
An Introduction to MPEG-G:
The First Open ISO/IEC
Standard for the Compression
and Exchange of Genomic
Sequencing Data
The amount of data generated by genomic sequencing machines necessitates the
development of an efficient representation format. The article provides an overview of
the MPEG-G standard focusing on its core, i.e., the coding of genomic information.

By JAN VOGES , MIKEL HERNAEZ , MARCO MATTAVELLI , Member IEEE,
AND JÖRN OSTERMANN , Fellow IEEE

ABSTRACT | The development and progress of high-throughput

sequencing technologies have transformed the sequencing of

DNA from a scientific research challenge to practice. With

the release of the latest generation of sequencing machines,

the cost of sequencing a whole human genome has dropped to

less than $600. Such achievements open the door to personal-

ized medicine, where it is expected that genomic information

of patients will be analyzed as a standard practice. However,

the associated costs, related to storing, transmitting, and

processing the large volumes of data, are already comparable

to the costs of sequencing. To support the design of new and

interoperable solutions for the representation, compression,

and management of genomic sequencing data, the Moving

Picture Experts Group (MPEG) jointly with working group 5 of

Manuscript received June 9, 2020; revised March 31, 2021; accepted May 5,
2021. Date of publication June 15, 2021; date of current version August 20,
2021. (Corresponding author: Jörn Ostermann.)

Jan Voges and Jörn Ostermann are with the Institut für
Informationsverarbeitung, Leibniz University Hannover, 30167 Hannover,
Germany (e-mail: ostermann@tnt.uni-hannover.de).

Mikel Hernaez is with the Carl R. Woese Institute for Genomic Biology,
University of Illinois at Urbana–Champaign, Champaign, IL 61801 USA, and also
with the Center for Applied Medical Research, University of Navarra, 31008
Pamplona, Spain.

Marco Mattavelli is with Sciences–Faculté des Sciences et Techniques de
l’Ingénieur–Multimedia (SCI-STI-MM), École Polytechnique Fédérale de Lausanne,
1015 Lausanne, Switzerland.

This article has supplementary downloadable material available at
https://doi.org/10.1109/JPROC.2021.3082027, provided by the authors.

Digital Object Identifier 10.1109/JPROC.2021.3082027

ISO/TC276 “Biotechnology” has started to produce the ISO/IEC

23092 series, known as MPEG-G. MPEG-G does not only offer

higher levels of compression compared with the state of the

art but it also provides new functionalities, such as built-in

support for random access in the compressed domain, sup-

port for data protection mechanisms, flexible storage, and

streaming capabilities. MPEG-G only specifies the decoding

syntax of compressed bitstreams, as well as a file format and

a transport format. This allows for the development of new

encoding solutions with higher degrees of optimization while

maintaining compatibility with any existing MPEG-G decoder.

KEYWORDS | Bioinformatics; computational biology; data com-

pression; DNA; genomics; standardization.

I. I N T R O D U C T I O N
The development and progress of high-throughput
sequencing technologies hold the potential to enable
the use of genomic information in many fields. With the
release of the latest generation of sequencing machines,
the cost of sequencing a whole human genome has
dropped to less than $600. In the next few years, such
cost is expected to drop further, to about $100. Today,
a single sequencing system can deliver the equivalent
of 10 000 whole human genomes per year, generating
more than 1 PB of data. The potential applications in
several fields—such as precision medicine, oncology,
and food quality control, just to mention a few—lead

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Vol. 109, No. 9, September 2021 | PROCEEDINGS OF THE IEEE 1607

https://orcid.org/0000-0002-6080-660X
https://orcid.org/0000-0003-0443-2305
https://orcid.org/0000-0002-7742-0332
https://orcid.org/0000-0002-6743-3324

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

Fig. 1. Genomic ecosystem made possible by MPEG-G. The availability of a perennial specification will facilitate the creation of an

ecosystem comprising interoperable systems and applications.

to the forecast that the amount of digital genomic data
will soon surpass the volume of video data uploaded
to YouTube or tweets posted on Twitter [1]. By that
point, the costs associated with storing, transmitting, and
processing the large volumes of genomic data will largely
exceed the costs of sequencing.

Where do such enormous amounts of data come from,
and which can be the solutions for handling and processing
them? Since high-throughput sequencing technologies are
essentially noisy processes, a high degree of “signal redun-
dancy” is required to extract the relevant information.
A human genome is composed of about 3.2 billion base
pairs, and each could be represented by 2 bits. Hence,
6.4 billion bits, i.e., 800 MB, would suffice to express it.
However, in practice, a much larger volume of redundant
data must be generated to be able to extract useful infor-
mation. The essential reason is that, with high-throughput
sequencing technologies, it is only possible to sequence,
with minimal errors, at most relatively short DNA segments
that need to be reassembled to reconstruct, for example,
a human genome. Thus, a high level of redundancy is
needed to discern reading errors from mutation character-
istics of the individual. Moreover, the fragments obtained
from the reading process (i.e., reads) are associated with
metadata, generated during the sequencing process, which
are used to better identify and filter out errors to support
more accurate genome reconstructions and further analy-
sis stages. Such support information constitutes a relevant,
if not even dominant, portion of the data generated by
sequencing machines.

The lack of widespread adoption of appropriate com-
pressed data representation formats is widely recognized
as a critical element limiting the potential for genomic
data to be used in a wide range of scientific and public
health scenarios [2]. This is not due to a lack of specialized
compressors for genomic data (see [3] and [4]) but rather

to the absence of perennial, fully specified, and reliable
solutions able to offer a complete framework for the
compressed representation of genomic information in the
whole chain from the sequencing machine to the efficient
browsing of secondary and tertiary analysis results.

In an effort to provide a response to such need, to the
economic problems of the ever-expanding generation of
genomic data, and to ease the effective usage of such
new types of information, the Moving Picture Experts
Group (MPEG)—a joint working group of the International
Standardization Organization (ISO) and the International
Electrotechnical Commission (IEC)—jointly with working
group 5 of ISO/TC276 “Biotechnology” have started a
standardization project to support the design of a new and
interoperable solution for the representation, compression,
and management of genomic sequencing data. The avail-
ability of a long-term and reliable standard, not only in
the view of the authors of this article or the contributors
of the standardization work, will facilitate the creation of
an ecosystem of applications that will eventually democ-
ratize and fully exploit the still undiscovered potential of
genomic applications, such as personalized medicine (see
Fig. 1). This standardization project yielded the ISO/IEC
23092 series, also referred to as MPEG-G. MPEG-G has
been designed following the open, but rigorous process
developed and adopted by ISO and IEC, and thus MPEG,
for all its standards in the last 30 years.

The first step of the standardization process of MPEG-G
was the identification of a list of requirements, including
those for the efficient transport of and selective access
to compressed genomic data. A call for proposals was
issued in June 2016 jointly by MPEG and working group
5 of ISO/TC276 “Biotechnology,” and ten responses were
received in October 2016. The identified technologies
were evaluated using several criteria, such as compression
performance and random access capabilities. Separate

1608 PROCEEDINGS OF THE IEEE | Vol. 109, No. 9, September 2021

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

assessments for different types of genomic data were per-
formed: sequence reads, quality scores, read identifiers,
alignment information, and alignment metadata. In addi-
tion, preliminary computational complexity was assessed
by measuring encoding and decoding speed, as well as
memory usage. The most valuable technologies were
integrated to provide the compression of unaligned and
aligned reads and the definition of a genomic information
transport layer, which supports both storage and stream-
ing of compressed genomic information. As a result of
this process, MPEG-G supports new features associated
with complex use cases, most of which are not sup-
ported by currently existing formats (such as FASTQ [5]
and SAM/BAM [6]). Notable functionality and use cases
addressed by MPEG-G include selective access to com-
pressed data, data streaming, enforcement of privacy
rules, and selective encryption of sequencing data and
metadata.

While TC276 “Biotechnology” jointly with MPEG is the
only ISO organization dealing with compact representa-
tion and efficient transport of genomic sequencing data,
there exist also industry alliances, e.g., the Global Alliance
for Genomics and Health (GA4GH). It was founded
in 2013 and works toward frameworks and standards to
enable the secure sharing of genomic and health-related
data. Typically, the scope of these alliances is much wider,
and they have limited experience in developing and main-
taining standards in information technology.

In what follows, the essential components of MPEG-
G are described in more detail, with an emphasis on its
features and functionalities, including critical discussions
on the role of MPEG-G in the future of genomic data
storage, access, sharing, and processing.

The preprint [7] served as a “white paper” introducing
MPEG-G to the wide bioinformatics community. Hence,
some details presented in this article were already dis-
cussed in it. However, here, we lay the focus on accessi-
bility, by providing more context background information.
What is more, we provide new insights, by elaborating
on the design of MPEG-G encoders. Also, we compare an
MPEG-G encoder to de facto industry standards and to the
state of the art in nonstandard compression tools that can
be found in the literature.

Section II gives a short introduction into the technol-
ogy of sequencing of DNA molecules. An overview of
the MPEG-G specification is provided in Section III. The
main parts of the MPEG-G file and transport formats and
compression technology are detailed in Sections IV and V,
respectively. Some aspects of metadata representation
and software interfaces to MPEG-G are highlighted in
Section VI. To check implementations against the MPEG-G
specifications, MPEG-G provides reference software and
tools for testing conformance, as described in Section VII.
In Section VIII, the performance of an MPEG-G encoder
and other tools is evaluated. The overview of MPEG-G
is concluded and future developments are highlighted in
Section IX.

Fig. 2. DNA double helix. Two polynucleotides coiled around each

other form a double helix. The polynucleotide strands are connected

by bonds between the four nucleobases.

II. G E N O M I C S E Q U E N C I N G D ATA
DNA is composed of a double helix formed by two polynu-
cleotides coiled around each other (see Fig. 2). Each
nucleotide contains one of four nucleobases: cytosine (C),
guanine (G), adenine (A), or thymine (T). For humans,
the genome is composed of 23 pairs of chromosomes and
can be represented with about 3.2 billion bases associated
with one strand of the helix. The complementary strand
can be inferred by applying the base-pairing rules (A with
T and C with G). Each base can be represented by 2 bits;
thus, the human genome can be stored in approximately
800 MB. This is a data size easily manageable by nowadays
information technology systems. Thus, where does the
need for compression come from?

State-of-the-art sequencing technologies are based on
reading fragments of DNA. These read-out fragments
are commonly called reads. Technologies reading short
reads, consisting of 75 to about 300 bases, in single
fragments or pairs, work quite precisely with up to about
99.9% of bases identified correctly [8]. Other technologies
reading much longer fragments of up to about 50 000 bases
work with much lower accuracy, with 60% up to 88% of
bases identified correctly [9]. Such reads can be reassem-
bled, yielding an estimate of the underlying DNA. This
process is schematically illustrated in Fig. 3. In the case
of humans and many other organisms, reference genomes
have already been assembled. In these cases, the assembly
stage can be skipped since reads can be directly aligned to
the reference. However, even if, only for a small fraction
(for humans about 0.1%), each pair of genomes exhibits
differences, redundant reading of the DNA is needed to
solve ambiguities or to precisely reconstruct regions that
differ from the reference. The average read-out redun-
dancy is called coverage and expressed as, e.g., 30×, which
means that each locus of the underlying DNA was read out
30 times on average. Thus, on average, 30 reads overlap
at each locus. Moreover, mutations, which may or may not

Vol. 109, No. 9, September 2021 | PROCEEDINGS OF THE IEEE 1609

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

Fig. 3. Schematic visualization of sequencing process. A DNA molecule is fragmented. Fragments are read by a sequencing device. Reads

are aligned and finally merged into an assembly, which is an estimate—as the sequencing is error-prone—of the underlying DNA molecule.

indicate pathogenic evidence, and sequencing errors can
be identified more confidently at higher levels of coverage.

Depending on the employed sequencing technology,
the reading process is mostly based on either detecting the
intensity of light emitted by fluorescent molecules attached
at the end of DNA fragments or detecting variations of elec-
trical signals generated by a DNA strand passing through a
molecular pore. The reliability of such indirect and possibly
noisy measurements is usually also reported in the form of

quality scores. They are causally related to the probability
of a base being detected correctly. Quality scores are,
e.g., used in the alignment processes to make appropriate
decisions.

Fig. 4 shows a visualization of read alignments, depict-
ing some of the discussed terms. At the top of the fig-
ure, the reference sequence used for alignment is shown.
Below the figure, aligned reads are shown in gray. Multiple
reads overlap at each locus of the reference sequence.

Fig. 4. Visualization of read alignments. Image produced with a modified version of IGV [10].

1610 PROCEEDINGS OF THE IEEE | Vol. 109, No. 9, September 2021

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

Differences with respect to the reference sequence are
highlighted in color. Some differences only occur in single
specific reads and can safely be interpreted as sequencing
errors. Other differences occur in virtually every read,
implying the presence of variants, such as single-nucleotide
polymorphisms.

In addition to quality scores, each read is also associ-
ated with a so-called read identifier, which carries various
information specific to the sequencing process. Therefore,
besides the reads themselves, the volume of associated
metadata constitutes an important, albeit not the domi-
nant, part of the overall sequencing data volume.

Considering that, for clinical usage, it may be required
to sequence-specific genome areas with a coverage larger
than 200×, it becomes clear how important compression
and selective access to data are to ease and support all
stages of acquisition, processing, and analysis of genomic
sequencing data.

III. O V E R V I E W O F T H E M P E G-G
S P E C I F I C AT I O N
Today, everybody manipulates media information (images,
sounds, video, and various metadata) using a variety of
interoperable applications that deal with compressed and
multiplexed streams making browsing and exchanging of,
and selective access to, digital media fast and economical.
All the ecosystems of interoperable applications can seam-
lessly work together by relying on generations of MPEG
standards covering compression, carriage, storage, and
application programming interfaces (APIs) for the manip-
ulation of these data. The economic success with prod-
ucts (digital cameras, media servers, MP3 players, and so
on) and services (broadcast, streaming, and so on) based
on MPEG technology was only possible because MPEG
standards were developed following a process focused on
tight decoder specifications and verification, compatibil-
ity assessment, long-term maintenance, and continuous
analysis of industry requirements. Within this environ-
ment, MPEG-G was developed reusing or revisiting estab-
lished MPEG technologies, in addition to expanding new
compression technologies that better deal with the speci-
ficities of sequencing data and metadata.

In this context, the first element of MPEG-G is the
specification of a file format and a transport format, which
includes: 1) the capabilities of internal indexing; 2) selec-
tive access to data; and 3) conversion from/to a streaming
format that dynamically supports indexing capabilities.

Regarding the source models used for compression,
a multiplicity of coding modes has been developed for
the specific genomic information sources. These coding
modes facilitate the efficient exploitation of the variety
of statistical properties of different sequencing technolo-
gies. In the case of reads, this concept corresponds to
the use of different tailored predictive coding modes.
MPEG-G specifies coding modes for both unaligned reads,
for which predictions can be made on common patterns
built around clusters of reads, and aligned reads, for which

“external” or built-in reference sequences may be used for
predictive coding. To increase coding efficiency, an addi-
tional step has been done by defining a classification
system for reads. They can be classified according to
their matching properties with respect to the reference
sequences. These developments facilitated the definition
of the concept of “descriptors,” structured in the form of
“descriptor streams,” which represents the genomic infor-
mation in a form that is beneficial for applying entropy
coding to them. Such an approach not only turned out to
be more efficient in terms of compression but also made
it possible to provide multiple dimensions of random data
access in the compressed domain.

In summary, MPEG-G currently consists of five standards
(ISO/IEC 23092-1–5), also referred to as parts 1–5.

A. Part 1: Transport and Storage of Genomic
Information (see Section IV)

This part specifies how genomic data is structured to
facilitate transport, including streaming of (or parts of)
files and storage. The main elements are: 1) the speci-
fication of a hierarchical structure capable of containing
various possible logical organizations of sequencing data
(dataset groups and datasets); 2) the structure of metadata
attached to each dataset group or dataset; and 3) a so-
called master index table (MIT) for the support of random
access inside each dataset. Datasets are composed of vari-
ous access units that constitute the minimal elements that
a decoder (specified in part 2) needs to access to be able
to fully decode subsets of reads and attached metadata.
Concerning the reversibility between transport and file
format, a nonnormative reference process is provided as
support for implementations.

B. Part 2: Coding of Genomic Information
(see Section V)

This part specifies the decoding syntax used to represent
unaligned and aligned reads and the associated quality
scores and read identifiers—and, in the case of aligned
reads, alignment information and alignment metadata—
and reference sequences, if any. This is the part that deals
with compression by describing the normative behavior of
a compliant decoder. Only the decoding process is spec-
ified, while any encoding algorithm can be used, which
produces a bitstream compliant with this part.

C. Part 3: Metadata and Application Programming
Interfaces (see Section VI)

This part specifies how information metadata, providing
general information, and protection metadata is attached
to a dataset, to dataset groups, or to the entire file.
The term “metadata,” when referring to part 3, must
not be confused with the quality scores, read identifiers,
alignment information, or alignment metadata, which are
instead attached to reads and contained in access units,

Vol. 109, No. 9, September 2021 | PROCEEDINGS OF THE IEEE 1611

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

as specified in part 2. Other functionalities covered by
part 3 include the specification of an API for the access to
MPEG-G data from applications built on top of normative
decoders, the specification of mechanisms to implement
access control, integrity verification, as well as authentica-
tion and authorization mechanisms. This part also includes
a section devoted to the mapping between the current de
facto format SAM and MPEG-G data structures.

D. Part 4: Reference Software (see Section VII)

To support and guide potential implementers of MPEG-G
technology, MPEG-G includes reference decoder software.
The reference decoder software is normative in the sense
that any conforming implementation of the decoding
process, taking the same compressed bitstreams and using
the same output data structures, must output the same
data.

E. Part 5: Conformance (see Section VII)

This part is fundamental in providing means to test
and validate the correct implementation of the MPEG-G
technology in different devices and applications to ensure
full interoperability among all systems. Conformance test-
ing specifies a normative procedure to assess decoder
conformity on an exhaustive set of compressed data.

The standard development work within MPEG is done
not only jointly with ISO/TC276/WG5, as mentioned
above, but also in liaison with other ISO committees.
A close collaboration was established with
ISO/TC276/WG3, which deals with analytical methods
for genomic data. More recently, to avoid superpositions
and strengthen synergies, a liaison with ISO/TC215/SC1,
dealing with genomics informatics, has been established.
Finally, MPEG shares some of its goals with GA4GH.
GA4GH tackled the challenge of the expanding
generation of genomic data by publishing the CRAM [11]
specification for compression of genomic information,
as well as a specification for remote access to genomic
information [12]. MPEG, in addition to publishing the
specifications for transport, storage, and coding of genomic
information, as well as metadata and APIs (parts 1–3),
has also published a reference software (part 4) and a
conformance testing specification (part 5). These last two
parts are critical to ensure interoperability among different
implementations. In addition, ISO/IEC has a long-standing
practice of continuous verification and maintenance of
its standards. Maintenance includes the extension of a
standard to meet current industry needs. For example,
MPEG-2, the first standard used for storing digital audio
and video on DVDs was initially specified in 1994. Its
latest amendment is dated 2019. MPEG-2 video decoders
of today can decode all MPEG-2 files created since 1994.
Furthermore, MPEG-2 decoders of 1994 can still decode
MPEG-2 video encoded with modern MPEG-2 codecs
although progress in encoder technology now only
requires about 50% of the bits that were required at the
time of defining MPEG-2.

IV. T R A N S P O R T A N D S T O R A G E
O F G E N O M I C I N F O R M AT I O N
MPEG-G specifies in its part 1 the file and transport formats
for the processing, manipulation, and storage of genomic
data compressed according to part 2. These formats were
developed considering the various requirements that were
collected during the development of MPEG-G. Among
the most relevant requirements that highlighted unmet
needs are: 1) the unambiguous identification of reference
sequences; 2) the assessment of integrity; 3) the enabling
of data protection; and 4) the support for compressed data
streaming.

More precisely, the format that is intended to be used
for the transport of packetized data on a telecommu-
nication network is referred to as the transport for-
mat. The format used for storage on a physical medium
is referred to as file format. These two formats are
based on the ISO/IEC base media file format (ISO/IEC
14496-12—MPEG-4 Part 12), and they are fully reversible:
an MPEG-G file can be converted into an MPEG-G
transport stream, which, in turn, can be converted into
an MPEG-G file. Because of the similarity of transport
and file format, we focus, in the following, on the file
format.

As shown in Fig. 5, an MPEG-G file is a hierarchical
arrangement of data structures that may contain logically
organized sequencing data. At the topmost level, an MPEG-
G file is organized in a file header and one or more dataset
groups. Each dataset group contains a dataset group
header and optional containers (for, e.g., metadata and
protection information), and it encapsulates one or more
datasets. Each dataset is composed of a dataset header,
a dataset parameter set, and optional containers (for meta-
data and protection information). It can also optionally
contain an MIT, which facilitates random access inside
each dataset. Each dataset carries one or more access
units. The access unit is the actual data structure that
contains the compressed sequencing data. It constitutes the
smallest data structure that can be decoded by a decoder,
which is compliant with part 2. Hence, the access unit
data structure represents the link between part 1 and
part 2. Besides an access unit header and other optional
containers, an access unit contains a collection of blocks.
Each block is a portion of a descriptor stream, and it
can be decoded independently using information from
the dataset parameter set and from other access units,
such as access units containing (fragments of) reference
sequences.

Each data structure in an MPEG-G file is also associ-
ated with optional metadata (“information metadata”) that
provides general information about the data, such as the
origin of the biological sample, a log of the operations per-
formed on the data, and information associated with the
preparation of the samples and the sequencing process. In
addition, protection information (“protection metadata”)
can be associated with each data structure, providing the
support for different selective protection approaches of the

1612 PROCEEDINGS OF THE IEEE | Vol. 109, No. 9, September 2021

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

Fig. 5. Key elements of the MPEG-G file format. Multiple dataset groups contain multiple datasets of sequencing data. Each dataset is

composed of access units. Each access unit contains blocks of coded genomic information.

data. The make-up of information metadata and protection
metadata is specific in part 3.

The hierarchical design of an MPEG-G file facilitates
an abundance of use cases. For instance, the file can
simply contain the data from a single sequencing run of a
portion of a human chromosome. In another scenario, with
regard to whole genome sequencing (WGS) experiments,
an MPEG-G file could be used to structure the storage of
the sequencing data of a trio of individuals (father, mother,
and child) as follows: there would be three distinct dataset
groups, one for each individual in the trio. Then, each
dataset group would contain datasets related to sequenc-
ing runs for the same individual, performed for example
at different moments in time. This example shows how
MPEG-G files can be employed in a variety of use cases.

As mentioned above, part 1 of MPEG-G also provides
a transport format for the efficient packetization of com-
pressed data. The transport format provides an extra set

of structures allowing the conversion of the file format
structures into data streams, which consists of multiple
packets. These can be dynamically adapted to channel
characteristics. Moreover, the transport format facilitates
features, such as error detection, out-of-order delivery, and
retransmission of erroneous data at the protocol level.

V. C O D I N G O F G E N O M I C
I N F O R M AT I O N
Fig. 6 shows the block diagram of the general encod-
ing process. The encoding process consists of three main
stages: preprocessing, descriptor generation, and transfor-
mation and entropy coding. Each stage will be elaborated
separately in what follows.

A. Preprocessing

Unaligned sequencing data consist of the actual
sequence reads, the associated quality scores, and read

Fig. 6. Block diagram of the general encoding process. The encoding process consists of three main stages: preprocessing, descriptor

generation, and transformation and entropy coding. Note that a parameter set can be reused by feeding it back into the encoder control,

and a raw reference can also be reused by initializing a reference sequence from it.

Vol. 109, No. 9, September 2021 | PROCEEDINGS OF THE IEEE 1613

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

Table 1 Data Classes

identifiers. The triplet consisting of one read, its identifier,
and associated quality scores is referred to as an unaligned
genomic record. Aligned sequencing data, in addition,
contain alignment information and optional alignment
metadata. Before encoding, any implementation is free to
classify genomic records into six classes according to the
result of the alignment of their reads against one or more
reference sequences. While unaligned genomic records
have a dedicated class (U), aligned genomic records can be
assigned to one of the other classes summarized in Table 1.

After the classification, as the final step of the pre-
processing stage, genomic records are split into their con-
stituents before further processing: sequence reads, quality
scores and read identifiers, and alignment information and
alignment metadata in case of aligned data.

B. Descriptor Generation

The input of the descriptor generation stage is sequence
reads, quality scores, and read identifiers, as well as
alignment information and alignment metadata in case
of aligned genomic records. These different types of data
are processed separately. In what follows, the coding of
sequence reads (and alignment information, in the case
of aligned data), quality scores, and read identifiers is
elaborated in more detail. The alignment metadata is
further processed in the wrapping stage (see Fig. 6), which
is specified in part 3.

1) Coding Modes for Sequence Reads: For the encoding of
sequence reads (and alignment information, in the case of
aligned data), an encoder is free to choose between four
approaches.

1) External Reference: A reference sequence is available
as an external resource (locally or remotely).

2) Embedded Reference: The reference sequence is
embedded as a dataset in the same file.

3) Computed Reference: A reference sequence is com-
puted from the sequence reads already processed.

4) No Reference: Sequence reads are, in principle, for-
warded verbatim to the transformation and entropy
coding stage (see Fig. 6).

Each of these approaches yields a set of descrip-
tor streams, which contain all information necessary to
fully reconstruct the sequence reads (and the alignment

information, in the case of aligned data). The goal in
designing the descriptor streams was to ensure uncorre-
lation among them, if possible. This ensures maximum
compression efficiency once the descriptor streams are fed
through the transformation and entropy coding stage.

When using a computed reference, the encoder can
choose between four reference computation algorithms.

1) Reference Transformation (“RefTransform”): To
improve compression efficiency, an available external
reference is modified before encoding sequence
reads.

2) Read Concatenation (“PushIn”): The reference is cre-
ated by simple concatenation of already encoded
sequence reads.

3) Local Assembly: A local assembly of the underlying
sequence is built per group of reads.

4) Global Assembly: Common patterns shared among
several reads are identified, which are encoded only
once along with the bases specific to each read.

The algorithms “PushIn” and “global assembly” can also
be used to encode unaligned data. As will be shown in
the following, the selection of specific encoding techniques
depends on the specific scenario requirements.

From an application point of view, unaligned data
can, for example, be encoded according to different
approaches, depending on the actual scenario at hand.
Here, we illustrate two such application scenarios: a “low
latency” scenario, in which the “no reference” approach is
used, and a “high compression ratio” scenario, in which the
“computed reference” approach with the “global assembly”
reference computation algorithm is used.

a) Low latency In a streaming setting, when low
latency has higher priority than compression ratio, a “high
throughput” compression approach is desirable. In such a
case, the descriptor generation stage is virtually bypassed,
forwarding the split genomic record information almost
directly to the transformation and entropy coding stage.
This approach enables streaming, such as in a setting
where genomic data needs to be transmitted to a remote
device “on-the-fly” already during the sequencing process.

b) High compression ratio A high compression ratio is
reached by leveraging the high redundancy in the sequenc-
ing data by, for example, applying the global assembly
reference computation algorithm. This approach achieves
a maximum compression ratio but requires the availability
of the entire data and a few preprocessing stages, which
may impact the compression latency. Here, the coding
of reads relies on the identification of common patterns
(i.e., “signatures”) shared among several reads. These
common patterns are encoded only once along with the
bases specific to each read (i.e., the “residuals”). The
presence of such signatures enables the implementation of
indexing schemes with which the compressed data can be
searched by means of pattern matching algorithms. This
mode is suitable, for example, for long-term storage of
unaligned reads. Examples of preprocessing technologies

1614 PROCEEDINGS OF THE IEEE | Vol. 109, No. 9, September 2021

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

suited for this compression mode include those presented
in ORCOM [13], HARC [14], SPRING [15], FaStore [16],
and, in general, all (future) preprocessing technologies
that cluster reads based on common patterns.

From an application point of view, aligned reads can also
be encoded according to the actual application scenario
at hand. Here, we illustrate two such scenarios: a “clini-
cal study” scenario, in which a reference-based approach
(i.e., “external reference” or “embedded reference”) is
used, and a “reference-free” scenario, in which the “com-
puted reference” approach with the “local assembly” refer-
ence computation algorithm is used.

c) Clinical study In this scenario, a multitude of human
WGS experiments is performed. Here, it is beneficial to
represent reads originating from different experiments by
their differences with respect to a single set of reference
sequences (i.e., one sequence per chromosome). In the
case that the data of the sequencing of multiple genomes
are stored in multiple datasets within a single MPEG-G file,
the reference sequences can be embedded as additional
datasets within the same MPEG-G file. This means that
reference sequences can be shared among datasets. Also,
external reference sequences can be used. MPEG-G spec-
ifies how external reference sequences can be identified
unambiguously using a uniform resource identifier, check-
sums, and so on.

d) Reference-free In this approach, reads are compressed
without referring to any reference sequence by apply-
ing the local assembly reference computation algorithm.
Here, a local assembly of the underlying sequence is
built per group of reads, and reference-based compres-
sion with respect to the computed local assembly is then
applied [17], [18]. In this case, access to any reference
sequences is needed at neither the encoder nor the decoder
side.

2) Coding Modes for Quality Scores: Due to their
higher entropy and larger alphabet, quality scores have
proven more difficult to compress than reads [19], [20].
In addition, there is evidence that quality scores are
inherently noisy, and downstream applications that use
them do so in varying heuristic manners. As a result,
quantization of quality scores can not only significantly
alleviate storage requirements but also provide variant
calling performance comparable, and sometimes superior,
to the performance achieved using the uncompressed data.
Therefore, in MPEG-G, quality scores can be encoded
either in a lossless manner or a quantized manner. When
encoding quality scores losslessly, several transformations
can be applied to the quality scores (see Section V-C).
Quantization of quality scores, however, can lead to a
dramatic reduction of the file size after entropy coding.
To minimize any quantization effects, MPEG-G provides
several mechanisms to allow the fine-grained selection of
quantization schemes at the encoder.

In the case of unaligned reads, an MPEG-G compliant
encoder is free to choose any beneficial scalar quantization

scheme. This includes quantization schemes of recently
published research, such as [21]–[25]. The used represen-
tative values are signaled to the decoder by the means of
a codebook. The quantized quality scores are signaled to a
decoder as indexes into this codebook.

In the case of aligned reads, MPEG-G introduces an
additional dimension to fine-tune quality score quanti-
zation: codebooks can be chosen per genomic position,
i.e., per locus. As an illustrative example, an encoder could
choose to select codebooks per genomic position using a
simple genotyping model, such as in [26]. The MPEG-G
specification allows the use of up to 16 codebooks per
access unit.

The locus-based inference of codebooks using a simple
genotyping model is schematically depicted in Fig. 7. At
any locus l in the sequenced genome, the genotype is
represented by a discrete random variable G. The genotype
is the set of alleles found at a locus across all reads covering
it. Consider a set of reads that are aligned to a reference
sequence, and assume that the reads have been sorted by
their mapping positions, as shown in the figure. Given such
a set of reads, we denote with N the number of reads
covering locus l. Let ni be the symbol from read i covering
the locus l and qi the value of the corresponding quality
score. The goal is to compute the posterior distribution
of the genotype G, given the observable nucleotides n =

{ni}N
(i=1), parameterized by the observable quality scores

q = {qi}N
(i=1). The posterior probability is proportional to

the likelihood times the prior

P (G|n; q) ∝ P (n|G; q) · P (G).

The likelihood is given by

P (n|G; q) =
N�

i=1

P (ni|G; qi)

where P (ni|G; qi) is the likelihood of having observed ni

given the assumption that the genotype was G, parameter-
ized by qi. This likelihood can be computed without further
assumptions from the observable nucleotides and quality
scores. For further information, we refer the reader to [26].
Given the genotype likelihood P (n|G; q), a codebook can
be selected by applying a metric over it. Therefore, one
codebook identifier per genomic position is sent to a
decoder along with the indexes into the relevant code-
books. Before entropy coding, the quality score indexes
are split into separate streams per codebook. Note that an
additional stream for the locus-based codebook selection is
also required. Finally, an MPEG-G encoder is also allowed
to tune the quantization by selecting different codebooks
per class and per access unit.

As already mentioned, the quantization of quality scores
can not only significantly alleviate storage requirements
but also provide variant calling performance comparable,

Vol. 109, No. 9, September 2021 | PROCEEDINGS OF THE IEEE 1615

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

Fig. 7. Locus-based quantizer selection. Top: alignment of four reads. The colored bar in the middle represents the uncertainty about the

genotype at each locus, where dark green represents low uncertainty, while red represents high uncertainty. The numbers shown in the

middle bar are the number of representative values chosen for each locus. Bottom: quantized quality scores for the four reads. This

figure was previously published in [26].

and sometimes superior, to the performance achieved
using the uncompressed data. Variant calling performance
can be measured by running different variant calling
pipelines on the original data and the data containing
quantized quality scores. Afterward, each set of variants is
compared against a consensus set of variants. This process
yields the following values: true positives: variants that
are both in the consensus set and in the set of called
variants; false positives: variants that are in the called
set of variants, but not in the consensus set; and false
negatives: variants that are in the consensus set, but not
in the set of called variants. These values are used to
compute the recall/sensitivity (the proportion of called
variants that are included in the consensus set) and the
precision (the proportion of consensus variants that are
called by the variant calling pipeline). Recent works, such
as [26], have shown that quantizing quality scores has
a negligible or positive impact on these measures, while,
at the same time, quality scores are compressed down
to well below 0.5 bits per quality score compared to
the approximately 3 bits needed for losslessly compressed
quality scores.

3) Coding Modes for Read Identifiers: Read identifiers are
broken down into a series of tokens, which can be of three
main types: strings, digits, and single characters. A read
identifier is represented as a set of differences and matches
with respect to one of the previously coded read identifiers.
This approach is not tailored to any specific implemen-
tation of a sequencing manufacturer and only assumes
that, within the same sequencing run, the structure of read
identifiers is mostly constant. This method (or variants of
it) has been previously employed in compressors such as
Samcomp [27], DeeZ [18], FaStore [16], and AliCo [28].

C. Transformation and Entropy Coding

Storing different types of data in separate descrip-
tor streams allows for significantly higher compression
effectiveness.

To compress the heterogeneous set of descriptors,
MPEG-G specifies the use of context-adaptive binary arith-
metic coding (CABAC) [29], which is used in popular
video coding standards, such as H.264/AVC [30] and
H.265/HEVC [31], and the genomic data compression
solutions, AFRESh [32] and AQUa [33]. CABAC is also
used in GABAC, the first implementation of an entropy
codec compliant to part 2 [34]. By selecting CABAC,
the implementation of compliant codecs is simplified sig-
nificantly, as a wide range of implementations, both in
hardware and in software, is currently available.

As shown in Fig. 8, given an input descriptor stream
(named “descriptor subsequence” in part 2), the compres-
sion process consists of two main stages: transformation
and entropy coding. Each step of the transformation stage
is optional (except for the sign extraction as part of the
subsymbol transformation, in case that a transformed sub-
sequence contains signed symbols). The transformation
stage comprises the following pipeline: subsequence trans-
formation, subsymbol split (including sign flag extraction),
and subsymbol transformation. The (mandatory) entropy
coding stage consists of binarization, context modeling,
and CABAC.

1) Transformation: In the subsequence transformation,
the input symbols are processed using one of the following
three transformations (or no transformation, i.e., pass-
through): 1) equality transformation, where a symbol is
replaced by a flag indicating equality with its predeces-
sor and a correction symbol, if required; 2) run-length

1616 PROCEEDINGS OF THE IEEE | Vol. 109, No. 9, September 2021

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

Fig. 8. Block diagram of a possible implementation of transformation and entropy coding. This figure is an adapted version of a

figure published in [34].

transformation, where a repeated symbol is replaced by the
symbol itself and its run length; and 3) match transforma-
tion, an LZ77-style transformation [35]. Each subsequence
transformation will create two or three transformed subse-
quences. In the further steps of the compression process,
the transformed subsequences are processed separately.

The symbols comprising a transformed subsequence can
be further split into subsymbols, where, for example, one
subsymbol contains the upper half of (most significant)
bits and the other subsymbol contains the lower half of
(least significant) bits. The subsymbol split also extracts,
if required, the sign of each transformed subsequence sym-
bol. This sign flag is separately sent to the CABAC engine.
It is encoded with a special context index along with the
“normal” bins that make up the transformed subsymbols.

In the subsymbol transformation, a lookup table (LUT)
transformation can be applied where each subsymbol is
replaced by a symbol from an LUT. As an alternative,
a differential transformation (“diff coding”) can be applied.
Here, each symbol is replaced by the arithmetic difference
to its predecessor.

The goal of this transformation process is to facilitate
more effective compression when using CABAC. To achieve
this goal, the transformation process yields transformed
subsymbols that typically exhibit a reduced number of
symbols (by exploiting redundancy through, e.g., a run-
length transformation), smaller alphabets (by converting
symbols into homogeneous substreams), adapted distrib-
utions (e.g., by replacing symbols through an LUT and,
as such, allowing for binarizations that are shorter and/or
offer higher predictability), or a combination hereof.

2) Entropy Coding: CABAC is used for the entropy cod-
ing of transformed subsymbols. This implies that, before
the binary arithmetic coding engine is invoked, the trans-
formed subsymbols must be converted into a binary
representation. Probability (i.e., context) modeling is then
performed per binarization bit (i.e., bin). In the binariza-
tion stage, the transformed subsymbols are converted into
a set of bins. To generate this set of bins, part 2 specifies
ten binarization processes, such as the truncated unary
(TU) or exponential Golomb (EG) binarizations, as shown
in Fig. 8.

In parallel with the binarization stage, context modeling
is performed. A context is a number between 0 (represent-
ing a probability of 0) and 127 (representing a probability
of 1) used to encode a specific bin with CABAC. Contexts
are grouped into context sets. Each context set contains the
contexts that are needed to support the encoding of one
transformed subsymbol in its binarized representation.

The MPEG-G specification provides four different modes
of context modeling. In the first mode (bypass), no con-
text modeling is performed, and all bins are processed
using contexts that assume equiprobability. Here, contexts
are not adapted. In the second mode (order-0 adaptive
coding), there is one context set for each symbol. Here,
the contexts are adapted to the probability of each sym-
bol. In the third (order-1 adaptive coding) and fourth
modes (order-2 adaptive coding), context sets are selected
based on the previously encoded symbol and based on
the two previous encoded symbols, respectively. This way,
conditional probabilities between consecutive symbols are
modeled. Also, here, the contexts are adapted.

D. Decoding Process

In addition to the syntax and semantics of the com-
pressed sequencing data, part 2 also defines the decoding
process.

The normative input of an MPEG-G decoding process
is a concatenation of data structures called data units.
Data units can be of three types. A data unit named
“raw reference” encapsulates the coded representation of
one or more reference sequences. A data unit can also
contain parameters used during the decoding process; it is
then referred to as “parameter set.” A data unit containing
the coded representation of actual reads and associated
read identifiers, quality scores, and so on is named “access
unit.” The block diagram of the general encoding process
shown in Fig. 6 depicts, in its bottom right corner, how
these three types of data units can be merged into a single
bitstream.

Raw references and parameter sets are used during
the decoding process of access units but do not produce
output. Fig. 6 shows analogously how raw references and
parameter sets are fed into the encoder as supplementary

Vol. 109, No. 9, September 2021 | PROCEEDINGS OF THE IEEE 1617

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

signals. It is the decoding process of access units that
produce a normative output either in the form of so-called
MPEG-G records, for access units containing reads and
so on, or in the form of a raw reference structure, for
access units containing a (part of a) compressed refer-
ence sequence. An MPEG-G record can be regarded as
an improved SAM record: in an MPEG-G record, read
pairs are typically coded in the same record unless certain
conditions are met, such as the pairing distance is above
a user-defined threshold, or the mate is mapped to a
different reference sequence.

VI. M E TA D ATA A N D A P P L I C AT I O N
P R O G R A M M I N G I N T E R F A C E S
Part 3 of MPEG-G has essentially two goals: 1) to specify
the syntax and semantics of the metadata that can be
attached to datasets and dataset groups or to the entire
file and 2) to specify APIs that provide interoperability
between applications that are built on top of normative
decoders.

Two main types of metadata are specified: protection
metadata and information metadata. Protection metadata
are related to the protection technology applied to single
access units, entire datasets, or dataset groups. Informa-
tion metadata are related to metadata as specified in
data repositories, such as the European Genome-Phenome
Archive (EGA) or the Sequence Read Archive (SRA) [36].

Regarding the protection metadata, genomic data con-
tained in an MPEG-G file can be linked to multiple owner-
defined privacy rules, which implement restrictions on
data access and usage. The privacy rules and the descrip-
tion of the protection technology are specified using the
eXtensible Access Control Markup Language (XACML)
Version 3.0 [37] and are carried in a specific metadata
protection structure as specified in part 1. Part 3 specifies
the syntax and semantic of the XACML description and
how it can be decompressed.

These protection description containers provide—in
addition to the privacy rules to be applied to the informa-
tion they refer to—mechanisms to manage the confiden-
tiality and integrity of the information. By using protection
techniques implemented at the application level and com-
bined with privacy rules, the genomic data are efficiently
protected from unauthorized access. Therefore, only users
authorized by the rules contained in the MPEG-G file can
perform operations over such protected regions.

As mentioned above, MPEG-G supports the protection of
genomic information at different levels in its hierarchy of
logical data structures. The protection information speci-
fies how the data structures at the same level, as well as the
protection information containers of a layer immediately
below, are encrypted. Specific protection information of
dataset group metadata and dataset metadata is repre-
sented using the W3C recommendation XML Encryption
Syntax and Processing Version 1.1. Other protection infor-
mation, such as for the protection of access units, is spec-
ified using explicit XML schemas. Also, authentication

Table 2 Example of Dataset Group Metadata

and integrity may be provided by means of electronic
signatures using the W3C recommendation XML Signature
Syntax and Processing Version 1.1.

The second type of metadata, information metadata,
corresponds to well-known metadata sets, such as those in
EGA or SRA specifications. This allows easy interoperabil-
ity in converting metadata to and from already existing
databases. Normative metadata “profiles” that include a
subset or all core elements to ease interoperability can be
specified out of the large set of core elements specified in
part 3. In addition, part 3 provides a normative extension
mechanism to be able to include new elements not already
specified in the set of core elements. In such a case, any
decoder can correctly decode the syntax, but the extended
semantics can only be provided by an external uniform
resource identifier.

Metadata can apply to any element of an MPEG-G file,
and the linking mechanism covers the entire hierarchi-
cal structure. Metadata present at file header apply to
all elements of the file that inherits their value to all
lower elements of the hierarchy, unless new or different
metadata elements appear in a header structure at a lower
hierarchy level to overwrite a subset of elements or provide
new elements absent in the higher hierarchy elements.
Such a mechanism of hierarchical inheritance provides the
maximum level of flexibility to attach metadata to file
elements but also avoids repetitions and the possibility of
inconsistencies. An example of dataset group metadata is
shown in Table 2.

Another important functionality provided in part 3 is
the specification of APIs enabling standardized access
to MPEG-G files. In case the information is protected,
operations are controlled by privacy and protection rules,
as described above. Whenever the caller of API methods is
not authorized to access the full content, only the content
for which the caller is authorized is returned. APIs are
applied to data structures that are organized in hierarchy
levels, so the context of a hierarchy level defines the
scope of an operation. The considered hierarchy levels are
dataset group, dataset, and access unit. How the APIs get
access to the file or bitstream is left open to implemen-
tations of part 3. APIs are logically partitioned into five
main groups: 1) “Genomic Information Functions” used for
querying the structure of and retrieving, the genomic infor-
mation coded in a bitstream; 2) “Metadata Functions” used

1618 PROCEEDINGS OF THE IEEE | Vol. 109, No. 9, September 2021

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

for querying the structure of, and retrieving, the metadata
associated with the coded genomic data; 3) “Protection
Functions” used for retrieving the protection metadata
associated with the coded genomic data; 4) “Reference
Functions” used to retrieve the reference associated with
a dataset; and 5) “Statistics Functions” used for retrieving
various types of statistics associated with a dataset.

Finally, part 3 also provides a normative specification
for the conversion to and from the SAM file format. The
specification supports a full round trip for well-specified
fields and provides conversion processes to and from the
MPEG-G representation for ambiguous or not-well-defined
optional fields of the SAM file format.

VII. R E F E R E N C E S O F T W A R E A N D
C O N F O R M A N C E
To support and guide the implementation of MPEG-G,
part 4 provides a normative reference software. The ref-
erence software is normative in the sense that any con-
forming implementation of the decoding process, taking
the same conformant compressed bitstreams and using the
same normative output data structures, will output the
same data. That being said, complying implementations
are not expected to follow the algorithms or even the
programming techniques used by the reference software.
Such software is solely intended as a support to the process
of developing implementations of an ecosystem of com-
pliant devices and applications. Hence, the availability of
a normative implementation is only additional support to
the textual specification. It should also be underlined that
the reference software is not intended as an optimized
implementation. As such, the reference software should
not be used as a benchmark of computational performance.

MPEG also plans to soon provide an informative refer-
ence encoder software. The reference encoder software is
not intended to provide an exhaustive implementation of
all possible coding options; that is, it does not aim at imple-
menting all features, as well as possible preprocessing and
optimization approaches. However, it will act as a guide
for implementing higher performance encoders.

Conformance (part 5) is fundamental in providing
means to test and validate the correct implementation of
the MPEG-G technology in different devices and applica-
tions and to ensure interoperability among all systems.
Conformance testing specifies a normative procedure to
assess conformity to parts 1 and 2. For this purpose,
an exhaustive set of bitstreams was generated. This set
exercises all decoder functionalities without explicitly con-
sidering encoder or decoder efficiency. Every decoder
claiming MPEG-G conformance will have to demonstrate
the correct decoding of the complete set of bitstreams.

VIII. R E S U L T S A N D D I S C U S S I O N
During the development of MPEG-G, the best-performing
compression technologies, according to the results of the
call for proposals and continuous improvements during
the development process, were selected for integration.

However, only the decoding process is normative and spec-
ified. This guarantees the interoperability of applications
implementing MPEG-G, while the encoding process is open
to algorithmic and implementation-specific innovations. As
such, the compression performance achievable by imple-
mentations of MPEG-G will vary from encoder to encoder
and will most likely improve over time. Nevertheless,
to give the reader a sense of the compression capabilities
achievable by MPEG-G, we present the compression per-
formance of a specific MPEG-G encoder. Also, we compare
its compression performance to the state of the art in de
facto industry standards, i.e., gzip [38] as de facto industry
standard for the compression of unaligned data in the
FASTQ format, and BAM [6] and CRAM 3.0 [11] as de
facto industry standards for the compression of aligned
data in the SAM format. What is more, we also compare
the compression performance of the MPEG-G encoder to
the state of the art in nonstandard compression tools that
can be found in the literature, namely, DSRC 2 [39] and
Quip [40] for the compression of unaligned data and
DeeZ [18] for the compression of aligned data.

We show results for ten data items from the MPEG-G
Genomic Information Database [41]. The database
includes sequencing data generated for different exper-
iment types, such as WGS, cancer genome sequenc-
ing, metagenomics sequencing, and RNA sequencing.
Also, the data originate from different species, such as
D. melanogaster, H. sapiens, T. cacao, S. cerevisiae, E. coli,
P. aeruginosa, and ΦX174. The data were generated with
various sequencing technologies, such as sequencing by
synthesis, single-molecule real time sequencing, nanopore
sequencing, and ion semiconductor sequencing. MPEG-G
was developed with the goal that it should “generalize” on
the entire database. Hence, an MPEG-G encoder can select,
based on, e.g., experiment type, species, and sequencing
technology, the best combination of encoding parameters.

Seven of the ten data items used here originate from
human WGS experiments, and special attention was paid
to use data produced by different sequencing technolo-
gies. Specifically, the unaligned human WGS data were
produced with Illumina HiSeq 2000, Ion Torrent PGM,
and Illumina NovaSeq 6000 systems (items 01-1 & 01-2,
11, and 32, respectively). The aligned human WGS data
were produced with Illumina HiSeq 2000, PacBio, and
Illumina NovaSeq 6000 systems (items 02, 03, and 37,
respectively). The three remaining data items cover addi-
tional use cases, such as ultrahigh depth virus (ΦX174)
sequencing (item 33), human tumor sequencing (item 22),
and (human) RNA-Seq (item 30). We refer the reader to
the Supplemental Material for exhaustive results, which
are also presented in [42]. A part of the results has already
been presented in [43].

Fig. 9 shows the results for the unaligned data. Here,
in addition to the compression results of the de facto
industry-standard gzip and of the nonstandard com-
pression tools DSRC 2 and Quip, we show the results
of the mentioned MPEG-G encoder in two different

Vol. 109, No. 9, September 2021 | PROCEEDINGS OF THE IEEE 1619

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

Fig. 9. Compression results for unaligned data. The results for

“MPEG-G (no reference) ” correspond to the MPEG-G encoder

configured to work in a “low latency” application scenario using the

“no reference” encoding approach (see Section V-B1). The results

for “MPEG-G (global assembly)” correspond to the MPEG-G encoder

configured to work in a “high compression ratio” application

scenario using the “computed reference” encoding approach with

the “global assembly” reference computation algorithm (see

Section V-B1).

configurations. The dark green bars display the compres-
sion results when the MPEG-G encoder is configured to use
the “no reference” encoding approach, as it may be used in
a “low latency” application scenario (see Section V-B1). As
shown in Fig. 6, the descriptor generation stage is virtually
bypassed in this case. The light green bars display the com-
pression results when the MPEG-G encoder is configured
to use the “computed reference” encoding approach with
the “global assembly” reference computation algorithm,
as it may be used in a “high compression ratio” application
scenario (see Section V-B1).

Fig. 10 displays the results for the aligned data. Here,
we compare the compressed sizes achieved by the MPEG-G

encoder with the compressed sizes achieved by the de facto
industry standards, BAM and CRAM 3.0, and the nonstan-
dard compression tool, DeeZ. Here, the MPEG-G encoder
is configured to use the “external reference” encoding
approach, as it may be used in a “clinical study” application
scenario (see Section V-B1).

For unaligned data, as observed from Fig. 9, the MPEG-G
encoder produces smaller bitstreams than gzip in all cases.
What is more, the MPEG-G encoder configured to use
the “global assembly” encoding approach outperforms all
other tools, except Quip for item 33. Here, the Quip
encoding algorithm seems to exhibit a particularly high
efficiency for the ultrahigh depth virus sequencing data.

For aligned data, as observed from Fig. 10, CRAM
3.0, DeeZ, and the MPEG-G encoder achieve significant
improvements over BAM. Here, in particular, the MPEG-G
encoder outperforms all other tools in all cases. These

Fig. 10. Compression results for aligned data. The results for

“MPEG-G (external reference)” correspond to the MPEG-G encoder

configured to use the “external reference” encoding approach

(which corresponds to the “clinical study” application scenario

presented in Section V-B1). This approach is used to be able to make

a fair comparison between the MPEG-G encoder and BAM, as well as

CRAM 3.0, because both BAM and CRAM 3.0 use the concept of an

external reference.

1620 PROCEEDINGS OF THE IEEE | Vol. 109, No. 9, September 2021

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

results show that MPEG-G encoders typically create more
compact representations than CRAM 3.0.

On top of that, the results obtained by MPEG-G tech-
nology can further be improved due to the freedom that
the specification of the decoder in part 2 facilitates. For
instance, an MPEG-G encoder may select beneficial quan-
tization schemes for quality scores, which reduce the size
of compressed quality scores by roughly 80% [26] while,
at the same time, retaining variant calling performance.

A thorough evaluation of compression performance
entails an evaluation of the computational complexity that
is needed to achieve a certain compression. Here, in this
regard, we use the encoding and decoding times as proxies
for the computational complexity. For instance, on a typi-
cal compute server, gzip (running single-threaded) needs
roughly 2.5 h to encode item 01-1. DSRC 2 (running with
16 threads) and Quip (running single-threaded) require
0.5 and 1.8 h, respectively. The MPEG-G encoder, using
the “no reference” encoding approach, requires 1.7 h
when running single-threaded and 20 min when running
with eight threads. Also, typically, most codecs exhibit an
asymmetric computation complexity, with decoding being
usually much less complex. This applies, with the excep-
tion of Quip (which needs 153 min for decoding), also
to the present example: gzip needs 15 min for decoding,
and DSRC 2 needs 27 min. The MPEG-G decoder requires
64 (running single-threaded) and 11 min (running with
eight threads), respectively. These examples only show a
minor excerpt of our simulations. In summary, the MPEG-
G implementation is in all cases faster than DSRC 2, Quip,
BAM, CRAM 3.0, and DeeZ and only slightly outperformed
in decoding time by gzip. In some cases, the MPEG-G
implementation is even significantly faster, for example,
in comparison with CRAM 3.0, where the MPEG-G imple-
mentation is roughly twice as fast. We refer the reader to
the Supplemental Material for the exhaustive results.

Many factors impact the encoding and decoding per-
formance in terms of timing. Most importantly, in most
cases, only the decoding of a part of the compressed
data is required, which is known as random access. Here,
the MPEG-G encoder used to generate the results was
configured to use an access unit size of 65 536 MPEG-G
records. This has tremendous implications on random data
access. For instance, item 01 contains 207 579 467 MPEG-
G records, which is equivalent to twice as many FASTQ
records, due to the paired-end sequencing protocol. In the
case of gzip compression, all records are compressed into
a single file with a size of 34 GiB. Hence, if a user wants
to access a specific subset of records, the entire 34-GiB file
needs to be decompressed. The compressed MPEG-G file
(“no reference” encoding approach) has a size of 22 GiB,
but, in contrast to the gzip file, every access unit can
be accessed independently, where the average access unit
size here is roughly 7 MiB. At the same time, MPEG-G
offers, due to its advanced transport format, more efficient
streaming capabilities than its alternatives.

IX. C O N C L U S I O N
The widely used formats, FASTQ and SAM/BAM, for
representing genomic information were designed when
sequencing data were scarce and precious, and the range
of applications was limited. The new paradigm introduced
by high-throughput sequencing machines—relatively inex-
pensive high coverage sequencing, with an almost infinite
number of derived biological protocols and downstream
analysis workflows—strongly encourages the adoption of
a more sophisticated way to store, handle, and share
genomic data. MPEG-G represents an important step in
that direction. It paves the way to novel software solu-
tions that will allow independent groups and organizations
around the world to seamlessly communicate and share
data, without losing interoperability with existing applica-
tions.

MPEG-G technology provides storage and transport
capabilities for both unaligned and aligned sequencing
data. It further supports the representation of both single
reference genomes (assemblies) and collections thereof.
Sequencing data and their associated metadata are sets
of heterogeneous data, each characterized by its own
statistical behaviors. Therefore, MPEG-G provides several
strategies for the classification of these data and their
representation. Within MPEG-G, the encoder optimization
space for compression performance and selective data
access is wide and enables many different solutions, which
can be optimized for different applications and even for
specific sequencing technologies and species. For example,
an encoder can optimize the data compression mode for
high compression and indexing (archival), or low latency
(streaming applications). Furthermore, aligned reads can
be compressed either reference-free or reference-based.
The used reference sequences can be embedded as datasets
within the same MPEG-G file or stored as external ref-
erence sequences, using an unambiguous specification of
these external reference sequences. Quality scores can also
be compressed either lossless or quantized.

MPEG-G comes with the tools to verify that a decoder
complies with its different parts. Furthermore, bitstreams
can be verified to be MPEG-G compliant. These are essen-
tial features that enable the development of independent
and yet compatible solutions for clinical usage and analysis
of omics data. These tools also ensure that future exten-
sions of MPEG-G will not break any compatibility with
existing systems.

In analogy to the digital media industry MPEG-G aims
to make genomic data access, processing, and sharing—
either in the cloud or on local storage—as simple as
streaming an audio file or watching a movie. One of the
main drivers toward this goal has been the open and fair
process of technology evaluation and specification under
the supervision of international and neutral institu-
tions, such as ISO and IEC. With this objective in mind,
MPEG is currently working to extend the scope of MPEG-G
to tertiary analysis results and annotations. This work is

Vol. 109, No. 9, September 2021 | PROCEEDINGS OF THE IEEE 1621

Voges et al.: Introduction to MPEG-G: The First Open ISO/IEC Standard

expected to be finalized in early 2022 and will provide a
unique fully indexable container of compressed genomic
information.

A c k n o w l e d g m e n t
The development of the MPEG-G specification is a
collaborative effort. The following people contributed
to the actual MPEG-G development: Junaid J. Ahmad,
Claudio Alberti, Simone Casale-Brunet, Patrick Cheung,

Jaime Delgado, Jan Fostier, Silvia Llorente, Liud-
mila S. Mainzer, Fabian Müntefering, Daniel Naro,
Ibrahim Numanagić, Idoia Ochoa, Tom Paridaens,
Massimo Ravasi, Daniele Renzi, Paolo Ribeca, and
Giorgio Zoia. MPEG received additional input from
other experts, including Bonnie Berger, Noah Daniels,
Nicolas Guex, Christian Iseli, Raymond Krasinski,
Christian Rohlfing, S. Cenk Sahinalp, and Ioannis
Xenarios.

R E F E R E N C E S
[1] Z. D. Stephens et al., “Big data: Astronomical or

genomical?” PLoS Biol., vol. 13, no. 7, Jul. 2015,
Art. no. e1002195.

[2] D. Pavlichin, T. Weissman, and G. Mably, “The quest
to save genomics: Unless researchers solve the
looming data compression problem, biomedical
science could stagnate,” IEEE Spectr., vol. 55, no. 9,
pp. 27–31, Sep. 2018, doi: 10.1109/MSPEC.2018.
8449046.

[3] I. Numanagić et al., “Comparison of
high-throughput sequencing data compression
tools,” Nature Methods, vol. 13, no. 12,
pp. 1005–1008, Dec. 2016.

[4] M. Hernaez, D. Pavlichin, T. Weissman, and
I. Ochoa, “Genomic data compression,” Annu. Rev.
Biomed. Data Sci., vol. 2, no. 1, pp. 19–37,
Jul. 2019.

[5] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and
P. M. Rice, “The Sanger FASTQ file format for
sequences with quality scores, and the
Solexa/Illumina FASTQ variants,” Nucleic Acids
Res., vol. 38, no. 6, pp. 1767–1771, Apr. 2010.

[6] H. Li et al., “The sequence alignment/map format
and SAMtools,” Bioinformatics, vol. 25, no. 16,
pp. 2078–2079, Aug. 2009.

[7] C. Alberti et al., “An introduction to MPEG-G, the
new ISO standard for genomic information
representation,” bioRxiv, 2018, Art. no. 426353.
[Online]. Available: https://www.biorxiv.org/
content/early/2018/10/08/426353,
doi: 10.1101/426353.

[8] S. Goodwin, J. D. McPherson, and W. R. McCombie,
“Coming of age: Ten years of next-generation
sequencing technologies,” Nature Rev. Genet.,
vol. 17, no. 6, pp. 333–351, Jun. 2016.

[9] J. L. Weirather et al., “Comprehensive comparison
of Pacific Biosciences and Oxford Nanopore
Technologies and their applications to
transcriptome analysis,” F1000Research, vol. 6,
p. 100, Feb. 2017.

[10] J. T. Robinson et al., “Integrative genomics viewer,”
Nature Biotechnol., vol. 29, no. 1, pp. 24–26,
Jan. 2011.

[11] M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and
E. Birney, “Efficient storage of high throughput
DNA sequencing data using reference-based
compression,” Genome Res., vol. 21, no. 5,
pp. 734–740, May 2011.

[12] J. Kelleher et al., “Htsget: A protocol for securely
streaming genomic data,” Bioinformatics, vol. 35,
no. 1, pp. 119–121, Jan. 2019.

[13] S. Grabowski, S. Deorowicz, and Ł. Roguski,
“Disk-based compression of data from genome
sequencing,” Bioinformatics, vol. 31, no. 9,
pp. 1389–1395, May 2015.

[14] S. Chandak, K. Tatwawadi, and T. Weissman,
“Compression of genomic sequencing reads via
hash-based reordering: Algorithm and analysis,”
Bioinformatics, vol. 34, no. 4, pp. 558–567,
Feb. 2018.

[15] S. Chandak, K. Tatwawadi, I. Ochoa, M. Hernaez,
and T. Weissman, “SPRING: A next-generation
compressor for FASTQ data,” Bioinformatics,
vol. 35, no. 15, pp. 2674–2676, Aug. 2019.

[16] Ł. Roguski, I. Ochoa, M. Hernaez, and
S. Deorowicz, “FaStore: A space-saving solution for
raw sequencing data,” Bioinformatics, vol. 34,
no. 16, pp. 2748–2756, Aug. 2018.

[17] J. Voges, M. Munderloh, and J. Ostermann,
“Predictive coding of aligned next-generation
sequencing data,” in Proc. Data Compress. Conf.
(DCC), Mar. 2016, pp. 241–250.

[18] F. Hach, I. Numanagic, and S. C. Sahinalp, “DeeZ:
Reference-based compression by local assembly,”
Nature Methods, vol. 11, no. 11, pp. 1082–1084,
Nov. 2014.

[19] I. Ochoa, M. Hernaez, R. Goldfeder, T. Weissman,
and E. Ashley, “Effect of lossy compression of
quality scores on variant calling,” Briefings Bioinf.,
vol. 18, no. 2, pp. 183–194, 2017.

[20] C. Alberti et al., “An evaluation framework for lossy
compression of genome sequencing quality values,”
in Proc. Data Compress. Conf. (DCC), Mar. 2016,
pp. 221–230.

[21] D. L. Greenfield, O. Stegle, and A. Rrustemi,
“GeneCodeq: Quality score compression and
improved genotyping using a Bayesian framework,”
Bioinformatics, vol. 32, no. 20, pp. 3124–3132,
Oct. 2016.

[22] I. Ochoa, H. Asnani, D. Bharadia, M. Chowdhury,
T. Weissman, and G. Yona, “QualComp: A new lossy
compressor for quality scores based on rate
distortion theory,” BMC Bioinf., vol. 14, no. 1,
p. 187, Dec. 2013.

[23] Y. W. Yu, D. Yorukoglu, J. Peng, and B. Berger,
“Quality score compression improves genotyping
accuracy,” Nature Biotechnol., vol. 33, no. 3,
pp. 240–243, Mar. 2015.

[24] G. Malysa, M. Hernaez, I. Ochoa, M. Rao,
K. Ganesan, and T. Weissman, “QVZ: Lossy
compression of quality values,” Bioinformatics,
vol. 31, no. 19, pp. 3122–3129, Oct. 2015.

[25] M. Hernaez, I. Ochoa, and T. Weissman,
“A cluster-based approach to compression of quality
scores,” in Proc. Data Compress. Conf. (DCC),
Mar. 2016, pp. 261–270.

[26] J. Voges, J. Ostermann, and M. Hernaez, “CALQ:
Compression of quality values of aligned
sequencing data,” Bioinformatics, vol. 34, no. 10,
pp. 1650–1658, May 2018.

[27] J. K. Bonfield and M. V. Mahoney, “Compression of
FASTQ and SAM format sequencing data,” PLoS
ONE, vol. 8, no. 3, Mar. 2013, Art. no. e59190.

[28] I. Ochoa, H. Li, F. Baumgarte, C. Hergenrother,
J. Voges, and M. Hernaez, “AliCo: A new efficient
representation for SAM files,” in Proc. Data
Compress. Conf. (DCC), Mar. 2019,
pp. 93–102.

[29] D. Marpe, H. Schwarz, and T. Wiegand,
“Context-based adaptive binary arithmetic coding

in the H.264/AVC video compression standard,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13,
no. 7, pp. 620–636, Jul. 2003.

[30] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and
A. Luthra, “Overview of the H.264/AVC video
coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576,
Jul. 2003.

[31] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and
T. Wiegand, “Overview of the high efficiency video
coding (HEVC) standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1649–1668,
Dec. 2012.

[32] T. Paridaens, G. Van Wallendael, W. De Neve, and
P. Lambert, “AFRESh: An adaptive framework for
compression of reads and assembled sequences
with random access functionality,” Bioinformatics,
vol. 33, no. 10, pp. 1464–1472, 2017.

[33] T. Paridaens, G. Van Wallendael, W. De Neve, and
P. Lambert, “AQUa: An adaptive framework for
compression of sequencing quality scores with
random access functionality,” Bioinformatics,
vol. 34, no. 3, pp. 425–433, Feb. 2018.

[34] J. Voges et al., “GABAC: An arithmetic coding
solution for genomic data,” Bioinformatics, vol. 36,
no. 7, pp. 2275–2277, Apr. 2020.

[35] J. Ziv and A. Lempel, “A universal algorithm for
sequential data compression,” IEEE Trans.
Inf. Theory, vol. IT-23, no. 3, pp. 337–343,
May 1977.

[36] R. Leinonen, H. Sugawara, M. Shumway, and On
Behalf of the International Nucleotide Sequence
Database Collaboration, “The sequence read
archive,” Nucleic Acids Res., vol. 39, pp. D19–D21,
Jan. 2011.

[37] eXtensible Access Control Markup Language
(XACML) Version 3.0, Org. Adv. Struct. Inf.
Standards, Burlington, MA, USA, 2013.

[38] L. P. Deutsch. (1996). GZIP File Format Specification
Version 4.3. [Online]. Available: https://tools.
ietf.org/html/rfc1952

[39] Ł. Roguski and S. Deorowicz, “DSRC 2—Industry-
oriented compression of FASTQ files,”
Bioinformatics, vol. 30, no. 15, pp. 2213–2215,
Aug. 2014.

[40] D. C. Jones, W. L. Ruzzo, X. Peng, and M. G. Katze,
“Compression of next-generation sequencing reads
aided by highly efficient de novo assembly,” Nucleic
Acids Res., vol. 40, no. 22, p. e171, Dec. 2012.

[41] MPEG-G Genomic Information Database,
Standard ISO/IEC JTC1/SC29/WG11, N18963,
2019.

[42] J. Voges, A. Salvucci, C. Alberti, and M. Mattavelli,
Results of MPEG-G Codec Performance and Other
State-of-the-Art Compression Algorithms,
Standard ISO/IEC JTC1/SC29/WG8 M56361,
2021.

[43] MPEG-G Performance Benchmarks,
Standard ISO/IEC JTC1/SC29/WG11, N19559,
2019.

1622 PROCEEDINGS OF THE IEEE | Vol. 109, No. 9, September 2021

http://dx.doi.org/10.1101/426353
http://dx.doi.org/10.1109/MSPEC.2018.8449046
http://dx.doi.org/10.1109/MSPEC.2018.8449046

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [576.000 782.640]
>> setpagedevice

