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Abstract
Existence of stationary solutions to a nonlocal fourth-order elliptic obstacle problem 
arising from the modelling of microelectromechanical systems with heterogeneous 
dielectric properties is shown. The underlying variational structure of the model is 
exploited to construct these solutions as minimizers of a suitably regularized energy, 
which allows us to weaken considerably the assumptions on the model used in a 
previous article.

Keywords MEMS · Stationary solution · Minimizer · Bilaplacian · Variational 
inequality
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1 Introduction

Idealized electrostatically actuated microelectromechanical systems (MEMS) are made 
up of an elastic conducting plate which is clamped on its boundary and suspended above 
a rigid conducting ground plate. Their dynamics results from the competition between 
mechanical and electrostatic forces in which the elastic plate is deformed by a Coulomb 
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force induced by holding the two plates at different electrostatic potentials. When the 
electrostatic forces dominate the mechanical ones, the elastic plate comes into contact 
with the ground plate, thereby generating a short circuit and leading to the occurrence 
of a touchdown singularity in the related mathematical models, see [5, 6, 9, 12, 18, 19] 
and the references therein. However, covering the ground plate with a thin insulating 
layer prevents a direct contact of the two plates and, from a mathematical point of view, 
features a constraint of obstacle-type which hinders the touchdown singularity. Differ-
ent models have been developed to take into account the influence of the coating layer 
deposited on the ground plate, most of them relying on the so-called small aspect ratio 
approximation and describing the state of the MEMS device by the sole deformation of 
the elastic plate [2, 3, 14, 15, 20]. A more elaborate model is derived in [13, Section 5], 
in which the state of the device is not only given by the deformation of the elastic plate, 
but also by the electrostatic potential in the region between the two plates.

To give a more precise account, we restrict ourselves to a two-dimensional setting, 
neglecting variations in the transverse horizontal direction, so that the geometry of the 
device under study herein is the following, see Fig. 1. At rest, the cross-section of the 
elastic plate is D ∶= (−L, L) , L > 0 , and it is clamped at its boundary (x, z) = (±L, 0) . 
The fixed ground plate has the same shape D and is located at z = −H − d . It is coated 
with an insulating layer

of thickness d > 0 with a priori non-uniform dielectric permittivity 𝜎1 > 0 and can-
not be penetrated by the elastic plate. As a consequence, the vertical displacement 
u ∶ D̄ → ℝ of the elastic plate actually ranges in [−H,∞) and the contact region 
{(x,−H) ∶ x ∈ D, u(x) = −H} between the insulating layer and the elastic plate 
might be non-empty. We assume also that the free space

between the upper part of the insulating layer and the elastic plate has uniform per-
mittivity 𝜎2 > 0 , and we denote the electrostatic potential in the device

Ω1 ∶= D × (−H − d,−H)

Ω2(u) ∶= {(x, z) ∈ D ×ℝ ∶ −H < z < u(x)}

u

Ω1Ω1

Ω2(u) Ω2(u) Ω2(u)

D

z

H − d

−H

0

2L

C(u)

Σ(u)

Fig. 1  Geometry of Ω(u) for a state u ∈ S̄
0
 with non-empty (and disconnected) coincidence set C(u)



173

1 3

Stationary solutions to a nonlocal fourth-order elliptic…

by �u , where Σ(u) is the interface

According to the model derived in [13, Section 5], equilibrium configurations of 
the above described device are weak solutions u ∈ H2

D
(D) to the fourth-order obsta-

cle problem

where

and 𝜕�S̄0 (u) denotes the subdifferential in H2
D
(D) of the indicator function �S̄0 of the 

closed convex subset

of H2
D
(D) . We recall that, given v ∈ S̄0 , the subdifferential 𝜕�S̄0 (v) is the subset of the 

dual space

of H2
D
(D) given by

where ⟨⋅, ⋅⟩H2
D
 denotes the duality pairing between H−2(D) and H2

D
(D) . If v ∉ S̄0 , then 

𝜕�S̄0 (v) ∶= � . While 𝜕�S̄0 (u) accounts for the non-penetrability of the insulating layer, 
the fourth- and second-order terms in (1.1) represent forces due to plate bending and 
plate stretching, respectively. These forces are balanced by the electrostatic force 
g(u) acting on the elastic plate, which is derived in [13] and involves the electrostatic 
potential �u in the device. The latter solves the transmission problem 

 in the domain Ω(u) , see Fig. 1. In (1.2), [[⋅]] denotes the jump across the interface 
Σ(u) , the dielectric permittivity � is given by

Ω(u) ∶= {(x, z) ∈ D ×ℝ ∶ −H − d < z < u(x)} = Ω1 ∪ Ω2(u) ∪ Σ(u)

Σ(u) ∶= {(x,−H) ∶ x ∈ D, u(x) > −H}.

(1.1)𝛽𝜕4
x
u − (𝜏 + 𝛼‖𝜕xu‖2L2(D))𝜕2x u + 𝜕�S̄0 (u) ∋ −g(u) in D,

H2
D
(D) ∶=

{
v ∈ H2(D) ∶ v(±L) = �xv(±L) = 0

}
,

S̄0 ∶=
{
v ∈ H2

D
(D) ∶ v ≥ −H in D

}

H−2(D) ∶=
(
H2

D
(D)

)�

𝜕�S̄0 (v) ∶=
�
𝜉 ∈ H−2(D) ∶ ⟨𝜉, v − w⟩H2

D
≥ 0, w ∈ S̄0

�
,

(1.2a)div(�∇�u) = 0 in Ω(u),

(1.2b)[[�u]] = [[��z�u]] = 0 on Σ(u),

(1.2c)�u = hu on �Ω(u),
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with 

and the non-homogeneous Dirichlet boundary conditions hu are given by

where

and

are C2-smooth functions satisfying

 We note that (1.3d–1.3e) imply that hu satisfies

and thus complies with the transmission conditions (1.2b), see [13, Example 5.5] 
for an example of functions h1 and h2 satisfying the above assumptions. With these 
assumptions, the electrostatic force g(u) is computed in [13, Theorems 1.2 and 1.3]. 
It has a different expression at contact points between the plates and at points where 
the elastic plate is strictly above the insulating layer. Specifically, introducing the 
coincidence set

for u ∈ S̄0 , the electrostatic force is given by 

for x ∈ D , where

�(x, z) ∶=

⎧
⎪⎨⎪⎩

�1(x, z) for (x, z) ∈ Ω1,

�2 for (x, z) ∈ D × (−H,∞),

(1.3a)𝜎1 ∈ C2
(
Ω1

)
, min

Ω1

𝜎1 > 0, 𝜎2 ∈ (0,∞),

hu(x, z) ∶= h(x, z, u(x)) =

{
h1(x, z, u(x)), (x, z) ∈ Ω1,

h2(x, z, u(x)), (x, z) ∈ Ω2(u),

(1.3b)h1 ∶ D̄ × [−H − d,−H] × [−H,∞) → [0,∞)

(1.3c)h2 ∶ D̄ × [−H,∞) × [−H,∞) → [0,∞)

(1.3d)h1(x,−H,w) = h2(x,−H,w), (x,w) ∈ D × [−H,∞),

(1.3e)�1(x,−H)�zh1(x,−H,w) = �2�zh2(x,−H,w), (x,w) ∈ D × [−H,∞).

(1.4)[[hu]] = [[��zhu]] = 0 on Σ(u)

C(u) ∶= {x ∈ D ∶ u(x) = −H}

(1.5a)
g(u)(x) ∶=�(u)(x) −

�2

2

[(
(�xh2)u

)2
+
(
(�zh2)u + (�wh2)u

)2]
(x, u(x))

+
[
�1(�wh1)u �z�u,1

]
(x,−H − d)
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and (�u,1,�u,2) ∶=
(
�u�Ω1

,�u�Ω2(u)

)
 . It is readily seen from (1.5) that g(u) features 

a nonlinear and nonlocal dependence on u, the latter being due to the terms involv-
ing �u in (1.5).

The investigation of the solvability of (1.1–1.2) is initiated in [13], exploiting the 
variational structure underlying the derivation of (1.1–1.2) which implies that solutions 
to (1.1) are critical points in S̄0 of an energy functional E, which is actually the total 
energy of the device. Specifically, 

consists of the mechanical energy

and the electrostatic energy

Then (1.1) subject to (1.5) is the Euler–Lagrange equation for minimizers of E in S̄0 , 
see [13], and g(u) defined in (1.5) corresponds to the (directional) derivative of Ee(u) 
with respect to u, see [13, Theorem 1.4]. The existence of solutions to (1.1) is estab-
lished in [13, Section 5] by showing that the energy functional has at least one mini-
mizer on S̄0 . This, however, requires additional assumptions ensuring that the elec-
trostatic energy Ee(u) does not grow faster than ‖u‖2

H1(D)
 as well as the coercivity of 

the energy functional E. More precisely, to guarantee the former (see (2.2) below) 
we assume that there are constants mi > 0 , i = 1, 2, 3 , such that 

for (x, z,w) ∈ D̄ × [−H − d,−H] × [−H,∞) and

 for (x, z,w) ∈ D̄ × [−H,∞) × [−H,∞) . The existence result from [13] then reads:

(1.5b)

𝔤(u)(x)

∶=

⎧
⎪⎨⎪⎩

�2

2

�
1 + (�xu(x))

2
� �

�z�u,2 − (�zh2)u − (�wh2)u
�2
(x, u(x)), x ∈ D ⧵ C(u),

�2

2

�
�1

�2
�z�u,1 − (�zh2)u − (�wh2)u

�2
(x,−H), x ∈ C(u),

(1.6a)E(u) ∶= Em(u) + Ee(u)

(1.6b)Em(u) ∶=
�

2
‖�2

x
u‖2

L2(D)
+
�
�

2
+

�

4
‖�xu‖2L2(D)

�
‖�xu‖2L2(D)

(1.6c)Ee(u) ∶= −
1

2 ∫Ω(u)

�|∇�u|2 d(x, z).

(1.7a)
��xh1(x, z,w)� + ��zh1(x, z,w)� ≤

�
m1 + m2w

2, ��wh1(x, z,w)� ≤ √
m3,

(1.7b)

|�xh2(x, z,w)| + |�zh2(x, z,w)| ≤
√

m1 + m2w
2

H + w
, |�wh2(x, z,w)| ≤

√
m3

H + w
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Proposition 1.1 [13, Theorems  5.1 and  5.3] Let 𝛽 > 0 and �, � ≥ 0 . Assume that 
(1.3), (1.7), (1.8), and (1.9) hold, and that the ground plate and the elastic plate are 
kept at constant, but different, electrostatic potentials; that is, there is V > 0 such 
that

If

with

then there is at least one solution u ∈ S̄0 to the variational inequality (1.1) in the fol-
lowing sense: for all w ∈ S̄0,

where g(u) is given by (1.5) and �u is the solution to (1.2). Here, we interpret �4
x
u for 

u ∈ S̄0 as an element of H−2(D) by virtue of

Moreover, this solution can be obtained as a minimizer of E on S̄0.

Obviously, a first step towards a full proof of Proposition 1.1 is to solve the trans-
mission problem (1.2) for the electrostatic potential �u with sufficient regularity in 
order to give a meaning to the function g along with deriving suitable continuity 
properties. We refer to Sect. 2.1 for a detailed account on this issue (see in particular 
Lemmas 2.1 and 2.2 where these results are recalled). A second essential step in the 
proof of Proposition 1.1 consists of deriving the coercivity of the energy functional 
E on S̄0 . This property is ensured by assumption (1.10) (along with (1.7)). In particu-
lar, if 𝛼 > 0 , then the mechanical energy Em involves a super-quadratic term which 
allows a compensation of the negative contribution from the electrostatic energy Ee.

Remark 1.2 Note that (1.8) implies

while (1.9) implies

(1.8)h1(x,−H − d,w) = 0, (x,w) ∈ D̄ × [−H,∞),

(1.9)h2(x,w,w) = V , (x,w) ∈ D̄ × [−H,∞).

(1.10)max{𝛼,�} > 0

� ∶= � − 4L2
�
(d + 1)max{‖�1‖L∞(Ω1)

, �2}
�
12m2L

2 + 2m3

�
− �

�
+
,

�D

�
��2

x
u �2

x
(w − u) +

�
� + �‖�xu‖2L2(D)

�
�xu �x(w − u)

�
dx

≥ −�D

g(u)(w − u) dx

⟨�4
x
u,�⟩H2

D
∶= ∫D

�2
x
u�2

x
� dx, � ∈ H2

D
(D).

𝜕wh1(x,−H − d,w) = 0, (x,w) ∈ D̄ × [−H,∞),
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and

so that the formula (1.5) for g(u) simplifies and becomes g(u) = �(u) in (1.5a). In 
particular, the function g(u) is non-negative.

The aim of the present work is to establish the existence of a solution to (1.1) 
under considerably weaker assumptions. In particular, we shall get rid of the tech-
nical and somewhat artificial assumption (1.10). Since (1.10) is obviously satisfied 
when 𝛼 > 0 , we shall treat � as zero in the following computations. Moreover, we no 
longer need a sign for the function g(u) and can slightly weaken assumption (1.9). 
Indeed, we only require that 

and that there is a number K > 0 such that

for (x,w) ∈ D̄ × [−H,∞) . Clearly, (1.8–1.9) imply (1.11). Also note that, due to 
(1.11a), the last term in the definition of g(u) in (1.5a) vanishes, i.e. g(u) reduces to

With these assumptions we can now formulate the main result of the present paper.

Theorem 1.3 Let 𝛽 > 0 , � ≥ 0 , and � = 0 . Assume that (1.3), (1.7), and (1.11) hold. 
Then there is at least one solution u ∈ S̄0 to the variational inequality (1.1) in the 
sense of Proposition 1.1. More precisely, the functional E is bounded from below on 
S̄0 and has a minimizer on S̄0 which is a weak solution to (1.1).

Since we no longer impose assumption (1.10) in Theorem 1.3, the boundedness 
from below of the functional E is a priori unclear, due to the negative contribution 
from the electrostatic energy Ee . We thus shall work with regularized coercive func-
tionals instead (see (2.1) below) and use comparison principle arguments to derive 
a priori bounds on minimizers of the regularized functionals, see Sect. 2 below. We 
shall then prove that cluster points of these minimizers are actually minimizers of 
the original functional E. The full proof of Theorem 1.3 is given in Sect. 2 and relies 
on an idea introduced previously in a related work [10].

Remark 1.4 Theorem  1.3 remains valid when 𝛼 > 0 and then only requires the 
assumptions (1.3) and (1.7). Indeed, the existence of a minimizer of E on S̄0 is 
shown as in the proof of [13, Theorem 5.1] and this minimizer is a weak solution to 
(1.1) as a consequence of [13, Theorem 5.3].

𝜕xh2(x,w,w) = 0, (x,w) ∈ D̄ × [−H,∞),

𝜕zh2(x,w,w) + 𝜕wh2(x,w,w) = 0, (x,w) ∈ D̄ × [−H,∞),

(1.11a)𝜕wh1(x,−H − d,w) = 0, (x,w) ∈ D̄ × [−H,∞),

(1.11b)|�xh2(x,w,w)| + |�zh2(x,w,w) + �wh2(x,w,w)| ≤ K,

(1.12)g(u)(x) =�(u)(x) −
�2

2

[(
(�xh2)u

)2
+
(
(�zh2)u + (�wh2)u

)2]
(x, u(x)).
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Finally, we provide an additional property of weak solutions to (1.1) when the 
potentials applied on the elastic plate and the ground plate are constant.

Corollary 1.5 Suppose (1.3), (1.8), and (1.9). If the coincidence set C(u) ⊂ D of a 
solution u ∈ S̄0 to (1.1) is non-empty, then it is an interval.

2  Proof of Theorem 1.3 and Corollary 1.5

2.1  Auxiliary results

Let us emphasize that the function g(u) defined in (1.5) involves gradient traces of 
the electrostatic potential �u , the latter solving the transmission problem (1.2) posed 
on the non-smooth domain Ω(u) which possesses corners. In addition, Ω2(u) need 
not be connected, but may consist of several components with non-Lipschitz bound-
aries (see Fig. 1), so that traces have first to be given a meaning. While the existence 
of a unique variational solution �u ∈ hu + H1

0
(Ω(u)) to (1.2) readily follows from 

the Lax–Milgram theorem, the required further regularity for �u in order to make 
sense of its gradient traces is thus far from being obvious. Moreover, �u (and hence 
g(u)) depends non-locally on u so that continuity properties with respect to the plate 
deformation u are non-trivial.

Nevertheless, relying on shape optimization methods and Gamma convergence 
techniques the following result regarding the existence of a solution to the transmis-
sion problem (1.2) and its regularity is shown in [13].

Lemma 2.1 Suppose (1.3). For each u ∈ S̄0 , there is a unique variational solution 
�u ∈ hu + H1

0
(Ω(u)) to (1.2). Moreover,

and �u is a strong solution to the transmission problem  (1.2) satisfying 
��z�u ∈ H1(Ω(u)) . Also,

Proof The existence, uniqueness, and regularity of the variational solution �u to 
(1.2) follows from [13, Theorem 1.1], while the upper and lower bounds for �u are 
consequences of the weak maximum principle [16, Chapter 7, Exercice 2.2], since 
� ∈ L∞(Ω(u)) .   ◻

The regularity of �u provided by Lemma 2.1 in particular guarantees that g(u) 
defined in (1.5) is meaningful for u ∈ S̄0 . As for the continuity of g(u) with respect 
to u ∈ S̄0 we recall:

�u,1 = �u�Ω1
∈ H2(Ω1), �u,2 = �u�Ω2(u)

∈ H2(Ω2(u)),

inf
�Ω(u)

hu ≤ �u(x, z) ≤ sup
�Ω(u)

hu, (x, z) ∈ Ω(u).
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Lemma 2.2 Suppose (1.3). 

(a)  The mapping g ∶ S̄0 → L2(D) is well-defined, continuous, and bounded on 
bounded sets, the set S̄0 being endowed with the topology of H2(D).

(b)  Let (uj)j≥1 be a sequence of functions in S̄0 such that uj ⇀ u in H2(D) for some 
u ∈ S̄0 . Then 

Proof Part (a) follows from [13, Theorem 1.4], [13, Corollary 3.14 & Lemma 3.16], 
and the continuity of the trace operator from H1(Ω1) to Lp(D × {−H}) for all 
p ∈ [1,∞).

Part (b) follows from [13, Proposition 3.17 & Corollary 3.12].   ◻

2.2  Minimizers for a regularized energy

In the following we let 𝛽 > 0 and � ≥ 0 and assume throughout that (1.3), (1.7), and 
(1.11) hold. We put

In order to prove Theorem 1.3 it suffices to find a minimizer of the energy functional 
E on  S̄0 since any such minimizer satisfies (1.1) according to [13, Theorem  5.3] 
(note that [13, Theorem 5.3] obviously remains true without imposing [13, Assump-
tion (5.2a)]). However, as mentioned previously, the coercivity of the energy func-
tional E is a priori unclear when dropping assumption  (1.10). For this reason we 
introduce for k ≥ 0 the regularized functional

where E(u) is defined in (1.6) and the constant A given by

with constants mj introduced in (1.7). We shall now prove, for each k > 0 , the exist-
ence of a minimizer uk of Ek on S̄0 and subsequently derive an a priori bound on 
such minimizers, so that the additional regularizing term drops out in Ek . We first 
show the coercivity of the functional Ek.

Lemma 2.3 Given k ≥ H , there is a constant c(k) > 0 such that

lim
j→∞

‖g(uj) − g(u)‖L2(D) = 0 and lim
j→∞

Ee(uj) = Ee(u).

�̄� ∶= max
�‖𝜎1‖L∞(Ω1)

, 𝜎2
�
.

(2.1)Ek(u) ∶= E(u) +
A

2
‖(u − k)+‖2L2(D), u ∈ S̄0,

A ∶= 8(d + 1)�̄�

(
3m2

2
+

m2
3
(d + 1)�̄�

𝛽

)

Ek(u) ≥ 𝛽

4
‖𝜕2

x
u‖2

L2(D)
+

A

4
‖(u − k)+‖2L2(D) − c(k), u ∈ S̄0.
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Proof Let u ∈ S̄0 . The variational characterization of �u , see [13, Lemma 3.2], read-
ily gives

Thus, invoking (1.3), Young’s inequality, and the definition of Ω(u) we derive

Next, since u ∈ S̄0 ⊂ H2
D
(D) implies

we deduce from Young’s inequality

Finally, note that

Hence, taking the previous two inequalities into account, the definition of Ek(u) 
entails

as claimed.   ◻

−Ee(u) =
1

2 �Ω(u)

�|∇�u|2 d(x, z) ≤ 1

2 �Ω(u)

�|∇hu|2 d(x, z).

(2.2)

−Ee(u) ≤ �Ω(u)

𝜎
�
(𝜕xh(x, z, u(x))

2 + (𝜕wh(x, z, u(x))
2(𝜕xu)

2
�
d(x, z)

+
1

2 �Ω(u)

𝜎(𝜕zh(x, z, u(x))
2 d(x, z)

≤ (d + 1)�̄�
�
3

2
m1�D� + 3

2
m2‖u‖2L2(D) + m3‖𝜕xu‖2L2(D)

�
.

�D

��xu�2 dx = −�D

u�2
x
u dx ≤ ‖u‖L2(D)‖�2x u‖L2(D),

−Ee(u) ≤ (d + 1)�̄�
�
3

2
m1�D� + 3

2
m2‖u‖2L2(D) + m3‖u‖L2(D)‖𝜕2x u‖L2(D)

�

≤ (d + 1)�̄�

�
3

2
m1�D� +

�
3m2

2
+

m2
3
(d + 1)�̄�

𝛽

�
‖u‖2

L2(D)

�

+
𝛽

4
‖𝜕2

x
u‖2

L2(D)
.

‖u‖2
L2(D)

= �D

u2�[−H,k](u) dx + �D

u2�(k,∞)(u) dx

≤ k2 �D

�[−H,k](u) dx + 2�D

(u − k)2�(k,∞)(u) dx + 2k2 �D

�(k,∞)(u) dx

≤ 2k2�D� + 2‖(u − k)+‖2L2(D).

Ek(u) ≥ 𝛽

4
‖𝜕2

x
u‖2

L2(D)
+

A

2
‖(u − k)+‖2L2(D) −

3

2
(d + 1)�̄�m1�D�

−
A

8

�
2‖(u − k)+‖2L2(D) + 2k2�D�

�

≥ 𝛽

4
‖𝜕2

x
u‖2

L2(D)
+

A

4
‖(u − k)+‖2L2(D) − c(k)
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The just established coercivity now easily yields the existence of a minimizer of 
Ek on S̄0.

Proposition 2.4 For each k ≥ H , the functional Ek has at least one minimizer uk ∈ S̄0 
on S̄0 ; that is,

Moreover, uk ∈ S̄0 is a weak solution to the variational inequality

Proof Clearly, Em defined in (1.6b) is weakly lower semicontinuous on H2(D) while 
Ee is continuous with respect to the weak topology of H2(D) due to Lemma  2.2. 
Thanks to Lemma 2.3, the direct method of the calculus of variations now easily 
yields the existence of a minimizer uk ∈ S̄0 of Ek on S̄0 . In particular,

for any fixed

It was shown in [13, Theorem 1.4] that (since uk + s(w − uk) ∈ S0 for s ∈ (0, 1))

From the definition of Ek we then obtain by gathering the two limits that

for all w ∈ S0 . Since S0 is dense in S̄0 , this inequality also holds for any w ∈ S̄0 , and 
we thus have shown that uk satisfies the variational formulation of (2.4).   ◻

2.3  A priori bounds

We shall now show that uk is a priori bounded for k large enough (making the addi-
tional term in Ek superfluous). To this aim we need an a priori bound for the solu-
tion to the fourth-order boundary value problem (2.5) subject to suitable Dirichlet 
boundary conditions as stated below. The bound relies on the maximum principle 
for the fourth order operator ��4

x
− ��2

x
 with clamped boundary conditions [4, 8, 11, 

17].

(2.3)Ek(uk) = min
S̄0

Ek.

(2.4)𝛽𝜕4
x
uk − 𝜏𝜕2

x
uk + A(uk − k)+ + 𝜕�S̄0 (uk) ∋ −g(uk) in D.

0 ≤ lim inf
s→0+

1

s

(
Ek(uk + s(w − uk)) − Ek(uk)

)

w ∈ S0 ∶=
{
v ∈ H2

D
(D) ∶ v > −H in D

}
⊂ S̄0.

lim
s→0+

1

s

(
Ee(uk + s(w − uk)) − Ee(uk)

)
= ∫D

g(uk)(w − uk) dx.

�D

{
��2

x
uk �

2
x
(w − uk) + ��xuk �x(w − uk) + A(uk − k)+(w − uk)

}
dx

≥ −�D

g(uk)(w − uk) dx



182 P. Laurençot, C. Walker 

1 3

Lemma 2.5 Let G0 ≥ 0 and recall that 𝛽 > 0 and � ≥ 0 . For an interval 
I ∶= (a, b) ⊂ (−L, L) , let SI ∈ C4([a, b]) denote the unique solution to the boundary-
value problem

supplemented with one of the boundary conditions:

Then, there is 𝜅0 > 0 depending only on G0 , � , L, H, and � (but not on I = (a, b) ) 
such that

Proof This result has already been observed in [10, Lemma A.1] and we include its 
proof here only for the sake of completeness. Note that (2.5) subject to one of the 
boundary conditions (2.6–2.9) indeed admits a unique solution SI.

Case 1: −L < a < b < L. Set P(y) ∶= SI(a + (b − a)y) + H for y ∈ [0, 1] and note 
that P solves the boundary-value problem

Since G0 ≥ 0 we deduce that P ≥ 0 in (0, 1) from a version of Boggio’s comparison 
principle [4, 8, 11, 17] . Testing (2.10) by P we get

Since

we infer from the above inequalities that

Consequently, 0 ≤ P ≤ 16L4G0∕� in [0,  1], hence −H ≤ SI ≤ 16L4G0∕� − H in 
[a, b].

(2.5)�S����
I

− �S��
I
= G0 , x ∈ (a, b) ,

(2.6)SI(a) + H = S�
I
(a) = SI(b) + H = S�

I
(b) = 0 if − L < a < b < L ,

(2.7)SI(−L) = S�
I
(−L) = SI(b) + H = S�

I
(b) = 0 if − L = a < b < L ,

(2.8)SI(a) + H = S�
I
(a) = SI(L) = S�

I
(L) = 0 if − L < a < b = L ,

(2.9)SI(−L) = S�
I
(−L) = SI(L) = S�

I
(L) = 0 if − L = a < b = L .

||SI(x)|| ≤ �0 , x ∈ [a, b] .

(2.10)
�P���� − �(b − a)2P�� = (b − a)4G0 , y ∈ (0, 1) ,

P(0) = P�(0) = P(1) = P�(1) = 0 .

�‖P��‖2
L2(0,1)

+ �(b − a)2‖P�‖2
L2(0,1)

= (b − a)4G0 ∫
1

0

P(y) dy .

�P(y)� = �����
y

0

(y − y∗)P
��(y∗) dy∗

���� ≤ ‖P��‖L2(0,1) ,

�‖P‖2
L∞(0,1)

≤ �‖P��‖2
L2(0,1)

≤ (b − a)4G0‖P‖L∞(0,1) ≤ 16L4G0‖P‖L∞(0,1) .
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Case  2: −L = a < b < L. Define Q(y) ∶= y2(y2 + 2(H − 1)y + 1 − 3H) for 
y ∈ [0, 1] and note that Q(0) = Q�(0) = Q(1) + H = Q�(1) = 0 . Set P(y) ∶= S

I
(−L+

(b + L)y) − Q(y) for y ∈ [0, 1] . Then, due to (2.5) and (2.7), P solves the boundary-
value problem

The arguments of Case 1 give

since Q���� = 24 , |Q��| ≤ 14(H + 1) , and b < L . Therefore,

Case 3: −L < a < b = L. Define P(y) ∶= SI(a + y(L − a)) − Q(1 − y) for y ∈ [0, 1] , 
where Q is as in Case 2. Arguing as in the previous case we obtain the same bound for 
‖SI‖L∞(a,L).

Case  4: −L = a < b = L. Define P(y) ∶= SI(−L + 2Ly) for y ∈ [0, 1] . Then, by 
(2.5) and (2.9), P solves the boundary-value problem

As in Case 1 we deduce that 0 ≤ SI ≤ 16L4G0∕� in [−L, L] .   ◻

The previous lemma now implies the desired a priori bounds on the minimizers uk.

Proposition 2.6 There is 𝜅0 ≥ H > 0 depending only on K introduced in (1.11b) 
such that, for all k ≥ H , the minimizer uk ∈ S̄0 of Ek on S̄0 constructed in Proposi-
tion 2.4 satisfies ‖uk‖L∞(D) ≤ �0.

Proof Let k ≥ H . We first note that, since �(uk) ≥ 0 in D by (1.5b), it easily follows 
from (1.11b) and (1.12) that

(2.11)

�P���� − �(b + L)2P�� = (b + L)4G0 − �Q���� + �(b + L)2Q��, y ∈ (0, 1),

P(0) = P�(0) = P(1) = P�(1) = 0 .

�‖P‖2
L∞(0,1)

≤ �‖P��‖2
L2(0,1)

≤ �
(b + L)4G0 + �‖Q����‖L∞(0,1) + �(b + L)2‖Q��‖L∞(0,1)

�‖P‖L∞(0,1)

≤ �
(b + L)4G0 + 24� + 14�(H + 1)(b + L)2

�‖P‖L∞(0,1)

≤ �
16L4G0 + 24� + 56�(H + 1)L2

�‖P‖L∞(0,1) ,

‖SI‖L∞(−L,b) ≤ ‖P‖L∞(0,1) + ‖Q‖L∞(0,1)

≤ 16L4G0 + 24� + 56�(H + 1)L2

�
+ ‖Q‖L∞(0,1) .

�P���� − 4�L2P�� = 16L4G0 , y ∈ (0, 1) ,

P(0) = P�(0) = P(1) = P�(1) = 0 .

(2.12)g(uk)(x) ≥ −G0 ∶= −�2K
2, x ∈ D.
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Next, since uk ∈ C(D̄) with uk(±L) = 0 , the set {x ∈ D ∶ uk(x) > −H} is a non-
empty open subset of D. Owing to [1, IX.Proposition 1.8] we can thus write it as a 
countable union of open intervals (Ij)j∈J . Consider a fixed j ∈ J and let SIj denote the 
solution to (2.5) in Ij subject to the associated boundary conditions on �Ij listed in 
(2.6–2.9), which vary according to whether Īj ⊂ D or not. Then Lemma 2.5 yields a 
constant 𝜅0 > H (independent of j ∈ J ) such that

Note that, by definition of Ij , the function uk restricted to Ij satisfies the same bound-
ary conditions on �Ij as SIj . Hence, for z ∶= uk − SIj ∈ H2(Ij) we have z = �xz = 0 on 
�Ij . Moreover, if � ∈ D(Ij) , then uk ± 𝛿𝜃 ∈ S̄0 for 𝛿 > 0 small enough since uk > −H 
in the support of � . Invoking the weak formulation of (2.4) we derive

hence

Thus, we conclude that z = uk − SIj ∈ H2(Ij) weakly solves the boundary value 
problem 

Now, since g(uk) + A(uk − k)+ ∈ L2(Ij) by Lemma 2.2 (a), classical elliptic regular-
ity theory [7] entails that z = uk − SIj ∈ H4(Ij) is a strong solution to (2.14). Further-
more, it follows from (2.12) and the non-negativity of A(uk − k)+ that the right-hand 
side of (2.14a) is a non-positive function. Boggio’s comparison principle [4, 8, 11, 
17] then implies that z = uk − SIj < 0 in Ij . Consequently, we infer from (2.13) that 
‖uk‖L∞(Ij)

≤ �0 . Since �0 is independent of j ∈ J and (Ij)j∈J covers 
{x ∈ D ∶ uk(x) > −H} , the assertion follows.   ◻

2.4  Proof of Theorem 1.3

We are now in a position to finish off the proof of Theorem 1.3. Indeed, if uk ∈ S̄0 is the 
minimizer of the functional Ek on S̄0 provided by Proposition 2.4, then −H ≤ uk ≤ �0 in 
D due to Proposition 2.6. Consequently, for k ≥ �0 we have

(2.13)‖SIj‖L∞(Ij)
≤ �0.

±� �Ij

{
��2

x
uk �

2
x
� + ��xuk �x� + A(uk − k)+�

}
dx ≥ ∓� �Ij

g(uk)� dx,

∫Ij

{
��2

x
uk �

2
x
� + ��xuk �x� + A(uk − k)+�

}
dx = −∫Ij

g(uk)� dx.

(2.14a)��4
x
z − ��2

x
z = −G0 − g(uk) − A(uk − k)+ in Ij,

(2.14b)z = �xz = 0 on �Ij.

(2.15)
E(uk) = E𝜅0

(uk) = Ek(uk) ≤ Ek(v) = E(v) +
A

2
‖(v − k)+‖2L2(D), v ∈ S̄0.
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Now, since 0 ∈ S̄0 it follows from Lemma 2.3 that, for k ≥ �0,

Thus, (uk)k≥�0 is bounded in H2(D) so that there is a subsequence (not relabeled) 
converging weakly in H2(D) and strongly in H1(D) towards some u∗ ∈ S̄0 . Since Em 
is weakly lower semicontinuous on H2(D) and since Ee is continuous with respect 
to the weak topology of H2(D) owing to Lemma 2.2 (b), we obtain from (2.15) that

recalling that the continuous embedding of H1(D) in C(D̄) readily implies that

Therefore, u∗ ∈ S̄0 minimizes E on S̄0 . Now [13, Theorem 5.3] entails that u∗ sat-
isfies the variational inequality (1.1). Alternatively, one can use the weak conver-
gence in H2(D) and the strong convergence in H1(D) of (uk)k≥�0 to u∗ to pass to 
the limit k → ∞ in (2.4), observing that (g(uk))k≥�0 converges to g(u) in L2(D) by 
Lemma 2.2 (b) and that (uk − k)+ = 0 for k ≥ �0 . This proves Theorem 1.3.   ◻

2.5  Proof of Corollary 1.5

Suppose (1.3), (1.8), and (1.9) and let u ∈ S̄0 be any solution to the variational 
inequality (1.1). Note that (1.8) and (1.9) imply g(u) = �(u) in (1.5a). In par-
ticular, the function g(u) is non-negative. Assume now for contradiction that 
the coincidence set C(u) is not an interval. Then there are −L < a < b < L with 
u(a) + H = �xu(a) = u(b) + H = �xu(b) = 0 and u > −H in I ∶= (a, b) . We may then 
argue as in the proof of Proposition 2.6 to conclude that z ∶= u + H ∈ H4(I) ∩ H2

D
(I) 

is a strong solution to the boundary value problem 

Another application of a version of Boggio’s comparison principle [4, 8, 11, 17] 
implies z = u + H ≤ 0 in I. But this contradicts u > −H in I.   ◻
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(2.16a)��4
x
z − ��2

x
z = −g(u) in I,

(2.16b)z = �xz = 0 on �I.
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