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Abstract

To be accepted by the community, the claim that nuclear motion has to be treated classi-

cally must be tested for all kinds of phenomena. For the moment we claim that in a quan-

tum chemical calculation, a classical description of nuclear motion is superior to the use

of the Schrödinger equation, and investigate how far we get with this statement. In the

present paper we address the question what nuclear quantum statistics means in this

context. We will show that the Maxwell–Boltzmann velocity distribution evolves quickly

in any molecular dynamics simulation and this guarantees the physically correct behavior

of molecular systems. Using first-principles molecular dynamics simulations, or more pre-

cisely Car–Parrinello molecular dynamics, we investigate what this means for Bose-

Einstein condensates and for Cooper pairs. It turns out that our approach can explain all

relevant phenomena. As a consequence, we can introduce a deterministic formulation of

quantum mechanics and can get rid of all the paradoxa in traditional quantum mechanics.

The basic idea is to treat electrons and nuclei differently.
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1 | INTRODUCTION

The ab initio simulation of the behavior of molecular systems during chemical reactions led us to claiming that nuclear motion is classical [1–3].

More precisely, the Schrödinger equation should not be applied to nuclear motion in a quantum chemical calculation. A classical treatment of

nuclear motion greatly facilitates our view of quantum mechanics. We obtain a fully deterministic scheme. The central idea is to treat nuclear

motion and electronic cloud with two different differential equations which are deterministic by nature. Only bound electrons should be described

with the Schrödinger equation, because that is what the Schrödinger equation was made for. The quantum mechanical treatment of the electronic

structure is essential and explains not only the hydrogen spectrum, but also molecular structure of any kind. Actually this includes the treatment

of weakly bound electrons [4, 5], but not necessarily the treatment of the motion of completely unbound electrons, for which the fully relativistic

Maxwell equations may be an alternative. At present, we have no single equation that would describe every phenomenon for any kind of particles

at arbitrary temperatures. It is time to forget the idea that the Schrödinger equation could be that single equation. Nevertheless, the Schrödinger

equation is extremely successful in describing bound electrons. We know today on the basis of millions of publications that the electronic struc-

ture of a molecular system as computed with the Schrödinger equation determines the arrangement of atoms and hence causes chemical bonding.
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For arbitrary molecular structures this electronic many-body problem must be solved to describe lots of phenomena in the realm of chemistry or

nanotechnology. The treatment of the many-particles wavefunction is greatly simplified by the introduction of orbitals, that is by decomposing

the wavefunction into one-electron wavefunctions. The electrons are indistinguishable while the orbitals can be distinguished (1s, 2p, etc.), just

like the nuclei (C1, H1, O1, etc). In most quantum chemical calculations this electronic many-body problem is solved while the nuclei are just taken

as point particles which are fixed in space.

To describe atomic or molecular motion and hence chemical reactions, Car and Parrinello developed Car-Parrinello molecular dynamics (CPMD)

[6, 7]. “Molecular dynamics” normally means that the nuclei are described classically as moving point charges without further structure. In contrast to

what is done in traditional molecular dynamics, Car and Parrinello chose to use a quantum mechanical treatment for the electrons. In the original and

still widely used formulation of CPMD, the quantum mechanically computed electronic cloud moves quasi-classically and follows thus the motion of

the nuclei. The alternative approach is Born–Oppenheimer molecular dynamics (BOMD) in which the electronic cloud is optimized self-consistently

to the potential energy surface in every time step. Both approaches are summarized as first-principles molecular dynamics (FPMD) or ab initio molec-

ular dynamics (AIMD). The electronic structure is normally computed using the density functional theory (DFT) approximation [8–10]. Both, CPMD

and BOMD, are suited for simulating chemical reactions, with CPMD being less costly and more stable. Also it is appealing that the CPMD equations

are derived from a single Lagrangian and that CPMD uses second derivatives with respect to time like the wave equation. Both with CPMD and

BOMD, different reaction products can be formed in different simulation runs due to classical chaos.

In the present paper we compare properties as calculated using FPMD to experiment. First we have a look at the black body radiation, then

we discuss Bose–Einstein condensates, and finally we investigate what all this means for the theoretical description of superconductivity. We are

doing computations for molecular hydrogen as a light molecular system and sodium as a relatively light metal for which Bose–Einstein condensa-

tion has been reported. Finally we present computations on aluminum as it can be more easily converted into a superconductor than sodium.

For the moment we take it strictly for granted that nuclear motion is classical. We ask the question how far we get with this approach and

where it clearly leads to deviations from experiment which cannot be explained by weaknesses of the density functional.

2 | METHOD

Car-Parrinello molecular dynamics simulations [6, 7] have been performed with the CPMD code [11] using the Becke–Lee–Yang–Parr (BLYP)

functional [10, 12] in connection with the semi-empirical Grimme dispersion correction [13]. No dispersion correction was used for the sodium

and aluminum calculations, because we found no systematic improvement. The spin-unrestricted version of Kohn–Sham theory was employed

[14] whenever appropriate. Troullier–Martins pseudopotentials as optimized for the BLYP functional were employed for describing the core elec-

trons [15, 16]. A non-linear core correction [17] was used for sodium and aluminum. The wavefunction cutoff which determines the size of the

basis set was set to 50 Rydberg. The time step was chosen as 5 a.u. (0.12 fs) and the fictitious electron mass as 400 a.u. The simulations were run

for 10 000–100 000 steps each, that is, for 1–12 ps.

For the simulations of hydrogen, the simulation cell was chosen as a cubic cell with the cell parameters 8.5 × 8.5 × 8.5 Angstrom3

(16 × 16 × 16 a.u.3). For the simulations of sodium, we started from the crystalline structure. Our supercell for the bulk has the dimensions

17.1625 × 17.1625 × 17.1625 Angstrom3 (32.4324 × 32.4324 × 32.4324 a.u.3) and contains 128 atoms. For the simulations of aluminum, the

supercell of the crystal has the size 12.1017 × 12.1017 × 12.1017 Angstrom3 (22.8689 × 22.8689 × 22.8689 a.u.3) containing 108 atoms. Clouds

of atoms were formed by omitting some of the atoms from their places in the lattice or also manually using the Gaussview program.

Attempts to perform Born–Oppenheimer molecular dynamics simulations with the Gaussian code [18] for comparison were not successful:

For performing a molecular dynamics run the self-consistent field convergence was way too bad, we could converge a few points only.

3 | RESULTS AND DISCUSSION

3.1 | The spectrum of a black body

There are three relevant formulas describing the spectrum of a black body [19]. First there is the Rayleigh–Jeans equation:

ϕ λð Þdλ= 2 �c0 �π
λ4

kBT dλ

As is well known, this relation leads to the ultraviolet catastrophe at high energies. It is often claimed that this is the classical limit for low energies.

However, it was derived using the assumption that all oscillators have the same energy according to the equipartition of energy. This is not the correct clas-

sical limit. The equipartition theorem is certainly valid, however, it does not claim that there is the same amount of energy in every oscillator. It rather says

that there is the same total energy in every degree of freedom. We observe a Maxwell–Boltzmann distribution of velocities as is shown in Figure 1.
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The general shape is similar to what was described by Wien:

ϕ λð Þdλ= 2 �π �h �c20
λ5

� 1

e
h�c0
kB �λT

dλ

This is not the original form of Wien's equation. It was the success of Planck to introduce the quantum of action, replacing the constants

which Wien had introduced. Planck's law reads as follows:

ϕ λð Þdλ= 2 �π �h �c20
λ5

� 1

e
h�c0
kB �λT−1

dλ

Numerically, the difference between the Wien and Planck distributions is small (see the Supporting Information).

The Maxwell–Boltzmann distribution of velocities reads as follows:

P vð Þdv =4 π m
2π kBT

� �3=2

v2
1

e
mv2
2kBT

dv

It develops quickly in a simulation because it is the most likely distribution. The basis for this observation is Newton dynamics, that is, the idea

that every object moves with constant velocity unless a force is acting. If there is a force, the acceleration is computed according to Newton's sec-

ond law, F = m a. It is not so easy to find a similar theoretical framework which would lead to Planck's law instead of Wien's law. Since the numer-

ical difference between Planck's law and Wien's law is small, it is not easy to come to a final conclusion what models the experimental black-body

radiation or the AIMD simulation result more closely (see Figure 1 and the Supporting Information). To be able to compare to the normal way the

black-body radiation is plotted, it is just necessary to plot the Maxwell–Boltzmann distribution weighted with v2 versus 1/v2 (Figure 2).

To conclude, the simple picture that every atom moves linearly as long as no force is acting, allows to model complex phenomena like the

Maxwell–Boltzmann distribution and the black-body radiation most straight-forwardly in FPMD simulations. While programming what leads to

Wien's law seems most straight-forward, it is not clear how one could modify such simulations in a simple and convincing way to make them obey

Planck's law. Experiment does not help much as the difference is small. Also relativistic effects are unlikely to cause the difference as the differ-

ence is largest for high wavelengths. It cannot be excluded at the moment that the specific interaction between radiation and matter leads to

Planck's law, instead of Wien's law, on the basis of a Maxwell-Boltzmann distribution. Even if this were true, no change to molecular dynamics

codes is necessary to describe nuclear motion. In any case we can safely forget the Rayleigh-Jeans formula as classical limit.

4 | BOSE–EINSTEIN CONDENSATES

The Bose–Einstein condensation is often taken as a proof that very small and very cool systems behave quantum mechanically. It has been first observed

for ruthenium [20, 21] which is intriguing. Following the standard picture of quantum effects, one would rather have expected it to occur for the light,
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F IGURE 1 Velocity distribution in
Car–Parrinello molecular dynamics
(CPMD) simulations. Black: A single
hydrogen molecule: The classical limit is
clearly visible. Red: If the molecule is
allowed to interact with other molecules,
it can also reach regions which are
classically forbidden for a single oscillator.
Green: If several molecules are monitored,

the formation of a Maxwell–Boltzmann
velocity distribution is observed. Blue:
Maxwell–Boltzmann velocity distribution
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bosonic helium atom. For ruthenium there is one more problem, namely the strongly attractive potential between ruthenium atoms. In a molecular cloud,

the atoms always move relative to each other. Typical chemical energies of about 1 eV correspond to roughly 10 000 K (Figure 3).

That means that motion on a Morse potential, or, more generally, on a potential energy landscape causes high temperature changes. If we

allow a system consisting of sodium atoms [22] to move in a FPMD simulation, it heats up quickly (Figures 4 and 5).

Only if we set up a perfectly crystalline structure of sodium atoms, the temperature stays close to zero. If we start from a cloud with distances

larger than in the crystal, we observe the formation of clusters. Hence, from the results of molecular dynamics simulations, the condensation is a

normal condensation to a strongly disordered solid (Figure 6). There is nothing which could possibly prevent condensation to a normal solid.

How is it possible to observe so low temperatures in this steep potential-energy hypersurface landscape? The answer is the way the tempera-

ture is measured: After the experiment the trap is turned off and the condensate may collide with a screen or its shadow may be detected on a

screen. From the size of this spot the vertical velocity can be computed. For a classical condensate, a very small spot and hence a small “tempera-

ture” is measured. The true temperature as derived from the velocities within the condensate may be much higher. If there were such a thing as a

Bose–Einstein condensation that is different from a normal condensation, it is not clear what prevents normal solids from a Bose–Einstein con-

densation, when cooled down. Invoking Feshbach resonances does not help as we are in a regime where the excited state is not markedly
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F IGURE 2 Different ways of plotting the Maxwell–Boltzmann distribution. If it is plotted against 1/v2 which is proportional to the
wavelength, it resembles the black-body radiation curve. This is also true for a logarithmic representation which is often used when plotting the
solar spectrum
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F IGURE 3 Potential for the Na Na distance as computed using
density functional theory showing how much kinetic energy is set free
when the particles move with respect to another. As is typical for
covalent bonds, a Morse potential is obtained. Given is the

temperature in Kelvin as computed using the formula E = kT
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populated. Return to the ground state is quick from such a resonance, hence it has a zero net effect. It does not add energy to the total system

nor remove it.

In addition, it does not change the atomic distance much. Also the claim that at low densities the normal condensation is too slow represents

no satisfying explanation. Once there is a condensation nucleus, further condensation is rapid, as our simulations illustrate. Collisions must be

allowed to achieve evaporative cooling and at extremely low temperatures these collisions are in part inelastic.

How can we find out if normal condensates or Bose–Einstein condensates are obtained? An experimental check could be to cool the system

to 0.0001 K instead of 0.000001 K. This should generate a much smaller Bose–Einstein condensate: the higher the temperature, the shorter is

the wavelength if one assumes a correlation of the de-Broglie formula with a temperature. Today it is possible to monitor way smaller objects

than the initially reported Bose–Einstein condensates. On the nanometer scale it should be possible to find Bose–Einstein condensates already

for temperatures of about 0.0001 K. On the contrary, the size of a normal condensate should not change much when going from 0.0001 to

0.000001 K or vice versa as long as the number of particles stays constant.

Another check could be to perform the experiment for a classical cluster for comparison. In experiment, the temperature is calculated from

the extension of the spot measured. The low extension observed might just as well be due to the observation of very small classical clusters

instead of a very cool cloud.

5 | SUPRACONDUCTIVITY

What about Cooper pairs [23, 24]? Shouldn't we observe them at such low temperatures?

Metals are normally described by band structure calculations performed at zero Kelvin. While also using DFT, we use a slightly different

approach. Instead of computing the electronic wavefunction for the unit cell only and to obtain the rest by symmetry considerations, we use a

F IGURE 4 Snapshots of the
condensation of a sodium cloud to
clusters. The cloud was formed by
omitting atoms from a sodium crystal.
(See the Supporting Information for
different starting conditions.) the ionic
temperature was set to zero. Initially the
atoms approach the center of the system
and gain energy quite quickly. During the

first picosecond of the simulation, the
system reaches temperatures of
600–700 K. this causes a reverse motion,
the atoms do not immediately stick
together. It takes some more picoseconds
till two small clusters are formed
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F IGURE 5 Temperature change during the molecular dynamics
simulation run described in Figure 4
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super cell consisting of many unit cells. This is the only meaningful approach if we want to do Car–Parrinello molecular dynamics, because we

want as many atoms as possible moving independently. To analyze the electronic structure we compute maximally localized Wannier orbitals

[25–27], that is, localized orbitals, and we determine their centers. Wannier functions as implemented in CPMD are obtained from the variational

Kohn–Sham orbitals by minimizing the spread in an unitary transformation. Their counterparts for non-periodic systems are the Foster–Boys

orbitals [28]. Like the wavefunction, Wannier orbitals and their centers are mathematical constructs without physical meaning. Nevertheless,

orbitals are helpful when describing phenomena at the sub-nanometer scale. This is evident since the work of Woodward and Hoffmann who

explained chemical reactivity on the basis of orbital symmetry [29]. The densities of the occupied orbitals add up to the total density, which gives
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F IGURE 6 Radial distribution functions showing the Na Na distances during different phases of the condensation, compare Figure 4. A
disordered solid is formed very quickly
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This is connected with the formation of
electron pairs of all valence electrons
(zero distance). The higher the
temperature in the molecular dynamics
run, the sooner the electron pairs split and
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their analysis a certain justification. The Wannier centers behave very much like electrons in a classical picture, however, one has to keep in mind

that a cloud of water vapor is not identical to an accumulation of single rain drops. We monitor the relative distances of these Wannier centers.

At very low temperatures (<1 K) we only observe pairs of electrons, that is, the Wannier orbitals are centered at the same point in space and

have the same spread. At higher temperatures, the electron pairs split (Figures 7 and 8). Here we observe something that is in part similar to Coo-

per pairs (Figure 9, see also the Supporting Information). An apparent difference is that our pairs are quantitatively everywhere, they are the nor-

mal ground state at temperatures close to zero Kelvin. With increasing temperature they are destroyed. Hence, the question to ask is not, how
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F IGURE 8 Number of paired
electrons in the supercell, compare
Figure 7. With raising temperature, the
pairs live shorter. The gray line at the
highest temperature is an exception, here
the system oscillates forth and back
between the two states

F IGURE 9 Shape of single paired
Wannier orbitals in a sodium crystal. Their
centers are located at interstitial positions
within the crystal. The total valence
density is obtained by summing up the
densities of all the orbitals in the unit cell

(128 orbitals in this case)
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supraconductivity can form at low temperatures. The question to ask is, how electrical resistance is formed at higher temperatures. In other

words, our simulations lead to the idea that it is not the electron–phonon coupling which causes Cooper pairs, it is rather the absence of phonons

near zero Kelvin. The electron pairs in a metal are essentially free at low temperatures and, naively, one might expect that higher energies favor a

fast motion. As we all know, the opposite is the case: metallic conductance decreases with rising temperature. In the present picture this is

explained by the breaking of electron pairs leading to traps for the electrons. Note that the orbital picture represents an approximation in every

practical calculation and that the decomposition into localized Wannier orbitals is arbitrary and may depend on the computer code employed.

It is not known if the DFT level is sufficient for the description of superconductivity. Hence it must be emphasized that we do not know if

our observation is really connected to Cooper pairs. Nevertheless we can state that we observe a characteristic change at low temperatures which

could be an explanation for superconductivity. How could this be checked experimentally? A possibility is to verify that electrons move in pairs

instead of moving as single electrons at ultracold conditions.

6 | CONCLUSIONS

By using different differential equations for nuclear motion and the motion of the electronic cloud, as suggested by Car and Parrinello, we obtain

a convincing picture of several condensed phase properties. A Maxwell–Boltzmann distribution is formed quickly already for small systems and

short simulation times. Apparently, this distribution can be taken as the basis for computing the black-body radiation. Even if the picture is classi-

cal, we observe no UV catastrophe. We continue by applying our classical description to the Bose–Einstein condensation and doubt the usual

interpretation of the experiments. A classical condensate explains all the experimental observations. Finally we investigate maximally localized

Wannier functions and find that they have much in common with Cooper pairs, but that they describe the normal ground state at low tempera-

tures in the absence of phonons. An ultimate proof that pairs of Wannier functions could be identified with Cooper pairs is certainly missing, how-

ever, we obtain a reasonable model of the behavior of metals at very low temperatures.

Our calculations are perfectly deterministic. If we do the same calculation two times, we get exactly the same result. If we make but small

changes, we can get completely different reaction products. What does that mean for the philosophy of quantum mechanics? First, both Demokrit

and Heraklit were right: We have atoms and we have an electronic wavefunction describing any kind of matter, thus “everything flows.” We have

a purely deterministic picture, hence Einstein was right: God does not play dice. Actually it is also true that every dice in this world is thrown by

God. Schrödingers cat and the Einstein-Podolsky-Rosen (EPR) paradoxon represent no problems in a purely deterministic world, nor does the

measurement problem in general. Every part of the system moves deterministically according to the respective equation of motion. This beautiful

picture was obtained by treating only the electronic cloud quantum mechanically. A more complete picture would treat the inner structure of the

nuclei, allowing for fission and fusion at high temperature and pressure. There is, however, no reason to use the Schrödinger equation for describ-

ing the inner structure of the nuclei.
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