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In this work, we apply goal oriented error estimation to a stationary Navier-Stokes benchmark problem coupled with the heat
equation. Furthermore, we compare three different methods for the sensitivity weight recovery.
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1 Introduction

In many applications (e.g., multiphysics problems) as for instance in wave guide writing laser materials processing within the
excellence cluster PhoenixD1, not the entire solution is of primary concern, but some specific quantity of interest. In laser
wave guide writing, light (Maxwell equations), material responses (incompressible Navier-Stokes), and heat developments
interact. In this work, we concentrate on the later, namely, coupling stationary incompressible Navier-Stokes with a heat
equation. For goal-oriented error control, the dual weighted resiudal method [7] is one possibility to estimate the arising
errors when computing these quantites of interest. An extensive framework for nonlinear problems, multiple goal functionals,
and balancing discretization and nonlinear iteration errors was designed in [2, 3] and which forms the basis of the current
study.

2 The goal and model problem

Let U be a Banach space. The goal is to find J(u) such that u solves A(u)(v) = 0 for all v ∈ U , where A : U × U 7→ R
is semilinear and J : U 7→ R is nonlinear. As model problem we consider the stationary Navier-Stokes benchmark problem
NS2D-12; see also [5]. Additionally we extend the benchmark problem by an additional equation for the temperature. The
computational domain Ω is given by Ω := (0, H)×(0, 2.2)\B, where H = 0.41, and B := {x ∈ R2 : ∥x−(0.2, 0.2)∥ ≤ 1

20}.
Finally the problem reads as: Find u := (u, p, T ) ∈ U := [H1(Ω)]2 × L2(Ω)×H1(Ω) such that

−ν∆u+ (u · ∇)u−∇p =0 in Ω,

∇ · u =0 in Ω,

−∆T + u · ∇T =0 in Ω,

u =0 on Γno-slip,

u =û on Γinflow,

ν
∂u

∂n⃗
− p · n⃗ =0 on Γoutflow,

T =5 on Γinflow,

T =100 on ∂B,
∂T

∂n
=0 on ΓN,T ,

where Γinflow := ∂Ω ∩ ({0} × R), Γoutflow := ∂Ω ∩ ({2.2} × R), Γno−slip := ∂Ω \ (Γinflow ∪ Γoutflow), ΓN,T :=
∂Ω \ (Γinflow ∪ ∂B), ν = 10−3 and û(x, y) := 1.2y(H − y)/H2. The weak form implicitly generates our operator A. Here,
the goal J is to find the lift which is defined as J(u) := 500

∫
∂B

[
ν ∂u
∂n⃗ − pn⃗

]
· e⃗2 ds(x,y) where e⃗2 = (0, 1).

3 The error estimator

The error estimator is based on the dual weighted residual method. Therefore, we have to consider the primal problem: Find
u ∈ U such that A(u)(v) = 0 for all v ∈ U , and the adjoint problem: Find z ∈ U such that A′(u)(z)(v) = J ′(u)(v) for all
v ∈ U . Here all derivaties are Fréchet derivates with respect to u. Moreover, we use two different finite element spaces Uh and
U

(2)
h for U . Furthermore, we assume that we have two approximations ũ(2)

h and z̃
(2)
h on U

(2)
h as well as two approximations ũ

and z̃ on Uh. The error estimator we will use here is then given by

η̃(2) :=
1

2
ρ(ũ)(z̃

(2)
h − z̃)+

1

2
ρ∗(ũ, z̃)(ũ(2)

h − ũ)−ρ(ũ)(z̃)−ρ(ũ
(2)
h )(

z̃
(2)
h + z̃

2
)+

1

2
ρ∗(ũ(2)

h , z̃
(2)
h )(ũ

(2)
h − ũ)+R̃(3)(2),

where ρ(ũ)(·) := −A(ũ)(·) and ρ∗(ũ, z̃)(·) := J ′(ũ)−A′(ũ)(·, z̃). For the definition of R̃(3)(2) we refer to [2]. This estima-
tor should estimate the error in J and is motivated in [2, 4]. Furthermore, it is also shown that this error estimator is efficient
and reliable if |J(ũ(2)

h )− J(u)| < c|J(ũ)− J(u)| with c < 1.
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2 of 2 Section 18: Numerical methods of differential equations

4 Numerical example

In our numerical example, the model problem and our error estimator are combined using the same algorithms as in [2].
Furthermore, we compare the results to the one from the original benchmark problem as well as three different choices how
to get the approximations on the space U2

h . The three different choices are using int (interpolation), full (full solves), and new
(combination of interpolation and full solves). For more information on those, we refer to [2]. The discretization was done
using continuous biquadratic (biquartic) finite elements for the velocity and bilinear (biquadratic) elements for p and T on Uh

(U (2)
h ). Since the velocity does not depend on the temperature we use the reference value presented in [6]. The implementation

is based on the finite element library deal.II [1]. The solution for the temperature is visualized in Fig. 1.

Fig. 1: Solution of temperature variable T .

Fig. 2: Relative errors |J(ũ)−J(u)|
|J(u)| and effectivity indices: Ieff := |η̃(2)|

|J(ũ)−J(u)| .

In Figure 2(left) the relative errors of the three different methods are visualized. We see that there is just a minor difference
between the results. Since int and new both have less computational cost, we suggest these methods. However, we emphasize,
that this has a strong dependence on the chosen example. The figure on right hand side gives us information, about how well
the error is estimated. Since the aim is to have Ieff = 1 we prefer new and full. If we compare the results of this example
with the results in [2] for the original benchmark problem, we do not see any difference. In fact the meshes, and errors are
identical. Of course when we compute the temperature we need additional degrees of freedom.
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