorem 2.2.9 and corollary 2.2.10.

Corollary 5.3.1
Let n, m ≥ 2 and α, β, µ > −1. Then the recursive relation

c1 I(a,b,µ)
n+1,m+1 = c2 I(a,b,µ)

n,m+1 + c3 I(a,b,µ)
n+1,m + c4 I(a,b,µ)

n,m ,

holds, where ν = −1, β = 0, δ = 0, and

c⃗ = c⃗(n, m, µ,−1, α, 0, ρ, 0).

Proof. Insert β = ρ = 0 and ν = −1 in corollary 2.2.10.

Similarly, we arrive at the following two corollaries.

Corollary 5.3.2
Let n, m ≥ 2 and α, β, µ > −1. Then the recursive relation

c1 J(a,b,µ)
n+1,m+1 = c2 J(a,b,µ)

n+1,m + c3 J(a,b,µ)
n,m+1 + c4 J(a,b,µ)

n,m (5.4)

holds, where ν = 0, β = 1, δ = 0, and

c⃗ = c⃗(n, m, µ, 0, α − 1, 1, ρ, 0).

Proof. Since

P̂α
i (x) =

1 + x
i

P(2i−1,1)
i−1 (x)

we apply corollary 2.2.10 with ν = 0, β = 1, ρ = 0, but since β was raised, we need to lower α by
one.
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Corollary 5.3.3
Let n, m ≥ 2 and α, β, µ > −1. Then the recursive relation

c1K(a,b,µ)
n+1,m+1 = c2K(a,b,µ)

n+1,m + c3K(a,b,µ)
n,m+1 + c4K(a,b,µ)

n,m (5.5)

holds, where ν = 1, β = 1, δ = 1, and

c⃗ = c⃗(n, m, µ, 1, α − 1, 1, ρ − 1, 1).

Proof. We apply corollary 2.2.10 with ν = 1, β = δ = 1 and lower α and ρ by one.

Corollary 5.3.4
For I(a,b,µ)

n,m , J(a,b,µ−1)
n,m and K(a,b,µ−2)

n,m the coefficients c1, c2, c3, c4 are identical.

Proof. Insert the according values in corollary 5.3.1, corollary 5.3.2 and corollary 5.3.3

The vector c⃗ is a function depending on the coefficients n, m, µ, ν, α, β, ρ and δ. As seen in the
previous corollaries, if we replace a Jacobi polynomial P(α,β)

n (x) by P̂α
n (x), we need to do the re-

placement:
n → n − 1,

ν → ν + 1,

α → α − 1,

β → β + 1.

Examples of the resulting coefficients can be found in example 5.3.1.

Example 5.3.1
Consider the integral

K(1)
n,m =

∫ 1

−1

(
1 − y

2

)i+i′+1

P̂2i
n (y)P̂2i′

m (y)

then the recursion is given by corollary 5.3.1 as

(n + m + i + i′ + 2)K(1)
n,m =(n − m + i − i′ − 3)K(1)

n−1,m + (m − n + i′ − i − 3)K(1)
n,m−1

+ (n + m + i + i′ − 4)K(1)
n−1,m−1.

(5.6)

For the integral

K(2)
n,m =

∫ 1

−1

(
1 − y

2

)i+i′+2

P̂2i
n (y)P̂2i′

m (y)

the recursion

(n + m + i + i′ + 3)K(1)
n,m =(n − m + i − i′ − 4)K(1)

n−1,m + (m − n + i′ − i − 4)K(1)
n,m−1

+ (n + m + i + i′ − 5)K(1)
n−1,m−1

(5.7)

holds.
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In the following, we derive an algorithm for the computation of the interior mass matrix for the
H1 basis on a tetrahedron. An application in 2D is straight forward and moreover an extension
to edge and face functions can easily be done.
Consider an entry Mn(i,j,k),m(i′ ,j′ ,k′) of the mass matrix. Here n(i, j, k), m(i′, j′, k′) map (i, j, k) and
(i′, j′, k′) onto unique indices (n, m) of our mass matrix.
An entry is computed exactly after the Duffy transformation as

Mn(i,j,k),m(i′ ,j′ ,k′) =
∫ 1

−1
L̂i(η1)L̂i′(η1) dη1

∫ 1

−1

(
1 − η2

2

)i+i′+1

P̂2i
j (η2)P̂2i′

j′ (η2) dη2∫ 1

−1

(
1 − η3

2

)i+j+i′+j′+2

P̂2i+2j
k (η3)P̂2i′+2j′

k′ (η3) dη3.

(5.8)

Since all 3 integrals are independent of each other, we can apply corollary 5.3.1, to each of those
integrals. The first integral

G(1)[i, i′] :=
∫ 1

−1
L̂i(x)L̂i′(x) dx,

can be computed directly, see appendix A.3.1.
We use corollary 5.3.1 to compute the second integral

G̃(2)[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′+1

P̂2i
j (y)P̂2i′

j′ (y) dy (5.9)

and the third integral

G̃3[β, β′, k, k′] :=
∫ 1

−1

(
1 − y

2

)β+β′+2

P̂2β
k (z)P̂2β′

k′ (z) dz, (5.10)

where β = i + j. Those recursions need starting values, which can be computed by a Gaussian
quadrature. This can be achieved by multiple low order Gauss-Jacobi quadratures or by one high
order Gaussian quadrature. An alternative can be found in corollaries A.3.3 and A.3.4, where we
can either compute the starting values directly or use small recurrent relations.
To optimally apply the sparsity pattern, we use helping functions. Due to corollary A.2.1 we
define the functions

S(1)
1 [i, i′, j] := i′ − i + j + 2

and
S(1)

2 [i, i′, j′] := i − i′ + j′ + 2.

Then for a fixed set of indices i, i′, j′, the functions S(1)
1 gives the last index j, for which equation

(5.9) is not zero. And analogously S(1)
2 gives the last index of j′ for the set i, i′, j.

Accordingly, for the third integral (5.10) the index boundaries are given by

S(2)
1 [β, β′, k] := β′ − β + k + 3

and
S(2)

2 [β, β′, k′] := β − β′ + k′ + 3.

Since S(2)
1 and S(2)

2 give the bigger index range, we will choose to only apply those for the recur-
sions, to avoid one extra loop.
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For the complete assembly routine we need to fulfil both the sparsity conditions S(1) and S(2),
as well as |i − i′| ≤ 2. We denote this set of indices (i, j, k, i′, j′, k′) by S. Thus all entries can be
computed by algorithm 3.

Algorithm 3 Recursive computation for the interior entries Mnm

1: for all 2 ≤ i ≤ p − 2 and i′ s.t |i − i′| ≤ 2 do
2: Compute G(1)[i, i′] by eq. (A.20) or eq. (A.21).
3: end for
4: for all i, i′, j, j′ ∈ N s.t. j ≤ S(2)

1 [i, i′, j] and j′ ≤ S(2)
2 [i, i′, j′] do

5: Compute G(2)[i, i′, 1, j′], G(2)[i, i′, j, 1], G(3)[i, i′, 1, j′] and G(3)[i, i′, j, 1] by corollary A.3.4
6: Compute c⃗ = c(j − 1, j′ − 1, i + i′ + 1, 1, 2i − 1, 1, 2i′ − 1, 1)
7: Compute d⃗ = c(j − 1, j′ − 1, i + i′ + 2, 1, 2i − 1, 1, 2i′ − 1, 1)
8: Compute

G(2)[i, i′, j + 1, j′ + 1] =
1
c1

(c2G(2)[i, i′, j, j′ + 1] + c3G(2)[i, i′, j + 1, j′] + c4G(2)[i, i′, j + 1, j′ + 1])

9: Compute

G(3)[i, i′, j + 1, j′ + 1] =
1
d1

(d2G(3)[i, i′, j, j′ + 1] + d3G(3)[i, i′, j + 1, j′] + d4G(3)[i, i′, j + 1, j′ + 1])

10: end for
11: for all i, i′, j, j′, k, k′ ∈ S do
12: Compute Mn(i,j,k),m(i,j,k) = G(1)[i, i′]G(2)[i, i′, j′, j′]G(3)[i + j, i′ + j′, k, k′]
13: end for

Now onto the stiffness matrix K. An entry Kn(i,j,k),m(i′ ,j′ ,k′) of the stiffness matrix is given by

Kn(i,j,k),m(i′ ,j′ ,k′) =
∫
▲
∇u⊤

i,j,k Ã∇ui′ ,j′ ,k′dx⃗.

There are different choices how this integral can be split into smaller chunks. By application
of corollary 5.2.1 we get a tensorial structure of the gradient, but since we compute all integrals
exactly, we have to multiply our gradients with the matrix Ĉ, where we lose the tensorial structure
again.
An equivalent alternative is to work with the gradients directly. If we write those gradients out
and sort for same (integrated) Jacobi polynomials, we can recursively compute all those integrals.
As shown in [BP08] and [BPZ13a], we get 21 summands which needs to be computed, which are
collected in table A.1 and table A.2. Those tables are written for reference purpose and readability,
and should be optimized before implementation, e.g. similar terms can be excluded to reduce
complexity.
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We define the auxiliary arrays used in table A.1 and table A.2 as follows

I1[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′−1

P̂2i
j (y)P̂2i′

j′ (y) dy,

I2[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′

P̂2i
j (y)P̂2i′

j′ (y) dy,

I3[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′+1

P̂2i
j (y)P̂2i′

j′ (y) dy,

I4[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′

P̂2i
j (y)P(2i′ ,0)

j′−1 (y) dy,

I5[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′+1

P̂2i
j (y)P(2i′ ,0)

j′−1 (y) dy,

I6[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′+1

P(2i,0)
j−1 (y)P(2i′ ,0)

j′−1 (y) dy,

I7[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′+2

P(2i,0)
j−1 (y)P(2i′ ,0)

j′−1 (y) dy.

and

L1[i, i′] :=
∫ 1

−1
L̂i(y)L̂i′(y) dy,

L2[i, i′] :=
∫ 1

−1
Li−1(y)L̂i′(y) dy,

L3[i, i′] :=
∫ 1

−1
Li−1(y)Li′−1(y) dy.

By corollary 5.3.4, we know that replacing an integrated Jacobi polynomial P̂α
j (y) by (1 − y)P(α,0)

j−1
retains the same recursion formulas. Thus, the arrays I1, I4 and I6 have the same recursion for-
mula, and furthermore I2, I5, I7 have the same recursion formula as well. The arrays L1[i, i′], L2[i, i′]
and L3[i, i′] can be computed by appendix A.3.1.
We denote the local sparsity pattern by Ŝ, see [BP08, BPZ13a].

Remark 5
In algorithm 4 the lines 8-11 can be computed in O(p2). Except for the computation of the start-
ing values, the coefficients of the recursion are small, since they can be computed by a raise or
reduction by unity.

Remark 6
If we use tables A.1 and A.2 in step 14 of algorithm 4 we have a lot of floating point operations
for each of the O(p3) entries. But consider e.g. table A.2 each term in the sum depends either on
I2[i + j, i′ + j′, k, k′], I5[i + j, i′ + j′, k, k′], I5[i′ + j′, i + j, k′, k] or I7[i + j, i′ + j′, k, k′]. If we group them in
the optimal ordering, we reduce operations per set k, k′. For the set i, i′, j, j′ we can exclude, e.g.
L3[i, i′], to reduce the complexity even further.

Remark 7
In the triangular case, the stiffness matrix has the same recursive relation as the mass matrix, due
to corollary 5.3.4. Let

H[i, i′, j, j′] =
∫
△

u△
ij u△

i′ j′ + ∇u△
ij Ĉ∇u△

i′ j′ dx. (5.11)
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Algorithm 4 Recursive computation for the interior entries Knm

1: for all 2 ≤ i ≤ p − 2 and i′ s.t. |i − i′| ≤ 2 do
2: Compute L1[i, i′] by eq. (A.20) and eq. (A.21)
3: Compute L2[i, i′] by eq. (A.22)
4: Compute L3[i, i′] by eq. (A.19)
5: end for
6: for all i, i′, j, j′ where |i − i′| ≤ 2, j ≤ S1)

1 [i, i′, j′] and j′ ≤ S(2)
2 [i, i′, j] do

7: for q = 1, . . . , 7 do
8: Compute Iq[i, i′, 1, j′] and Iq[i, i′, j, 1]
9: end for

10: Compute c⃗ = c(j − 1, j′ − 1, i + i′ − 1, 1, 2i − 1, 1, 2i′ − 1, 1)
11: Compute d⃗ = c(j − 1, j′ − 1, i + i′, 1, 2i − 1, 1, 2i′ − 1, 1)
12: Compute e⃗ = c(j − 1, j′ − 1, i + i′ + 1, 1, 2i − 1, 1, 2i′ − 1, 1)
13: Compute I1[i, i′, j + 1, j′ + 1], I4[i, i′, j + 1, j′ + 1], I6[i, i′, j + 1, j′ + 1] by recursion with vector

c⃗
14: Compute I2[i, i′, j + 1, j′ + 1], I5[i, i′, j + 1, j′ + 1], I7[i, i′, j + 1, j′ + 1] by recursion with vector

d⃗
15: Compute I3[i, i′, j + 1, j′ + 1] by recursion with vector e
16: end for
17: for all i, i′, j, j′, k, k′ ∈ Ŝ do
18: Assemble Dr,r′ =

∫
▲(dxr uijk)(dxr ui′ j′k′)dx⃗ by tables A.1 and A.2

19: Compute Kn(ijk),m(i′ j′k′) = ∑3
r,r′=1 Ar,r′Dr,r′

20: end for

Then we state the following 2D algorithm:

Algorithm 5 Recursive computation for the interior matrix entries Mnm + Knm in 2D

1: for all i, i′, j, j′ where |i − i′| ≤ 2, j ≤ S1)
1 [i, i′, j′] and j′ ≤ S(2)

2 [i, i′, j] do
2: Compute H[i, i′, 1, j′] and H[i, i′, j, 1]
3: Compute c⃗ = c⃗(j − 1, j′ − 1, i + i′ + 1, 1, 2i − 1, 1, 2i′ − 1, 1)
4: Compute

H[i, i′, j + 1, j′ + 1] =
1
c1

(c2H[i, i′, j, j′ + 1] + c3H[i, i′, j + 1, j′] + c4H[i, i′, j + 1, j′ + 1])

5: end for

5.4. Extension to non-constant material functions

Up until this point, we assumed material functions to be piecewise constant, such that sparsity
results and recursion formulas hold. In this section, an extension to the case with non-constant
material functions will be discussed. We assume that the material function κ(x) ∈ R, x ∈ Rd is at
least elementwise continuous. Discontinuities at the element border are handled as usual.
We will present only the idea on how to extend the recursive approach to the mass matrix on the
tetrahedron. Consider the mass matrix entry Mn(ijk),m(i′ ,j′ ,k′) under the influence of a non-constant
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material function, given as

Mn(i,j,k),m(i′ ,j′ ,k′) =
∫
▲

κ(x, y, z)u▲
ijk(x, y, z)u▲

i′ j′k′(x, y, z) dx dy dz. (5.12)

Since an arbitrary κ(x, y, z) will not be polynomial in general, we can not expect to find recursive
relations. Furthermore, even if we would find recursive relations, we would need to compute
those for each material function on each tetrahedron.
A more general approach is to approximate κ(x, y, z) by some polynomial or rational functions, as

κ(x, y, z) =
q

∑
i,j,k

αijkϕijk(x, y, z). (5.13)

For the ease of presentation consider κ(x, y, z) = κ(η1, η2, η3) after the Duffy transformation. Since
all recursive relations are based on the Beta integral (2.1) the best choice for our approximation
functions ϕ are functions based on a linear combination of

(1 − η1)r1(1 + η1)r2(1 − η2)s1(1 + η2)s2(1 − η3)t1(1 + η3)t2 ,

for some coefficients r1, r2, s1, s2, t1, t2. Those can be achieved e.g. by Bernstein [Lor86] or Jacobi
polynomials. One possibility is to approximation κ(x, y, z) by our shape functions, i.e. u▲

ijk. In
section 6.1 we present a method to compute this approximation for the interior entries in optimal
complexity. Inserting the approximation in (5.12) yields

Mn(i,j,k),m(i′ ,j′ ,k′) =
q

∑
r,s,t=0

αrst

∫
▲

u▲
rst(x, y, z)u▲

ijk(x, y, z)u▲
i′ j′k′(x, y, z) dx dy dz. (5.14)

After the Duffy transformation, we need to compute

Mn(i,j,k),m(i′ ,j′ ,k′) =
q

∑
r,s,t=0

αrst

∫ 1

−1
L̂r(η1)L̂i(η1)L̂i′(η1) dη1

∫ 1

−1
(1 − η2)r+i+i′+1P̂2r

s (η2)P̂2i
j (η2)P̂2i′

j′ (η2) dη2

∫ 1

−1
(1 − η3)r+s+i+j+i′+j′+2P̂2r+2s

s (η3)P̂2i+2j
j (η3)P̂2i′+2j′

j′ (η3) dη3.

(5.15)
The integrals over η2 and η3 can be computed by (2.44). An alternative approach is to approxi-
mate the product κ(x, y, z)u▲

ijk by our shape functions. Then we would only need to sum over our
sparse mass matrix.
Nevertheless, the asymptotic complexity is O(qd p2d), since we have dense element matrix with
p2d entries. We need to sum over our approximation, where the complexity depends on the qual-
ity of the approximation, which is O(qd). If we choose the same polynomial degree as for our
shape functions, the asymptotic complexity is O(p3d), as worse as the standard approach.
Alternatively one could compute new orthogonal polynomials, which includes κ(x, y, z) in the
weight functions, see e.g. [Gau82, Gau04]. On one hand, this approach would provide sparsity
in the mass matrix again, but on the other hand, it is uncertain if recursive relations can be found.
Those algorithms to construct orthogonal polynomial in dimensions d > 1 have only been intro-
duced recently, see e.g. [LN23].
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Figure 5.1.: 1D experiment of recursion formulas

5.5. Numerical experiments

For our numerical experiments, we assume that our material functions are constant. We compare
the assembly time of one Gram matrix in 1D with the numerical quadrature, see the publication
[BHP23]. Furthermore, we provide a small comparison between the sum factorization approach
and the recursive approach for the 3D mass matrix.

5.5.1. 1D - Example

Let ⟨ f (x), g(x)⟩ =
∫ 1
−1 f (x)g(x)

( 1−x
2

)8
dx be a weighted scalar product. Let ϕn(x) = P(4,0)

n (x), then

calculate the Gram matrix G =
[
Gi,j
]n2

max
i,j =

[
⟨ϕi, ϕj⟩

]n2
max

i,j . The resulting sparsity pattern can be
seen in Figure 5.1a. To compare the standard assembly routine with the recursive version, we
assume now, that the quadrature points, weights and the basis functions are tabulated, i.e. we
only need to perform the summation step of the standard assembly routine.
In Figure 5.1b the runtime of a Matlab implementation of both assembly routines are compared.
We measured the assembly time of the Gram matrix for the total polynomial order 10 < nmax <

160 for the integration of each non-zero value ⟨ϕi, ϕj⟩. As expected the recursive version is a lot
faster than the Gaussian quadrature, even in 1D.

5.5.2. Assembly time of the interior entries of the local 3D mass matrix

As seen above we split the computation of the local interior entries of 3D element mass matrix on
the tetrahedron into the three auxiliary arrays,

G(1)[i, i′] =
∫ 1

−1
L̂i(x)L̂i′(x)

G(2)[i, i′, j, j′] =
∫ 1

−1

(
1 − y

2

)i+i′+1

P̂2i
j (y)P̂2i′

j′ dy

G(3)[i, i′, j, j′] =
∫ 1

−1

(
1 − y

2

)i+i′+2

P̂2i
j (y)P̂2i′

j′ dy.
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As seen in [BPZ13a] we can compute the mass matrix in 3D in optimal complexity by a sum fac-
torization approach. For this we first evaluate all relevant Jacobi polynomials at the quadrature
points and then determine all non-zero entries by G(1)[i, i′]G(2)[i, i′, j, j′]G(3)[i + j, i′ + j′, k, k′]. As
such the only real difference between the sum factorization approach and the recursive approach,
lies in the computation of the auxiliary arrays. In Figure 5.2, we see a direct comparison between
the sum factorization1 and the recursive approach as a small Matlab example.
Here we only compare the assembly time of the auxiliary arrays, we did not take the evaluation
time of the Jacobi polynomials and the quadrature points into account. Moreover, we excluded
the time for the assembly of G(1)[i, i′]G(2)[i, i′, j, j′]G(3)[i + j, i′ + j′, k, k′] as well.
The recursive approach computes the auxiliary arrays ca. 40 times faster than the sum factor-
ization approach. Since the coefficients to compute the auxiliary arrays are constant, the recur-
sive approach computes one auxiliary entry in optimal complexity O(1). On the other hand the
quadrature approach computes those entries in complexity O(p).

Remark 8
Since the auxiliary arrays consists of O(p2) entries, the sum factorization approach is still in opti-
mal complexity in 3D. This is not the case for 2D, where we still have O(p2) entries in the auxiliary
arrays. See [BPZ13a].

Remark 9
The asymptotic behaviour of recursive and quadrature approach for the auxiliary arrays can only
be observed for p ≫ 100. For degrees smaller than that the number of non-zero entries is not yet
in the asymptotic range. But note that the observed behaviour is not worse than O(p3), which is
the asymptotic range given by the assembly of entries.

1All quadrature points and Jacobi polynomials were evaluated by chebfun[DHT14]
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6. Algorithmic optimization for hp finite element

methods

6.1. Dual functions

The aim of this chapter is to give new high order dual functions for H1 and H(curl) functions of
chapter 4.
Consider an arbitrary basis {ϕi}i from chapter 4, then the respective dual functions {ψj}j ∈ L2(Ω)
are given by the relation

⟨ϕi, ψj⟩ = δi,j.

Dual functions are used in defining interpolation operators, see e.g. [Mal09, Chap. 7], or transfer
operators between finite elements spaces, see e.g. [WW98, WK01].
Consider for example some function t(⃗x), which we want to approximate by our basis functions
ϕi, i.e.

t(⃗x) =
N

∑
i=1

αiϕi,

where N = dim(ϕ). This best approximation problem is solved by multiplication with test func-
tions v ∈ L2(Ω) and integration thereof. The following linear system needs to be solved:

∫
Ω

t(⃗x)v(⃗x)dx⃗ =
N

∑
i=1

∫
Ω

αiϕi (⃗x)v(⃗x)dx⃗ ∀v ∈ L2.

The choice v = ϕi for all i would lead into a dense or almost dense system. On the other hand, the
choice of biorthogonal functions leads to a diagonal system. Moreover, biorthogonal functions
are well known from the theory of wavelets, see e.g. [Mal09]. There are also purely biorthogonal
polynomial systems, see e.g. [DX14].
An algorithmic implementation for the H1 dual functions can be found in NGsolve [Sch14].
A further application is the efficient calculation of the constraint matrices for non-conforming
meshes, see e.g. section 6.2.
In 2D the problem in general reads:

Problem 6.1.1
Find uhp ∈ Vhp such that

uhp(λ) = u(λ) ∀ vertices λ,∫
E

uhpv =
∫

E
uv ∀v ∈ P p−2 or Qp−2 ∀ edges E,∫

Q/T
uhpv =

∫
Q/T

uv ∀v ∈ P p−3 or Qp−3 ∀ triangles/quadrilaterals T.
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A similar approach is valid in 3D. We will start by introducing the H1 dual functions for the
quadrilateral and for the triangular case. In a next step, dual functions for H(curl) will be derived.
We apply the already introduced notation, i.e. a function u denotes a H1 basis function, vQ,a a
H(curl) basis function of type a = I, I I, I I I on a reference element Q. Here i, j are the indices of
the basis functions, while k, l are the indices of the dual functions in 2D, or (i, j, k), and (l, m, n)
respectively in 3D. Furthermore p denotes either the total or the maximal polynomial degree,
depending on the reference element.

6.1.1. Dual function in H1

H1 dual functions on the quadrilateral

Consider the master element □ = (−1, 1)2. Recall that the face functions were defined as u□
ij (x, y) =

L̂i(x)L̂j(y), see table 4.2.2. To find the dual functions, we write the integrated Legendre polynomi-
als as Jacobi polynomials by using the relation

L̂i(x) =
(x2 − 1)
2(i − 1)

P(1,1)
i−2 (x), (6.1)

see (2.11).
The dual function b̂□kl(x, y) = b□k (x)b□l (y) has to satisfy the relation

∫
□

u□
ij (x, y)b̂□kl(x, y) dx =

∫ 1

−1
L̂i(x)b□k (x) dx

∫ 1

−1
L̂j(y)b□l (y) dy = cijklδi,kδj,l . (6.2)

By inserting the Jacobi polynomials, we directly notice the orthogonality relations. Thus, one
obtains

c̃
∫ 1

−1
(x2 − 1)P(1,1)

i−2 (x)b□k (x) dx
∫ 1

−1
(y2 − 1)P(1,1)

i−2 (y)b□l (y) dy = cklδi,kδj,l .

This motivates the choice
b□k (x) = P(1,1)

k−2 (x) and b□l (y) = P(1,1)
l−2 (y). (6.3)

The main driving factor is, that the integrated Jacobi (or Legendre) polynomials can be stated as
Jacobi polynomials with an appropriate weight for the second Jacobi index. By normalizing bkl

with ckl , the linear system of equation results in the identity matrix, i.e.

1
ckl

∫
Q

u□
ij (x, y) bkl(x, y) dx dy = δi,kδj,l =

1
ckl

∫
Q

f (x, y) bkl(x, y) dx dy

H1 dual function on the simplex

We now apply the same strategy to the simplicial case. (An extension from quadrilateral to hexa-
hedron is straight forward). Recall that

u△
ij = L̂i

(
2x

1 − y

)(
1 − y

2

)i

P̂2i
j (y)

on the triangle △ with vertices (−1, −1), (1, −1), (0, 1), see table 4.2.7. Using

P̂α
i (x) =

(1 + x)
n

P(α−1,1)
i−1 (x)
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and (6.1) u△
ij (x, y) is rewritten as

u△
ij (x, y) = c

1
2

((
2x

1 − y

)2

− 1

)
P(1,1)

i−2

(
2x

1 − y

)(
1 − y

2

)i (1 + y
2

)
P(2i−1,1)

j−1 (y),

with some known constant c. As before we search for b̂△kl (x, y) = b△k
(

2x
1−y

)
b△kl (y) = b△k (η) b△kl (y),

where η = 2x
1−y . Using the Duffy transformation we write down the biorthogonality condition as

∫
△

u△
ij (x, y)b̂△kl (x, y) dx = c

∫ 1

−1

(
η2 − 1

2

)
P(1,1)

i−2 (η)b△k (η)dη
∫ 1

−1

(
1 − y

2

)i+1

P(2i−1,1)
j−1 (y)b△kl (y) dy.

(6.4)
Again this motivates the choice

b△k (η) = P(1,1)
k−2 (η) and b△kl (y) =

(
1 − y

2

)k−2

P(2k−1,1)
l−1 (y).

Normalizing the dual functions means that the system matrix is again the identity matrix. We
summarize in the following lemma:

Lemma 6.1.1 (H1 dual functions on a triangle)
The face functions u△

ij (x, y) as in (4.4) and

b̂△kl (x, y) = P(1,1)
k−2

(
2x

1 − y

)(
1 − y

2

)k−2

P(2k−1,1)
l−1 (y) ∀ k ≥ 2, i ≥ 1 (6.5)

are a biorthogonal system on △, i.e.∫
△

u△
ij (x, y)b̂△kl (x, y) dx dy = cδikδjl

On the tetrahedron ▲ with vertices (−1, −1, −1), (1, −1, −1), (0, 1, −1) and (0, 0, 1) the interior
functions u▲

ijk, see table 4.2.9, and

b▲lnm(x, y, z) = P(1,1)
l−2

(
4x

1 − 2y − z

)(
1 − 2y − z

4

)(l−2)

P(2i−1,1)
n

(
2z

1 − y

)(n−1)

P(2i+2j−1,1)
m (z)

are biorthogonal, i.e. ∫
▲

u▲
ijk(x, y, z)b▲lnm(x, y, z) dx dy dz = c̃δilδjnδkm. (6.6)

Proof. The biorthogonality follows by inserting (6.5) in (6.4). Analogously, the biorthogonality for
the tetrahedron follows by (6.6).

79



6.1.2. Example of efficient approximation in H1

Consider our reference triangle △ with vertices (−1, −1), (1, −) and (0, 1). Let ϕ ∈ L2(△) be the
functions which we want to approximate, i.e.

ϕ(x, y) =
ndo f

∑
s=1

αsus(x, y), (6.7)

where ui(x, y) are the basis functions and ndo f is the number of degrees of freedom. Foremost
ui(x, y) is given as the set of vertex, edge and face functions, see table 4.2.7. We can rewrite (6.7)
as

ϕ(x, y) =
3

∑
i=1

αv
i u△,v

i (x, y) +
p

∑
i=2

αE1
i u△,E1

i (x, y) +
p

∑
i=2

αE2
i u△,E2

i (x, y)

+
p

∑
i=2

αE3
i u△,E3

i (x, y) +
p

∑
i=2

p−i

∑
j=1

αI
iju

△
ij (x, y).

(6.8)

Since u△,v
i (x, y) are the only functions which have non-zero values at the vertices, we can directly

determine

αv
1 = ϕ(−1,−1),

αv
2 = ϕ(1,−1),

αv
3 = ϕ(0, 1).

Let ϕ̃(x, y) := ϕ(x, y) − ∑3
i=1 αv

i u△,v
i (x, y). Our approximation problem (6.8) has been reduced to

ϕ̃(x, y) =
p

∑
i=2

αE1
i u△,E1

i (x, y) +
p

∑
i=2

αE2
i u△,E2

i (x, y)

+
p

∑
i=2

αE3
i u△,E3

i (x, y) +
p

∑
i=2

p−i

∑
j=1

αI
iju

△
ij (x, y).

As mentioned at the beginning of this chapter, the usual approach would be to multiply with a
set of test function and solve the remaining system. But due to the biorthogonal functions, we
can reduce this problem to a diagonal system.
The steps are as follows: First multiply by a test function v ∈ L2(△). Since only the functions uE1

i
have a non-vanishing trace on E1, integrate over E1. Thus we need to solve the following system

∫
E1

ϕ̃(x, y)v(x, y) dx dy =
p

∑
i=2

αE1
i

∫
E1

u△,E1
i (x, y)v(x, y) dx dy ∀v ∈ L2(△).

Since the trace of the edge functions is always L̂i(z), the best choice for the test functions is tr(v) =
P(1,1)

j−2 (z). For example on E1 this reads as follows

∫
E1

ϕ̃(x, y)P(1,1)
j−2 (x) dx dy =

p

∑
i=2

αi

∫ 1

−1
L̂i(x)P(1,1)

j−2 (x) dx

= αE1
i cijδij.
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Thus, the entries αE1
i can be directly computed by only solving the integral on the left-hand side.

We can compute αE2
i and αE3

i analogously.
Now we only need to solve for the interior parts. Let

ϕ̂(x, y) := ϕ(x, y) −
( 3

∑
i=1

αv
i u△,v

i (x, y) +
p

∑
i=2

αE1
i u△,E1

i (x, y) +
p

∑
i=2

αE2
i u△,E2

i (x, y) +
p

∑
i=2

αE3
i u△,E3

i (x, y)
)

.

Here we again multiply by a test function v ∈ L2(△), but this time integrate over △, i.e.

∫
△

ϕ̂(x, y)v(x, y) =
p

∑
i=2

p−i

∑
j=1

αI
ij

∫
△

u△
ij (x, y)v(x, y) dx dy ∀v ∈ L2(△). (6.9)

The best choice for v was given in (6.5), which results in the diagonal system∫
△

ϕ̂(x, y)v(x, y) = αI
ijcijδi,kδj,l . (6.10)

The generalization to the tetrahedron is straight forward. First determine the coefficients w.r.t. the
vertices, then determine the constraints w.r.t the edges. Next we need to determine all coefficients
w.r.t. the faces, by integration over the individual faces. Lastly, solve for the coefficients w.r.t. the
interior functions.
All biorthogonal functions on the edge and faces follow from the dimensional hierarchy, i.e. the
trace of the faces on the respective face, is just the 2D face functions from table 4.2.7.

6.1.3. Dual functions in H(curl)

Finding dual functions for H(curl) functions is more complicated. Not only are the shape func-
tions vectorial, but they also appear in multiple types. Our goal is to find all dual functions which
are orthogonal to the corresponding type of H(curl) and additionally are zero for all other types.

Quadrilateral basis

Recall that the H(curl) face shape functions on the quadrilateral □ = (−1, 1)2 written out are

v□,I
ij (x, y) = ∇

(
L̂i(x)L̂j(y)

)
=

(
Li−1(x)L̂j(y)
L̂i(x)Lj−1(y)

)
,

v□,I I
ij (x, y) = ∇∇

(
L̂i(x)L̂j(y)

)
=

(
Li−1(x)L̂j(y)
−L̂i(x)Lj−1(y)

)
,

v□,I I I
i (x, y) =

(
L̂i(y)

0

)
, v□,I I I

i+p (x, y) =

(
0

−L̂i(x)

)
,

(6.11)
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for 2 ≤ i, j ≤ p, see table 4.2.4. After linear combination we see, that we can also define the face
functions as

ṽ□,I
ij (x, y) = ∇(L̂i(x))L̂j(y) =

(
Li−1(x)L̂j(y)

0

)
, for 1 ≤ i ≤ p, 2 ≤ j ≤ p, (6.12)

ṽ□,I I
ij (x, y) = L̂i(x)∇(L̂j(y)) =

(
0

L̂i(x)Lj−1(y)

)
, for 1 ≤ j ≤ p, 2 ≤ i ≤ p. (6.13)

Note that the functions of type I I I are now a special case of the new type I and I I for i = 1 and
j = 1, respectively. By application of (6.1) we again find the biorthogonal functions.

Table 6.1.1: Dual functions on a quadrilateral

Define

b̃□,I
kl (x, y) :=

(
Lk−1(x)P(1,1)

l−2 (y)
0

)
, for 1 ≤ k ≤ p, 2 ≤ l ≤ p,

b̃□,I I
kl (x, y) :=

(
0

P(1,1)
k−2 (x)Ll−1(y)

)
, for 1 ≤ l ≤ p, 2 ≤ k ≤ p.

(6.14)

Corollary 6.1.2
For ṽ□,I

ij and ṽ□,I I
ij as in (6.12) and (6.13) and the functions b̃□,I

kl and b̃□,I I
kl as in (6.14) are

biorthogonal, i.e. ∫
□

ṽ□,ω1
ij (x, y)b̃□,ω2

kl (x, y) = cδikδjlδω1 ,ω2

Proof. The proof follows as in lemma 6.1.1.

If we apply the dual functions from corollary 6.1.2 to (6.11), it follows

⟨v□,I
ij , b̃□,I

kl ⟩ = c δikδjl

⟨v□,I
ij , b̃□,I I

kl ⟩ = d δikδjl

⟨v□,I I
ij , b̃□,I

kl ⟩ = c δikδjl

⟨v□,I I
ij , b̃□,I I

kl ⟩ = −d δikδjl ,

where c ̸= 0 and d ̸= 0 are constants depending on i, j, k, l. Since all blocks are diagonal this
motivates the choice

b□,I I
ij (x, y) = d−1 b̃□,I I

ij (x, y) − c−1 b̃I
□,ij(x, y).

and
b□,I

ij (x, y) = c−1 b̃□,I
ij (x, y) − d−1 b̃□,I I

ij (x, y).

These yield orthogonality since

⟨v□,I
ij , bI I

kl ⟩ = d−1⟨v□,I
ij , b̃□,I I

kl ⟩ − c−1⟨v□,I
ij , b̃□,I

kl ⟩ = d−1 d δikδjl − c−1 c δikδjl = 0 ∀i, j, k, l ≥ 2
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and

⟨v□,I I
ij , b□,I

kl ⟩ = c−1⟨v□,I I
ij , b̃□,I

kl ⟩ − d−1⟨v□,I I
ij , b̃□,I I

kl ⟩ = −c−1 c δikδjl + d−1 d δikδjl = 0 ∀i, j, k, l ≥ 2.

Orthogonality of vI I I
i and vI I I

i+p to bI
kl and bI I

kl is trivial. We summarize in the following lemma.

Lemma 6.1.3
Let v□,I

ij , v□,I I
ij , v□,I I I

i and v□,I I I
i+p be as in (6.11), and b̃□,I

kl and b̃□,I I
kl as in table 6.1.1. Further-

more, let

αij =
1
8

(i)(2i − 1)(2j − 1). (6.15)

Then the functions

b□,I
ij (x, y) = αij b̃□,I

ij (x, y) − αji b̃□,I I
ij (x, y),

b□,I I
ij (x, y) = αij b̃□,I

ij (x, y) + αji b̃□,I I
ij (x, y),

b□,I I I
i (x, y) = b̃□,I

1l (x, y), b□,I I I
i+p (x, y) = b̃□,I I

1l (x, y),

are biorthogonal to v□,I
ij , v□,I I

ij , v□,I I I
i and v□,I I I

i+p .

Proof. Biorthogonality was already shown above. For the coefficients in (6.15) apply the usual
orthogonality results, i.e.

c = ⟨vI
ij, bI

ij⟩ =
∫ 1

−1
Li−1(x)Li−1(x) dx

∫ 1

−1

y2 − 1
2(j − 1)

P(1,1)
j−2 (y)P(1,1)

j−2 (y) dy,

where ∫ 1

−1
(Li−1(x))2 dx =

2
2i − 1

and∫ 1

−1

y2 − 1
2(j − 1)

(P(1,1)
j−2 (y))2 dy =

−1
2(j − 1)

23

2j − 1
Γ(j)Γ(j)

Γ(j + 1)(j − 2)!
=

−4
(j − 1)(2j − 1)

(j − 1)
j

=
−4

j(2j − 1)
.

Choose αji = c−1. The coefficient αij is computed analogously.

Triangular case

The triangular case is more complicated. Recall that the basis function of H(curl) on the reference
triangle with vertices (−1, −1), (1, −1) and (0, 1) are derived as

v△,I
ij (x, y) = ∇(u△

ij (x, y)) = ∇( fi(x, y))gij(y) + fi(x, y)∇(gij(y))

v△,I I
ij (x, y) = ∇∇2(u△

ij (x, y)) = ∇( fi(x, y))gij(y) − fi(x, y)∇(gij(y))

v△,I I I
1j (x, y) = ∇( f1(x, y))P̂3

j (y),

(6.16)
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where fi(x, y) = L̂i( 2x
1−y )

(
1−y

2

)i
and gij(y) = P̂2i

j (y), see table 4.2.8.
The gradients of the auxiliary functions fi(x, y) and gij(y) can be calculated as

∇( fi(x, y)) =
(

1 − y
2

)(i−1)
 Li−1

(
2x

1−y

)
1
2 Li−2

(
2x

1−y

) for i ≥ 2,

∇(gij(y)) =

(
0

P(2i,0)
j−1 (y)

)
for i ≥ 2, j ≥ 1,

∇( f1(x, y)) =
1 − y

4

(
1

1
2

2x
(1−y)

)
,

(6.17)

where we simplified the first gradient by using the recursive relation (4.7), see also [BS06].
We follow the ansatz as described for the quadrilateral case. First split v△,I/I I/I I I

ij in the functions

ṽ△,I
ij (x, y) = ∇( fi(x, y))gij(y) for i ≥ 1, j ≥ 2,

ṽ△,I I
ij (x, y) = fi(x, y)∇(gij(y)) for i, j ≥ 2.

(6.18)

The functions ṽ△,I(x, y) and ṽ△,I I(x, y) are also a basis of the space H0(curl). Next we derive the
biorthogonal vectorial functions for those ṽ△,I

ij and ṽ△,I I
ij , and then solve the original problem by

linear combination, as in the quadrilateral case.
Here the main idea of the construction is that we first find vectorial functions which are orthogo-
nal to either ∇(gij(x, y)) or ∇( fi(x, y)) and then biorthogonalise those to the respective other basis
functions.
It is clear that we have the following structure of the orthogonal vectors:

Bkl(x, y) =

(
b(x, y)

0

)

Ckl(x, y) =

(
c1(x, y)
c2(x, y)

) (6.19)

In the following we use the notation η = 2x
1−y and write all functions in dependence of (η, y), e.g.

write a(x, y) as a(η, y). The first problem which needs to be solved then reads:

Problem 6.1.2
Find polynomials Bkl(η, y) such that

⟨ṽ△,I I
ij (η, y), Bkl(η, y)⟩ = 0 and ⟨ṽ△,I , Bkl(η, y)⟩ = d(1)

ijklδikδjl .

Since the first component of ṽ△,I I(η, y) is zero, Bkl(η, y) as in (6.19) naturally fulfills the first con-
dition. Furthermore, we can assume a tensorial-like structure, i.e.

Bkl(η, y) =

(
b(1)

k (η)b(2)
kl (y)

0

)
.
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Now b1(z) and b2(y) only needs to fulfil the relationship

∫ 1

−1
Li−1(η) b(1)

k (η)dη
∫ 1

−1

(
1 − y

2

)i (1 + y)
2j

P(2i−1,1)
j−1 (y) b(2)

kl (y) dy = d(1)
ijklδikδjl ,

where we applied the Duffy transformation. This motivates the choice b(1)
k (η) = Lk−1(η) and

b(2)
kl (y) =

(
1−y

2

)k−1
P(2k−1,1)

l−1 (y).
For the second type of dual functions we need to solve the following problem:

Problem 6.1.3
Find polynomials Ckl(η, y) such that,

⟨ṽ△,I
ij (η, y), Ckl(η, y)⟩ = 0 and ⟨ṽ△,I I

ij (η, y), Ckl(η, y)⟩ = d(2)
ijklδikδjl . (6.20)

Here we will need the help of the following small lemma.

Lemma 6.1.4
For 1 ≤ i ≤ k, the relation

∫ 1

−1
Li(x)P(1,1)

k (x) dx =

 4
2+k if k ≥ i and (k − i) mod 2 = 0

0 else

holds.

Proof. A classical result of Jacobi polynomials states that P(α,α)
n (x) is even if n is even and it is odd

if n is odd. Thus the relation is trivial if k and i have a different parity.
In the following, assume i and k have the same parity. Let Iik :=

∫ 1
−1 Li(x)P(1,1)

k (x) dx. If i > k it
follows that Iik is zero, due to the orthogonality condition of Li(x). Now assume k ≥ i. By partial
integration it follows

Iik =
∫ 1

−1
Li(x)P(1,1)

k (x) dx =
∫ 1

−1
Li(x)

2
2 + k

d
dx

Lk+1(x) dx

=
2

2 + k
[Li(x)Lk+1(x)] |1−1 −

∫ 1

−1

(
d
dx

Li(x)
)

Lk+1(x) dx

=
4

2 + k
,

where the last integral vanishes due to the orthogonality condition of Lk+1(x) and [Li(x)Lk+1(x)]|1−1 =
2 due to the odd parity.

For problem 6.1.3 we start with the biorthogonality condition. We again assume a tensorial-like
structure, i.e.

Ckl(η, y) = c(3)
kl (y)

(
c(1)

k (η)
c(2)

k (η)

)
.
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(a) L2-scalar product of Bkl , Ckl and auxiliary
functions.
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(b) L2-scalar product of Bkl , Ckl and H(curl) ba-
sis functions.

Figure 6.1.: Biorthogonal sparsity pattern for p = 6

The condition is

⟨ṽ△,I I
ij (η, y), Ckl(η, y)⟩ =

∫ 1

−1
L̂i(η)c(2)

k (η) dη
∫ 1

−1

(
1 − y

2

)i+1

P(2i,0)
j−1 (y)c(3)

kl (y) dy = d(2)
ijklδikδjl .

This leads to the choice c(2)
k (η) = κP(1,1)

k−2 (η) and c(3)
kl (y) =

(
1−y

2

)k−1
P(2k,0)

l−1 (y), where κ is some con-
stant. The orthogonality condition

⟨ṽ△,I
ij , Ckl⟩ = 0

is satisfied, if

⟨∇ fi(η, y), Ckl(η)⟩ = 0. (6.21)

Since both components of ∇ fi depend on
(

1−y
2

)i−1
P̂2i,0

j (y), the orthogonality relation reduces to

∫ 1

−1
Li−1(η)c(1)

k (η) dη +
∫ 1

−1

1
2

Li−2(η)c(2)
k (η) dη = 0.

Due to lemma 6.1.4 this condition is fulfilled if c(1)
k (η) = (2 + k − 1)P(1,1)

k−1 (η)

and c(2)
k (η) = −2(2 + k − 2)P(1,1)

k−2 (η). Now we have found a biorthogonal basis for ṽ△,I and ṽ△,I I ,
which results in a diagonal matrix which can be seen in Figure 6.1a.
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Table 6.1.2: Dual functions on a triangle

Define

Bkl(x, y) :=

Lk−1

(
2x

1−y

) (
1−y

2

)k−1
P2k−1,1

l−1 (y)

0

 , for 1 ≤ k, l

Ckl(x, y) :=

 (2 + k − 1)P(1,1)
k−1

(
2x

1−y

) (
1−y

2

)k−1
P(2k,0)

l−1 (y)

−2(2 + k − 2)P(1,1)
k−2

(
2x

1−y

) (
1−y

2

)k−1
P(2k,0)

l−1 (y)

 , for 2 ≤ k, 1 ≤ l.

With this choice, we have proven the following corollary.

Corollary 6.1.5
Let ṽ△,I

ij , ṽ△,I I
ij be defined by (6.18) and the functions Bkl and Ckl be defined as in table 6.1.2.

Then these functions are biorthogonal.

Obviously those are not biorthogonal to the basis v△,I
ij , v△,I I

ij and v△,I I I
1j , which can be seen in Fig-

ure 6.1b. Thus, we derive the biorthogonal functions by linear combination, as in the quadrilateral
case.

Lemma 6.1.6
Let the coefficients α1, α2 and α3 be given by

α1 =
1
8

(2i − 1)(2j + 2i − 1)(j + 2i − 1),

α2 =
1
16

(2i − 1)(2j + 2i − 1),

α3 =
1
16

(2j + 2)(j + 2).

Then for 2 ≤ i, k ≤ p, 1 ≤ j, l ≤ p, and i + j, k + l ≤ p, the functions v△,I
ij , v△,I I

ij and v△,I I I
1j as

in (6.16) are biorthogonal to

b△,I
kl (x, y) = −1

2
(α1Bkl(x, y) + α2Ckl(x, y)),

b△,I I
kl (x, y) =

1
2

(α1Bkl(x, y) − α2Ckl(x, y)),

b△,I I I
1l (x, y) = α3B1l(x, y),

where Bkl and Ckl are given in table 6.1.2.

Proof. Since we have shown biorthogonality of ṽ△,I
ij , ṽ△,I I

ij to Bkl , Ckl in corollary 6.1.5, we get

⟨v△,I
ij , Bkl⟩ = ⟨ṽ△,I

ij , Bkl⟩ + ⟨ṽ△,I I
ij , Bkl⟩ = ⟨ṽ△,I

ij , Bkl⟩ = cδikδjl

⟨v△,I
ij , Ckl⟩ = ⟨ṽ△,I

ij , Ckl⟩ + ⟨ṽ△,I I
ij , Ckl⟩ = ⟨ṽ△,I I

ij , Ckl⟩ = c̃δikδjl .

This motivates the choice b△,I
kl = α1Bkl + α2Ckl with some coefficients α1, α2 depending on i, j, k, l.
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The parameters α1, α2 are chosen such that

0 ̸= ⟨v△,I
ij , b△,I

kl ⟩ = α1⟨ṽ△,I
ij , Bkl⟩ + α2⟨ṽ△,I I

ij , Ckl⟩,

0 = ⟨v△,I I
ij , b△,I

kl ⟩ = α1⟨ṽ△,I
ij , Bkl⟩ − α2⟨ṽ△,I I

ij , Ckl⟩.

We only need to solve this for (i, j) = (k, l), thus

⟨ṽ△,I
ij , Bij⟩ =

∫ 1

−1
(Li−1(η))2 dη

∫ 1

−1

(
1 − y

2

)2i−1 (1 + y)
j

(P(2i−1,1)
j−1 (y))2 dy

(6.1.3)
=

2
2i − 1

(
1 − y

2

)2i−1 1 + y
j

(P(2i−1,1)
j−1 (y))2 dy

=
2

2i − 1
1

22i−1 j
22i+1

2j + 2i − 1
Γ(j + 2i − 1)Γ(j + 1)

Γ(j + 2i)(j − 1)!

=
8

(2i − 1)(2j + 2i − 1)(j + 2i − 1)
.

This implies α1 = 1
8 (2i − 1)(2j − 2i − 1)(j + 2i − 1). Analogously

⟨ṽ△,I I
ij , Cij⟩ = −2i

∫ 1

−1

(
η2 − 1

2(i − 1)

)
(P(1,1)

i−2 (η))2 dη
∫ 1

−1

(
1 − y

2

)2i

P(2i,0)
j−1 (y) dy

=
8

(2i − 1)

∫ 1

−1

(
1 − y

2

)2i

P(2i,0)
j−1 (y) dy

=
8

(2i − 1)
2

(2j + 2i − 1)
Γ(j + 2i)Γ(j)

Γ(j + 2i)(j − 1)!

=
16

(2i − 1)(2j + 2i − 1)
,

implies α2 = 1
16 (2i− 1)(2j + 2i− 1). The only thing remaining to show is that Bkl , Ckl are orthogonal

to v△,I I I
1,j and that b△,I I I

1l is orthogonal to ṽ△,I
ij and ṽ△,I I

ij . Indeed,

⟨v△,I I I
1j , Bkl⟩ =

∫ 1

−1
1 · Lk−1(η) dη

∫ 1

−1

1
2

(
1 − y

2

)k

P(2k−1,1)
l−1 (y) = 0,

due to the orthogonality of Lk−1(η) for all k ≥ 2. For the orthogonality of

⟨v△,I I I
1j , Ckl⟩

we can apply lemma 6.1.4.
On the other hand, orthogonality of b△,I I I

1l follows from corollary 6.1.5.

Since all basis functions are properly scaled, the next corollary follows directly.
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Corollary 6.1.7
Let i, k ≥ 2 and j, l ≥ 1. Furthermore let v△,I

ij , v△,I I
ij , v△,I I I

1j be the basis of the H(curl) face

functions and let b△,I
kl , b△,I I

kl , b△,I I I
1l be the corresponding normalized dual face functions,

then holds for the entries of the element Matrix G that

Gij,kl = ⟨v△,T1
ij (x, y), b△,T2

kl (x, y)⟩ = δi,kδj,lδT1 ,T2 .

As we have seen before, the functions based on the operator ∇∇ are not functions of Nédélec’s
space of the first kind. But v△,N as in (4.13) are just a small recombination, and thus it is possible
to reconstruct our dual functions to those modified basis functions. The same arguments as above
lead to the following corollary:

Corollary 6.1.8
Let the coefficients α1, α2, α3 and cij be given by

α1 =
1
8

(2i − 1)(2j + 2i − 1)(j + 2i − 1),

α2 =
1
16

(2i − 1)(2j + 2i − 1),

α3 =
1
16

(2j + 2)(j + 2),

cij =
i
j
.

Then for 2 ≤ i, k ≤ p, 1 ≤ j, l ≤ p, and i + j, k + l ≤ p, the functions v△,I
ij , v△,I I I

1j as in (6.16)
and v△,N as in (4.13) are biorthogonal to

b△,I
kl (x, y) =

1
1 + cji

(α1Bkl(x, y) + cjiα2Ckl(x, y)),

b△,I I
kl (x, y) =

1
1 + cij

(α1Bkl(x, y) − α2Ckl(x, y)),

b△,I I I
1l (x, y) = α3B1l(x, y),

where Bkl and Ckl are given in table 6.1.2.

Tetrahedral case

Our ansatz is the same as in the triangular case:
We split the basis functions in a simpler basis, find the orthogonal basis to this simpler basis and
build the right dual basis by linear combination. Recall the basis of H(curl) on the tetrahedral
with vertices (−1, −1, −1), (1, −1, −1), (0, 1, −1) and (0, 0, 1) is given by

vI
ijk = ∇( figijhijk) = ∇( fi)gijhijk + fi∇(gij)hijk + figij∇(hijk),

vI I
ijk = ∇∇2( figijhijk) = ∇( fi)gijhijk − fi∇(gij)hijk + figij∇(hijk),

vI I I
ijk = ∇∇3( figijhijk) = ∇( fi)gijhijk + fi∇(gij)hijk − figij∇(hijk),

vIV
1jk = vN0

[1,2]gijhijk,

(6.22)
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for i ≥ 2; j, k ≥ 1; i + j + k ≤ p, where

fi = L̂i

(
4x

1 − 2y − z

)(
1 − 2y − z

4

)i

,

gij = P̂2i
j

(
2y

1 − z

)(
1 − z

2

)j

,

hijk = P̂2i+2j
k (z)

(6.23)

and vN0
[1,2] is the lowest order Nédélec function of first kind, based on the edge from vertex 1 to

2, see table 4.2.10. With the substitutions η = 4x
1−2y−z and χ = 2y

1−z , the gradients of the auxiliary
functions are

∇ fi =

 Li−1(η)
1
2 Li−2(η)
1
4 Li−2(η)

(1 − χ

2

)i−1 (1 − z
2

)i−1

,

∇gij =

 0
P(2i,0)

j−1 (χ)
χ
2 P(2i,0)

j−1 (χ) − j
2 P̂2i

j (χ)

(1 − z
2

)j−1

and

∇hijk =

 0
0

P(2i+2j,0)
k−1 (z)

 .

We now derive three biorthogonal vectors with respect to (∇ fi) gij hijk, fi (∇gij) hijk and fi gij (∇hijk).
Similar to the triangular case, we have the following conditions on the dual functions Bijk, Cijk and
Dijk :

Problem 6.1.4
Find Blmn, Clmn, Dlmn such that

fi (∇gij) hijk ⊥ Blmn ⊥ fi gij (∇hijk) and ⟨Blmn, (∇ fi) gij hijk⟩ = rijklmnδilδjmδkn,

(∇ fi) gij hijk ⊥ Clmn ⊥ fi gij (∇hijk) and ⟨Clmn, fi (∇gij) hijk⟩ = sijklmnδilδjmδkn,

(∇ fi) gij hijk ⊥ Dlmn ⊥ fi (∇gij) hijk and ⟨Dlmn, fi gij (∇hijk)⟩ = tijklmnδilδjmδkn.

Since the basis vectors build a lower triangular system, we know that we need to find an upper
triangular system. Thus,

Blmn =

blmn(η, χ, z)
0
0

 ,

Clmn =

c(1)
lmn(η, χ, z)

c(2)
lmn(η, χ, z)

0

 ,

Dlmn =

d(1)
lmn(η, χ, z)

d(2)
lmn(η, χ, z)

d(3)
lmn(η, χ, z)

 .
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The construction of Blmn is trivial and the construction of Clmn follows from the 2D case. Thus,

Blmn =

1
0
0

 Ll−1(η)
(

1 − χ

2

)l−1

P(2l−1,1)
m−1 (χ)

(
1 − z

2

)l+m−2

P(2l+2m−1,1)
n−1 (z) and

Clmn =

 (2 + l − 1)P(1,1)
l−1 (η)

−2(2 + l − 2)P(1,1)
l−2 (η)

0

(1 − χ

2

)l−1

P(2l,0)
m−1 (χ)

(
1 − z

2

)l+m−2

P(2l+2m−1,1)
n−1 (z),

where the exponents of
(

1−χ
2

)
and

( 1−z
2

)
are determined with respect to the functional determi-

nant of the Duffy trick, i.e.
(

1−χ
2

) ( 1−z
2

)2
.

To derive Dlmn we go step by step. It follows immediately that

d(3)
lmn = P(1,1)

l−2 (η)
(

1 − χ

2

)l−2

P(2l−1,1)
m−1 (χ)

(
1 − z

2

)l+m−2

P(2l+2m,0)
n−1 (z), (6.24)

due to ⟨Dlmn, fi gij (∇hijk)⟩ = sijklmnδilδjmδkn.
Next we derive d(2)

lmn by demanding

0 = ⟨ fi(∇gij)hijk, Dlmn⟩. (6.25)

A rather obvious choice for d(2)
lmn is d(2)

lmn = P(1,1)
l−2 (η) d̃(2)(χ)

( 1−z
2

)l+m−2 P(2l+2m,0)
n−1 (z). This choice re-

duces the condition (6.25) to

0 =
∫ 1

−1

(
1 − χ

2

)i+1

P(2i,0)
j−1 (χ) d̃(2)(χ) +

(
1 − χ

2

)2i−1 (χ

2
P(2i,0)

j−1 (χ) − j
2

P̂2i
j (χ)

)
P(2i−1,1)

m−1 (χ) dχ, (6.26)

since the condition (6.25) is trivial for i ̸= l and k ̸= n with this choice of d(2)
ijk .

On the right part of the integral the combination P̂2i
j (χ)P(2i−1,1)

m−1 (χ) already fulfils the orthogonality
relation. On the other hand, for the product of the two different Jacobi polynomials, namely
P(2i,0)

j−1 (χ) and P(2i−1,1)
m−1 (χ), we can’t apply standard orthogonality results. We eliminate this mixed

part by linear combination. Therefore, we choose

d̃(2) = −χ

2

(
1 − χ

2

)l−2

P(2l−1,1)
m−1 (χ) + d̂(2),

such that the mixed products cancel each other out. Those linear combinations result in the fur-
ther reduced condition

0 =
∫ 1

−1

(
1 − χ

2

)i+1

P(2i,0)
j−1 (χ) d̂(2)(χ) − j

2

(
1 − χ

2

)2i−1

P̂2i
j (χ)P(2i−1,1)

m−1 (χ) dχ. (6.27)

The last part of the integral in (6.27) only appears if m = j. We can achieve the same for the first
part of the integral, if we choose

d̂(2) = c
(

1 − χ

2

)l−1

P(2l,0)
m−1 (χ).

91



Since both instances in (6.27) are integrals over Jacobi polynomials with matching indices, order
and weights, we can determine the constant c directly. It holds that

∫ 1

−1

(
1 − χ

2

)2i (
P(2i,0)

j−1 (χ)
)2

dχ =
1

2j + 2i − 1∫ 1

−1

(
1 − χ

2

)2i−1 (1 + χ

2

)(
P(2i−1,1)

j−1 (χ)
)2

dχ =
j

(2j + 2i − 1)(2i + j − 1)
.

Collecting everything

d(2)
lmn = P(1,1)

l−2 (η)
(

1 − χ

2

)l−2 (
−χ

2
P(2l−1,1)

m−1 (χ) +
m

(2l + m − 1)
(1 − χ)

2
P(2l,0)

m−1 (χ)
)(

1 − z
2

)l+m−2

P(2l+2m,0)
n−1 (z).

Now we need to determine d(1)
lmn, by

0 = ⟨(∇ fi)gijhijk, Dlmn⟩.

Inserting d(2)
lmn and d(3)

lmn yields the following condition after some simplification

0 =
∫

(−1,1)3
Li−1(η)

(
1 − χ

2

)i−1

P̂2i
j (χ)

(
1 − z

2

)i+j+1

P̂2i+2j
k (z)d(1)

lmn(η, χ, z) dη dχ dz

+
∫

(−1,1)3
Li−2(η)P(1,1)

l−2 (η)
(

1 − χ

2

)i+l−1

P̂2i
j (χ)

[
P(2l−1,1)

m−1 (χ) +
m

2l + m − 1
P(2l,0)

m−1 (χ)
]

(
1 − z

2

)i+j+l+m−1

P̂2i+2j
k (z)P(2l+2m−1,1)

n−1 (z) dz dχ dη.

If we choose d(1)
lmn(η, χ, z) = 2+l−1

2(2+l−2) P(1,1)
l−1 (η)d̂(1)(χ)

( 1−z
2

)l+m−2 P(2l+2m,0)
n−1 (z), we can factor all terms

depending on η and z out. Thus, we only need to determine d̂(1)(χ), by the condition

0 =
∫ 1

−1

(
1 − χ

2

)i−1

P̂2i
j (χ) d̂(1)(χ) +

(
1 − χ

2

)i+l−1

P̂2i
j (χ)

[
P(2l−1,1)

m−1 (χ) +
m

2l + m − 1
P(2l,0)

m−1 (χ)
]

dχ.

It is obvious, that we can choose

d(1)
lmn =

−(2 + l − 1)
2(2 + l − 2)

P(1,1)
l−1 (η)

(
1 − χ

2

)l−1 [
P(2l−1,1)

m−1 (χ) +
m

2l + m − 1
P(2l,0)

m−1 (χ)
] (

1 − z
2

)l+m−2

P(2l+2m,0)
n−1 (z).

We summarize in the following table.
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Table 6.1.3: Dual basis on the tetrahedron

Let l ≥ 2, m, n ≥ 1 then define

b̃▲,I
lmn :=

1
0
0

 Ll−1(η)
(

1 − χ

2

)l−1

P(2l−1,1)
m−1 (χ)

(
1 − z

2

)l+m−2

P(2l+2m−1,1)
n−1 (z)

b̃▲,I I
lmn :=

(l + 1)P(1,1)
l−1 (η)

−2lP(1,1)
l−2 (η)
0

(1 − χ

2

)l−1

P(2l,0)
m−1 (χ)

(
1 − z

2

)l+m−2

P(2l+2m−1,1)
n−1 (z),

b̃▲,I I I
lmn :=


−(l+1)

2 l P(1,1)
l−1 (η)

(
1−χ

2

)l−1 [
P(2l−1,1)

m−1 (χ) + m
2l+m−1 P(2l,0)

m−1 (χ)
]

P(1,1)
l−2 (η)

(
1−χ

2

)l−2 [
−χ

2 P(2l−1,1)
m−1 (χ) + m

2l+m−1
1−χ

2 P(2l,0)
m−1 (χ)

]
P(1,1)

l−2 (η)
(

1−χ
2

)l−2
P2l−1,1

m−1 (χ)


(

1 − z
2

)l+m−2

P(2l+2m,0)
n−1 (z),

where η = 4x
1−2y−z and χ = 1−2y−z

4 .

Thus the following lemma has been shown.

Lemma 6.1.9
Let fi, gij and hijk be defined as in (6.23). Then, the functions

ṽ▲,I
ijk = (∇ fi)gijhijk,

ṽ▲,I I
ijk = fi(∇gij)hijk,

ṽ▲,I I I
ijk = figij(∇hijk)

are biorthogonal to b̃▲,I
lmn, b̃▲,I I

lmn and b̃▲,I I I
lmn defined by table 6.1.3, i.e.

⟨ṽ▲,ω1
ijk , b̃▲,ω2

lmn ⟩ = cω1
ijk δilδjmδknδω1 ,ω2 , ω1, ω2 ∈ {I, I I, I I I}.

As before, we transfer this to the original interior basis functions.
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Lemma 6.1.10
Let b̃▲,I

lmn, b̃▲,I
lmn and b̃▲,I

lmn be defined by table 6.1.3.
For i ≥ 2, j ≥ 1, k ≥ 1 the functions v▲,I

ijk , v▲,I I
ijk , v▲,I I I

ijk and v▲,IV
1jk are biorthogonal to

b▲,I
lmn =

1
2

α(2)
lmnb̃▲,I I

lmn +
1
2

α(3)
lmnb̃▲,I I I

lmn ,

b▲,I I
lmn =

1
2

α(1)
lmnb̃▲,I

lmn −
1
2

α(2)
lmnb̃▲,I I

lmn ,

b▲,I I I
lmn =

1
2

α(1)
lmnb̃▲,I

lmn −
1
2

α(3)
lmnb̃▲,I I I

lmn ,

b▲,IV
1mn = α(4)

lmnb̃▲,I
1mn,

where

α(1)
lmn =

1
27 (2l − 1)(2m + 2l − 1)(m + 2l − 1)(2n + 2l + 2m − 1)(n + 2l + 2m − 1)

α(2)
lmn =

1
26 (2l − 1)(2m + 2l − 1)(2n + 2l + 2m − 1)(n + 2l + 2m − 1)

α(3)
lmn =

−1
25 l(2l − 1)(2m + 2l − 1)(m + 2l − 1)(2n + 2l + 2m − 1)

α(4)
lmn =

1
25 (2m + 2)(m + 2)(n + 2m + 2)(2n + 2m + 2)

Proof. To show the coefficients α(1)
lmn, α(2)

lmn and α(3)
lmn we need to calculate the coefficients cI

ijk, cI I
ijk, cI I I

ijk
in lemma 6.1.9, since

⟨v▲,I
ijk , b̃▲,I

lmn⟩ = ⟨ṽ▲,I
ijk , b̃▲,I

lmn⟩ + ⟨ṽ▲,I I
ijk , b̃▲,I

lmn⟩ + ⟨ṽ▲,I I I
ijk , b̃▲,I

lmn⟩ = ⟨ṽ▲,I
ijk , b̃▲,I

lmn⟩ = cI
ijkδilδjmδkn. (6.28)

Due to the already shown biorthogonality we can assume that

b▲,I
lmn = α(1,I)

lmn b̃▲,I
lmn + α(2,I)

lmn b̃▲,I I
lmn + α(3,I)

lmn b̃▲,I I I
lmn

b▲,I I
lmn = α(1,I I)

lmn b̃▲,I
lmn + α(2,I I)

lmn b̃▲,I I
lmn + α(3,I I)

lmn b̃▲,I I I
lmn

b▲,I I I
lmn = α(1,I I I)

1 b̃▲,I
lmn + α(2,I I I)

lmn b̃▲,I I
lmn + α(3,I I I)

lmn b̃▲,I I I
lmn .

This combined with (6.28) yields 9 equations. If we choose αω
1 = βω

1 (cI
ijk)−1 and so on, we get the

following system which needs to be solved βI
1 βI

2 βI
3

βI I
1 βI I

2 βI I
3

βI I I
1 βI I I

2 βI I I
3


1 1 1

1 −1 1
1 1 −1

 = I3.

The solution is given by  βI
1 βI

2 βI
3

βI I
1 βI I

2 βI I
3

βI I I
1 βI I I

2 βI I I
3

 =

0 1
2

1
2

1
2 − 1

2 0
1
2 0 − 1

2

 .

The coefficients cω
ijk can be computed analogously to the triangular case be using the exact values
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of the integrals over Jacobi polynomials. Finally, one obtains

⟨ṽI
ijk, b̃I

ijk⟩ =
27

(2i − 1)
1

(2j + 2i − 1)(j + 2i − 1)(2k + 2i + 2j − 1)(k + 2i + 2j − 1)
,

⟨ṽI I
ijk, b̃I I

ijk⟩ =
26

(2i − 1)
1

(2j + 2i − 1)(2k + 2i + 2j − 1)(k + 2i + 2j − 1)
,

⟨ṽI I I
ijk , b̃I I I

ijk ⟩ =
26

(2i − 1)
1

i (2i + 2j − 1)(j + 2i − 1)(2k + 2i + 2j − 1)
,

by using the orthogonality relations of the Jacobi polynomials. It remains to show, that to

vIV
1jk =

1
η
2
η
4

(1 − χ

2

)
P̂1

j (χ)
(

1 − z
2

)j+1

P̂2j+3
k (z)

the dual shape functions are naturally orthogonal. For Bijk orthogonality follows since the first
component of vIV

1jk is independent of η = 4x
1−2y−z .

For Cijk we apply the relations

∫ 1

−1
(i + 1)P(1,1)

i−1 (x) dx = 2
∫ 1

−1

d
dx

Li(x) dx = 2 [Li(x)]1−1 = 2(1 − (−1)i)

and ∫ 1

−1

x
2

(2i)P(1,1)
i−2 (x) dx = 2

∫ 1

−1
x

d
dx

Li−1(x) dx = 2 [xLi(x)]1−1 −
∫ 1

−1
L−1(x)︸ ︷︷ ︸
=0

dx = 2(1 − (−1)i)

to see that the scalar product ⟨vIV
1jk, Clmn⟩ = 0, for all i, j, k, l, m, n. For Dijk the same relation is

applied, thus ⟨vIV
1jk, Dlmn⟩ = 0, for all i, j, k, l, m, n.

On the other hand, the dual function to vIV
1jk is easily found to be

B1jk =

1
0
0

 P(2,1)
j−1 (y)

(
1 − z

2

)j−1

P(2j+2,1)
k−1 (z).

It is obviously orthogonal to ∇gij and ∇hijk, furthermore it is orthogonal to ∇ fi since it is inde-
pendent of η.

We conclude with some remarks.

Remark 10
It is usually possible to modify the index of the integrated Jacobi polynomials to modify the
sparsity pattern and condition number of the element matrices. But in the context of polynomial
dual functions the index (2i) and (2i + 2j) are minimal, otherwise the dual functions will become
rational with singularities for low polynomial degrees for the interior H(curl) shape functions.
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Remark 11
The expression of the coefficients α(1)

lmn, α(2)
lmn and α(3)

lmn can be significantly reduced by dividing
each with

(2l+2m−1)(2l−1)(2n−2l−2m−1).

In this case one needs to compute the element matrix corresponding to biorthogonal system by
numerical quadrature or similar methods.

As we have seen previously, we needed to modify part of our H(curl) conforming functions, such
that they are in Nédélec’s first space. This results are summarized in the following lemma:

Lemma 6.1.11
Let b̃▲,I

lmn, b̃▲,I
lmn and b̃▲,I

lmn be defined by table 6.1.3.
For i ≥ 2, j ≥ 1, k ≥ 1 the functions v▲,I

ijk , v▲,I I,N
ijk , v▲,I I I,N

ijk , v▲,IV
1jk are biorthogonal to

b▲,I
lmn = 1/(l + m + n)

(
lα(1)

lmnb̃▲,I
lmn + mα(2)

lmnb̃▲,I I
lmn + nα(3)

lmnb̃▲,I I I
lmn

)
,

b▲,I I
lmn = −1/(mn)

(
lα(1)

lmnb̃▲,I
lmn − (l + n)α(2)

lmnb̃▲,I I
lmn + nα(3)

lmnb̃▲,I I I
lmn

)
,

b▲,I I I
lmn = −1/(mn)

(
lα(1)

lmnb̃▲,I
lmn + mα(2)

lmnb̃▲,I I
lmn − (l + m)α(3)

lmnb̃▲,I I I
lmn

)
,

b▲,IV
1mn = α(4)

lmnb̃▲,I
1mn,

where

α(1)
lmn =

1
27 (2l − 1)(2m + 2l − 1)(m + 2l − 1)(2n + 2l + 2m − 1)(n + 2l + 2m − 1)

α(2)
lmn =

1
26 (2l − 1)(2m + 2l − 1)(2n + 2l + 2m − 1)(n + 2l + 2m − 1)

α(3)
lmn =

−1
25 l(2l − 1)(2m + 2l − 1)(m + 2l − 1)(2n + 2l + 2m − 1)

α(4)
lmn =

1
25 (2m + 2)(m + 2)(n + 2m + 2)(2n + 2m + 2)

Proof. Recall that the inner product between the auxiliary functions and biorthogonal auxiliary
functions fulfil an orthogonality condition, e.g.

α(1)
ijk ⟨(∇ fi)gijhijk, b̃▲,I

ijk ⟩ = 1

α(1)
ijk ⟨(∇ fi)gijhijk, b̃▲,I I

ijk ⟩ = 0,

where αl
ijk, l = 1, . . . , 4 are the normalization constants.

Due to the weighted construction of v▲,I I,N
ijk and v▲,I I I,N

ijk , the biorthogonal functions will be weighted
as well.
We apply the ansatz

b▲,I
lmn =

(
c1α(1)

lmnb̃▲,I
lmn + c2α(2)

lmnb̃▲,I I
lmn + c3α(3)

lmnb̃▲,I I I
lmn

)
.

Taking the inner product between this ansatz and our functions v▲,I
ijk , v▲,I I,N

ijk , and v▲,I I I,N
ijk results
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Figure 6.2.: Uniform refinement of quadrilateral grid

in the linear system 1 1 1
j −i 0
k 0 −i


c1

c2

c3

 =

1
0
0

 .

The solution of this linear system is c⃗ = 1
i+j+k (i, j, k)⊤. The other biorthogonal functions follow

analogously.

6.2. Efficient computation of coefficients for hanging nodes

The results of this section have been published in [HPB22] and are extended shortly for the 3D
case. We return to the discrete problem.

Problem 6.2.1
Let Ω be a polygonal Lipschitz domain, find uh ∈ Vh(Ω) ⊂ V(Ω) such that

a(uh, vh) = F(vh) for all vh ∈ Vh(Ω). (6.29)

The numerical solution can be obtained by a uniform refinement of all elements, see Figure 6.2
for an example of such a refinement on a quadrilateral grid.
But usually a uniform refinement is not optimal, since we generate many unnecessary degrees of
freedom. A local mesh refinement can reduce this overhead. An application can have singularities
due to non-smooth boundaries and/or coefficients. In such a case, the local mesh refinement
can be based on a-priori information, see e.g. [KM03]. Alternatively, one can use a-posteriori
information. See e.g. [CFPP14] or in the case of hp-refinement [MW01]. For simplicial mesh a
local mesh refinement can be achieved consistently, by the so called red-green refinement or the
newest vertex bisection, see [Bey98]. For quadrilateral or hexahedral triangulation, this usually
not possible. In general, the application of a local refinement yields in vertices of a quadrilateral
or a hexahedral, which are not a vertex of a neighbouring element. This is depicted in Figure 6.3.
We restrict our self to the case where we have only one hanging node per edge, a so-called hanging
node of level one. A generalization to hanging nodes of higher level, i.e. more hanging nodes per
element interface, can be done, see e.g. [SDD10, KSA14, DSZK16, DPCF+20].
An efficient implementation for the case of H(curl) can be found in [KWB23].
After a local refinement, we have more degrees of freedom on the finer edge. Those are constraint
by the values of the degrees of freedom on the coarser grid. For the ease of presentation, we
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Figure 6.3.: Local refinement of a quadrilateral grid, the red dote denotes a hanging node

Figure 6.4.: Hat functions on [−1, 1] and [−1, 0] ∪ [0, 1]

assume constant material function over the whole domain Ω and omit those. In the following
we will present the setting only on the coarser interval I = [−1, 1] and the two finer intervals
I l = [−1.0] and Ir = [0, 1]. As example consider the Lagrangian polynomials of order p = 1,

ℓ0(x) =
1 − x

2
, ℓ1 =

1 + x
2

ℓl
0(x) = ℓ0(2x + 1), ℓl

1(x) = ℓ1(2x + 1)

ℓr
0(x) = ℓ1(2x − 1), ℓr

1(x) = ℓ0(2x − 1).

Here ℓ0(x) and ℓ1(x) are given on I, while I l
0/1 and Ir

0/1 are given on I l or Ir. Note that the functions
on Ir are reversed. In Figure 6.4 these relations are depicted. If we evaluate the functions at the
midpoint, we can directly compute the coefficients for the linear functions, i.e.

ℓ0(x) = ℓl
0(x) +

1
2

(
ℓl

1(x) + ℓr
1(x)

)
,

ℓ1(x) = ℓr
0(x) +

1
2

(
ℓl

1(x) + ℓr
1(x)

)
.

We can represent this as a matrix relation by

B =

(
1 1

2 0 1
2

0 1
2 1 1

2

)
↔
(
ℓ0(x)
ℓ1(x)

)
= B


ℓl

0(x)
ℓl

1(x)
ℓr

0(x)
ℓr

1(x)


For orders p > 1 we introduced basis functions based on integrated Legendre polynomials in
section 4.2.1. In this case, we would need to evaluate the integrated Legendre polynomial on more
points in our interval. This is a costly procedure, and does not take into account the orthogonality
relations of the underlying Legendre polynomials. We thus introduce a new ansatz to determine
B in a more efficient way.
In a first step, we consider L̂0(x) = −1 and L̂1(x) = x, instead of the usual hat functions. Then the
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three term recursion

i L̂i(x) = (2i − 3)xL̂i−1(x) − (i − 3)L̂i−2(x) for i ≥ 2, (6.30)

holds. Denote by L̂l
i(x) and L̂r

i (x) the i-th integrated Legendre polynomial on I l and Ir, where

L̂l
i(x) =

L̂i(2x + 1) x ∈ [−1, 0]

0 else
, and L̂r

i (x) =

L̂i(2x − 1) x ∈ [0, 1]

0 else
for i ≥ 2.

Formally written out, we search for the matrix B = (Bl , Br), such that


L̂0(x)

...
L̂n(x)

 =
(

Bl Br
)


L̂l
0(x)
...

L̂l
n(x)

L̂r
0(x)
...

L̂r
n(x)


For i ≥ 2 there is no contribution from L̂k

0, k = l, r, since L̂i(±1) = 0. By the three term recursion
(6.30) we use Lk

0(x) = −1 and Lk
1(x) = 2x ± 1, k = l, r. The linear hat functions can then be easily

computed. For this choice we can compute the coefficients Bk
i,j for

L̂i(x) =
i

∑
j

Bl
i,j L̂

l
j(x) +

i

∑
j

Br
i,j L̂

r
j (x), (6.31)

by multiplication with a test function vj and integration over either I l or Ir. This method is called
constrained approximation and was introduced in [DORH89], see also [vSD04]. Since

L̂i(x) =
1 − x2

2(i − 1)
P(1,1)

i−2 (x),

it is efficient to choose
vl

j(x) = P(1,1)
j−2 (2x + 1),

vr
j (x) = P(1,1)

j−2 (2x − 1),
(6.32)

as our test functions.
This is the biorthogonal choice which we have seen in section 6.1. Thus, it follows

∫
I l

L̂i(x)vl
n(x) dx =

∫
I l

i

∑
j

Bl
i,j L̂

l
j(x)vl

j(x) dx

=
i

∑
j

∫
I l

Bl
i,j L̂

l
j(x)vl

n(x) dx

= Bl
i,n

∫
I l

L̂l
n(x)vl

n(x) dx,

where we used that L̂r
j (x) has no support on I l . The coefficients Bl

i,n follow now by solving the

99



integrals. Alternatively, we can collect those entries from a coefficient comparison. From this
data, we can compute linear recursions for Bl

i,j (and Br
i,j), by automated guessing, as we have

seen in section 2.1.2. Again, we apply the Mathematica software Guess [Kau09]. For i, j ≥ 0 the
following relation

2j(2j + 1)(j − i − 1)Bl
i+1,j + i(2j − 1)(i − j − 1)Bl

i,j+1 + (2j + 1)(2j − i)(i + j − 1)Bl
i,j = 0, (6.33)

is obtained. Note that the leading coefficient does not have a pole in the range of the indices.
Furthermore, Bl

i,j = 0 if j > i. A second recursion reads

2Bl
i+1,j+1 = Bl

i+1,j+2 − 2Bl
i+2,j+1 + Bl

i+1,j − 2Bl
i,j+1 (6.34)

which has the advantage of constant coefficients. Lastly we mention, that, for any fixed j, we have
the relation

(i − j)(i + 1)(i + j − 1)Bl
i,j + (j − 1)j(2i + 1)Bl

i+1,j + (i − j + 2)i(i + j + 1)Bl
i+2,j = 0.

For the multivariate guessing we again used the command GuessMultRE from the package Guess,
which allows specifying different structure sets and polynomial degrees for the recurrence, see
section 2.1.2. For the univariate recurrence, we employed the GuessMinRE command, which not
only guesses the recurrence, but also guesses what “minimal” could be for the given data.

Example 6.2.2
Below, we show a short coding example, where we applied a coefficient comparison.

In[3]:= L[0] := −1; L[1] := x; L[n Integer] := L[n] = Factor[((2n − 3)xL[n − 1] − (n − 3)L[n − 2])/n]];

In[4]:= L1[0] := −1; L1[1] := 2x + 1;

L1[n Integer] := L1[n] = Factor[((2n − 3)(2x + 1)L1[n − 1] − (n − 3)L1[n − 2])/n]];

In[5]:= sys = Table[Thread[CoefficientList[L[i] − Sum[B[i, j]L1[j], {j, 0, i}], x] == 0], i, 0, 30];

In[6]:= sol = Flatten[Solve[sys]];

In[7]:= data = Table[B[i, j], {i, 0, 30}, {j, 0, 30}]/.sol/.{B[i , j ] → 0};

In[8]:= GuessMultRE[data, Flatten[Table[B[i + ii, j + jj], {ii, 0, 2}, {jj, 0, 2}]], {i, j}, 0]

Out[8]= {B[i, 1 + j] − 1/2B[1 + i, j] + B[1 + i, 1 + j] − 1/2B[1 + i, 2 + j] + B[2 + i, 1 + j]}

In[9]:= GuessMultRE[data, Flatten[Table[B[i + ii, j + jj], {ii, 0, 1}, {jj, 0, 1}]], {i, j}, 2]

Out[9]= {−(1/2)(−1 + i + j)(1 + 2j)B[i, j] + 1/2(−1 + i − j)(−1 + 2j)B[i, 1 + j] − 1/2(1 + i − j)(1 + 2j)B[1 + i, j] +

1/2(1 + i + j)(−1 + 2j)B[1 + i, 1 + j]}

For the application of the integral relations, we can resolve this directly, by using algorithms for
deriving and proving identities among holonomic functions. By application of the holonomic
system approach [Zei90b, Chy98, Kou10], the guessed relations, can be proven.
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Example 6.2.3
We can compute

Bl
i,j =

∫
I l

1 − x2

2(i − 1)
P(1,1)

i−2 (x)P(1,1)
i−2 (2x + 1) dx/

∫
I l

1 − x2

2(i − 1)
P(1,1)

i−2 (2x + 1)P(1,1)
i−2 (2x + 1) dx

exactly by standard Mathematica commands. Then the input for the package
HolonomicFuntions, looks as follows:

In[10]:= ann = Annihilator[Integrate[JacobiP[i − 2, 1, 1, x]JacobiP[j − 2, 1, 1, 2x + 1], {x,−1, 0}]/

Integrate[JacobiP[i − 2, 1, 1, 2x + 1]JacobiP[j − 2, 1, 1, 2x + 1], {x,−1, 0}],

{S[i], S[j]}, Inhomogeneous → True]

Out[10]= {{2(1 + i − j)j(1 + 2j)Si + i(−1 + i − j)(−1 + 2j)Sj − (i − 2j)(−1 + i + j)(1 + 2j),

(−2 + i − j)j(1 + i + j)(−1 + 2j)S2
j − (i − i2 + 3j(1 + j))(−3 + 4j(1 + j)Sj + (i − j)(1 + j)(−1 + i + j)(3 + 2j))},

. . . somethingmessy . . . }

Here, Sn (or S[n] in the input) denotes the forward shift in n. The messy part contains the
Legendre polynomials evaluated at x = ±1. Mathematica fully reduces those to zero with its
FullSimplify command under the assumption that i, j are integer. The first part of the results
ann, the annihilator, is just recurrence (6.33). The second operator in the annihilator corresponds
to the univariate recurrence. Larger order recurrences such as (6.34), can be verified automati-
cally using the OreReduce command. Next, we show the numerical algorithms of these results.
In order to compute the connection coefficients efficiently from any of these relations, we need a
sufficient set of initial values. Firstly, recall that naturally B(k)

i,j = 0 if j > i. For the upper left block,
we have

Bl
0,0 = 1, Bl

1,0 = Bl
1,1 =

1
2

,

and for the first column

Bl
2i,0 =

(−1)i

2

(
− 1

2

)
i

i!
, and Bl

2i+1,0 = 0 for i ≥ 1

where (a)n = a(a + 1) · · · (a + n − 1) denotes the Pochhammer symbol (or rising factorial). Note
that we have the rather obvious relation

Bl
2i,0 = −2i + 1

2i + 2
Bl

2(i−1),0.

Furthermore, we have for the diagonal that Bl
i,i = 2−i. Finally, even and odd (integrated) Leg-

endre polynomials are symmetric and antisymmetric, respectively. This gives Br
i,j = (−1)i+jBl

i,j.
Summarizing, the matrix entries can be computed by algorithm 6.
In context of FEM, the basis functions ℓ0(x) = 1+x

2 and ℓ1(x) = 1−x
2 are preferred instead of

L̂0(x), L̂1(x). Then, some of the steps have to be modified. Finally, one obtains the algorithm 7
with the recursion formula (6.34).
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Algorithm 6 Computation of the entries B(k)
i,j

1: Initialize B = 0,

2: Set Bl
0,0 = 1, Bl

1,0 = Bl
1,1 =

1
2

, Bl
2,0 = Br

2,0 =
1
4

,

3: for i = 2 to ⌊p/2⌋ do
4: Set Bl

2i,0 = − 2i+1
2i+2 Bl

2(i−1),0 and Br
2i,0 = Bl

2i,0
5: end for
6: for j = 1 to p do
7: for i = j to p do
8: Compute Bl

i,j by (6.33)
9: Set Br

i,j = (−1)i+jBl
i,j

10: end for
11: end for

Algorithm 7 Computation of the entries B̃(k)
i,j

1: Initialize B̃ = 0,

2: Set B̃l
0,0 = 1, B̃l

1,0 = B̃l
1,1 =

1
2

, B̃l
2,0 = B̃r

2,0 =
1
4

, B̃l
2,2 = B̃r

2,2 =
3
4

, B̃l
3,2 =

3
8

, B̃r
3,2 = −3

8
,

3: for i = 2 to ⌊p/2⌋ do
4: Set B̃l

2i,1 = − 2i+1
2i+2 B̃l

2(i−1),0 and B̃r
2i,1 = B̃l

2i,1

5: B̃l
(2i,2) = − 2i+3

2i+2 B̃l
2(i−1),2 and B̃r

2i,2 = B̃l
2i,2

6: if 2i + 1 ≤ p then
7: B̃l

(2i+1,2) = − 2i+3
2i+4 B̃l

2i,2 and B̃r
2i+1,2 = −B̃l

2i+1,2
8: end if
9: end for

10: for i = 2 to p do
11: for j = 1 to i − 1 do
12: Compute B̃l

i,j by (6.34)
13: Set B̃r

i,j = (−1)i+jB̃l
i,j

14: end for
15: end for

Extension to H(curl)

We consider the higher order edge functions of the space H(curl) in 2D. For example, on the
quadrilateral □ = [−1, 1]2, the right and the left edge functions are given by

u□,E1
1j (x, y) = ∇

(
1 + x

2
L̂j(y)

)
=

(
1
2 L̂j(y)

1+x
2 Lj−1(y)

)
, (6.35)

u□,E3
1j (x, y) = ∇

(
1 − x

2
L̂j(y)

)
=

(
1
2 L̂j(y)

1−x
2 Lj−1(y)

)
. (6.36)

In Figure 6.5 we depicted the case, where we have an unrefined element Ql = [−1, 1]2 and two
refined elements Qt = [1, 2]× [0, 1], Qb = [1, 2]× [−1, 0]. On Ql our right edge functions are given
by u□,E1

1j (x, y) as in (6.35), while the left edge functions on Qt and Qb are given by

uQt ,E3
1j (x, y) := u□,E3

1j (2x − 3, 2y − 1), uQb ,E3
1j (x, y) := u□,E3

1j (2x − 3, 2y + 1). (6.37)
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Figure 6.5.: Hanging node (red) in 2D with orientation of edge functions (blue)

From the construction of our basis function in chapter 4, we recall that we only need continuity
in the tangential trace, depicted in blue in Figure 6.5. At x = 1 this results in the conditions

tr uQl ,E1
1,j (x, y) ·

(
0
1

)
= Lj−1(y)

tr uQt ,E1
1,j (x, y) ·

(
0
1

)
= Lj−1(2y + 1)

tr uQb ,E1
1,j (x, y) ·

(
0
1

)
= Lj−1(2y − 1)

(6.38)

For j ≥ 2 we thus need the constraint matrix B = (Bb, Bt) such that

Li(y) =
i

∑
j

Bb
ijLj−1(2y − 1) +

i

∑
j

Bt
ijLj−1(2y + 1). (6.39)

If we take the derivative of (6.31), we see that we have the same constraint matrix as before (except
for a constant factor of 2).

Continuous constrained approximation in 3D

In 3D we need to differ between hanging nodes and hanging edges. The former can be handled
directly as before. For the hanging edge problem, we need to handle the continuity over the in-
terfaces, i.e. edges and faces.
As e.g. discussed in [vSD04] there are different settings which may appear. In [vSD04] the fol-
lowing four cases were declared as essential:

• Two quadrilateral faces constrained by one quadrilateral face,

• four quadrilateral faces constrained by one quadrilateral face,

• four triangular faces constrained by one triangular face,

• two triangular faces constrained by one quadrilateral face.

The last situation is needed, if one wants to construct a joint mesh between hexahedrons and
tetrahedrons without pyramidal or prismatic elements.
In the following, we simplify the problem by assuming that no orientation problems are present
at the interface, see e.g. [KWB23, vSD04]. Furthermore, we omit the transformation from an
arbitrary element to the reference elements. We will discuss only the first and the fourth case.
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Q□E1t

E3b

Qt

Qt

Figure 6.6.: Hanging edge in 3D and reduction to the 2D trace

The other two cases can be handled analogously, although the hanging node in case two needs to
be handled with the techniques from the previous sections.
Firstly, we need to recall the dimensional hierarchy as mentioned in chapter 4. If we take the trace
of our face functions, we get the 2D edge functions. Depicted in Figure 6.6 we have on the left
side the case of a hanging edge in the three-dimensional setting, and on the right side, we see the
reduction to the traces. We denoted the relevant edges in blue.
Without loss of generality assume z = 1, i.e. we are interested in the face □ = [−1, 1] × [−1, 1] ×
{1}. The trace on this face function is thus just u□

ij (x, y).
Furthermore, let BE[i, j, m, l] be the array of constraints with respect to the edge functions,
Bt[i, j, m, l] and Bb[i, j, m, l] the arrays with respect to the top or bottom face functions, respec-
tively.
Our problem then reads:
Find B = (BE, Bb, Bt), such that

u□
ij (x, y) =

i

∑
k=2

BE[i, j, k, 1]u□,E
k1 (x, y) +

i

∑
k=2

j

∑
l=2

Bb[i, j, k, l]u□
kl(x, 2y + 1)

+
i

∑
k=2

j

∑
l=2

Bt[i, j, k, 1]u□
kl(x, 2y − 1),

(6.40)

where

u□,E
k1 (x, y) =

u□,Et
1(x, y) (x, y) ∈ Qt

u□,Eb
3 (x, y) (x, y) ∈ Qb

.

The first part includes the influence of the edge functions, while the other two include the influ-
ence of the face functions. The edge part is of utmost importance, since all face functions of Qt

and Qb vanish on the edge. Thus, only the edge functions can approximate values on the edge
E. Moreover there is no influence of the vertex functions, since they would take values at the
boundary of Q□ and thus does not vanish on the boundary.
We solve problem (6.40) in two steps, first solve for the constraint coefficients w.r.t. the edge E.
Then solve for the constraints of the face functions.
As seen before in the approximation case, first multiply with a test function v ∈ L2(□), then
integrate over the edge E. The problem reduces to

∫
E

u□
ij (x, y)v(x, y) dx dy =

∫
E

i

∑
k=2

BE[i, j, k, 1]u□,E
k1 (x, y)v(x, y) dx dy
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Since the edge functions are continuous, the trace of the edge functions are equal on the edge. So,
without loss of generality, we can replace u□,E(x, y) by u□,Et

1(x, y) in the edge integral. Further-
more, by dimensional hierarchy the trace of the edge functions is given by L̂i(x). Together with
the biorthogonal choice P(1,1)

i−2 (x), we get the relation∫
E1t

u□
ij (x, y)P(1,1)

k−2 (x) dx dy = cikBE[i, j, k, 1]δik.

Now to the whole approximation problem. We rewrite (6.40) as follows:

u□
ij (x, y) − ∑

k=2
BE[i, j, k, 1]u□,E

k1 (x, y)

=
i

∑
k=2

j

∑
l=2

Bb[i, j, k, l]u□
kl(x, 2y + 1) +

i

∑
k=2

j

∑
l=2

Bt[i, j, k, l]u□
kl(x, 2y − 1).

We can then write the equation out as

L̂i(x)L̂j(y) − ∑
k=2

BE[i, j, k, 1]L̂k(x) (1[−1,1]×[0,1](1 − y) + 1[−1,1]×[−1,0](1 + y))

=
i

∑
k=2

j

∑
l=2

Bb[i, j, k, l]L̂k(x)L̂l(2y + 1) +
i

∑
k=2

j

∑
l=2

Bt[i, j, k, l]L̂k(x)L̂l(2y − 1).

By multiplication with the biorthogonal function P(1,1)
k−2 (x) and integration over x ∈ [−1, 1], we see

that the relation reduces to

L̂j(y) − ϕ(y) =
j

∑
l=0

Bb[i, j, i, l]L̂j(2y + 1) +
j

∑
l=0

Bt[i, j, i, l]L̂l(2y − 1),

where
ϕ(y) := ∑

k=2
BE[i, j, k, l] (1[−1,1]×[0,1](1 − y) + 1[−1,1]×[−1,0](1 + y)) .

The coefficients ∫ 1

−1
L̂j(y)P(1,1)

k−2 (2y − 1) dy

are the same as before, and can thus be computed as before. For the edge part holds

∫ 1

−1
ϕ(y)P(1,1)

k−2 (2y − 1) dy =
∫ 1

0
(1 − y)P(1,1)

k−2 (2y − 1) dy,

which can be efficiently computed by the Mellin transform, see lemma A.3.2.

Case of two triangular faces constrained by a quadrilateral

In the last case, we heavily applied simplifications due to the tensorial structure. Consider here
the reference domain □̂ = [0, 1]2, due to a simpler notation. Furthermore, let

△b := {(x, y) ∈ R|0 ≤ y ≤ 1 and 0 ≤ x ≤ 1 − y},

△t := {(x, y) ∈ R|0 ≤ y ≤ 1 and 1 − y ≤ x ≤ 1}.
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Q□QtQb

Figure 6.7.: Hanging edge for a non-conforming mesh and the reduction to the 2D trace

Denote by u□̂
ij the face functions on □̂ and u△b

ij , u△t
ij the face functions on △b or △r, respectively.

We now search for B = (BE, Bb, Bt), s.t.

u□̂
ij (x, y) =

i

∑
l=2

BE[i, j, 1, l]u△,E
l (x, y) +

i

∑
k=2

j

∑
l=1

Bb[i, j, k, l]u△b
kl (x, y) +

i

∑
k=2

j

∑
l=1

Bt[i, j, k, l]u△t
kl (x, y). (6.41)

The coefficients BE can again be determined by the integration of the edge biorthogonal function
over the edge E. For k ≥ 2, l ≥ 1 we can determine Bb[i, j, k, l] by multiplication with the biorthog-
onal function (6.5) (on △b) and integration over △b. Then with (6.41), we need to compute

G(1)
i,j,k,l − G(2)

i,j,k,l

= Bb[i, j, k, l]
∫
△b

L̂k

(
2x

1 − y
− 1
)

P(1,1)
k−2

(
2x

1 − y
− 1
)

(1 − y)2i−1P̂2i
l (2y − 1)P(2i−1,1)

l−1 (2y − 1),

where

G(1)
i,j,k,l :=

∫
△b

L̂i(2x − 1)L̂j(2y − 1)P(1,1)
k−2

(
2x

1 − y
− 1
)

(1 − y)k−2P(2k−1,1)
l−1 (2y − 1) dx dy

G(2)
i,j,k,l := ∑

l=2

∫
△b

BE[i, j, 1, l]uE2
l (x, y)P(1,1)

k−2

(
2x

1 − y
− 1
)

(1 − y)k−2P(2k−1,1)
l−1 (2y − 1) dx dy

The integral on the right-hand side can be directly computed and normalized. The left-hand side
needs to be computed, but this can be done efficiently by recursive relation. If we plug the exact
integral G(1)

i,j,k,l on the left-hand side into Guess, we get the following recursive relation,

0 = (−1 + i + j + k + l)(3 + 2k + 2l)G(1)
i,1+k,j,l + (−3 + i + j − k − l)(1 + 2k + 2l)G(1)

i,1+k,j,1+l

+ (−1 + i − j + k + l)(3 + 2k + 2l)G(1)
i,1+k,1+j,l + (−3 + i − j − k − l)(1 + 2k + 2l)G(1)

i,1+k,1+j,1+l

+ (1 + i − j − k − l)(3 + 2k + 2l)G(1)
1+i,1+k,j,l + (3 + i − j + k + l)(1 + 2k + 2l)G(1)

1+i,1+k,j,1+l

+ (1 + i + j − k − l)(3 + 2k + 2l)G(1)
1+i,1+k,1+j,l + (3 + i + j + k + l)(1 + 2k + 2l)G(1)

1+i,1+k,1+j,1+l .

For the starting values, one could apply the results from appendix A.3.2. Also, the integral G(2)
i,j,k,l

can be computed by the Mellin transformation lemma A.3.2.
Due to symmetry, the same relations also hold for the second set of coefficients. Thus, we are
able to glue two triangles for arbitrary polynomial order. Further extension to the mentioned two
other possible face configuration are straight forward. Furthermore, an extension to H(div) and
H(curl) should be possible, but we postpone this discussion to future work.
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7. Conclusion

7.1. Discussion

In this thesis we have seen that the structure of special functions, especially of orthogonal poly-
nomials, can be used to optimize multiple problems in high order finite element methods (or
spectral methods). We have shown that all interior entries of mass and stiffness matrix can be
described by a Kampé de Fériet series. This series has contiguous relations which can be detected
by Guess and implemented in an efficient recursive algorithm to set up the local matrices, which
also applies for edge and face functions. Moreover, this structure also helps in the case of con-
straint matrices for hanging nodes (or edges). This efficiency of the recursion algorithm has been
shown in two very simple numerical experiments, which were enough to show the advantage of
our method. Even in 1D we drastically reduce the local assembly time. But we have to take this
with a grain of salt. At the moment this method only applies for elementwise constant material
functions on a polygonal domain and an extension is not straight forward.
Another connected topic which we discussed were the derivation of biorthogonal polynomials
by application of connections between integrated Jacobi polynomials and Jacobi polynomials.
We were able to derive biorthogonal functions for the interior part of our element matrices, even
for vectorial functions in H(curl). An important fact was, that integrated Jacobi polynomials can
be viewed as weighted Jacobi polynomials and as such we can use the orthogonality relations.
We gave a brief extension to edge and face functions by explicit application of the dimensional
hierarchy. A purely biorthogonal basis for all functions including vertex, edge, and face functions
is not possible, since these functions contain lower order parts, which are neither an orthogonal
polynomial nor do they match an appropriate weight index.
In the last part, we gave an example where all our introduced methods were applied at the same
time. For constraint matrices in a non-conforming mesh, we applied first the biorthogonal func-
tions to derive the exact formulation of those matrices. Then by application of the symbolic soft-
ware Guess and some smaller results on Jacobi polynomials, we were able to state a recursive
method in optimal complexity.

7.2. Outlook

We end this thesis with possible future works:

Special Functions: First not published tests have shown that it may be possible to find similar re-
cursive relations for other classes of orthogonal polynomials. Since Jacobi polynomials are
only a small part of the Askey table, see e.g. [KLS10], it should be possible to find similar
relations for other discrete or continuous polynomials. An example would be the discrete
or continuous Hahn polynomials. From a numerical point of view, such a relation for the
Hahn polynomials could be interesting in the case of visualization. Numerical solutions

107



are usually plotted or visualized by spline functions, which can be represented by Bern-
stein polynomials. It has been shown, e.g. in [LW06], that two-variate Jacobi and Bernstein
polynomials can be represented by each other with the help of the Hahn polynomials.

Basis functions: We have seen that we lose sparsity in the case of curved domains or non-constant
material functions. A possible way, to circumvent this, would be to derive new orthogo-
nal polynomials. In this case, we include the isoparametric map or the material function
into the weight functions of the orthogonal polynomials. A similar approach was done in
[SO20] for a spectral element method. Furthermore, one could try to compute new multi-
variate Sobolev orthogonal polynomials, see [MX15], which are orthogonal with respect to
the bilinear form.

Recursion relations: Recursive relations of the integral over three Jacobi polynomials could be
applied in a nonlinear setting like the Navier-Stokes equation. This could optimize some
high order linearization techniques, see e.g. [GR86, GR94, Bra13].

Biorthogonal Functions: Many classical biorthogonal techniques, like error estimates and pre-
conditioners, from the theory of biorthogonal wavelets could be extended to the case of our
FEM basis functions. See e.g. [BSS04] for reference.

Constraint matrices: We have seen that we can glue elements together. The respective constraint
matrices can be computed in optimal complexity. Some open topics like constrained faces
for vectorial functions, e.g. in H(curl) are still open.
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A. Appendix

A.1. Derivation of mixed recurrence relation

Generalization

The generalization of (2.19) is the following the Kampé de Fériet series where x and y are not
equal one anymore, i.e.

F := F1;2;2
1;1;1

(
µ + 1 ; −n n + α + β + 1 ; −m m + ρ + δ + 1

µ + ν + 2 ; α + 1 ; ρ + 1
; x; y

)
. (A.1)

Furthermore we omit the indices of F to keep the notation as simple as possible.

Recurrence formula

One can extend the proofs for the contiguous relations of a hypergeometric series to the general
case of the Kampé de Fériet series using the techniques in Rainville [Rai71, Ch.4]. Let Z be a
generalization of F to arbitrary coefficients, i.e.

Z =
∞

∑
n=0

∞

∑
m=0

(a)n(b)n( f )m(g)m(d)n+mxnym

n! m! (c)n(h)m(e)n+m︸ ︷︷ ︸
=:τnτmτn+m

also a general Kampé de Fériet series. It has similar contiguous functions to the six contiguous
functions of the Gaussian hypergeometric series, namely

Z(a+) =
∞

∑
n=0

a + n
a

τnτmτn+m, Z(a−) =
∞

∑
n=0

a − 1
a − 1 + n

τnτmτn+m,

Z(b+) =
∞

∑
n=0

b + n
b

τnτmτn+m, Z(b−) =
∞

∑
n=0

b − 1
b − 1 + n

τnτmτn+m,

Z(c+) =
∞

∑
n=0

c
c + n

τnτmτn+m, Z(c−) =
∞

∑
n=0

c − 1 + n
c − 1

τnτmτn+m,

obviously one can find 6 similar functions for f , g and h. In the following, omit ( f )m, (g)m and
(h)m to simplify the notation.
Use the differential operator θx = x ∂

∂x . This leads to

(θx + a)Z =
∞

∑
n=0

(a + n)τnτmτn+m
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and hence
(θx + a)Z = aZ(a+),

(θx + c − 1)Z = (c − 1)Z(c−),
(A.2)

and so on. Following one of the calculations in [Rai71], one can derive

θxZ(a−) =
∞

∑
n=1

∞

∑
m=0

(a − 1)n(b)n(d)n+mτmxnym

(c)n(n − 1)! (e)n+m

= x
∞

∑
n=0

∞

∑
m=0

(a − 1)n+1(b)n+1(d)n+m+1τmxnym

(c)n+1n! (e)n+m+1

= x(a − 1)
d
e

∞

∑
n=0

∞

∑
m=0

(b + n)(d + n + m)
(c + n)(e + n + m)

τn+mτnτm

= x(a − 1)
d
e

Z(d+, e+) − (a − 1)(c − b)d
ce

xZ(c+, d+, e+),

since b+n
c+n = 1 − c−b

c+n
c
c . Now replace θxZ(a − 1) by (A.2) with a replaced by (a − 1). Thus,

e
d

Z =
e
d

Z(a−) + xZ(d+, e+) − (c − b)
c

xZ(c+, d+, e+),

since a and b are interchangeable, there holds

e
d

Z =
e
d

Z(b−) + xZ(d+, e+) − (c − a)
c

xZ(c+, d+, e+).

Subtracting the last two equations from each other yields

0 = e(Z(a−) − Z(b−) + c−1d(b − a)xZ(c+, d+, e+)

and if we set b to b + 1

0 = e(Z(a−, b+) − Z) + c−1d(b + 1 − a)xZ(b+, c+, d+, e+).

Setting a = −n, b = n + α + β + 1, c = α + 1 and x = 1 (and the respective values for f , g, h) leads
after simplification to recursion formula (2.20).

Proof of mixed relations

Moreover, the recurrence relations, which we have seen in section 2.2, can be derived for the more
general case (A.1). All of the following recursion hold for x = 1 and y = 1, which follows just from
the recurrence formula of the Jacobi polynomials, as we have seen.
To prove the mixed relations (2.26) and (2.27) consider

F :=
2µ+ν+1(α + 1)n(ρ + 1)mB(ν + 1, µ + 1)

n! m!

F1;2;2
1;1;1

(
µ + 1 ; −n n + α + β + 1 ; −m m + ρ + δ + 1

µ + ν + 2 ; α + 1 ; ρ + 1
; x; y

)
.

(A.3)

110



Denote the contiguous functions as usual, i.e.

F(α+) =
2µ+ν+1(α + 2)n(ρ + 1)mB(ν + 1, µ + 1)

n! m!

F

(
µ + 1 ; −n n + α + β + 2 ; −m m + ρ + δ + 1

µ + ν + 2 ; α + 2 ; ρ + 1
; x; y

)

F(ν+) =
2µ+ν+2(α + 1)n(ρ + 1)mB(ν + 2, µ + 1)

n! m!

F

(
µ + 1 ; −n n + α + β + 1 ; −m m + ρ + δ + 1

µ + ν + 2 ; α + 1 ; ρ + 1
; x; y

)
· · ·

Lemma A.1.1
Let θx = x ∂

∂x and θy = y ∂
∂y , then the following differential equations hold

(θx − n)F = −(n + α)F(n−, β+) (A.4)

(θx + n + α + β + 1)F = (n + α + β + 1)F(β+) (A.5)

(θy − m)F = −(m + ρ)F(m−, δ+) (A.6)

(θy + m + ρ + δ + 1)F = (m + ρ + δ + 1)F(δ+) (A.7)

(θx + θy + µ + ν + 1)F = 2νF(ν−) (A.8)

Proof. For F as in (A.3)

(θx − n)F =
2µ+ν+1(α + 1)n(ρ + 1)mB(ν + 1, µ + 1)

n! m!
∞

∑
k=0

∞

∑
l=0

(µ + 1)k+l(−n)k(n + α + β + 1)k(−m)l(m + ρ + δ + 1)l

(µ + ν + 2)k+l(α + 1)k(ρ + 1)l
(θx − n)

xkyl

k! l!
,

=
2µ+ν+1(α + 1)n(ρ + 1)mB(ν + 1, µ + 1)

n! m!
∞

∑
k=0

∞

∑
l=0

(µ + 1)k+l(−n)k(n + α + β + 1)k(−m)l(m + ρ + δ + 1)l

(µ + ν + 2)k+l(α + 1)k(ρ + 1)l
(k − n)

xk−1yl

k! l!
.

As usual, replace (k − n)(−n)k by (−n)(−n + 1)k, thus

=
(−n)2µ+ν+1(α + 1)n(ρ + 1)mB(ν + 1, µ + 1)

n! m!
∞

∑
k=0

∞

∑
l=0

(µ + 1)k+l(−n + 1)k(n + α + β + 1)k(−m)l(m + ρ + δ + 1)l

(µ + ν + 2)k+l(α + 1)k(ρ + 1)l

xkyl

k! l!

=
2µ+ν+1(α + 1)n(ρ + 1)mB(ν + 1, µ + 1)

n! m!

F1;2;2
1;1;1

(
µ + 1 ; −n − 1 (n − 1) + α + β + 2 ; −m m + ρ + δ + 1

µ + ν + 2 ; α + 1 ; ρ + 1
; x; y

)
.

Since we changed n to n − 1 in the series, we need to equate n + α + β + 1 as well. This is done by
raising β by one. Furthermore, we need to change the parts in prefactor, to accommodate n − 1
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as well. Since

−n2µ+ν+1(α + 1)n(ρ + 1)mB(ν + 1, µ + 1)
n! m!

= −2µ+ν+1(ρ + 1)mB(ν + 1, µ + 1)(α + n)(α + 1)n−1

m! (n − 1)!
, (A.9)

the equation (A.4) follows. Relation (A.6) follows analogue to it. Relation (A.5) or (A.7) follow
directly by applying the differential operators, since the prefactor doesn’t need to be changed.
For the last relation (A.8) the differential operator (θx + θy + µ + ν + 1) applied to xkyl yields (k + l +
µ + ν + 1). This reduces (ν + µ + 2)k+l in the denominator to (ν + µ + 2)k+l−1. Therefore, we multiply
the series with ν+µ+1

ν+µ+1 , such that the part in the denominator becomes (ν + µ + 1)k+l . Since it is only
a change in the denominator, it is rather a change in ν than in µ. The rest follows using a property
of the Beta-function, i.e.

B(x + 1, y) = B(x, y)
x

x + y
.

Subtracting (A.4) and (A.6) from (A.8) proves (2.26).

Lemma A.1.2
For F as in (A.3) the following contiguous recurrence relation holds,

(n + m + µ + ν + 4)F(n+, m+, ν+) = (n + α + 1)F(m+, β+, ν+) + (m + ρ + 1)F(n+, δ+, ν+)

+ 2(ν + 1)F(ν+).

Similar (2.27) can be proven. Take (A.5) and (A.7) and subtract (A.8)

Lemma A.1.3
For F as in (A.3) the following contiguous recurrence relation holds,

(n + α + β + m + ρ + δ − µ − ν + 1)F = (n + α + β + 1)F(β+) + (m + ρ + δ + 1)F(δ+) + 2νF(ν−).

The easiest way of deriving (2.28) and (2.29) is to introduce another formulation for F. Recall that
Jacobi polynomials can be expressed as

P(α,β)
n (x) =

(−1)n(β + 1)n

n! 2F1

(
−n, n + α + β + 1

β + 1
;

1 + x
2

)

as well. Using this expression in the derivation of the Kampé de Fériet series yields the analogue
form

F̃ :=
(−1)n+m2µ+ν+1(β + 1)n(δ + 1)mB(ν + 1, µ + 1)

m! n!

F1;2;2
1;1;1

(
ν + 1 ; −n n + α + β + 1 ; −m m + ρ + δ + 1

µ + ν + 2 ; β + 1 ; δ + 1
; x; y

)
.

(A.10)

Then the differential equations can be derived in the same way as seen before. Thus,
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Lemma A.1.4

(θx − n)F̃ = (n + β)F̃(n−, α+), (A.11)

(θx + n + α + β + 1)F̃ = (n + α + β + 1)F̃(α+), (A.12)

(θy − m)F̃ = (m + δ)F̃(m−, ρ+), (A.13)

(θy + m + ρ + δ + 1)F̃ = (m + ρ + δ + 1)F̃(ρ+), (A.14)

(θx + θy + µ + ν + 1)F̃ = 2µF̃(µ−). (A.15)

Now (2.28) follows by subtracting (A.11) and (A.13) from (A.15).

Lemma A.1.5
For F as in (A.3) or (A.10) the following contiguous recurrence relation holds,

(n + m + µ + ν + 4)F(n+, m+, µ+) = − (n + β + 1)F(m+, α+, µ+)

− (m + δ + 1)F(n+, ρ+, µ+) + 2(µ + 1)F(µ+).

We derive analogously

Lemma A.1.6
For F as in (A.3) or (A.10) the following contiguous recurrence relation holds,

(n + α + β + m + ρ + δ − µ − ν + 1)F = (n + α + β + 1)F(α+) + (m + ρ + δ + 1)F(ρ+) + 2µF(µ−).

Remark 12
Following Burchnall and Chaundy [BC40], [BC41] one can easily compute an expansion base, i.e.
F = ∑∞

i=0 Ai(x)Ai(y), for F.

A.2. Sparsity results for integrals of Jacobi polynomials

In this section we collect some basic sparsity results for integrals over Jacobi and integrated Jacobi
polynomials.

Corollary A.2.1
Let α, β, µ > −1; k, l > 1 and α, β ≤ µ, then

∫ 1

−1
(1 − x)µP̂µ−α

k (x)P̂µ−β
l (x) dx =

0 if k > (α + l + 2) or l > (β + k + 2)

c(α, β, µ, k, l) else.
(A.16)

Proof. With

P̂α
n (x) =

(1 + x)
n

P(α−1,1)
n−1 (x)

113



follows ∫ 1

−1
(1 − x)µ(1 + x)2P(µ−α−1,1)

k−1 (x)P(µ−β−1,1)
l−1 (x) dx.

By the orthogonality relation

∫ 1

−1
(1 − x)α(1 + x)βq(x)P(α,β)

n (x) dx = 0, if q ∈ Pm, where m < n

follows the statement.

Analogously, we get the following corollary.

Corollary A.2.2
Let α, β, µ > −1; k, l > 1 and α, β ≤ µ, then

∫ 1

−1
(1 − x)µP̂µ−α

k (x)P(µ−β,0)
l−1 (x) dx =

0 if k > (α + l + 1) or l > (β + k + 2)

c(α, β, µ, k, l) else.
(A.17)

Furthermore a direct consequence of the Jacobi orthogonality relation is given in corollary A.2.3.

Corollary A.2.3
Let α, β, µ > −1; k, l > 1 and α, β ≤ µ, then

∫ 1

−1
(1 − x)µP(µ−α,0)

k−1 (x)P(µ−β,0)
l−1 (x) dx =

0 if k > (α + l) or l > (β + k)

c(α, β, µ, k, l) else.
(A.18)

A.3. Further properties of integrals of Jacobi polynomials

A.3.1. Legendre polynomials

For the Legendre polynomials hold

∫ 1

−1
Ln(x)Lm(x) dx =

2
2n + 1

δn,m. (A.19)

The integral ∫ 1

−1
L̂n(x)L̂m(x) dx

can be computed exactly, by the relation (2n − 1)L̂n(x) = Ln(x) − Ln−2(x) and the orthogonality
relations of the Legendre polynomials. It follows

∫ 1

−1
L̂n(x)L̂n(x) dx =

1
(2n − 1)2

(
2

2n + 1
+

2
2n − 3

)
=

4
(2n + 1)(2n − 1)(2n − 3)

(A.20)
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and thus the relation ∫ 1

−1
L̂n+1(x)L̂n+1(x) dx =

(2n − 3)
(2n + 3)

∫ 1

−1
L̂n(x)L̂n(x) dx.

For the entry (i, i − 2) we can compute the exact value as follows

∫ 1

−1
L̂n(x)L̂n−2(x) dx =

∫ 1

−1

−1
(2n − 1)(2n − 5)

Ln−2(x)Ln−2(x) dx =
−2

(2n − 1)(2n − 3)(2n − 5)
(A.21)

and thus ∫ 1

−1
L̂n+1(x)L̂n−1(x) dx =

(2n − 5)
(2n + 1)

∫ 1

−1
L̂n(x)L̂n−2(x) dx.

Analogously, we can derive that

∫ 1

−1
L̂n(x)Lm(x) dx =

1
2n − 1

(∫ 1

−1
Ln(x)Lm(x) dx −

∫ 1

−1
Ln−2(x)Lm(x) dx

)
=

δn,m

(2n − 1)(2n + 1)
− δn−2,m

(2n − 1)(2n − 3)
.

(A.22)

A.3.2. Jacobi polynomials

Some of the integrals over low order (integrated) Jacobi polynomials can be computed directly,
e.g.

∫ 1

−1

(
1 − y

2

)i+i′+1

P̂2i
1 (y)P̂2i

1 (y) dy =
∫ 1

−1

(
1 − y

2

)i+i′+1 (1 + y
2

)2

dy = B(i + i′ + 2, 3).

The Beta function fulfils the natural recursive relations

B(i + i′ + 2, 3) =
i + i′ + 1
i + i′ + 4

B(i + i′ + 1, 3), and B(i + i′ + 2, 3) =
2

i + i′ + 4
B(i + i′ + 2, 2) (A.23)

Furthermore the following recursive relations can be found with the symbolic software Guess

[Kau09]. Let

Ii,i′
j =

∫ 1

−1

(
1 − y

2

)i+i′+1

P̂2i
j (y)P̂2i′

1 (y) dy. (A.24)

Corollary A.3.1
For j > 1 and i, i′ > 0, the recursive relation

(i + i′ + j + 5)Ii+1,i′+1
j = (i + i′ + 2)Ii,i′

j + (i − i′ + j − 5)Ii,i′+1
j + (i′ − i + 2)Ii+1,i′

j , (A.25)

holds.

Moreover, most starting values can be computed exactly. An integral of the form

∫ 1

−1
(1 − y)z(1 + y)βP(α,β)

j (y) dy

can be interpreted as a Mellin-transform of the Jacobi-polynom P(α,β)
j (y), see [DLM, 18.17vii].
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Lemma A.3.2 (Mellin transformation)
Let α, β > −1 and j > 0, then

∫ 1

−1

(
1 − y

2

)z (1 + y
2

)β

P(α,β)
j (y) dy =

Γ(z)Γ(1 + β + j)(1 + α − z)j

j! Γ(1 + β + z + j)
(A.26)

Proof. As stated in the literature, replace the Jacobi polynomial by (2.7), apply the representation
of the Beta integral (2.1) and use the Pfaff-Saalschütz theorem 2.1.2.

In general, we can’t use lemma A.3.2 on our (integrated) Jacobi polynomials, since the exponents
β1 of the weight (1 + y)β1 and the indices β2 of P(α,β2)

j (y) differ. By application of the same tech-
niques, we can derive a similar formulation.

Corollary A.3.3
Let α, β > −1 and j > 0, then

∫ 1

−1

(
1 − y

2

)z

P̂α
j (y)P̂ρ

1 (y) dy

=
16

(j + α − z − 1)
Γ(z + 1)

Γ(z + j + 3)

(
1
2

(j + α)(j + 1)(α − z − 1)j−1 − (z + 1)(α − z − 2)j−1

)

Proof. We begin by rewriting the integrated Jacobi polynomials as Jacobi polynomials, i.e.

P̂α
j (y) =

1 + y
j

P(2i−1,1)
j−1 (y), and P̂ρ

1 (y) = (1 + y).

Now we apply the same steps, as for the proof of the Mellin-transformation.

4
j

∫ 1

−1

(
1 − y

2

)z (1 + y
2

)2

P(α−1,1)
j−1 (y) dy =

4(α)j−1

j!

∞

∑
l=0

(−(j − 1))l(j + α)l

(α)l l!

∫ 1

−1

(
1 − y

2

)l+z (1 + y
2

)2

dy

=
8(α)j−1

j!

∞

∑
l=0

(−(j − 1))l(j + α)l

(α)l l!
Γ(l + z + 1)Γ(3)

Γ(l + z + 4)

=
16(α)j−1

j!
Γ(z + 1)
Γ(z + 4) 3F2

(
−(j − 1), j + α, z + 1

α, z + 4
; 1

)
.

(A.27)
The hypergeometric series is not Saalschützian and theorem 2.1.2 can not be applied. On the other
hand, it fulfils the contiguous relation

(b − a)3F2

(
a, b, d

c, e
; 1

)
+ a3F2

(
a + 1, b, d

c, e
; 1

)
− b3F2

(
a, b + 1, d

c, e
; 1

)
= 0,
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see [AAR99, Chap. 3.7]. By this relation, we can replace our 3F2 series by two Saalschützian series,

3F2

(
−(j − 1), j + α, z + 1

α, z + 4
; 1

)
=

1
j + α − z − 1

(
(j + α)3F2

(
−(j − 1), j + α + 1, z + 1

α, z + 4
; 1

)
− (z + 1)3F2

(
−(j − 1), j + α, z + 2

α, z + 4
; 1

))
.

Since both series are balanced we can apply theorem 2.1.2 on both series, thus

3F2

(
−(j − 1), j + α, z + 1

α, z + 4
; 1

)

=
1

j + α − z − 1

(
(j + α)(−(j + 1))j−1(α − z − 1)j−1

(α)j−1(−j − z − 2)j−1
−

(z + 1)(−j)j−1(α − z − 2)j−1

(α)j−1(−j − z − 2)j−1

)
=

Γ(j + 1)
j + α − z − 1

(
1
2 (j + 1)(j + α)(α − z − 1)j−1

(α)j−1(z + 4)j−1
−

(z + 1)(α − z − 2)j−1

(α)j−1(z + 4)j−1

)

=
Γ(j + 1)

(j + α − z − 1)(α)j−1(z + 4)j−1

(
1
2

(j + α)(j + 1)(α − z − 1)j−1 − (z + 1)(α − z − 2)j−1

)
.

Inserted in (A.27) gives

16(α)j−1

j!
Γ(z + 1)
Γ(z + 4)

Γ(j + 1)
(j + α − z − 1)(α)j−1(z + 4)j−1

(
1
2

(j + α)(j + 1)(α − z − 1)j−1 − (z + 1)(α − z − 2)j−1

)
=

16
(j + α − z − 1)

Γ(z + 1)
Γ(z + j + 3)

(
1
2

(j + α)(j + 1)(α − z − 1)j−1 − (z + 1)(α − z − 2)j−1

)
.

Here, the factor (j + α − z − 1) contains a singularity. A better choice is given by a similar formu-
lation.

Corollary A.3.4
Let α, β > −1 and j > 0, then

∫ 1

−1

(
1 − y

2

)z

P̂α
j (y)P̂ρ

1 (y) dy

= 16
(α − z − 1)j−2

(z + 1)j+2

(
(α − z − 2) − 1

2
(1 − j)(j + α)

)

Proof. The proof follows the same steps as in the previous corollary. But we raise the hypergeo-
metric series by the relation

de

(
3F2

(
a, b, c
d, e

; z

)
− 3F2

(
a + 1, b, c

d, e
; z

))
+ zbc3F2

(
a + 1, b + 1, c + 1

d + 1, e + 1
; z

)
= 0, (A.28)

see [WF, 07.27.17.0012.01]. The rest follows by combinatorical arguments.

Although the exact values of corollary A.3.4 contain Pochhammer symbols, the application to the
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starting values by recurrence relation is straight forward. Since z = α + c, where c is a constant,
the terms (α − z − 1)j−1 and (α − z − 1)j−1 remain the same along the translation α + d, z + d,
where d ∈ Z. On the other hand j is usually a small number, and such the computation of the
Pochhammer symbols are not that costly. The fraction Γ(z+1)

Γ(z+j+3) has only j + 2 terms and could be
evaluated directly or by a simple recurrence relation.
For the gradient or derivatives of our functions, we need starting values of the form

∫ 1

−1

(
1 − y

2

)z (1 + y
2

)β

P(α,β)
j (y)P(ρ,0)

1 (y) dy,

where β is either 0 or 1 for a mixed case between integrated Jacobi polynomials and Jacobi poly-
nomials.

Corollary A.3.5
Let α, β > −1 and j > 0, then

∫ 1

−1

(
1 − y

2

)z (1 + y
2

)β

P(α,β)
j (y)P(ρ,0)

1 dy

=
(ρ + 1)

2
Γ(z)Γ(1 + β + j)(1 + α − z)j

j! Γ(1 + β + z + j)
− (ρ + 2)

2
Γ(z + 1)Γ(1 + β + j)(α − z)j

j! Γ(2 + β + z + j)

(A.29)

Proof. Here we replace the low order Jacobi polynomial by

P(ρ,0)
1 (y) =

(ρ + 1)
2

(
1 +

(−1)(ρ + 2)
(ρ + 1)

(
1 − y

2

))
.

Thus we can apply lemma A.3.2 two times, i.e.

∫ 1

−1

(
1 − y

2

)z (1 + y
2

)β

P(α,β)
j (y)P(ρ,0)

1 dy

=
(ρ + 1)

2

∫ 1

−1

(
1 − y

2

)z (1 + y
2

)β

P(α,β)
j (y) dy − (ρ + 2)

2

∫ 1

−1

(
1 − y

2

)z+1 (1 + y
2

)β

P(α,β)
j (y) dy

=
(ρ + 1)

2
Γ(z)Γ(1 + β + j)(1 + α − z)j

j! Γ(1 + β + z + j)
− (ρ + 2)

2
Γ(z + 1)Γ(1 + β + j)(α − z)j

j! Γ(2 + β + z + j)
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A.4. Products of partial derivatives

In the following chapter, we will list all combinations of partial derivatives under the inner prod-
uct. To simplify readability we define the following auxiliary arrays,

I1[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′−1

P̂2i
j (y)P̂2i′

j′ (y) dy,

I2[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′

P̂2i
j (y)P̂2i′

j′ (y) dy,

I3[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′+1

P̂2i
j (y)P̂2i′

j′ (y) dy,

I4[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′

P̂2i
j (y)P(2i′ ,0)

j′−1 (y) dy,

I5[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′+1

P̂2i
j (y)P(2i′ ,0)

j′−1 (y) dy,

I6[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′+1

P(2i,0)
j−1 (y)P(2i′ ,0)

j′−1 (y) dy,

I7[i, i′, j, j′] :=
∫ 1

−1

(
1 − y

2

)i+i′+2

P(2i,0)
j−1 (y)P(2i′ ,0)

j′−1 (y) dy,

and the auxiliary arrays with respect to the Legendre polynomials,

L1[i, i′] :=
∫ 1

−1
L̂i(y)L̂i′(y) dy,

L2[i, i′] :=
∫ 1

−1
Li−1(y)L̂i′(y) dy,

L3[i, i′] :=
∫ 1

−1
Li−1(y)Li′−1(y) dy.

To simplify notation even further, we write β = i + j and β = i′ + j′, then the H1 shape function on
a tetrahedron is given by

u▲
ijk = L̂i

(
4x

1 − 2y − z

)(
1 − y

2

)i

P̂2i
j

(
2y

1 − z

)(
1 − z

2

)β

P̂2β
k (z),
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we also apply this notation to the partial derivatives, which are then given by

d
dx

u▲
ijk(x, y, z) =Li−1

(
4x

1 − 2y − z

)(
1 − y

2

)i−1

P̂2i
j

(
2y

1 − z

)(
1 − z

2

)β−1

P̂2β
k (z)

d
dy

u▲
ijk(x, y, z) =

1
2

Li−2

(
4x

1 − 2y − z

)(
1 − y

2

)i−1

P̂2i
j

(
2y

1 − z

)(
1 − z

2

)β−1

P̂2β
k (z)

+ L̂i

(
4x

1 − 2y − z

)(
1 − y

2

)i

P2i
j−1

(
2y

1 − z

)(
1 − z

2

)β−1

P̂2β
k (z)

d
dz

u▲
ijk(x, y, z) =

1
4

Li−2

(
4x

1 − 2y − z

)(
1 − y

2

)i−1

P̂2i
j

(
2y

1 − z

)(
1 − z

2

)β−1

P̂2β
k (z)

− i
2j + 2i − 2

L̂i

(
4x

1 − 2y − z

)(
1 − y

2

)i

P(2i,0)
j−1

(
2y

1 − z

)(
1 − z

2

)β−1

P̂2β
k (z)

+
j − 1

2j + 2i − 2
L̂i

(
4x

1 − 2y − z

)(
1 − y

2

)i

P(2i,0)
j−2

(
2y

1 − z

)(
1 − z

2

)β−1

P̂2β
k (z)

+ L̂i

(
4x

1 − 2y − z

)(
1 − y

2

)i

P̂2i
j

(
2y

1 − z

)(
1 − z

2

)β

P(2β,0)
k−1 (z).

After application of the Duffy transformation D3(x, y, z) =
(

4x
1−2y−z , 2y

1−z , z
)

=: (η1, η2, η3), e.g. we
can write the integrals over the partial x-derivative as follows,

∫
▲

d
dx

u▲
ijk(x, y, z)

d
dx

u▲
i′ j′k′(x, y, z) dx dy dz

=
∫ 1

−1
Li−1(η1)Li′−1(η1) dη1

∫ 1

−1

(
1 − η2

2

)i+i′−1

P̂2i
j (η2)P̂2i′

j′ (η2) dη2

∫ 1

−1

(
1 − η2

2

)β+β′

P̂2β
k (η3)P̂2β′

k′ (η3) dη3

= L3[i, i′]I1[i, i′, j, j′]I2[k, k′, i + j, i′ + j′].

The integrals over the rest of possible combinations are collected in the tables A.1 and A.2. It
is important to note, that we only need to compute the 7 auxiliary arrays I1, . . . , I7, where we
apply the sparsity results of appendix A.2. The auxiliary arrays L1, L2 and L3 are computed by
the results in appendix A.3.1 and appendix A.3.2.
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Table A.1.: Integral of the product of the partial derivatives of u▲
ijk

dx × dx L3[i, i′] I1[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

dx × dy 1
2 L3[i, i′ − 1] I1[i, i′, j, j′] I2[k, k′, i + j, i′ + j′]

+ L2[i, i′] I4[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

dx × dz 1
4 L3[i, i′ − 1] I1[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

− i′
2i′+2j′−2 L2[i, i′] I4[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

+ j′−1
2i′+2j′−2 L2[i, i′] I4[i, i′, j, j′ − 1] I2[i + j, i′ + j′, k, k′]

+ L2[i, i′] I2[i, i′, j, j′] I5[i + j, i′ + j′, k, k′]

dy × dy 1
4 L3[i − 1, i′ − 1] I1[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

+ 1
2 L2[i − 1, i′] I4[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

+ 1
2 L2[i′ − 1, i] I4[i′, i, j′, j] I2[i + j, i′ + j′, k, k′]

+ L1[i, i′] I6[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

dy × dz 1
8 I3[i − 1, i′ − 1] I1[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

− i′
2(2i′+2j′−2) L2[i − 1, i′] I4[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

+ j′−1
2(2i′+2j′−2) L2[i − 1, i′] I4[i, i′, j, j′ − 1] I2[i + j, i′ + j′, k, k′]

+ 1
2 L2[i − 1, i′] I2[i, i′, j, j′] I5[i + j, i′ + j′, k, k′]

+ 1
4 L2[i′ − 1, i′] I4[i′, i, j′, j, ] I2[i + j, i′ + j′, k, k′]

− i′
2i′+2j′−2 L3[i, i′] I6[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

+ j′−1
2i′+2j′−2 L3[i, i′] I6[i, i′, j, j′ − 1] I2[i + j, i′ + j′, k, k′]

+ L3[i, i′] I5[i′, i, j′, j] I5[i + j, i′ + j′, k, k′]
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Table A.2.: Integral of the product of the partial z-derivatives of u▲
ijk

dz × dz 1
16 L3[i − 1, i′ − 1] I1[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

− i′
4(2i′+2j′−2) L2[i − 1, i′] I4[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

+ j′−1
4(2i′+2j′−2) L2[i − 1, i′] I4[i, i′, j, j′ − 1] I2[i + j, i′ + j′, k, k′]

+ 1
4 L2[i − 1, i′] I2[i, i′, j, j′] I5[i + j, i′ + j′, k, k′]

− i
4(2i+2j−2) L2[i′ − 1, i] I4[i′, i, j′, j] I2[i + j, i′ + j′, k, k′]

− i′
4(2i′+2j′−2)

j−1
4(2i+2j−2) L3[i, i′] I6[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

+ j′−1
4(2i′+2j′−2)

j−1
4(2i+2j−2) L3[i, i′] I6[i, i′, j, j′ − 1] I2[i + j, i′ + j′, k, k′]

+ j−1
4(2i+2j−2) L3[i, i′] I5[i, i′, j, j′] I2[i + j, i′ + j′, k, k′]

− j−1
4(2i+2j−2) L2[i′ − 1, i] I4[i′, i, j′, j − 1] I2[i + j, i′ + j′, k, k′]

+ i′
4(2i′+2j′−2)

i
4(2i+2j−2) L3[i, i′] I6[i, i′, j − 1, j′] I2[i + j, i′ + j′, k, k′]

− j′−1
4(2i′+2j′−2)

i
4(2i+2j−2) L3[i, i′] I6[i, i′, j − 1, j′ − 1] I2[i + j, i′ + j′, k, k′]

+ j−1
4(2i+2j−2) L3[i, i′] I5[i′, i, j′, j − 1] I2[i + j, i′ + j′, k, k′]

+ 1
4 L2[i′, i − 1] I2[i, i′, j, j′] I5[i′ + j′, i + j, k′, k]

− i′
4(2i′+2j′−2) L3[i, i′] I5[i, i′, j, j′] I5[i′ + j′, i + j, k′, k]

+ j′−1
4(2i′+2j′−2) L3[i, i′] I5[i, i′, j, j′] I5[i′ + j′, i + j, k′, k]

+ L3[i, i′] I3[i, i′, j, j′] I7[i + j, i′ + j′, k, k′]
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[GB86c] Guo B. and Babuška I., The h-p version of the finite element method, Computational
Mechanics 1 (1986), no. 1, 21–41.

[GD10] P. Gatto and L. Demkowicz, Construction of h1-conforming hierarchical shape
functions for elements of all shapes and transfinite interpolation, Finite Elements in
Analysis and Design 46 (2010), no. 6, 474–486, The Twenty-First Annual Robert J.
Melosh Competition.

[GR86] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for navier-stokes
equations - theory and algorithms, Springer Series in Computational Mathematics,
vol. 5, Springer, 1986.

[GR94] Christian Großmann and Hans-Görg Roos, Numerik partieller
differentialgleichungen, Vieweg+Teubner Verlag, 1994.

[GSB+66] C.F. Gauss, E. Schering, M. Brendel, L. Schlesinger, W.F. Kaestner, B.G. Teubner,
J. Springer, R. Dedekind, F.A. Perthes, and Gesellschaft der Wissenschaften zu
Göttingen, Carl friedrich gauss werke: Bd. analysis (various texts, in latin and
german, orig. publ. between 1799-1851, or found in the ”nachlass”; annotated by e.j.
schering). 1866 [i.e. 1868, Carl Friedrich Gauss Werke, Gedruckt in der Dieterichschen
Universitäts-Druckerei W. Fr. Kaestner, 1866.

[GSW09] Ben-Yu Guo, Jie Shen, and Li-Lian Wang, Generalized Jacobi polynomials/functions
and their applications, Appl. Numer. Math. 59 (2009), no. 5, 1011–1028. MR 2495135

[Guy65] Robert J. Guyan, Reduction of stiffness and mass matrices, AIAA Journal 3 (1965),
no. 2, 380–380.

[HPB19] Tim Haubold, Veronika Pillwein, and Sven Beuchler, Symbolic evaluation of hp-fem
element matrices, PAMM 19 (2019), e201900446.

[HPB21] Tim Haubold, Veronika Pillwein, and Sven Beuchler, Recursion relations for hp-fem
element matrices on quadrilaterals, PAMM 21 (2021), no. 1, e202100200.

[HPB22] Tim Haubold, Veronika Pillwein, and Sven Beuchler, Recurrences for quadrilateral
high-order finite elements, Math. Comput. Sci. 16 (2022), no. 4, Paper No. 32, 17. MR
4522812

[HR11] Waldemar Hebisch and Martin Rubey, Extended rate, more GFUN, Journal of Sym-
bolic Computation 46 (2011), no. 8, 889–903.
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[Mal09] Stéphane Mallat, A wavelet tour of signal processing, Elsevier, 2009.

[Map] Maplesoft, a division of Waterloo Maple Inc.., Maple, Waterloo, Ontario.

[Mel02] J.M. Melenk, Hp-finite element methods for singular perturbations, Hp-finite Ele-
ment Methods for Singular Perturbations, no. Nr. 1796, Springer, 2002.

[mfe] MFEM: Modular finite element methods [Software], mfem.org.

[MGS99] J.M. Melenk, K Gerdes, and C Schwab, Fully discrete hp-finite elements: Fast
quadrature, Computer Methods in Applied Mechanics and Engineering 190 (1999),
4339–4364.

[MM14] William F. Mitchell and Marjorie A. McClain, A comparison of hp-adaptive strategies
for elliptic partial differential equations, ACM Trans. Math. Softw. 41 (2014), no. 1,
1–39.

[MMP88] Yvon Maday, Catherine Mavriplis, and Anthony T. Patera, Nonconforming mortar
element methods: Application to spectral discretizations, 1988.

[Mon03] P. Monk, Finite element methods for maxwell’s equations, Numerical Mathematics
and Scie, Clarendon Press, 2003.

[MOS66] W. Magnus, F. Oberhettinger, and R.P. Soni, Formulas and theorems for the special
functions of mathematical physics, Die Grundlehren der mathematischen Wis-
senschaften in Einzeldarstellungen, Springer-Verlag, 1966.

[MP96] Jean-François Maitre and Olivier Pourquier, Condition number and diagonal
preconditioning: comparison of the p-version and the spectral element methods, Nu-
mer. Math. 74 (1996), no. 1, 69–84. MR 1400216

130

mfem.org


[Mur92] G. Mur, The finite-element modeling of three-dimensional time-domain
electromagnetic fields in strongly inhomogeneous media, IEEE Transactions on
Magnetics 28 (1992), no. 2, 1130–1133.

[MW01] J. M. Melenk and B. I. Wohlmuth, On residual-based a posteriori error estimation in
hp-FEM, Adv. Comput. Math. 15 (2001), no. 1-4, 311–331 (2002), A posteriori error
estimation and adaptive computational methods. MR 1887738

[MX15] Francisco Marcellán and Yuan Xu, On sobolev orthogonal polynomials, Expositiones
Mathematicae 33 (2015), no. 3, 308–352.

[NP12] Nilima Nigam and Joel Phillips, High-order conforming finite elements on pyramids,
IMA Journal of Numerical Analysis 32 (2012), no. 2, 448–483.
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