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Abstract
A Bayesian framework to characterize ground motions even in the presence
of missing data is developed. This approach features the combination of seis-
mological knowledge (a priori knowledge) with empirical observations (even
incomplete) via Bayesian inference. At its core is a Bayesian neural network
model that probabilistically learns temporal patterns from ground motion data.
Uncertainties are accounted for throughout the framework. Performance of the
approach has been quantitatively demonstrated via various missing data sce-
narios. This framework provides a general solution to dealing with missing
data in ground motion records by providing various forms of representation of
groundmotions in a probabilisticmanner, allowing it to be adopted for numerous
engineering and seismological applications. Notably, it is compatible with the
versatile Monte Carlo simulation scheme, such that stochastic dynamic analyses
are still achievable even with missing data. Furthermore, it serves as a comple-
mentary approach to current stochastic ground-motion models in data-scarce
regions under the growing interests of PBEE (performance-based earthquake
engineering), mitigating the data-model dependence dilemma due to the paucity
of data, and ultimately, as a fundamental solution to the limited data problem in
data scarce regions.
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1 INTRODUCTION

The random nature of earthquake ground motions is well appreciated. Various research efforts and progress, based
on stochastic process formulation, have been made towards the problem of characterization, simulation and response
evaluation.1–3 In recent years, the growing interest in performance-based earthquake engineering (PBEE), which requires
groundmotions of various hazard levels to consider the entire range of structural response, including non-linear behaviour
and even collapse,3 has driven the need for simulating ground motions of various earthquake scenarios. Stochastic
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simulations are further utilised for evaluation of future seismic demand and seismic reliability assessment,4 non-
linear stochastic dynamic analyses,5 developing ground motion prediction equations (GMPEs)6 or seismic hazard
characterization and simulation-based seismic risk assessment.7,8
However, their applicability is not without questioning. Empirical ground motions are responsible for developing and

calibrating stochastic ground motion models. However, the paucity of recordings (especially strong motions) in data
scarce regions leads to a bottleneck that observational data are lacking in the first place to justify modelling and cali-
bration. For instance, in characterizing seismic hazard, a category of predictive-relation-based stochastic ground-motion
models (see, e.g., Rezaeian and Der Kiureghian,9 Laurendeau et al.,10 Vlachos et al.11) is gaining increasing attention for
its ability to generate a suite of non-stationary time-histories, given specific earthquake scenarios. The core component
of these models is an underlying empirical regression between model parameters and earthquake characteristics over a
selected (sometimes limited) subset of records. However these empirical relations are largely bounded by the scope of data
being regressed. Significant epistemic uncertainties are expected on further uses of these underlying empirical regressions
as extrapolation than interpolation. Similarly, such uncertainty also applies to those empirical GMPEs developed using
stochastic simulations calibrated from small-to-moderate earthquakes often due to a lack of strong motions.6,12 Concerns
have been raised over the subsequent stochastic simulations from these biased models, as the underlying regression are
typically not well-constrained by empirical data and their extrapolation may, therefore, not even be physically realistic.13
Therefore, for data-scarce regions, where there are stronger needs of synthetic groundmotions for abundant earthquake

scenarios, however, the paucity of data poses a causality dilemma concerning the dependence between observations and
the extracted knowledge/information for the development of models. This raises difficulties, in data scarce regions, in the
characterization of ground motions for the seismic risk assessment as well as researches of regional seismicity and Earth
regional structures.
As such, a method to make the most of existing data (even where incomplete), robustly characterizing the underlying

physical processes from bad measurements (e.g., incomplete), could enrich the observational database, whereby one is
able to progressively update the development and calibration of groundmotionmodels, producingmore realistic stochastic
simulations in the otherwise data scarce regions, for hazard characterization and risk assessment. It serves as a comple-
mentary approach to stochastic ground-motionmodels under the growing interests of PBEE, andultimately a fundamental
solution to the limited data problem. This may be of particular interest to studies of historical earthquakes, which may
potentially provide strong-motion records but many of them are discarded due to the presence of data gaps.14 Further-
more, missing data exist in both historical and modern earthquake time histories due to intermittent instrumentation
or data-transmission failure. For instance, old mechanical, short-period high-sensitivity or broadband seismometers are
vulnerable to clipping during local strong motions. In addition, sensor malfunctions, instrument tilt, or data contamina-
tion may lead to missing or incorrect values, or waveform clipping around the peak motion.14–16 With the recent use of
low-cost temporary instruments, deployed at scale, sometimes in harsh conditions, the fidelity and continuity of record-
ing is also not as reliable as traditional permanent seismological stations, which itself can be understood as a bad- or
missing-data problem.
The characterization of ground motions and accounting for their random nature is challenging when only limited and

partial recordings are available.16–18 Pioneering works for analysis in the presence of missing data, such as the Lomb–
Scargle periodogram,19 iterative deconvolution CLEAN,20 are acknowledgedly to have deficiencies such as bias issue and
periodic content limitation.15,21–23 With different assumptions (hence limitations), many other methods have been pro-
posed in recent years. Notably, a compressive sensing approach is exploitedwith the sparsity assumption of the underlying
spectral representation.17 By assuming the same frequency contents between the missing portion and the observations,
a projection onto convex sets (POCS) method can be used to reconstruct clipped waveforms.16 Parametric models are
also developed based on various formulations, such as autoregressive modelling methods,21,24,25 with parameterized
assumptions on the structure of the underlying stochastic processes. Similarly, Maranò et al.14 proposed a method to
fit a parametric seismological model to earthquake recordings with missing gaps.
Alternatively, a variety ofmethods are available that explicitly or implicitly transform spectral analysis withmissing data

into the imputation ofmissing values, followed by standard full-data spectral analysis.26–30 This strain ofmethods provides
reconstructed waveforms in a straightforward manner, whereby extensive established spectral analyses, developed on
equidistant data, whether stationary or nonstationary, can still be universally harnessed.
Two main challenges are identified in dealing with missing data. First, most current approaches fail to address the

uncertainties related to the missing data properly.18,31 For reconstruction based methods, inaccuracies of the imperfect
reconstruction will be propagated to spectral estimates owing to the convolutional nature of Fourier transform. Sim-
ilarly, for parametric modelling methods that results in a parametric form of spectrum, parameter uncertainties due
to the incomplete data are not well captured. More importantly, despite existing approaches that handle uncertainties
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(notably Bayesian spectral analyses32,33), they are still constrained by the significantly limited information from the very
incomplete signal.
Therefore, to exploit additional information besides the incomplete recording and to appropriately quantify the uncer-

tainties brought by the missing data, we propose a novel Bayesian framework that aims to robustly combine prior
seismological knowledge with empirical observations (even incomplete). A Bayesian neural network (BNN) model that
probabilistically learns the temporal dynamics from earthquake time histories forms the key component of the framework.
In particular, it is initially trained from physics-informed simulated ground motions given the event metadata (e.g., mag-
nitude, epicentral distance, 𝑉𝑠30, etc.), as geological a-priori, and subsequently updated via Bayesian inference utilising
the partial empirical observations. Importantly, uncertainty has been accounted for throughout the framework. Variabil-
ity of the physics-informed simulations is considered. Epistemic uncertainties onmodel parameters of the BNN are learnt
through stochastic variational inference, whereby an ensemble of reconstructed time histories is obtained by marginal-
izing over the posterior distribution of model parameters. Furthermore, uncertainties of the spectral representations
(e.g., evolutionary power spectral density [EPSD]) of the underlying stochastic process are quantified, with the spectral
density values represented by probability distributions. As a result, sample realizations associated with the stochastic
process can be further simulated for stochastic dynamic analysis through the spectral representation method, even with
incomplete recordings.
Details of the framework are discussed first, then the performance of the proposedmethod is demonstratedwith various

missing data scenarios based on an earthquake strong motion recording.

2 A BAYESIAN FRAMEWORK FOR CHARACTERIZATION OF GROUNDMOTION
WITHMISSING DATA

We build on the premise that a priori seismological knowledge can provide a general, yet insightful, prior expectation
of the ground motions of the certain earthquake scenario, which can be combined with the information extracted from
empirical observations (even when incomplete).

2.1 Physics-informed stochastic simulations as a geological prior

A stochastic representation that encapsulates the physics of the earthquake process andwave propagation plays the central
role, from the seismological perspective, in characterizing the ground motions (see, e.g., Zeng et al.34, Boore35). One of
the most desired advantage is that such representations explicitly distil the knowledge of various factors affecting ground
motions (e.g., source, path and site effects) into a parametric formulation. In this study, we have adopted a well-validated
stochastic seismological model,35 as given below, whereby source process, attenuation and site effects are encapsulated in
a parameterized form of the Fourier amplitude spectrum. A finite fault strategy is particularly employed to represent the
geometry of larger ruptures for large earthquakes.6,36

𝐴(𝑓;𝚯) =
𝐶𝑀0

1 + (𝑓∕𝑓0)2
𝑍(𝑅) exp[−𝜋𝑓𝑅∕𝑄(𝑓)𝛽]𝐺(𝑓) (1)

where Θ = (Θ𝑒, Θ𝑔) represents the event parameters (Θ𝑒) that are still accessible from the metadata of an incomplete
recording, such as seismic moment 𝑀0 and hypocentral distance 𝑅, and region-specific seismological parameters (Θ𝑔)
that embody the source, path and site effects. Specifically, 𝑓0 is the earthquake’s source corner frequency given by 𝑓0 =
0.4906𝛽(Δ𝜎∕𝑀0)

1∕3 red (in SI units); 𝑅 =
√
𝑟2 + 𝑑2 where 𝑟 and 𝑑 are the epicentral distance and depth to a given sub-

fault;Δ𝜎 is referred to as the stress drop and 𝛽 represents the shear wave velocity in the vicinity of the source. The constant
𝐶 is given by: 𝐶 = 𝑅𝜽Φ𝑉𝐹∕(4𝜋𝜌𝑠𝛽

3𝑅0), where 𝑅𝜽Φ is the radiation pattern; 𝑉 represents the partition of total shear-wave
energy into horizontal components; 𝐹 accounts for the free-surface effect; 𝑅0 is the a reference distance and 𝜌 is the
density in the vicinity of the source. 𝑍(𝑅) is the geometrical spreading function defined by a piece-wise series of segments
in the form of 𝑅𝑏𝑛 , where 𝑏𝑛 defines the geometrical-spreading coefficient in the 𝑛th segment. The quality factor 𝑄(𝑓)
is an inverse measure of anelastic attenuation. The site effect 𝐺(𝑓) = exp(−𝜋𝑓𝜅0)10

𝜐 is given by the counteraction of a
high-cut filter, exp(−𝜋𝑓𝜅0), accounting for the diminution of the high-frequency motions and an amplification factor 𝜐
in log units. The specific values for each of the model terms used in this model can be taken from the existing literature,
or directly through spectral modelling of waveform data (e.g., Edwards and Fäh12).
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2182 CHEN et al.

In particular, the variability of model parameters in the spectral formulation, and hence the uncertainty in stochastic
simulations are represented by probability distribution over the input parametersΘ𝑔 as proposed by Atkinson and Boore6
and Vetter and Taflanidis.37 Note that the above stochastic simulation procedures are distinct from those comprehensive
deterministic numerical models that solve the complex 3D equations governing seismic wave propagation. Those models
are typically referred to as physics-based numerical models in the literature, see, for example,McCallen et al.38,39, Paolucci
et al.40 among others.

2.2 Sequential modelling

In recent years, neural network models have become established in learning complex and non-linear relations. Most
recently, successes have been seen for neural networks to learn the temporal dynamics in sequential data (e.g., time
series) under an autoregressive setting.29,41–43 They model the data generating process by formulating the conditional
distribution, 𝑝(𝑦𝑡|𝐱𝑡,𝐰), of the value 𝑦𝑡 based on a window of past lagged values ([𝑦𝑡−1, … , 𝑦𝑡−𝑝]), as given by

𝑦𝑡 = 𝑓(𝐱𝑡;𝐰) + 𝜖,with 𝐱𝑡 = [𝑦𝑡−1, … , 𝑦𝑡−𝑝] (2)

where 𝜖 denotes the noise term; 𝑓(⋅) represents the neural network model, parameterized by 𝐰, which learns complex
nonlinear temporal dependence in the time series, as opposed to a linear combination of fixed coefficients in a classic
autoregressive AR(𝑝) model. 𝑦𝑡 and 𝐱𝑡 represent the prediction and the lagged window pair. In practice, training with
maximum likelihood estimation (MLE) gives rise to a probabilistic interpretation of the data generating process. The
likelihood function, assuming Gaussian noise with variance 𝜎2, is given by44

𝑝(𝑦𝑡|𝐱𝑡,𝐰) =  (𝑦𝑡|𝑓(𝐱𝑡,𝐰), 𝜎2) (3)

Model parameters𝐰, collectively the weights and biases of the neural network model (referred as weights hereafter),
are estimated during training by optimizing with the likelihood as the objective as follows:

𝐰∗ = argmax
𝐰

∑
𝑡

log 𝑝(𝑦𝑡|𝐱𝑡,𝐰) (4)

Once trained, its generative power could be employed to generate sequences,45 forecast time series future values41 and
impute missing values.29 However, despite accounting for the aleatoric uncertainty using Gaussian noise, the above MLE
strategy ignores the uncertainties of the model parameters (i.e., epistemic uncertainties) that can explain the observed
data (especially in the context of limited data and missing data) as well as the resulting predictive uncertainties regarding
the imputation. Significant uncertainties exist on the model configurations that may have explained the limited data.
Consequently, such uncertainties further compromise the generalization power of learned models in that predictions
from uncertain/unrepresentative models can still be unreliable and over confident.46,47

2.3 Bayesian updating on partial observations

In order to capture the model uncertainty, probability distributions are applied to the neural net model parameters (see
Figure 1). Bayesian inference hence formulates the update of the neural network modelling the underlying generating
process, when new observations (even incomplete) become available, as given below:

𝑝(𝐰|) = 𝑝(|𝐰)𝑝(𝐰)∕𝑝() (5)

where𝑝(𝐰) represents the prior probability distribution of weights learnt from the physics-informed simulations;𝑝(|𝐰)

stands for the likelihood and  specifically refers to the partial and incomplete observations. 𝑝(𝐰|) is the posterior
distribution, in which both the prior seismological knowledge and the real-world empirical observations are collectively
considered. The posterior predictive distribution for the prediction of the missing value 𝑦∗𝑡 , based on the lagged window,
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CHEN et al. 2183

F IGURE 1 A stochastic framework characterizing ground motion process in the presence of missing data. Three components are
presented: (A) a seismological model generating physics-informed stochastic simulations with a priori seismological knowledge; (B) a
Bayesian neural network model initially trained from physics-informed stochastic simulations and later updated by empirical partial
observations; (C) a host of model-based probabilistic representations of ground motions (e.g., evolutionary power spectral density EPSD,
elastic response spectra, ensemble reconstructed time histories etc.).

can be made for each possible configuration of the weights, by marginalizing over the posterior distribution, as shown
below:

𝑝(𝑦∗𝑡 |𝐱𝑡,) = ∫ 𝑝(𝐰|)𝑝(𝑦∗𝑡 |𝐱𝑡,𝐰)𝑑𝐰

= 𝔼𝑝(𝐰|)[𝑝(𝑦∗𝑡 |𝐱𝑡,𝐰)] (6)

As a result of considering uncertainties within the neural network, an ensemble of reconstructed time-histories, based
on Monte Carlo sampling of the posterior distributions of weights, can be obtained. Subsequently, an ensemble of spec-
tral estimates (e.g., EPSD, response spectra etc.) can be computed from the ensemble reconstructions using established
spectral analysis methods. Performing such analyses for many incomplete recordings in the otherwise data scarce region
produces an enriched database,which could be further adopted to update the development or calibration of groundmotion
models (including both stochastic ground-motionmodels and empirical GMPEs). This scheme is interpreted as an escape
from the model-data dependence dilemma, as highlighted earlier, by making the most of the observed data (even when
incomplete).

2.4 Stochastic variational inference

A key challenge in Equation (5) is the approximation of the posterior distribution. Analytic Bayesian inference to the
true posterior 𝑝(𝐰|) is intractable andMarkov Chain Monte Carlo (MCMC) based sampling approaches generally have
difficulties in scaling to the huge dimensions of neural networks.47,48 Alternatively, stochastic variational inference (see,
e.g., Graves49, Kingma and Welling50, Blei et al.51) approximates the posterior distribution 𝑝(𝐰|) efficiently, by turning
such inference problem into an optimization problem. It optimizes the parameters of a proposed variational distribution,
such that the Kullback–Leibler (KL) divergence between the approximate distribution and the true posterior distribution
is minimised: 𝛉∗ = argmin𝜽 KL[𝑞(𝐰|𝜽) ‖ 𝑝(𝐰|)]. This minimization objective is indeed equivalent to the following cost
function49:

 (, 𝜽) = KL[𝑞(𝐰|𝜽) ‖ 𝑝(𝐰)] − 𝔼𝑞(𝐰|𝜽) log 𝑝(|𝐰) (7)
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2184 CHEN et al.

Equation (7), hence, represents the new cost function to which optimization on 𝜽 is taken. Directly taking derivatives
is computationally prohibitive. However, it could be further re-arranged into the form of an expectation, lending itself to
known approximate solutions such as Monte Carlo estimator of expectation on samples (see Appendix B). Specifically,
prior to rearranging into an expectation, if assuming the variational posteriors have diagonal Gaussian distributions, the
KL divergence term of Equation (7) can be further analytically integrated,50 as given below, leaving only the likelihood-
dependent part to be computed by a Monte Carlo estimator:

KL[𝑞(𝐰|𝜽) ‖ 𝑝(𝐰)] =
1

2

∑
𝑗

(
𝜎2
𝑗
+ 𝜇2

𝑗
− log 𝜎2

𝑗
− 1

)
(8)

where 𝜇𝑗 , 𝜎𝑗 denote the 𝑗th element of the vectors that represent the variational distribution of weights, 𝜽 = (𝝁, 𝝈).
Subsequently, a reparameterization operation (see, e.g., Kingma and Welling50) is used to remove the dependence on the
distribution to which the expectation is taken (i.e. 𝑞(𝐰|𝜽)) in the likelihood-dependent part, whereby unbiased Monte
Carlo gradients can be obtained, as given below:

𝔼𝑞(𝐰|𝜽) log 𝑝(|𝐰) = 𝔼𝝐∼𝑟(𝝐) [𝑓(𝑔(𝝐, 𝜽))] ≃
1

𝐿

𝐿∑
𝑙=1

𝑓(𝑔(𝝐(𝑙), 𝜽)) (9)

where 𝑓(𝐰, 𝜽) = log 𝑝(|𝐰); 𝐿 is the number of samples drawn for the Monte Carlo estimator; 𝑔(⋅) is a differentiable
function that transforms a parameter free noise sample, 𝝐(𝑙) ∼ 𝑟(𝝐), into a sample of the variational posterior: 𝐰(𝑙) =

𝑔(𝝐(𝑙), 𝜽) = 𝝁 + 𝝈⊙ 𝝐(𝑙), where 𝑟(𝝐) is often modelled as standard Gaussian distribution. Otherwise, when the KL diver-
gence term in Equation (8) is not analytically solvable, the reparameterization operationwill then instead be applied to the
full expectation from the cost function Equation (7), given as: (,⨔) = 𝔼𝐰∼𝑞(𝐰|𝜽)[log 𝑞(𝐰|𝜽) − log 𝑝(𝐰) − log 𝑝(|𝐰)].
In practice,when training inmini-batches (i.e.,mini-batch optimization), the above implementation should be re-scaled

before derivation is taken:

𝑀(𝑀, 𝜽) =
1

𝑁
KL[𝑞(𝐰|𝜽) ‖ 𝑝(𝐰)] −

1

𝑀
𝔼𝑟(𝝐) log 𝑝(𝑀|𝑔(𝝐, 𝜽)) (10)

where 𝑀 and 𝑁 are the size of the mini batch and whole training data, respectively. Reparameterization enables the
cost function to be differentiated with respect to 𝜽, whereby the resulting gradients can still be employed using standard
stochastic optimization pipelines (e.g., stochastic gradient descent52):

𝜽𝜏+1 = 𝜽𝜏 − 𝜂∇𝜽𝑀(𝑀, 𝜽) (11)

where the variational parameters are sequentially updated bymini-batches during training; 𝜂 represents the learning rate.

2.5 Stochastic process representation

For stochastic dynamic response analyses and reliability assessment, in which groundmotions are represented as stochas-
tic excitation inputs to engineering structural systems, a Monte Carlo simulation scheme plays a central part (see, e.g.,
Shinozuka and Deodatis2,53, Spanos and Kougioumtzoglou54, Jalayer and Beck55, Kiureghian and Fujimura3, Rezaeian
and Luco56, Vlachos et al.5). Sample realizations are generated, provided the EPSD of the underlying stochastic process,
whose estimation is challenging in the presence of missing data.4,18 Our framework is dedicated to solving this problem.
Particularly, the EPSD of the process is estimated from the ensemble average over reconstructions imputed by Equation (6)
and the uncertainty on the spectral density estimates is represented by probability distributions.
Established spectral density estimation approaches, either for stationary cases or non-stationary cases, can be employed

in this regard (see, e.g., Spanos and Failla57, Liang et al.58, Spanos and Kougioumtzoglou54 for a review). Given the EPSD,
sample realizations can, hence, be generated via a spectral representation method SRM58:

𝑚(𝑡) =
√
2

𝑁−1∑
𝑛=0

√
2𝑆𝑌(𝑡, 𝜔𝑛)Δ𝜔 cos(𝜔𝑛𝑡 + Φ𝑛) (12)
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CHEN et al. 2185

TABLE 1 Statistical parameters of the stochastic finite fault model.

Parameter Distribution Mean s.t.d Min Max
log Δ𝜎 Gaussian 1.96 0.31
𝜅0 Uniform 0.002 0.008
𝑑 Gaussian 9.2 10 2 30
𝑏1 (0–70 km) Gaussian −1.35 0.1
𝑏2 (70–140 km) Gaussian −0.57 0.5
𝜐 Uniform −0.15 0.15

where 𝑆𝑌(𝑡, 𝜔) is the two-sided EPSD of the underlying stochastic process {𝑌(𝑡)};𝑚(𝑡) is the simulation, 𝜙𝑛 is the inde-
pendent random phase angle distributed uniformly over the interval [0, 2𝜋]; 𝑁 and Δ𝜔 relate to the discretization of the
frequency domain. This enables the proposed approach to still provide a realistic representation of the non-stationary char-
acteristics of earthquake groundmotions given incomplete recordings,which is importantwhen the associated earthquake
scenarios are of interests to the seismic assessment of engineering structures, under the PBEE practice.

3 APPLICATION EXAMPLES

In this section, we demonstrate the performance of the proposed framework using an accelerogram from the ESM (Engi-
neering StrongMotion) database.59 Note that when working with recorded time-histories, one can generally have a single
observed seismic recording as a realization of a stochastic process, where the true power spectrum of the underlying pro-
cess is typically unknown.1 Therefore, the spectral estimates from the otherwise complete recording could then serve as
the reference for comparison. Given a ground motion time-history record, power spectral density (PSD) estimates are
derived using the Welch method60 (stationary case), and the evolutionary power spectra (EPSD) are estimated from short
time Fourier transform58 (non-stationary case).
Region-specific parameters to the seismological model (see Equation 1) are inferred from seismographic studies of

the region,61,62 coupled with the event information associated with the target recording (i.e.,𝑀𝑤 = 6.5, normal faulting,
𝑅 = 18.6 km, recorded at a class A site in Italy). To consider the variability of ground motions, some key input param-
eters of significance are modelled as probability distributions, as shown in Table 1, while other deterministic ones are
listed in the Appendix in Table A.2. In generating ground motions, the slip distribution and hypocenter location are mod-
elled as random. Specifically, 100 physics-informed simulations with parameter variability are obtained, from which we
have trained a BNN model with two hidden layers. Under the autoregressive modelling scheme, as suggested by Equa-
tion (2), the input layer is specified by the lagged width 𝑝 while the output layer has one output node. Each hidden layer
is composed of 16 hidden units, activated by the rectified linear function. This architecture is the result of comprehensive
hyperparameter tuning (including the learning rate 𝜂) based on a 20% hold-out validation set from these simulations.

3.1 Missing gaps at random locations

In this study, we focus on the effect of missing gaps, which suggest a variable length of unknown samples consecutively
grouped together fromanotherwise continuous set ofmeasurements, significantly decreasing the number of usable empir-
ical records. This situation is of particular interest to studies of historical earthquakes, which may potentially provide
strong-motion records but many of them are discarded due to the presence of missing gaps.63,64 For example, in a study
of an Italian earthquake in 1930,65 only 11 out of the 113 seismograms recovered from seismological observatories across
Europe were employed mostly due to the inability to analyse incomplete seismograms.14 Moreover, the presence of gaps
is also common in modern seismograms subject to serious clipping in which consecutive points are clipped during peak
motions.16,66 Instrumentation malfunction or incompetence, or loss of communications may also lead to missing data.
Other examples include instrument bandwidth limitations, low-cost temporary instruments in harsh conditions or data
contamination and so forth.15,17,18,29 To comprehensively investigate the effects of data gaps, various scenarios where dif-
ferent combinations of gap sizes (i.e., the number of missing samples) and gap number (i.e., the number of gaps) are
randomly removed in the strong motion phase, are conducted in this analysis, as listed in Table A.1.
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(A) (B)

F IGURE 2 Gapped type of missing data and one reconstruction from the ensemble. Missing percentage 44%.

3.2 Quantitative metrics to compare the performance

To evaluate uncertainties and accuracy under different configurations of missing data, three quantitative metrics are
designed. These metrics are reported on the PSDs for characterizing the input stochastic process and on pseudo spectral
accelerations (5% damped) for characterizing responses of engineering systems. 𝑃95 corresponds to an interval coverage
probability measure that reflects the percentage of target PSD values being captured by the estimated credible intervals,67
given as

𝑃95 =
𝑐𝑓

𝑛𝑓
(13)

where 𝑐𝑓 represents the number of frequencies in which the target spectral density is captured within the 95% credible
interval. Upon denoting the predicted lower and upper bound as 𝑦𝐿 and 𝑦𝑈 , 𝑐𝑓 is defined by a variable 𝑘𝑖 of length 𝑛𝑓
(total number of frequency bins) that indexes a frequency value captured by the estimated credible interval:

𝑐𝑓 =

𝑛∑
𝑖=1

𝑘𝑖 (14)

𝑘𝑖 =

{
1 𝑦𝐿𝑖 ≤ 𝑦𝑖 ≤ 𝑦𝑈𝑖

0 else
(15)

In addition, 𝐴𝐿𝑈 represents the area between the lower 𝑦𝑈 and upper bounds 𝑦𝐿 across the frequency range, which
illustrates the magnitude of uncertainty levels. 𝑒 denotes the mean absolute error of the PSD estimates, which evaluates
the accuracy of the mean estimation:

𝑒 =
1

𝑛

𝑛∑
𝑖=1

𝑦𝑖 − 𝑦𝑖 (16)

3.3 A detailed scenario case

Of all the scenarios considered (see Table A.1), one serious scenario case corresponding to 10 gaps of size 32, in total
equivalent to 44%missing data within the strong motion phase, is specifically demonstrated herein in details for concise-
ness (see Figures 2–7). Figure 2A shows such incomplete recording with gaps indicated by the blue bar at the bottom.
Figure 2B then shows one reconstructed time-history from the ensemble collection of 500 reconstructions by the updated
BNN model, which largely resemble the waveform of the original recording. Past studies have suggested the difficulty in
restoring the waveform in the time domain with missing values consecutively grouped (as in gaps), compared to missing
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(A) (B)

F IGURE 3 Uncertainties in the power spectral density estimates. Missing percentage 44%.

(A) (B)

F IGURE 4 An baseline approach for comparison with the proposed approach.

values scattered across the signal.4,14,33 In fact, this difficulty further justifies the importance of uncertainty quantification
due to the propagation of imperfect reconstruction error.
Based on the ensemble reconstructions, the uncertainties over the power spectrum can further be seen in Figure 3A.

Despite a significant portion of data missing (44%), the ensemble-averaged PSD agrees well with the target PSD from the
otherwise complete recording, whose target spectral values across the whole frequency range are generally captured in the
95% credible interval bounds. The heteroscedasticity of variances with respect to frequencies is observed. As a comparison,
significant power loss is seen from the result by a simple zero-padded approach. In more details, Figure 3B illustratively
displays the probability distribution shape of spectral density estimates with respect to frequency. In addition, descriptive
statistics regarding the ensemble-averaged PSD estimates are also depicted. The box within represents the regular box plot
showing the statistics corresponding to quantiles such as 25%, median and 75%. The blue circle represents the median
value while the red cross represents the target, that is, the PSD value from the full recording.
In addition, results from another baselinemethod, in whichmissing values are filled with samples from standard Gaus-

sian distribution,31 are shown in Figure 4. By contrast, our ensemble-average estimate has better approximated the target
result and our interval bounds have better covered the target, as clearly seen in Figures 3B and 4B. This superior per-
formance could be attributed to our updated BNN’s ability to learn the temporal dependence of the underlying process.
While the “white noise” imputation approach respects the basic property of a stochastic process, it can hardly know the
variance with respect to the random variable at each time stamp and also the covariance structure.
It should be noted that the stationary (global) PSD estimates provide the spectral distribution in an average sense,

without time information. But engineering interests, driven by PBEE, are increasingly focused on the time-varying spectral
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(A) (B)

F IGURE 5 Evolutionary power spectral density estimate and its uncertainty.

(A) (B) (C)

F IGURE 6 The distribution of spectral moments due to incomplete data.

representation due to the “moving resonance” effect of nonlinear structural analysis. As such, an ensemble of estimates
of the evolutionary power spectrum is computed, with the averaged EPSD shown in Figure 5A; more importantly, the
distribution of spectral density values, 𝑆(𝑓, 𝑡), at selected time instants and frequency bins are displayed in Figure 5B for
illustration. Several representative combinations of time instants and frequency bins are selected to show the variance
of spectral estimates. The corresponding target values are shown by the vertical lines, which are well captured by the
estimated probability distributions.
Figure 6 further displays the distribution of spectral moments (see definition in D), the key parameters of spec-

tral representation of stochastic seismic inputs.18,68 Uncertainties due to the incomplete data are shown, indicating
that the target values from the full recording are well captured even with a missing percentage (MP) of 44%.
Spectral moments can be used to calibrate parameterized stochastic process models, for example, the established
Kanai Tajimi model via a spectral moment method (see, e.g., Lai68 for details). Indeed more complex models (e.g.,
Conte and Peng69, Vlachos et al.11) that reflect the nonstationary characteristics of ground motions could also simi-
larly be calibrated with the ensemble reconstructions through, for example, spectral fitting. Importantly, it suggests
that parameter uncertainties could thus be accounted for when characterising ground motions using parameterized
models.
Relying on the Monte Carlo simulation approach,2 powered by the spectral representation method SRM (Equation 12),

sample realizations compatible with the given stochastic process can be simulated for stochastic nonlinear dynamic anal-
yses (see, e.g., Jalayer and Beck55, Kiureghian and Fujimura3, Rezaeian and Luco56, Vlachos et al.5). As a result, Figure 7
illustrates, side by side, the sample generation based on the ensemble averaged EPSD estimates, along with the recon-
struction directly from our updated BNN model. It suggests that, even in the presence of a significant number of data
gaps, both the reconstruction and the generation resemble the target recording very well.
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CHEN et al. 2189

F IGURE 7 Target recording (top) compared
with a direct reconstruction from the updated
Bayesian neural network model (middle) and a
sample generation of the underlying stochastic
process by the stochastic representation method
(SRM) from the ensemble-averaged EPSD (bottom).

(A) (B) (C)

F IGURE 8 Response spectrum of reconstructions from the updated BNN: three representative missing gap scenarios with increasing
missing percentages. The target response spectrum is shown by the thick line, together with response spectra of 500 reconstructions from the
ensemble. BNN, Bayesian neural network.

3.4 Performance comparison of many scenarios

In earthquake engineering, accelerograms are also frequently characterized by the pseudo-acceleration (5% damped)
elastic response spectra. Figure 8 illustratively shows the variability of spectral amplitudes of the reconstructions asso-
ciated with three representative levels of missing gaps. The target response spectrum is shown in thick line, together
with response spectra of 500 reconstructions from the ensemble. While larger uncertainty is found with increasing lev-
els of missing data, the extreme case with roughly 70% of missing gaps still captures the target spectra to a large extent.
For less extreme cases, the target response spectra are well contained within the suite of reconstructed response spectra
across the full range of spectral periods. This reflects the ability of the proposed approach to quantify uncertainty in our
reconstructions in response to the missing data and suggests the validity for the reconstructions to be used for seismic
structural analyses.
On the other hand, the response spectra of our sample generations from the EPSD, along with the target response

spectra, are displayed in Figure 9. All the sample realizations have captured the target spectra quite well. Little differences
can be seen between the three data-loss scenarios, suggesting the robustness of the ensemble-averaged EPSD even under
serious missing data (of up to 70%). This, therefore, validates the representation of the ground motion using estimated
evolutionary power spectra by the presented approach and demonstrates its ability to make stochastic dynamic analyses
still achievable in the presence of serious missing data. This result furthermore highlights the usefulness of the proposed
method within a Monte Carlo simulation scheme.
For completeness, quantitative performance evaluation of the reconstructions in respect to various missing gap sce-

narios is tabulated in Table 2 (reported in terms of the power spectrum) and Table 3 (reported in terms of the response
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(A) (B) (C)

F IGURE 9 Response spectrum of sample generations from the ensemble-averaged EPSD: three representative missing gap scenarios
with increasing missing ratio. EPSD, evolutionary power spectral density.

TABLE 2 Performance comparison on power spectral density of reconstructions under various configurations of missing gaps (averaged
over 10 runs).

Number of gaps
PSD Gap size 2 4 6 8 10
𝑒 (e-3) 16 0.958 1.181 1.935 2.282 2.879

32 1.703 2.389 3.202 3.846 4.336
64 2.806 4.232 5.343 7.986 -

𝐴𝐿𝑈 16 0.524 0.630 0.848 1.006 1.205
32 0.830 1.274 1.618 2.262 2.418
64 1.707 2.920 3.528 5.301 -

𝑃95 (%) 16 86.095 86.243 79.734 74.556 73.077
32 83.876 83.432 76.479 78.107 80.030
64 83.136 86.686 81.065 81.361 -

𝑒 denotes the mean absolute error; 𝐴𝐿𝑈 the area metric; 𝑃95 prediction interval coverage probability

TABLE 3 Performance comparison on response spectrum of reconstructions under various configurations of missing gaps (averaged
over 10 runs).

Number of gaps
PSA Gap size 2 4 6 8 10
𝑒 (e-2) 16 0.538 0.667 1.134 1.313 1.600

32 0.925 1.328 1.785 2.039 2.229
64 1.621 2.029 2.658 3.157 -

𝐴𝐿𝑈 16 0.013 0.015 0.020 0.023 0.026
32 0.020 0.029 0.035 0.043 0.045
64 0.037 0.049 0.060 0.070 -

𝑃95 (%) 16 81.615 89.769 89.231 88.308 83.462
32 80.385 84.000 86.077 82.923 88.077
64 85.154 87.615 82.385 85.308 -

𝑒 denotes the mean absolute error, 𝐴𝐿𝑈 the area metric and 𝑃95 prediction interval coverage probability.

spectrum), in which all the metrics are computed and averaged over 10 runs to obtain representative results against ran-
domness. The total MP of various combinations of gap numbers and sizes are listed as a reference in a colour-codedway in
Table A.1. For both spectra, larger deviations and higher uncertainties are found as with the increase of MP, which is intu-
itively understandable as a result of the iterative nature of the approach. Particularly, the error of PSD roughly increases by
60%when doubling the gap length (under the same gap numbers), which suggests the accumulation of errors propagated
from the reconstructions. Generally, the estimated credible intervals covered both target spectrum quite well, with 𝑃95
higher than 80% for most scenarios. However, it should be noted that the high coverage probability of scenarios with MP
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(A) (B)

F IGURE 10 Comparison of mean absolute error for investigating the effects of three different missing gap scenarios with same missing
level.

are at the cost of wider interval bounds, as suggested by 𝐴𝐿𝑈 . The detailed scenario case in Section 3.3, along with three
more scenarios shown in Figures 8 and 9, exemplify the scale of results and demonstrates the performance.
Note that, while included for completeness, the scenario with 10 gaps of size 64 is not compatible with our Bayesian

updating setting, since too much of the empirical observations are missing (i.e., 87%), indicating that only very sparse
samples of data are left. It is suggested by Equation (2) that the partial chunks adopted for updating should be at least the
size of 𝑝.

3.5 Impact of different data-loss scenarios

In addition to exploring the impacts of missing levels, this analysis further investigates more complicated patterns, since a
certain missing data percentage could be associated with different scenarios, for example, a 17.41% data loss in the strong
motion phase may be attributed to three combinations: eight gaps of size 16, four gaps of size 32 or two gaps of size 64.
As a result, Figure 10 shows the comparison of errors on both PSD and response spectral acceleration amplitudes, over 10
runs, in box plots. For power spectral estimates, under the same missing level, the first two scenarios (namely, eight gaps
of size 16 and four gaps of size 32) achieve comparable accuracy on average, though the second has slight higher error and
slightly larger variability. But more significantly, the third scenario with the longest gap and least number of gaps (i.e.,
two gaps of size 64) has much higher error and much higher variability. For response spectral acceleration amplitudes,
differencesmanifest a similar trend as the results in terms of power spectra. As with longer gaps, in spite of fewer gaps, the
average error increases. Still, the third scenario (two gaps of size 64) results in the worst performance, with largest error
and variability. This may suggest that the performance is more sensitive to the gap length (especially quite long gaps) than
the quantity of gaps.

4 CONCLUSION

In this paper, a Bayesian framework to characterize ground motions in the presence of missing data is presented. This
framework features the setting of Bayesian model updating that allows the combination of seismological a priori knowl-
edge, related to the physical phenomena, with the empirical yet incomplete observations. Uncertainties are accounted for
throughout the framework. The effect of missing gaps has been comprehensively studied via various missing scenarios,
based on which the performance of the proposed method has been quantitatively demonstrated. Results show that the
proposed method is highly effective even in serious cases of data-loss with about half of data missing in the strong motion
phase, being capable of providing imputed waveforms, spectral estimates and stochastic synthetic generations that agree
well with the target recording. A host of representations of ground motion, consistent with an underlying stochastic pro-
cess, is provided in a probabilistic manner, suggesting the versatility of the proposed approach as a general solution to
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2192 CHEN et al.

dealing with missing data for various engineering and seismological applications, whether waveform-based or spectrum-
based. The proposed approach helps in recovering the information conveyed from faulty or incomplete observations, for
example, from low-cost temporary instruments deployed at scale. The Bayesian framework provides a building block on
which it could be developed to enrich the database of groundmotions in data scare areas (e.g., near-field strong motions),
facilitating stochastic dynamic analyses of engineering structures and boosting the understanding of earth structures. Of
particular note is its mechanism that combines a priori information with empirical observations, remedying the causality
dilemma concerning the dependence of observations and the extracted knowledge/information. Finally, we consider that
such Bayesian framework could serve as a complementary approach to current stochastic ground-motion models under
the growing interests of PBEE (performance-based earthquake engineering), and ultimately a fundamental solution to
the limited data problem in data scarce regions.
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APPENDIX A: MISSING PERCENTAGES FOR VARIOUS SCENARIOS

TABLE A . 1 The total missing percentage (MP) for various missing scenarios.

Number of gaps
Gap size 2 4 6 8 10
16 4.35 8.71 13.06 17.41 21.77
32 8.71 17.41 26.12 34.83 43.54
64 17.41 34.83 52.24 69.66 87.07

APPENDIX B: MONTE CARLO ESTIMATOR
Consider a general probabilistic objective function of the form:

(𝜽) = ∫ 𝑝(𝐱; 𝜽)𝑓(𝐱; 𝝓)𝑑𝐱 = 𝔼𝑝(𝐱;𝜽)[𝑓(𝐱; 𝝓)] (B.1)

where 𝑓(𝐱; 𝝓) denotes a general function of an input variable 𝐱 with structural parameters 𝝓; 𝑝(𝐱; 𝜽) represents a
probability distribution parameterized by 𝜽.
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The usual Monte Carlo estimator for expectation is given by

𝔼𝑝(𝐱;𝜽)[𝑓(𝐱; 𝝓)] ⋍
1

𝑁

𝑁∑
1

𝑓(�̂�(𝑛)),where �̂�(𝑛) ∼ 𝑝(𝐱; 𝜽) (B.2)

It suggests that a complex integral in Equation (A.1) can be numerically evaluated by drawing samples from the prob-
ability distribution 𝑝(𝐱; 𝜽) and then computing the average of the function evaluated at these samples. Furthermore, as
many problems in Machine Learning generally focused on the computation of gradients, such as ∇𝜽𝔼𝑝(𝐱;𝜽)[𝑓(𝐱; 𝝓)]. Sev-
eral techniques exist to do further approximation, see additional details inMohamed et al.70 As an example, aMonte Carlo
gradient estimator by the score function is given as

∇𝜽𝔼𝑝(𝐱;𝜽)[𝑓(𝐱; 𝝓)] = 𝔼𝑝(𝐱;𝜽)[𝑓(𝐱; 𝝓)∇𝜽 log 𝑝(𝐱; 𝜽)]

=
1

𝑁

𝑁∑
1

𝑓(�̂�(𝑛))∇𝜽 log 𝑝(�̂�
(𝑛); 𝜽)]

where �̂�(𝑛) ∼ 𝑝(𝐱; 𝜽)

APPENDIX C: SEISMOLOGICAL PARAMETERS OF THE FINITE-FAULTMODEL

TABLE C . 1 Source and path parameters of the stochastic finite fault model (sourced from Refs. 61, 62).

Parameter Description Value
𝝆𝒔 Density of the medium 2.7
𝜷 Shear wave velocity 3.2
𝑽 Horizontal partition 𝟏∕

√
𝟐

𝑹𝜽𝚽 Radiation pattern 0.55
𝑭 Free-surface factor 2
𝑹𝟎 Reference distance 10
𝑸 Quality factor 𝑸 = 𝟐𝟓𝟎.𝟒𝒇𝟎.𝟐𝟗

APPENDIX D: SPECTRALMOMENTS
The spectral moments are key statistical parameters in frequency domain analyses, which are of particular importance in
evaluating survival probability or reliability assessment for structural systems. Consider stationary random processes, the
𝑗th spectral moment 𝜆𝑗 are given as18,68

𝜆𝑗 = ∫
+∞

−∞

𝜔𝑗𝑆(𝜔)𝑑𝜔 (D.1)

where 𝑆(𝜔) denotes the two-sided PSD. Specifically, the zero spectral moment 𝜆0, which is also the variance of the
excitation, is given as

𝜆0 = ∫
+∞

−∞

𝑆(𝜔)𝑑𝜔 (D.2)

then the central frequency 𝜔𝑐, and the shape factor 𝛿 (also known as bandwidth measure) of the stochastic process can
be computed from the first few spectra moments:

𝜔𝑐 = [𝜆1∕𝜆2]
1∕2

𝛿 = [1 − (𝜆2
1
∕𝜆0𝜆0)]

1∕2
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