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Abstract: This paper focuses on the scheduling problem in the offshore wind farm installation
process, which is strongly influenced by the offshore weather condition. Due to the nature of the
offshore weather condition, i.e., partially predictable and uncontrollable, it is urgent to find a way
to schedule the offshore installation process effectively and economically. For this purpose, this
work presents a model based on Timed Petri Nets (TPN) approach for the offshore installation
process and applies simulated annealing algorithm to find the optimal schedule.
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1. INTRODUCTION

Driven by the needs of the renewable energy market, the
offshore wind energy (OWE) industry has been devel-
oped rapidly, and wind power has become the fifth-largest
source for electricity generation worldwide by the end of
2019 (IEA, 2019). Still, it is more expensive than other
renewable energy resources, e.g., hydropower. Its high cost
partially results from the installation phase of an offshore
wind farm (OWF). The offshore weather conditions delay
offshore installation projects frequently. A prominent so-
lution to this problem is to schedule the OWF installation
efficiently and agilely. However, Peng et al. (2020b) have
shown that the scheduling of offshore installation exhibits
the classical exponential growth in the search space. Thus,
the planning horizon is restricted to a small scale to lower
down computational cost. This work aims at extending,
improving, and validating the approach proposed in Peng
et al. (2020a,b). Firstly, the scheduling strategy is mod-
ified to reduce the search space. Secondly, the simulated
annealing (SA) algorithm is integrated to find the optimal
solution or at least a solution close to the optimum instead
of using numerical search. Furthermore, the scheduling
strategy is modified to decouple the installation cycles
to eliminate the exponential growth in the waiting time
combinations. Last but not least, the schedules obtained
through the Timed Petri Nets (TPN) model and a Mixed
Integer Linear Programming (MILP) model are compared.
The strategy proposed in Rippel et al. (2019b) is applied
to deal with weather disturbances, in which operation
times are estimated by discrete-time Markov chain using
historical weather data from Germany’s North Sea.
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This paper contributes to the literature in several senses.
First, it presents a valid and agile scheduling strategy for
the OWF installation problem. Secondly, a further runtime
improvement is given by using stochastic metaheuristics,
i.e., simulated annealing. Last but not least, it firstly, to
the knowledge of the authors, compares results of DES
models with MILP models for validation purposes.

2. LITERATURE REVIEW

Rippel et al. (2019a) have given a review of the cur-
rent situation and challenges about the OWF installation.
Essentially, mathematical approaches have been applied
to model the offshore installation process to solve the
planning and scheduling problems by the majority of
the researchers. The Mixed Integer Linear Programming
(MILP) model proposed by Scholz-Reiter et al. (2010)
aims at scheduling offshore installation activities under
the consideration of a single weather scenario, which has
been extended by Ait-Alla et al. (2010) with an aggregate
planning strategy for minimizing the installation cost.
Rippel et al. (2019c) have embedded the MILP model into
the model predictive control (MPC) scheme to cope with
the weather conditions in a realistic environment. To deal
with the uncertainties in offshore weather, Herroelen and
Leus (2005) have reviewed the fundamental approaches
for scheduling that consider uncertainties, e.g., stochastic
project scheduling, fuzzy project scheduling. Cardoso et al.
(2013) have introduced uncertainty of products’ demand
into their MILP model for the designing and planning
of the general supply chains with reserve flows. A de-
composition strategy proposed by Ursavas (2017) aims
at improving the planning and scheduling to reduce the
cost resulted from the severe weather condition. It aims at
mitigating the risks caused by offshore weather conditions.
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A few works have focused on discrete-event simulations
(DES) to investigate problems in the offshore wind indus-
try. Vis and Ursavas (2016) proposed a decision-support
tool based on DES to investigate the coherency between
the logistical concepts and project performance. Muhabie
et al. (2018) have investigated different assembly strategies
used in the offshore installation by DES, including weather
uncertainties, distances, vessel properties, and different
assembly scenarios. A review of the studies regarding
offshore logistics is given by Chartron (2019). It points
out that offshore installation is strongly dependent on
the season and geographical feature on the construction
site, and suggests to combine different logistic strategy to
achieve the best performance. Peng et al. (2020a) focus
on the optimization of the system buffer, i.e., the base
port, using a model based on Generalized Stochastic Petri
Nets (GSPN) approach. Furthermore, the authors have
proposed a TPN model to schedule the OWF installation
process using numerical search (Peng et al. (2020b)).

3. SYSTEM DESCRIPTION

The OWF installation can be seen as a process that con-
sists of numerous installation cycles (ICs), in which the
installation vessel sails back and forth between the base
port and the construction site and executes the sequential
offshore operations. Fundamentally, an IC can be divided
into 5 different operation categories: 1 Loading, 2 Sail-
ing, 3 Reposition, 4 Jack-Up (JU), and Jack-Down (JD),
5 Construction. Operations, except 2 , occur in an IC at
least once, and at most NC,max times, where NC,max is the
maximal capacity of the installation vessel. Besides, each
operation owns a base operation duration and is limited
by the offshore weather conditions in different magnitude.
The base operation duration and weather limitations of
each operation are summarized in table 1.

Table 1. Base Operation Duration & Weather
Limitations

Operation d (h) vmax (m/s) hmax (m)

Loading 12 - -

Sailing 4 21 2.5

Jack-Up &
Jack-Down

2 14 1.8

Construction 14 10 -

Reposition 2 14 2

Furthermore, the conventional logistic concept is consid-
ered in this work, which is described in detail in Rippel
et al. (2019a). The OWF installation with the conventional
logistic concept is depicted in Fig. 1.
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Fig. 1. OWF Installation Process with Conventional Lo-
gistic Concept

4. METHODOLOGY

The system introduced in section 3 is modeled with
Timed Petri Nets (TPN) following Peng et al. (2020b),
in which the authors have used numerical search to find
the optimal schedule and addressed that the plan size
is limited to a small number in order to prevent the
exponential growth of the search space. Thus, we introduce
the Simulated Annealing (SA) algorithm to overcome this
problem, which allows the model to generate schedules for
larger time horizons. Furthermore, the scheduling strategy
is summarized, of which the advantages and disadvantages
are discussed in short. Finally, we compare the results to
an optimizes schedule resulting from a MILP-Formulation
found from previous work.

4.1 Timed Petri Nets

Petri nets and their extensions are widely used in the
literature to describe systems, which are characterized as
being concurrent, asynchronous, distributed, parallel, non-
deterministic and/or stochastic. Fundamentals and devel-
opments of PN theory are summarised in Murata (1989);
Marsan et al. (2007). Graphically, a TPN model is a
bipartite graph, which possesses three different elements:
places, timed transitions, and arcs. It is mathematically
defined as a 6-tuple:

T PN = {P, T,A,w,M0, f} , (1)

where P is the set of places; T is the set of transitions
with P ∩ T = ∅; A ⊆ (P × T ) ∪ (P × T ) is the set of arcs.
Specifically, A can be divided into two sub-classes: i) input
arcs, I, pointing from a place to a transition, and ii) output
arcs, O, pointing from a transition to a place. An input arc
formulates the firing rule for a transition, that there must
be at least w tokens in the input place, where w is the
multiplicity or weight of the arc defining how many tokens
should be removed from the input place once the transition
fires. Besides, the firing of the transition does not remove
tokens from the input place. Generally, the arcs show in
which direction the thresholds are transported. M0 is the
initial marking of the TPN model. f : T → P+ is a firing
time function that assigns a positive real number to each
transition on the net. Wang (1998) and Popova-Zeugmann
(2013) are refereed for more details and information on
TPN.

Place Timed Transition Arc

Fig. 2. OWF Installation Process with Conventional Lo-
gistic Concept

A state of a TPN is given by marking, which reveals the
number of tokens in each place element. We denote the
number of tokens in place pi as M(pi), then the state
of a PN can be written formally as a vector with |P |
components

M = (M(p1), ...,M(pi), ...,M(p|P |)). (2)

4.2 Simulated Annealing Algorithm

Generally, simulated annealing (algo. 1) is a stochastic
metaheuristic to approximate the optimum in the feasi-
ble region of an optimization problem. The goal of this
algorithm is to bring the system from an arbitrary valid
initial state to a state with the minimum energy. This
approach extends the idea of local search, which is widely
used to find the local optimum by making bad trades
(Henderson et al., 2003). The bad trades are accepted using
the following criterion

exp

(
−∆f

t

)
> rand[0, 1] (3)

and
∆f = f(s′)− f(s), (4)

where s is the current state, s′ is the randomly picked
state in the neighbourhood of s, t is the temperature at
the current step, and f is the objective function of the
optimization problem. At each iteration of the simulated
annealing algorithm, a new point s′ is randomly generated.
The distance of the new point from the current point is
based on a probability distribution with a scale propor-
tional to the temperature t ( equation (3) and (4)). The
algorithm accepts all new points that lower the objective,
but also, with a certain probability, points that raise the
objective. If the value of t is large, then the bad trades
will also have a larger possibility to be accepted. This
allows the solver to explore more of the possible space
of solutions. Theoretically, the neighbours of a state s
are generated by applying small changes to state s. In
this case, all the valid states are simply enumerated, and
the enumerations are converted to its binary presentation.
The systematic decline of the temperature affects the
acceptance of the bad solutions directly. The chance of
a bad solution is dropping while the temperature drops in
every iteration. In the literature, there are several different
strategies for cooling plans.

Algorithm 1. (Simulated Annealing).

1: procedure SimulatedAnnealing(s:S)
2: Initialization
3: t ← T (0); n ← 0; s ← rand(S); sbest ← s;
4: while n > nmax do
5: choose s′ ∈ N (s)
6: if g(s′, s) > 0 then
7: s = s′;

8: else if exp
(

g(s′,s)
t

)
> rand[0, 1) then

9: s = s′;
10: end if
11: if g(s, sbest) then
12: sbest = s;
13: end if
14: t = T (n);
15: n = n+ 1;
16: end while
17: return sbest
18: end procedure

4.3 Scheduling Strategy

Peng et al. (2020b) have proposed a scheduling strategy,
which discretizes the complete workload into smaller parts.
This discretization can be attributed to the decreasing
accuracy of the weather forecast over time and physical
limitations, i.e., the capacity of installation vessels. The
main advantage of this idea is that it ensures the agility
in scheduling and allows to reschedule the work if the
weather forecast does not meet reality. However, this
strategy encounters an exponential growth in the search
space when the discretization is coarse, i.e., planning
a lot of works at one time, and the waiting time of
each installation cycle is considered. Thus, the authors
have limited the application to a very fine discretization
level without waiting times. This limitation mainly results
from the coupling of installation cycles. To improve the
functionality of this approach, we modify the discretization
with a cycle-based strategy. In this way, the cycles are
decoupled and, thus, the exponential growth resulted from
waiting time is eliminated. The search space is reduced to
|S| × tw,max, where |S| represents the cardinality of the
possible schedules in an installation cycle and tw,max is the
maximal waiting time defined for each installation cycle.

4.4 Mixed Integer Linear Programming Model

The results generated by using the MILP model presented
in Rippel et al. (2019c) are used here for comparison with
the results of the TPN model. The model itself provides an
optimal schedule for offshore operations while considering
the uncertainty if weather forecasts. The model’s objective
function aims to minimize costs incurred by offshore times
while maximizing the number of turbines installed in
a given time interval. The authors embed the MILP-
optimization within a model predictive control scheme to
counteract the increasing uncertainty of weather forecasts
by applying predictive online optimization.

5. OPTIMIZATION PROBLEM

The search for an optimal schedule for the OWF instal-
lation can be formulated as an optimization problem as
follows. First of all, for each installation cycle, there are |S|
numbers of different options, where S = {s1, ...si, ...sn}
is the set of all possible schedules that can take place in
an installation cycle. Second, each installation cycle can
be postponed up to tw,max hours. This yields to a discrete
search space with the size of |S|×tw,max. Thus, the optimal
schedule for an installation cycle is the pair (sopt, tw,opt).
To find this optimum, an objective function is needed,
which is used to measure the quality of an allowed set of
inputs. The objective function used in this work is given
as follows

min f(s, tw) = Cost(s) + Cost(twait) . (5)

The Cost() is a function that calculates the cost of each
operation based on their unit cost given in table 4 and the
cost of waiting time. The first term on the right-hand side
in equation (5) represents the regular operational cost. The
second term can be seen as a penalty term. Otherwise, the
system will try to push all the work into the future since
do nothing leads to zeros cost and, thus, it is always the
cheapest solution for the current scheduling step.
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6. NUMERICAL STUDY

With the scenario described in subsection 6.1, this nu-
merical study intends to compare the optimal schedules
generated by different models, i.e., TPN and MILP model,
and show the improvement in computational time by using
SA instead of a numerical search.

6.1 Scenario

The installation of an OWF should be completed on the
German North Sea. The scheduling of this installation pro-
cess is made with increasing planning horizons, i.e., up to
40 OWTs. Furthermore, we consider that the construction
of all the fundaments and electricity girds are completed.
The installation process should be started on the 1st. April
2001, at 8 a.m. The historical measurements from the year
1958 to 2000 in this area are used to estimate the weather
influences on each offshore operation. The historical data
contain measurements of wind speed and wave height in
hourly resolution. The parameter setting of TPN model
for this scenario is summarized in table 2.

Table 2. Parameter

Parameter Value Unit Description

NV 1 Vessel Number of vessel used

Cmax 4 OWT Maximal vessel capacity

Sini 12 OWT Initial storage in base port

Smax 32 OWT Maximal base port capacity

Smin 4 OWT Minimal base port storage

SOWF 40 OWT Size of OWF

6.2 TPN with SA Algorithm

The TPN model used for the simulation is depicted in
Fig. 4. A detailed explanation of this model can be found
in Peng et al. (2020b). The motivation of applying SA to
find the optimum schedule for OWF installation via the
TPN model is elaborated in subsection 4.2. The efficiency
and quality of SA are strongly related to the control
parameter, i.e., the initial temperature and the cooling
schedule. With a low initial temperature or a fast cooling
speed, the algorithm can be trapped in a sub-optimal state.
The temperature function used in this work is given as
follows

T = T0 · k · c, (6)

where T0 is the initial temperature, k is the annealing
parameter, which holds the same as the iteration number
until reannealing. c is the cooling parameter, which con-
trols the cooling speed. The initial temperature and the
cooling parameter used in this numerical study are given
in table 3. The annealing parameter k is set to the upper
bound of each variable, and the value of cooling parameter
c is adopted from the literature (Fidanova (2006)). Indeed,
the determination of the global optimum is not guaranteed
by the SA algorithm, since there are always possibilities of
accepting bad trades (see. section 4.2). Thus, a maximal
number of iterations is applied in this work to ensure a
99.5% probability of reaching the global optimum and
maintain the computational cost at a relatively low level.

Table 3. Parameter: Simulated Annealing Al-
gorithm

Parameter Value

T0 [4, 97]

c 0.95

itermax 100

6.3 Numerical Results

The optimal schedules found by TPN and MILP model
regarding different planning sizes are given in Fig. 6-9.
It is shown that both models have determined identical
optimal schedules for each case. These optimal schedules
are identical in two ways. First, they consist of the same
number of installation cycles with identical workloads, i.e.,
the number of loadings and constructions. Second, the
start and endpoint of each operation are the same as well.
The schedules are optimal, since an earlier execution of any
offshore operations, i.e., all the operations except loading,
is not possible without violating the weather limitation.
Furthermore, both models have efficiently evaded the
major bad weather windows marked with red blocks in
Fig. 5. It is shown that the optimal schedule of a lower
planning size (e.g., 8 OWTs) is contained in the higher
level (e.g., 10 OWTs), i.e., the local optimum is a part of
the global optimum. This makes the discretized planning
plausible, i.e., one can plan the work in small steps without
missing the global optimum.

A comparison of the computational costs of three different
approaches is shown in Fig. 3.
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Fig. 3. Comparison: Computational Cost

The computational cost of the TPN model with numerical
search (TPN-NS) is comparable to that of MILP model.
The MILP has used almost the same cost as TPN-NS
for planning size up to 16 OWTs. Due to the upcoming
bad weather conditions, there is a significant rise when it
schedules 12 OWTs. The computational cost of TPN-NS is
slightly higher than MILP for 40 OWTs. The advantage of
using simulated annealing (TPN-SA) is rather obvious. In
general, TNP-SA is up to three times faster than the TPN-
NS and MILP approaches. For example, the computational
cost for scheduling 16 OWTs has dropped from about 14
min to about 5 min. The speedup obtained by using SA
algorithm is summarized in table 5. Besides, the increase
of the computational cost using SA is strictly related to
the total number of installation cycles. For example, the
computational cost has stayed in plateau for 10 OWTs and
12 OWTs, since both schedules possess the same number
of installation cycles.

Tsupply

8
KBP

PBP

NOWT

TL PSF TSF PR TR PJU TJU PC TC

PJD

TJD0

TJD1PSBTSB

KiV

PiV

Fig. 4. TPN Model: Offshore Logistic with BP: base port; iV: idle vessel; SF: sail forward; JU: jack-up; C: construction; JD:
jack-down; OWF: offshore wind farm; R: reposition; SB: sail back

1
2
3
4
5

O
p
er
a
ti
o
n

2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800 2,850 2,900

0

5

10

15

Time (h)

W
in
d
S
p
ee
d
(m

/
s) Wind Speed

Wave Height

0

2

4

W
a
v
e
H
ei
g
h
t
(m

)

Fig. 5. Historical weather data in year 2001 on German North Sea and evaluation of weather restrictions for different
operations with 5: Loading; 4: Sailing; 3: Jack-up and Jack-down; 2: Construction; 1: Reposition

2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800 2,850 2,900
0

1 Loading
Sailing
Jack-up/-down
Construction
Reposition

TPN

MILP

Time (h)

S
ch

ed
u
le

Fig. 6. Schedules with plan size = 8 OWT

2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800 2,850 2,900
0

1 Loading
Sailing
Jack-up/-down
Construction
Reposition

TPN

MILP

Time (h)

S
ch

ed
u
le

Fig. 7. Schedules with plan size = 10 OWT

2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800 2,850 2,900
0

1 Loading
Sailing
Jack-up/-down
Construction
Reposition

TPN

MILP

Time (h)

S
ch

ed
u
le

Fig. 8. Schedules with plan size = 12 OWT

2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800 2,850 2,900
0

1

TPN

MILP

Time (h)

S
ch

ed
u
le

Fig. 9. Schedule with plan size = 16 OWT



	 Shengrui Peng  et al. / IFAC PapersOnLine 54-1 (2021) 325–330	 329

Tsupply

8
KBP

PBP

NOWT

TL PSF TSF PR TR PJU TJU PC TC

PJD

TJD0

TJD1PSBTSB

KiV

PiV

Fig. 4. TPN Model: Offshore Logistic with BP: base port; iV: idle vessel; SF: sail forward; JU: jack-up; C: construction; JD:
jack-down; OWF: offshore wind farm; R: reposition; SB: sail back

1
2
3
4
5

O
p
er
a
ti
o
n

2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800 2,850 2,900

0

5

10

15

Time (h)

W
in
d
S
p
ee
d
(m

/
s) Wind Speed

Wave Height

0

2

4

W
a
v
e
H
ei
g
h
t
(m

)

Fig. 5. Historical weather data in year 2001 on German North Sea and evaluation of weather restrictions for different
operations with 5: Loading; 4: Sailing; 3: Jack-up and Jack-down; 2: Construction; 1: Reposition

2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800 2,850 2,900
0

1 Loading
Sailing
Jack-up/-down
Construction
Reposition

TPN

MILP

Time (h)

S
ch

ed
u
le

Fig. 6. Schedules with plan size = 8 OWT

2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800 2,850 2,900
0

1 Loading
Sailing
Jack-up/-down
Construction
Reposition

TPN

MILP

Time (h)

S
ch

ed
u
le

Fig. 7. Schedules with plan size = 10 OWT

2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800 2,850 2,900
0

1 Loading
Sailing
Jack-up/-down
Construction
Reposition

TPN

MILP

Time (h)

S
ch

ed
u
le

Fig. 8. Schedules with plan size = 12 OWT

2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800 2,850 2,900
0

1

TPN

MILP

Time (h)

S
ch

ed
u
le

Fig. 9. Schedule with plan size = 16 OWT



330	 Shengrui Peng  et al. / IFAC PapersOnLine 54-1 (2021) 325–330

Table 4. Operation Unit Cost

Operation Cost (Euro/h)

Loading 1200

Sailing 2400

Rest 1800

Waiting 400

Table 5. Speedup: Simulated Annealing to Nu-
merical Search

Plan Size Speedup1 = tNS
tSA

Speedup2 = tMILP
tSA

8 3.20 2.47

10 3.16 2.04

12 3.43 3.53

16 2.76 2.43

40 3.2 2.06

7. CONCLUSION

This research has investigated the usage of simulated an-
nealing algorithm on the TPN model presented by Peng
et al. (2020b). Moreover, the scheduling strategy is mod-
ified to an installation-cycle-based search strategy, which
has decoupled the installation cycles inside one schedule.
It is shown in section 6, both TPN and MILP models have
found identical optimal schedules for the defined scenario,
which avoid the major inoperable weather windows effec-
tively. It is shown in section 6.3 that the TPN model with
numerical search possesses a comparable computational
cost to the MILP approach. A significant improvement
in computational efficiency is made by using simulated
annealing, which is around three times faster than the
other two approaches. Moreover, the TPN model possesses
not only the computational efficiency. Different as MILP
approach, the computational efficiency of TPN model is
consistent and not influenced by the measurements. It has
shown its flexibility in integration with different search
algorithms. Nonetheless, the construction of the model, as
well as the scheduling strategy, can be easily modified by
the user. The future works will be concentrated on further
improvements in the approach and comparisons of models
in different scenarios.
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