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1 Introduction

There is presently a revived and growing interest in the general allowed boundary condi-
tions for gauge fields at infinity, either spatial or null (see e.g. [1–16] for reviews, recent
developments and references). The question of boundary conditions is directly related to
the questions of allowed solutions, additional degrees of freedom, non-gauge symmetries
of Yang-Mills theory etc. Usually, Yang-Mills theory is considered on Minkowski space
R3,1, which has two null “boundaries”, past J − and future J + null infinities, both with
topology R× S2. Future null infinity J + is described in the metric on R3,1,

ds2 = −du2 − 2du dr + r2dΩ2
2 , (1.1)

as the submanifold r = ∞ with the coordinates (u, θ, φ).1 It has boundaries J +
±
∼= S2 at

u = ±∞. Similar to retarded coordinates in (1.1), one can introduce advanced coordinates
with υ = t+ r and J − as the null boundary at r =∞ with coordinates (υ, θ, φ).

For Yang-Mills theory on R3,1 with the structure Lie group G, the group of gauge
transformations G = C∞(R3,1, G) consists of smooth maps g : R3,1 → G. Let A =
Audu + Ardr + Aθdθ + Aφdφ be the gauge potential taking values in the Lie algebra
g =LieG. After choosing the gauge Au = 0 the residual group of gauge transformations is
C∞(R+×S2, G) with r ∈ R+ and it contains a subgroup of maps from S2 ⊂ J + to G which
may be not the identity map. It was realized that those G-valued functions g ∈ C∞(S2, G),

1Here (r, θ, φ) are spherical coordinates in R3, (θ, φ) are coordinates on S2, dΩ2
2 is the metric on the unit

sphere S2 and u = t− r.
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which are not unity, are not a mere redundancy of the description. The group of such trans-
formations (as well as the holomorphic Kac-Moody subgroup of C∞(S2, GC) for S2 with
punctures where charged particles cross S2) becomes a dynamical group changing states
of the system. In fact, the true group of gauge transformations is G0, consisting of those
transformations which become identity at the boundary. This boundary condition identi-
fies the bulk principal G-bundle with a fixed trivial principal G-bundle on the boundary
at infinity — this identification is known as a framing. The coset space G/G0 forms a
group manifold of additional degrees of freedom that are localized at the boundary and
correspond to Goldstone bosons. Using all these facts, Strominger and collaborators man-
aged to reformulate soft theorems [13, 17, 18] for gluons and photons as Ward identities
corresponding to the nontrivial asymptotic symmetries. These results sparked interest in
the study of gauge theories on manifolds with boundaries without regard to soft theorems
(see e.g. [3–5, 8, 10, 19–22]). Our paper is also devoted to general issues of Yang-Mills
theory on manifolds with boundaries, focused for now in the context of de Sitter space.

Our universe appears to be asymptotically de Sitter (not Minkowski) at very early and
very late times. This provides strong motivation for studying Yang-Mills theory on de Sitter
space dS4 — its solutions, boundary conditions, inequivalent ground states, infrared limit
etc. Some steps in these directions were made in [23–26]. In the aforementioned picture on
Minkowski space, the dynamical symmetries act on the spatial infinities associated with the
null infinities J ±. In contrast, de Sitter space does not have a spatial infinity, and so one
would expect a simple application of these established ideas to not lead to any interesting
physics. Our work proposes an alternative perspective which says that this is not the
end of the story for de Sitter space. Topologically, dS4 is R × S3, and it is conformally
equivalent to the Lorentzian cylinder (−π

2 ,
π
2 )×S3. Hence, dS4 has two temporal, spacelike

conformal boundaries, both isomorphic to S3. The nature of this conformal structure
leads to many important and subtle differences which are not relevant in the well-studied
Minkowski and asymptotically flat cases. This paper aims to address these by exploring
the consequences of framing bundles over these boundaries in the context of Yang-Mills
theory, and in particular to describe a low-energy limit of such a theory. We show that
the classical Yang-Mills dynamics in the infrared is described by geodesic motion in the
infinite-dimensional group manifold C∞(S3, G)/G of based smooth maps from S3 ⊂ dS4
into the structure group G.

As a dynamical theory, one regards the Yang-Mills configuration space as a moduli
space of spatial configurations [27] — in the case of de Sitter space, this is the moduli
space of connections on S3 — and dynamical trajectories are governed by tangent vec-
tors to curves on this moduli space. The action of the group of time-independent gauge
transformations splits the tangent space on the space of all spatial configurations into a
“symmetry” part, representing the true physical tangent space, and a “gauge” part which
is a physical redundancy. On the level of the Yang-Mills equations, projection onto the
physical space is achieved by the Gauss law ∇aEa = 0, where Ea is the Yang-Mills electric
field. Importantly, the presence of the framing over the entire temporal boundary severely
reduces the time-independent gauge group to a trivial group, which in turn changes the
decomposition of the tangent space by promoting the gauge part into physical symmetries.
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As we shall demonstrate, in a Lagrangian approach to Yang-Mills, this necessitates an
action modification by a source-like term, through which the Gauss law is relaxed in order
to capture these additional degrees of freedom which otherwise would be projected away.
This is complemented by an Hamiltonian picture, where these degrees of freedom extend
the phase space, with the source acting as a corresponding “momentum variable”.

Pure Yang-Mills theory in four dimensions is strongly coupled in the infrared limit,
and hence the perturbative expansion for it breaks down. In the absence of a quantitative
understanding of non-perturbative gauge theory, convenient alternatives at low energy are
provided by effective models among which nonlinear sigma models play an important role.
In fact, Yang-Mills, Yang-Mills-Higgs, and super-Yang-Mills theories in d = 4 dimensions
can be reduced to d = 1, d = 2 or d = 3 dimensions (see e.g. [28–32]), depending on the
choice of “slow” and “fast” variables in d = 4 space-time, by applying the adiabatic limit
method. In other words, there are several low-energy limits of the same Yang-Mills theory.
For Yang-Mills-Higgs theories (often considered as bosonic subsectors of super-Yang-Mills
theories) one can also obtain 4d sigma models in the strong gauge coupling limit (see
e.g. [33–36]). All these results are obtained by using an adiabatic approach and moduli
space approximation.

The adiabatic approach to differential equations, based on the introduction of “slow”
and “fast” variables, has existed for more than 90 years, and is used in many areas of
physics. Briefly, if “slow” variables parametrize a space Y and “fast” variables parametrize
a space Z, then on the direct product manifold Y × Z one should introduce the metric

gε = 1
ε2 gY + gZ , (1.2)

where gY is a metric on Y , gZ is a metric on Z, and ε ∈ (0,∞) is a real parameter. The
adiabatic limit refers to the geometric process of scaling up a metric in some directions
by sending ε → 0, whilst leaving it fixed in the others, gZ in the case (1.2). That is,
one considers the metric (1.2) and the small-ε limit in these equations. In the simplest
case Y = R with gY = −1 (time axis) one looks at solutions to differential equations on
Z (“static” solutions) and then switches on a “slow” dependence on time. By using this
approach, Manton has shown [28] that, in the “slow-motion limit”, monopole dynamics
in Minkowski space R3,1 = R0,1 × R3,0 = Y × Z can be described by geodesics in the
moduli spaceMn

Z of static n-monopole solutions. In other words, it was shown [28, 37, 38]
that the Yang-Mills-Higgs model on R3,1 for slow motion reduces to a sigma model in
one dimension whose target space is the n-monopole moduli spaceMn

Z of solutions to the
Yang-Mills-Higgs equations on Z = R3.

Here we propose a framework for studying Yang-Mills theory on de Sitter space dS4
which captures all additional degrees of freedom arising from a choice of framing over its
conformal boundary. In doing so, this allows for a non-trivial application of the adiabatic
approach to the Yang-Mills equations on de Sitter space dS4. Specifically, we show that a
low-energy limit yields one-dimensional principal chiral model equations describing maps
from R (time) into the group manifold C∞(S3, G)/G, which is identified as the moduli space
of static vacua Mvac of Yang-Mills theory on dS4. We argue that the infrared dynamics
is integrable.
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2 Yang-Mills theory on manifolds with boundary

Bundles and connections. Let M be an oriented manifold of dimension d, G a con-
nected and simply-connected compact Lie group, g its Lie algebra, P a principal G-bundle
over M , A a connection one-form on P , and F = dA + A ∧ A its curvature. We also
consider the bundle of groups IntP = P ×GG (G acts on itself by internal automorphisms:
h 7→ ghg−1, h, g ∈ G) associated with P , and the bundle AdP = P ×G g of Lie algebras.
Both of these bundles inherit their connection A from the bundle P . In particular, the
affine connection ∇A acts (locally) on k-forms ω ∈ Λk(M,AdP ) via the formula

∇A ω = dω +A ∧ ω + (−1)k+1ω ∧ A . (2.1)

Symmetries. Let us consider the space Γ(M , IntP ) of global sections of the bundle
IntP . This space is the group of automorphisms of the bundle P (M,G) → M which
induce the identity transformations of M . The space Γ(M , IntP ) is a topological group
and we consider its subgroup G of smooth sections. For trivial bundles P = M ×G (direct
product) the group G is

G = C∞(M,G) . (2.2)

We denote by AM the space of connections on P . The infinite-dimentional group G
acts on AM by the standard formula

A 7→ Ag = g−1Ag + g−1dg (2.3)

for g ∈ G. Correspondingly, the infinitesimal action of G is defined by smooth global
sections χ of the bundle AdP ,

A 7→ δχA = dχ+ [A, χ] =: ∇A χ (2.4)

with χ ∈LieG ⊂ Γ(M, AdP ). For P = M ×G we have LieG = C∞(M, g).

Gauge transformations and physical symmetries. On a manifoldM with boundary
∂M , gauge transformations are usually considered as a subgroup G0 ⊂ G consisting of G-
valued functions g ∈ G0 which tend to the identity when approaching ∂M (see e.g. [39]).
This corresponds to a framing of the bundle P over the boundary ∂M ⊂ M , namely, a
fixed choice of trivialization ϕ on ∂M , with g ∈ G0 defined by the condition g|∗∂Mϕ = ϕ.
It is easy to see that G0 is a normal subgroup of G. The quotient group

G∂M := G/G0 ⊂ Γ (∂M, IntP |∂M ) (2.5)

is easily seen, in the case of trivial bundles, to correspond to the Lie group

G∂M = C∞(∂M,G) . (2.6)

The same logic was used recently (see e.g. [1, 13, 18]) for asymptotic and conformal bound-
aries which are not boundaries in the strict mathematical sense. It is more accurate to talk
about asymptotic conditions for fields at infinity, but we will follow the terminology in the
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physics literature. To summarize, transformations (2.3) on manifolds M with boundaries
∂M are naturally split into the gauge transformations G0 = {g ∈ G | g|∂M = Id}, and
physical symmetries G∂M from (2.6). The latter are sometimes called “local” or “large”
gauge transformations, however in this paper we shall avoid this terminology, reserving
any mention of the term “gauge transformation” for the transformations in the group G0,
which are identity at the boundary.

3 De Sitter space dS4

Global description. Four-dimensional de Sitter space can be embedded into five-dimen-
sional Minkowski space R4,1 as the one-sheeted hyperboloid

δijy
iyj − (y5)2 = R2 where i, j = 1, . . . , 4 . (3.1)

Topologically, dS4 is R×S3, that is, we can parametrize dS4 by T ∈ R and a unit four-vector
ω ∈ R4,0, specifically (see e.g. [40])

yi = Rωi cosh T , y5 = R sinh T with T ∈ R and δij ω
iωj = 1. (3.2)

Our calculations do not depend on a particular choice of embedding, but for example, one
might choose ωi = ωi(χ, θ, φ) embedding S3 into R4,0 by the formulae

ω1 = sinχ sin θ sinφ , ω2 = sinχ sin θ cosφ , ω3 = sinχ cos θ , ω4 = cosχ , (3.3)

where 0 ≤ χ, θ ≤ π and 0 ≤ φ < 2π. The flat metric on R4,1 induces the metric on dS4 in
the global coordinates (T, χ, θ, φ) as

ds2 = R2 (−dT 2 + cosh2T dΩ2
3
)

(3.4)

with
dΩ2

3 = δijdωidωj = dχ2 + sin2χ (dθ2 + sin2θ dφ2) , (3.5)

being the metric on the unit sphere S3 ∼= SU(2).

One-forms and vector fields on S3. On S3 we introduce an orthonormal basis {ea},
a = 1, 2, 3, of left-invariant one-forms satisfying

dea + εabc e
b ∧ ec = 0 . (3.6)

For any choice of embedding {ωi}, the one-forms {ea} can be constructed via

ea = −η̄aij ωidωj , (3.7)

where η̄aij is the anti-self-dual ’t Hooft symbol with non-zero components η̄abc = εabc and
η̄ab4 = −η̄a4b = −δab , i = (a, 4), a = 1, 2, 3. The metric on S3 can then be written as

dΩ2
3 = δabe

aeb . (3.8)

– 5 –



J
H
E
P
0
9
(
2
0
2
1
)
0
8
9

We also introduce a basis {La} of left-invariant vector fields on TS3 dual to the one-
forms ea, which may be calculated via the corresponding formulae

La = −η̄aijωi
∂

∂ωj
, Laye

b = δba . (3.9)

Under commutation, these vector fields form an su(2) algebra,

[La, Lb] = 2εcabLc . (3.10)

Expressions of ea and La in terms of coordinates (χ, θ, φ) on S3 can be obtained by sub-
stituting (3.3) into (3.7) and (3.9).

Conformal coordinates. One can rewrite the metric (3.4) on dS4 in coordinates
(t, χ, θ, φ) =: (t, x) by the time reparametrization [40]

t = arctan(sinh T ) = 2 arctan
(

tanh T2

)
⇐⇒ dT

dt = cosh T = 1
cos t , (3.11)

in which T ∈ (−∞,∞) corresponds to t ∈ (−π
2 ,

π
2 ). The metric (3.4) in these coordinates

reads
ds2 = R2

cos2t

(
−dt2 + δabe

aeb
)

= R2

cos2t
ds2

cyl , (3.12)

where
ds2

cyl = −dt2 + dΩ2
3 (3.13)

is the standard metric on the Lorentzian cylinder I × S3, where I is the interval (−π
2 ,

π
2 )

parametrized by t.

Boundary of dS4. The conformal boundary of dS4 consists of the two 3-spheres
at t = ±π

2 or, equivalently, at T = ±∞. This is the true boundary of the cylinder
M = (−π

2 ,
π
2 )× S3,

∂

((
−π2 ,

π

2

)
× S3

)
= S3

t=+π
2
t S3

t=−π2
. (3.14)

4 Gauge theory on I × S3

Conformal invariance. We are ultimately concerned with studying the Yang-Mills
equations on de Sitter space. However, because in four dimensions the Yang-Mills equations
and action are conformally invariant, their solutions on de Sitter space can be obtained by
solving the equations on I × S3 with the cylindrical metric (3.13). Thus, henceforth our
objects of interest are defined over I × S3.

Connections and curvature. Let P (M,G) be a principal G-bundle over M = I × S3.
We assume G is compact and simply connected, which ensures π2(G) = 0 [41], and since I
is contractible, this means P is trivial. Let A be a gauge potential for a connection on P ,
which we can express in the basis (eµ) for the cotangent bundle T ∗M , with e0 = dt, and
ea given in (3.7), as

A = At dt+Aa ea . (4.1)

– 6 –
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In this basis, in contrast to the situation in a coordinate basis, the curvature 2-form
F = dA + A ∧ A picks up an additional term according to the structure equations (3.6).
Specifically, writing

F = 1
2Fµν e

µ ∧ eν = Fta dt ∧ ea + 1
2Fab e

a ∧ eb (4.2)

and introducing the covariant derivatives

∇t = ∂t + [At, ·], and ∇a = La + [Aa, ·] , (4.3)

the components of F in (4.2) can be understood as

Fta = [∇t,∇a] = ∂tAa −∇aAt , (4.4)

Fab = [∇a,∇b]− 2εcab∇c = LaAb − LbAa + [Aa,Ab]− 2εcabAc , (4.5)

where La are the left-invariant vector fields (3.9) dual to the ea.

Gauge transformations and symmetries. We denote by AM the space of connections
on P and by G the subgroup of smooth automorphisms Γ(M, IntP ) of the bundle P acting
on AM by formula (2.3). By triviality of P , we have

G = C∞(I × S3, G) . (4.6)

In section 3 we introduced coordinates (t, x) = (t, χ, θ, φ) on I ×S3, and any g ∈ G may be
viewed as a G-valued function of these coordinates. Since M = I × S3 is a manifold with
boundary, specifically two components both isomorphic to S3, as discussed in section 2,
it is natural to frame P over the boundary, which means choosing a fixed isomorphism
P |∂M → (S3

+ tS3
−)×G. The gauge group G0 is the subgroup of G which fixes the framing,

and this is isomorphic to

G0 =
{
g ∈ G | g

(
t = ± π2

)
= Id

}
. (4.7)

We consider two connections equivalent if and only if they differ via (2.3) by an element
g ∈ G0. The gauge group G0 is a normal subgroup of G, and the quotient group is

G/G0 := G∂M ∼= C∞(S3, G)× C∞(S3, G) =: G+
∂M × G

−
∂M , (4.8)

as follows from the discussion in section 2. The transformation (2.3) is well-defined for
elements g ∈ G∂M , with the two groups G±∂M acting independently on the two disjoint
copies of S3 at the conformal past and future spacelike infinities; this is not so in the
Minkowski case because S2 ∼= J −+ and S2 ∼= J +

− intersect at a point, namely spatial
infinity i0, and so the physical symmetries must be non-trivially matched at this point (see
e.g. [1] and references within). Furthermore, in general the action of G∂M is non-trivial
on the moduli space AM/G0. Indeed, from (2.3), [Ag] = [A] for g ∈ G∂M if and only if
g is (covariantly) constant with respect to A|∂M . Since this requires g to have constant
eigenvalues on ∂M , this of course means the fixed-point set is trivial. For this reason, G∂M
is a considered as a dynamical symmetry group acting on the set of connections AM .
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Gauge choices and holonomy. One can always relate the time-like component At of
the connection A to one such that At = 0 by transforming A via (2.3) with the symmetry
group (4.6). For that one has to solve the parallel transport equation

∂th+Ath = 0 (4.9)

with the boundary condition

h

(
t = −π2 , x

)
= Id . (4.10)

The condition (4.10) is generic since solutions h(t, x) to (4.9) are invariant under right-
multiplication by any k ∈ G with ∂tk = 0, and so h(t, x) and h(t, x)h(t = −π

2 , x)−1 define
the same component At of A. For any given At, the unique solution of the equation (4.9)
with the boundary condition (4.10) is given by

h(t, x) = P exp
(
−
∫ t

−π2
At′(t′, x) dt′

)
, (4.11)

where P denotes path ordering. The group element

Ω(x) = h

(
t = π

2 , x
)

= P exp
(
−
∫ π

2

−π2
At′(t′, x) dt′

)
, (4.12)

is the holonomy of A along I in the space I × S3.
The framing of the bundle P removes gauge freedom at t = ±π

2 , and this is manifested
here in the holonomy (4.12). This is analogous to the situation when one considers Yang-
Mills theory on a circle [42], where the holonomy around the circle (the Wilson line) is
a physical degree of freedom. A connection A ∈ AM is said to have trivial holonomy if
Ω(x) = Id for all x ∈ S3. This is equivalent to the condition that h ∈ G0, and only in
this situation may the gauge choice At = 0 be made. In general, for connections with non-
trivial holonomy, we are forced to relax this choice to ∂tAt = 0. To see this, let h solve (4.9)
with (4.10), and let Θ ∈ C∞(S3, g) be such that Ω(x) = h(t = π

2 , x) = exp(−πΘ(x)). Then
g ∈ G0 given by

g(t, x) = h(t, x) exp
((

t+ π

2

)
Θ(x)

)
(4.13)

sets Ag so that Agt = Θ, which is time-independent.
In this paper we shall consider only the trivial holonomy case, with the more general

problem of non-trivial holonomy reserved for a later work. With this simplification, the
time-like component is always of the form At = g−1

0 ∂tg0 for some g0 ∈ G0, and thus,
as discussed above, we can choose the gauge where At = 0. Restricting to the class of
connections with trivial holonomy also breaks the group of physical symmetries (4.8) to its
diagonal subgroup, identified as

GS3 := C∞(S3, G) . (4.14)
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The dynamical configuration space. The dynamics of Yang-Mills theory on M =
I × S3 are governed by “paths” in a moduli space of connections on a corresponding
principal bundle PS3 over S3, which for the same reason as above, must be trivial. The
imposition of the framing over the boundary ofM forces modifications to Yang-Mills theory
which we introduce later in section 5. To motivate these modifications, it is worth reviewing
the geometry of this Yang-Mills configuration space [27], and how the framing affects it.

Let AS3 denote the space of all connections on PS3 . This is an affine space over Λ1(S3,
AdPS3), hence for each A ∈ AS3 , we have a canonical identification between the tangent
space TAAS3 and the space Λ1(S3, AdPS3) of one-forms on S3 with values in the Lie algebra
g of the Lie group G. The group GS3 acts on AS3 via (2.3), and vectors which are tangent
to the full GS3 action lie in the vertical space

VAAS3 := im(∇A) ⊂ Λ1(S3,AdPS3) , (4.15)

consisting of the “infinitesimal gauge transformations” spanned by one-forms of the
form (2.4). The tangent space to the quotient space AS3/GS3 is identified as the space of
horizontal vectors complementary to VAAS3 . This is determined by a choice of connection
on the “GS3-bundle” AS3 . There is a canonical choice in the presence of an inner-product on
TAAS3 . Since we consider matrix groups G, the metric on g is defined by the trace tr, and
so the metric on S3 and on g induce a natural inner product on TAAS3 = Λ1(S3, AdPS3),
namely the L2-inner-product defined by

〈ξ1, ξ2〉L2 = −
∫
S3

dV3 tr(ξ1a ξ2a) , (4.16)

for ξ1 = ξ1ae
a, ξ2 = ξ2ae

a ∈ Λ1(S3, g). With this, the horizontal space may be identified as

HAAS3 := ker(∇∗A) ⊂ Λ1(S3,AdPS3) , (4.17)

where ∇∗A : Λ1(S3, AdPS3)→ Lie(GS3) is the L2-adjoint to ∇A, i.e. such that

〈∇∗Aξ, χ〉L2 = 〈ξ,∇Aχ〉L2 , (4.18)

for all ξ ∈ Λ1(S3, g) and χ ∈ Lie(GS3). In this way, the decomposition TAAS3 = VAAS3 ⊕
HAAS3 is L2-orthogonal. In components, the horizontal vectors are determined by solutions
ξa to the equation

∇aξa = 0 . (4.19)

The equation (4.19) appears analogously in the Yang-Mills equations as the Gauss law

∇aFat = 0 , (4.20)

which is one of the Euler-Lagrange equations for the pure Yang-Mills action. After the
gauge choice At = 0 is made (which we can do since we assume trivial holonomy), for
each t ∈ I, Ea := Fta = ∂tAa are seen as the components for a g-valued one-form on S3

representing a tangent vector to a curve t 7→ Aa(t) in AS3 , that is, a dynamical trajectory.
The Gauss law (4.20) is not a dynamical equation, but rather a constraint, which by the
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above description plays the role of projecting the dynamics from the full configuration
space AS3 to the moduli space AS3/GS3 .

This fact forces a reassessment of the Yang-Mills equations when one considers the
role of the framing; due to the framing over the boundary of M , the group GS3 is not a
group of gauge transformations, but a physical symmetry group, and so the true physical
configuration space in this scenario should be all of AS3 , with configurations which differ by
an element of GS3 considered as physically distinct. Coupling this with the above picture,
the upshot is, in order to account for the additional GS3 degrees of freedom imposed by the
framing, one is forced to modify the Yang-Mills action so that the Gauss law (4.20) is not
one of the equations of motion. This we discuss in the following section.

5 Yang-Mills theory on the framed bundle P → I × S3

Action functional. In the non-holonomic basis described by dt = e0 and (3.7), the pure
Yang-Mills action on M = I × S3 is

SYM(A) := 1
2e2

∫
M

tr(F ∧ ?MF)

= − 1
4e2

∫
I×S3

dt ∧ dV3 tr(2FtaFta −FabFab) , (5.1)

with e > 0 the gauge coupling constant, dV3 := e1∧e2∧e3 the volume form on S3, and the
components of the curvature given by (4.4)–(4.5). To account for the additional degrees of
freedom introduced by the framing of P , as motivated in the previous section, we modify
the Yang-Mills action with the addition of an external static source j = jt dt ∈ Λ1(M, g).
We hence consider the action S(A) = SYM(A) + Sj(A) where

Sj(A) := 1
e2

∫
M

tr(A ∧ ?M j) = − 1
e2

∫
I×S3

dt ∧ dV3 tr(Atjt) . (5.2)

The source transforms with respect to gauge transformations as

j 7→ jg := g−1jg , (5.3)

and so in order to preserve G0-invariance of the action, we must impose that j is covariantly
constant. Since j is static, i.e. ja = 0, this is realized by the condition

∇tjt = 0 . (5.4)

Explicitly, (5.4) is solved by

jt(t, x) = h(t, x)λ(x)h(t, x)−1, λ(x) = jt

(
−π2 , x

)
, (5.5)

where h is the parallel transport operator (4.11). Since we assume trivial holonomy, we
may always choose a gauge where jt = λ, and this choice is equivalent to fixing At = 0.
In general, the source j is included in the action to encode the additional physical degrees
of freedom arising as a result of the framing, namely the holonomy (4.12) at t = π

2 , and
λ ∈ C∞(S3, g), a fixed external field injected by the framing of the bundle P at t = −π

2 .
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The moduli space of Yang-Mills connections. The Euler-Lagrange equations for
the action S = SYM +Sj may be written concisely as ∇A ?M F +?M j = 0. In components,
this reads as the dynamical equations

∇tFat = ∇bFab + εabcFbc , (5.6)

and the relaxed Gauss law
∇aFat = jt . (5.7)

Here, as with the curvature (4.4), the additional term in (5.6) arises due to the choice of
non-holonomic basis. The holonomy Ω(x) and the external field λ(x) are fixed G0-invariant
quantities, and for each choice we have a distinct moduli space of Yang-Mills connections
onM = I×S3, which we denote byMYM(Ω, λ). In this paper we consider only the special
case MYM(Id, λ). These are defined by the solutions to the Yang-Mills equations, up to
equivalence by the action (2.3) of G0.

Generalized variations and restricted Yang-Mills equations. The equations (5.6)–
(5.7) arise from the variation of the action with respect to variations δA which vanish on
the boundary ∂M . Since S3 has no boundary, this assumption need not be made for the
variations δAt with respect to At, however, general variation with respect to the field Aa
leads to a boundary term proportional to

δS∂M ∼
∫
S3

dV3 tr(δAaFat)
∣∣∣∣π2
−π2

. (5.8)

If we allow for variations which have the form

δχAa = ∇aχ for χ ∈ C∞(S3, g) , (5.9)

which corresponds to an infinitesimal action (2.4) of the subgroup GS3 , defined by (4.14),
of the dynamical symmetry group (4.8), the integral (5.8) over S3 for variations (5.9) can
be written as ∫

S3
dV3 tr(∇aχFat) = −

∫
S3

dV3 tr(χ jt) , (5.10)

where we have used equation (5.7), and the fact that ∂S3 = ∅. Since we assume trivial
holonomy, (5.8) will vanish, which can be seen from the formula (5.5). So the dynamical
equations (5.6) arise even for variations of the form (5.9). On the other hand, the relaxed
Gauss law (5.7) is the variational equation for At, assuming variations which vanish iden-
tically on ∂M . However since At = g−1

0 ∂tg0, for some g0 ∈ G0, then the allowed variations
may be of the form

δεAt = ∇tε for ε ∈ Lie(G0) . (5.11)

In this case, if we assume (5.6) holds, then the variation of the action S = SYM + Sj with
respect to (5.11) vanishes trivially since ∇t(∇aFat − jt) = 0 due to (5.4) and the identity
[Fµν ,Fµν ] = 0, coupled with the definitions (4.4)–(4.5). Therefore in the trivial holonomy
case, and where we only allow variations of the form (5.11), the equation (5.7) is not an
equation of motion, and should not be considered as part of the Yang-Mills equations. To
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see this from another perspective, one can view the term Sj in the action as a gauge-fixing
term for the gauge choice At = 0, with the field λ a Lagrange multiplier for this constraint.
The argument above says that this field can be arbitrary if we only allow variations of the
form (5.11). Alternatively, we can view the equation (5.7) as the definition of λ, after the
gauge choice At = 0 is imposed. Either way, we see that the source-like term Sj removes
the strict Gauss law (4.20) from the Yang-Mills equations, and the issue of projecting out
the GS3 degrees of freedom is avoided.

On the other hand, the relaxed Gauss law (5.7) also allows us to determine At in terms
of Aa and jt. Indeed, we have

Fat = ∇aAt − ∂tAa ⇒ ∇aFat = ∇2At −∇a∂tAa = jt

⇔ ∇2At = jt +∇a∂tAa , (5.12)

where∇2 = ∇a∇a. Thus, given fixed Aa and jt, At is determined by resolving the covariant
Poisson equation (5.12) on S3.

The Hamiltonian picture. To further appreciate the role of the modifications described
above, it is useful to briefly discuss how these fit into an Hamiltonian formulation of
Yang-Mills theory [43]. Recall that in this picture, after imposing the gauge At = 0, one
introduces the conjugate variables (Aa,Ea) defined on S3, with Ea = Fta = ∂tAa, which
act as coordinates for an infinite-dimensional Poisson manifoldM, with Poisson bracket{

E I
a (x),AJb (x)

}
= δabδ

IJδ(x− y) , (5.13)

where we have written E = E I
aXIe

a and A = AIaXIe
a in terms of a basis XI for g. By

introducing the framing, we are extending this phase space to

M̃ = {(Aa,Ea, g, λ)} , (5.14)

with the additional conjugate pair (g, λ) ∈ GS3 × C∞(S3, g) forming coordinates for the
extension: the cotangent bundle T ∗GS3 .

Noether charges, symmetries, and the Gauss law. For any Cauchy surface Σ (in
our case, Σ = S3), the conserved Noether charges in Yang-Mills theory are defined for all
χ ∈ C∞(Σ, g) as

QΣ(χ) :=
∫
∂Σ

tr(χE∂Σ)−
∫

Σ
dVolΣ tr(χC) , (5.15)

where E∂Σ is the component of the electric field orthogonal to the boundary ∂Σ, and

C(A,E ) = ∇∗AE . (5.16)

In our case Σ = S3, so ∂Σ = ∅ and the charges (5.15) reduce to

QS3(χ) := −
∫
S3

dV3 tr(χC) , (5.17)

– 12 –



J
H
E
P
0
9
(
2
0
2
1
)
0
8
9

for χ ∈ Lie(GS3), and C = ∇aEa. In the Hamiltonian picture introduced above, off-shell,
these charges generate the infinitesimal action of GS3 on the ordinary phase spaceM via

{QS3(χ),Ea} = [χ,Ea], {QS3(χ),Aa} = ∇aχ . (5.18)

From the perspective of symplectic geometry, the function QS3 = C[ : M→ Lie(GS3)∗ is
a moment map for the Hamiltonian action of GS3 on M. The ordinary Gauss law (4.20)
is defined by C = 0, and analogously to the discussion at the end of section 4, usually one
considers the submanifold C−1(0) ⊂M, and the physical space as the symplectic reduction

Mphys =M//GS3 = C−1(0)/GS3 , (5.19)

on which the charges (5.17) would vanish. In contrast, we consider the extended phase
space M̃ as in (5.14). There is still an action of GS3 on M̃ related to the charges QS3(χ),
which are non-zero as a result of the relaxed Gauss law (5.7). In particular, the physical
space is thus modified by considering instead

C̃ = C + λ, C̃−1(0) ⊂ M̃ . (5.20)

Furthermore, since λ may be defined by (5.7) in terms of (Aa,Ea), it is not independent,
and so we may always reach the ordinary phase spaceM by acting with GS3 in such a way
which sets g = 1 in (5.14).

Newtonian mechanics form of the action. The pure Yang-Mills action (5.1) can be
rewritten as

SYM(A) = 1
e2

∫
I

dt
(
T (A)− V(A)

)
, (5.21)

where
T (A) = −1

2

∫
S3

dV3 tr(FtaFta) , (5.22)

and
V(A) = −1

4

∫
S3

dV3 tr(FabFab) . (5.23)

are the kinetic and potential energies respectively. As detailed at the end of section 4, a
solution of the full Yang-Mills equations on I ×S3 (a dynamic solution) can be considered
as a smooth path A : t 7→ A(t) in an infinite-dimensional configuration space, whose
motion is governed by the Yang-Mills equations. After resolving the constraint specified
by the relaxed Gauss law (5.7) via (5.12), the non-dynamical variable At is determined, and
the action (5.21) may be considered as the classical action for a “particle” A(t) = Aa(t) ea

with kinetic energy (5.22) and potential energy (5.23) (cf. [27, 28]).

Slow motion. We wish to study the slow motion of A(t). To do this, we consider the
so-called “slow time” [31, 45, 46]:

τ := ε t , (5.24)

where ε > 0 is a small parameter. This rescales the interval I to Iε = (− επ
2 ,

επ
2 ), and the

action (5.21) takes the form

SYM(A) = 1
ê2

∫
Iε

dτ
(
Tε(A)− 1

ε2V(A)
)
, (5.25)
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where ê2 = e2/ε is a rescaling of the gauge coupling. The potential energy V(A) is unaf-
fected by this. However the kinetic energy becomes

Tε(A) = −1
2

∫
S3

dV3 tr(FτaFτa) , (5.26)

where Fτa = 1
εFta which can be recognized under the substitution At = εAτ and ∂t = ε∂τ

into (4.4). Similarly, the term Sj(A) of the extended action rescales to

Sj(A) = 1
ê2

∫
Iε×S3

dτ ∧ dV3 tr(Aτ jτ ), (5.27)

where jτ = 1
ε jt.

Energy. The conserved energy density of Yang-Mills configurations (with or without a
static source) is

Et = − 1
4e2 tr(2FtaFta + FabFab) . (5.28)

One can also introduce the energy

Et =
∫
S3

dV3 Et = 1
e2
(
T (A) + V(A)

)
. (5.29)

Both Et and Et are positive-semidefinite and invariant under the group G0 of gauge trans-
formations and the group of physical symmetries GS3 .

The expressions (5.28) and (5.29) may instead be considered in slow time via the
equivalence Et dt = Eτ dτ and Et dt = Eτ dτ , where

Eτ = − 1
4ê2 tr(2FτaFτa + 1

ε2FabFab) , (5.30)

and
Eτ = 1

ê2
(
Tε(A) + 1

ε2 V(A)
)
. (5.31)

From (5.31) we see that the case 0 < ε � 1 corresponds to the low-energy limit if in this
limit V(A)→ 0.

Yang-Mills equations on Iε × S3. The Euler-Lagrange equations for the rescaled
version of the action S = SYM + Sj are

∇τFaτ = 1
ε2 (∇bFab + εabcFbc) , (5.32)

∇aFaτ = jτ , (5.33)

with the covariant derivatives defined by (4.3), and ∇τ = ∂τ + [Aτ , ·].
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Localization at V(A) = 0 for ε → 0. In the low-energy limit ε → 0, the Yang-Mills
equations (5.32) are split into two sets of equations,

∇τFτa = 0 (5.34)

and
∇bFab + εabcFbc = 0 . (5.35)

From the variation δS we observe the same splitting, but from the action (5.25) we see that
ε−2V(A) becomes highly peaked about V(A) = 0 as ε2 → 0. Hence, the partition function
of quantum Yang-Mills theory will be dominated by the zeros of V in the low-energy limit
ε2 → 0, namely solutions to

V(A) = 0 . (5.36)

This is also supported by the known fact that flat connections on S3 realize minima (5.36)
of the potential V(A), and they are the only stable solutions of Yang-Mills theory on S3 [41].
Hence, we consider static connections in order to study the moduli space of vacua and the
dynamics of Yang-Mills theory on Iε×S3 as slow motion on the space of static connections.

6 Moduli space of static Yang-Mills connections and vacua on I × S3

Static connections and reduced gauge group. Let AS3 ⊂ AM denote the space
of static connections, where by static connection, we mean one such that At = 0 and
∂tAa = 0. The subgroup of the gauge group G0 which preserves the static connections is
trivial, but importantly, the symmetry group (4.14), GS3 , acts on AS3 non-trivially in the
obvious way via (2.3).

Flat connections on S3. For static connections At = 0 and ∂tAa = 0 the “kinetic
energy” (5.22) vanishes. Then the total energy (5.31) vanishes if V(A) = 0. Since our
bundle is trivial, and π1(S3) = 0, this is achieved by

Fab = 0 ⇔ Aa = g−1La g , (6.1)

where g ∈ GS3 . In other words, the set of flat connections on S3 is the orbit of the trivial
connection Aa = 0 under the action (2.3) of GS3 . Note that this representation is not unique
for all g ∈ GS3 ; g, g′ ∈ GS3 define the same flat connection (6.1) if and only if g′ = kg for
some constant k ∈ G. Hence, the true moduli space2 Mvac of flat connections on S3 is the
set of left cosets GS3/G. This principal homogeneous space may be identified as

Mvac = GS3/G ∼= GnS3 , (6.2)

the group of based maps [47], i.e. the normal subgroup GnS3 of GS3 given by the kernel of
the evaluation map

GS3 → G, g 7→ g(n) , (6.3)

where n is a point on S3, e.g. the north pole.
2Here we use the term moduli space even though we are quotienting by the trivial group.
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Tangent space. As discussed in section 4, the tangent spaces to TAAS3 are identified
with the spaces of one-forms Λ1(S3, AdP ). Restricting to the subspaceMvac ⊂ AS3 , tan-
gent vectors are additionally required to solve the linearized flatness equations ∇A δA = 0,
which in components with respect to the frame ea of T ∗S3 reads

∇a δAb −∇b δAa − 2εcabδAc = 0 . (6.4)

Since every element of Mvac corresponds to a point in the orbit of the action of GnS3 on
Aa = 0, every tangent vector δA will likewise correspond to tangent vectors induced by
the infinitesimal action, i.e. of the form δA = ∇A Ψ = ∇aΨ ea, for Ψ ∈ Lie(GnS3). It is
clear that vectors of this form solve (6.4). It is important to stress again that we do not
consider these as gauge variations to be removed; since our gauge group is trivial, these
are precisely the tangent vectors that we are interested in.

Coordinate frame for TMvac. Let Xα, α = 1, 2, . . ., denote a set of local coordinates
on Mvac, with partial derivatives ∂α ≡ ∂

∂Xα . As discussed above, every flat connection
A ∈Mvac is determined uniquely by a choice of based map g ∈ GnS3 . The function g ∈ GnS3 ,
and hence Aa depends on the coordinates Xα. It is clear that g−1∂αg ∈ Lie(GnS3), and
one finds

∂αAa = ∇a(g−1∂αg) , (6.5)

i.e. a general tangent vector toMvac. Therefore, given a flat connection Aa = g−1Lag with
g ∈ GnS3 , the objects δαAa := ∂αAa define a coordinate basis for TAMvac.

Metric. Restricting the inner product (4.16) on AS3 to the subspace Mvac ⊂ AS3 pro-
vides a metric G = (Gαβ) in terms of the coordinates Xα for the moduli spaceMvac ∼= GnS3

of static vacua, namely
Gαβ = −

∫
S3

dV3 tr(δαAa δβ Aa) . (6.6)

We also consider the Levi-Civita connection on TMvac, with Christoffel symbols written
in terms of (6.6) as

Γγαβ = 1
2 G

γκ(∂αGβκ + ∂β Gακ − ∂κ Gαβ) . (6.7)

It is straightforward to show that these may be written in the form

Γγαβ = Gγκ
∫
S3

dV3 tr(δκ Aa ∂α δβ Aa) . (6.8)

One can also introduce the Riemann curvature tensor, Ricci tensor etc. but these are not
relevant for our purposes.

Full space of static Yang-Mills. Flat connections (6.1) on S3 realize the absolute
minima V(A) = 0 of the potential (5.23) which is exactly the Euclidean action of Yang-
Mills theory on S3. The equations of motion for Yang-Mills theory on S3 are (5.35).
Flat connections are the only stable solutions, and there are no topologically nontrivial
solutions [41]. There is at least one unstable solution having the form

A0 = 1
2 g
−1
1 dg1 = 1

2 g
−1
1 Lag1 e

a = 1
2 e

aIa , (6.9)
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where g1 : S3 → G is a map of degree one, and {Ia} are generators of the group SU(2)⊆ G
forming a part of the generators of G.

For G = SU(2), the solution (6.9) is the standard metric connection without torsion
(Levi-Civita connection) on the frame bundle over S3. Similarly, for G = SU(2), the flat
connections

A− = 0 and A+ = g−1
1 Lag1 e

a = eaIa (6.10)

are the metric compatible connections with (∓) torsion trivializing the SU(2)-frame bundle
over S3. Obviously, A+ is simply the transformation of A− via (2.3) with g1 ∈ GnS3 , and
thus belong to the orbit GnS3 ⊂ AS3 passing through the point 0 = A− ∈ AS3 . Similarly,
the unstable solution (6.9) can be transformed by the group GnS3 into an infinite family of
gauge-inequivalent solutions from the viewpoint of gauge theory on de Sitter space dS4.

Recall that for Yang-Mills theory on I×S3 with trivial holonomy (which is our present
case of interest), we may consider allowed variations of Aa on S3 of the form (5.9) without
the emergence of non-zero boundary terms. In this case the only admissible connections
on S3 are the SU(2)-equivariant family

Aa = κ eaIa , (6.11)

where κ ∈ R is a free parameter and {ea} are the left-invariant one-forms (3.7) on S3. It is
well known (see e.g. [25, 44]) that the family (6.11) allows only three solutions of the Yang-
Mills equations on S3: specifically with κ = 1

2 , κ = 0, or κ = 1. These three solutions are
given in (6.9) and (6.10). Thus, for the considered boundary conditions, the moduli space
of Yang-Mills connections on S3 is a disjoint union of two group manifolds GnS3 ,

MS3
full = GnS3 ∪ GnS3 , (6.12)

determined by the action (2.3) of GnS3 on the solutions (6.9)–(6.10). However, solutions
generated from (6.9) are saddle points of the potential V(A) and, due to instability, for
any small velocity ∂tAa they will oscillate around the minima, i.e. solutions to V(A) = 0.
That is why in the low-energy limit we will consider only the moduli space (6.2). This
argument complements the previous one from the end of section 5, based on localization
at V(A) = 0.

7 An adiabatic limit of Yang-Mills theory on I × S3

Slow motion on AS3. Having established the description of the static configuration
space AS3 and the moduli spaceMvac of static vacua of Yang-Mills theory on I × S3, we
return to dynamic gauge fields depending on t ∈ I. Recall that we may think of these as
a paths

A : I → AS3 , t 7→ A(t) , (7.1)

where the component At of A may be determined by resolving the relaxed Gauss law
∇aFat = jt, which encodes the additional physical degrees of freedom imposed by the
framing of the bundle P .
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Consider now a family of paths A(ε, t) ∈ AS3 depending on a small parameter ε > 0
and such that the kinetic energy (5.22) is T (A(ε, t)) ≈ ε2 � 1. For small ε the dynamic
solutions A(ε, t, x), x ∈ S3, are close to the static solutions from Mvac ⊂ AS3 and in
the limit ε → 0 they converge to a point A ∈ Mvac. However, an established adiabatic
method proposes a more refined approach, which yields a geodesic on Mvac instead of a
point. Furthermore, one expects this geodesic to be close to the path in AS3 defined by
a true dynamic solution A(ε, t) for small ε, as has been confirmed in a variety of related
cases [28, 31, 45, 46].

Adiabatic approach. In the case of Yang-Mills theory on I×S3, the adiabatic approach
to describing dynamic solutions implies the following steps:

1. One considers static solutions, i.e. solutions of the Yang-Mills equations (5.35) on S3,
and describes the moduli spaceMvac of their vacuum configurations.

2. One introduces “slow time” τ := εt, rescaling the interval to Iε, rewrites the action
and energy functionals by using τ and shows that the limit ε→ 0 corresponds to the
low-energy limit of Yang-Mills theory on Iε × S3.

3. One allows the collective coordinates Xα on the moduli spaceMvac to depend on τ ,
and assumes that the connection A depends on τ only via the coordinates Xα, i.e.
A = A(Xα(τ), x). One then substitutes A(Xα(τ), x) into the rescaled Yang-Mills
action (5.25).

4. One performs the small-ε limit in the action and in the corresponding Yang-Mills
equations. Then one shows that Yang-Mills theory on Iε × S3 reduces to a sigma
model describing maps from Iε into the moduli spaceMvac of vacua. The Yang-Mills
equations in this case reduce to the equations for geodesics on the manifold Mvac.

Moduli-space approximation. In previous sections we have executed steps 1. and 2.
of the adiabatic approach outlined above, and we described the moduli space Mvac ∼= GnS3

of static vacua of Yang-Mills theory on Iε × S3. Now we return to full Yang-Mills theory.
According to step 3., we let the moduli parameters X = {Xα} ofMvac define a map

X : Iε →Mvac (7.2)

from Iε toMvac = GnS3 . Thus, Xα(τ) may be considered as dynamical fields which capture
the τ -dependence of “slow” full Yang-Mills solutions. The low-energy effective action for
Xα is derived by the leading term of the Yang-Mills action (5.25) in the expansion

A = A(Xα(τ), x) +O(ε) , (7.3)

where the first term depends on τ ∈ Iε only via the coordinates Xα ∈ Mvac [29, 45,
48, 49]. For small ε � 1, all terms in (7.3) beyond the first one are discarded. By
substituting the leading term of (7.3) into the action (5.25), one obtains an effective field
theory describing small fluctuations around the vacuum manifold Mvac. Note that Mvac
contains all topological sectors, i.e. the connected components of GnS3 corresponding to the
distinct homotopy classes, and therefore the consideration is not a perturbative one.
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Effective action. For A ∈ Mvac, V(A) = 0, hence the effective action is determined
solely by the kinetic term. Since we consider trivial holonomy, we may choose the gauge
Aτ = 0, so that, in the adiabatic limit ε→ 0, we have the electric field

Fτa = ∂τAa = (∂τXα)∂αAa . (7.4)

Upon substitution into (5.25), we obtain

S = 1
ê2

∫
Iε

dτ Gαβ∂τXα∂τX
β , ⇒ Seff = 1

e2

∫
I

dtGαβ∂tXα∂tX
β , (7.5)

where we have used the formula (6.6) for the metric components Gαβ onMvac with respect
to the coordinate basis δαAa = ∂αAa of TAMvac. Thus, in the case of trivial holonomy,
the Yang-Mills action (5.25) reduces for ε � 1 to the action of a nonlinear sigma model
on Iε, with target space Mvac = C∞(S3, G)/G = GnS3 , which is an infinite-dimensional
group manifold.

Geodesics onMvac. Recall that for small ε � 1 the Yang-Mills equations on Iε × S3

are reduced to the equations (5.33) and (5.34)–(5.35). Also recall that in the case of trivial
holonomy, the role of the field λmay be viewed as a Lagrange multiplier for the gauge choice
Aτ = 0, and that the relaxed Gauss law (5.7) determines the Lagrange multiplier λ, i.e.
λ = ∇aFaτ , but is not a dynamical equation of motion. Since Fab = 0 for A ∈Mvac, (5.35)
is satisfied, there remains only (5.34), namely3

∇tFta = 0 , a = 1, 2, 3 . (7.6)

Substituting (7.4) into (7.6) with the gauge choice At = 0, we obtain

(∂2
tX

α) δαAa + ∂tX
β∂tX

α∂αδβAa = 0 . (7.7)

This implies ∫
S3

dV3 tr
(
(∂2
tX

α) δκAaδαAa + ∂tX
β∂tX

αδκAa∂αδβAa
)

= 0 , (7.8)

which, as we see from (6.6) and (6.8), leads to

∂2
tX

α + Γαβγ ∂tXβ∂tX
γ = 0 . (7.9)

Equations (7.9) for α = 1, 2, . . . are the equations of a geodesic X = (Xα) : I → Mvac
on the moduli spaceMvac of vacua. They are the Euler-Lagrange equations for the action
Seff in (7.5).

3Here we make the replacement τ 7→ t so that everything is defined on a fixed-length interval.
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Adiabatic limit of unstable solutions. Note that one can also consider small fluctua-
tions around the infinite-dimensional manifold GnS3 of static solutions to the full Yang-Mills
equations on S3 generated by the unstable solution (6.9). Since the moduli space of these
solutions is the same as the moduli spaceMvac of vacua, we will arrive to the same effective
field theory (7.5) which describes small fluctuations around solutions of the form

A0 = 1
2 (g1g)−1d (g1g) + 1

2 g
−1dg , for g ∈ GnS3 . (7.10)

However, the moduli space (6.12) is a disjoint union only for static solutions. For the
solutions (7.10) the potential energy V(A0) = 3

8 (see e.g. [25]), and they are unstable.
Hence, after switching on a dependence on time this solution will oscillate around the
vacuum solutions for any small kinetic energy T (A0(τ)).

The Gauss law revisited. Throughout this paper we have emphasized that one should
not impose the Gauss law constraint (4.20) when considering Yang-Mills theory on framed
bundles over I×S3, as it kills dynamical degrees of freedom. This property is also manifest
when considering the adiabatic limit. Indeed, regardless of whether we consider trivial, or
non-trivial holonomy, we could determine the non-dynamical variable At using the Gauss
law as in the argument (5.12), but set λ = jt = 0. In the case of flat connections, we know
that ∂tAa = ∇a(g−1∂tg), and so (5.12) reduces further to

∇2(At − g−1∂tg) = 0 , (7.11)

i.e. At = g−1∂tg + ϕ, where ϕ ∈ ker∇2 ⊂ C∞(S3, g) is (covariantly) harmonic. However,
since S3 is a closed manifold, it is well-known that the only (covariantly) harmonic functions
are (covariantly) constant, i.e. ∇aϕ = 0. Plugging this back into the formula (4.4) for the
electric field yields Fta = −∇aϕ = 0. Therefore, this adiabatic limit is trivial when the
Gauss law (4.20) is imposed.

More generally, in the case of irreducible connections, in which case ∇2 is invertible,
one can show that the resolution (5.12) of the Gauss law constraint (4.20) leads to

Fta = (Π∂tA)a =
(
δab −∇a∇−2∇b

)
∂tAb , (7.12)

so that the electric field is the image under the covariant transversal projection Π : AS3 →
AS3/GS3 of ∂tA. In particular, this means that Fta is formed only from dynamical variables
Aa in the moduli space AS3/GS3 , i.e. the Gauss law has the effect of quotienting out the
GS3 degrees of freedom, as explained in the discussions in both section 4 and section 5.
Since the space of flat connections in AS3/GS3 consists of a point, namely Aa = 0, from
this perspective the above result is clear.

Integrability. SinceMvac is a Lie group GnS3 , one can construct geodesics as one-parame-
ter subgroups of GnS3 . If the metric (6.6) on the group GnS3 is bi-invariant, which is pretty
likely, then all geodesics are one-parameter subgroups.4 Hence, the low-energy limit of
Yang-Mills theory on de Sitter space dS4, with trivial holonomy, is the integrable principal

4For a brief review see e.g. [50] and references therein.
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chiral model in one dimension with the group GnS3 as a target space. From the implicit
function theorem it follows that for any approximate solution A(ε = 0) defined by a
geodesic (7.9) onMvac, there exist nearby solutions A(ε > 0) of the Yang-Mills equations
on dS4 for ε sufficiently small. It is therefore reasonable to conjecture that the moduli space
of all geodesics on Mvac is bijective to the moduli space MYM(Id, λ) of trivial holonomy
solutions to the Yang-Mills equations on dS4. Regardless, it is worth exploring further
relations of Yang-Mills theory on dS4 and one-dimensional principal chiral models from
the viewpoint of integrability, in the low-energy limit, and beyond.

8 Conclusions

By exploiting the conformal invariance of Yang-Mills theory in four dimensions, we re-
duced Yang-Mills theory on de Sitter space dS4 in a certain adiabatic limit to a one-
dimensional principal chiral model with the moduli space Mvac of static gauge vacua as
a target space, where in particular we identified Mvac with the infinite-dimensional Lie
group GnS3

∼= C∞(S3, G)/G. This principal chiral model captures the low energy dynamics
of Yang-Mills theory on dS4. This example is a demonstration of a more general idea: in
the presence of a boundary, the group of gauge transformations becomes smaller, which
yields additional degrees of freedom localized at the boundary. In our case, we described
an infinite-dimensional dynamical symmetry group acting on the boundary states of Yang-
Mills theory on dS4. This group is responsible for the appearance of an infinite-dimensional
manifold of inequivalent ground states — the classical moduli space Mvac of vacua. Con-
sideration of such dynamical symmetry groups is important in quantum Yang-Mills theory
on Minkowski space R3,1, and it would be interesting to study further the role of these dy-
namical symmetry groups in the context of Yang-Mills theory on de Sitter space dS4. We
also remind the reader that we only considered connections with trivial holonomy. Much
of the formalism presented in this paper already presents a significant departure from the
standard analysis for Yang-Mills theory on Minkowski space R3,1, and the addition of non-
trivial holonomy introduces further subtle complexities which are reserved for consideration
in a further work.

An important consequence of our considerations has been to highlight the role of the
Gauss law constraint (4.20) and, in particular, when it can and cannot be imposed. This is
directly related to the choices of boundary conditions (see e.g. [10]). In our case, the fram-
ing over the boundary introduces non-dynamical degrees of freedom, and naïve imposition
of constraints such as the Gauss law (4.20) leads to the loss of these data. Our resolution
to this problem was to pair the constraints with these non-dynamical degrees of freedom,
motivated both by a variational (Lagrangian) and symplectic geometry (Hamiltonian) ap-
proach to Yang-Mills theory. Our work motivates the need for a deeper understanding
of the relationships in Yang-Mills theory between framing of bundles, allowed variations,
constraints, and beyond, and some directions we are currently exploring, alongside the
non-trivial holonomy case mentioned above, are questions relating to framing over more
general submanifolds of temporal boundaries and how this relates both to the formalism of
the relaxed Gauss law (5.7), and adiabatic limits presented in this paper. Finally, although
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our focus has been on de Sitter space (and ultimately the cylinder I × S3), the formula-
tion we have discussed here is applicable to a variety of other examples by framing over
a temporal boundary. For example, a simple generalization of our results would apply to
any spacetime with conformal structure of the form I × Σ with I ⊂ R a timelike interval,
and Σ a spacelike closed manifold, by introducing a framing over ∂I × Σ.
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