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Abstract
Self-optimizing process planning is an essential approach for finding optimum process parameters and reducing ramp-up 
times in machining processes. For this purpose, polishing is presented as an application example. In conventional polishing 
processes, the process parameters are selected according to the operator’s expertise in order to achieve a high-quality surface 
in the final production step. By implementing machine learning (ML) models in process planning, a correlation between 
process parameter and measured surface quality is generated. The application of this knowledge automates the selection of 
optimal process parameters in computer-aided manufacturing (CAM) and enables a continuous adaptation of the NC-code 
to changing process conditions. Applying the presented ML-model, the prediction accuracy of 83% will adapt the process 
parameters to achieve the target roughness of 0.2 μm. The sample efficiency is shown by the decrease in root mean square 
error from 0.1–0.28 to 0.02–0.07 μm with additional polishing iterations.

Keywords  Abrasive polishing · Machine learning · Optimization · Simulation-based planning · Process planning

1  Introduction

In times of “Industry 4.0,” self-optimizing machining sys-
tems are in demand which enable a low-cost process with 
the output of individual high-quality products [1]. Addition-
ally, the development of highly adaptable manufacturing 
processes is technically advanced to a degree that allows it 
to be applied in the industrial sector [2, 3]. In this context, 
process planning via the CAM interface provides an expe-
dient way of achieving self-optimizing machining systems 
(SOMS) [2]. The extension of production processes through 
manufacturing simulation modifies the purely geometric and 
idealized view of conventional CAM software [4]. Machine 
learning models play an increasingly significant role in pro-
cessing the understanding between the machining param-
eters in the NC-code and manufacturing outcome [5]. This 
eliminates the need for time-consuming experiments and 
purely experience-based process design. In particular, the 

use of self-optimizing process planning has a high potential 
for cost reduction and quality maximization in the field of 
precision machining. However, approaches in this field have 
hardly been researched [6].

In this paper, an approach for self-optimizing process 
planning is presented in order to redefine the adaptive opti-
mization of process parameters using the challenging exam-
ple of polishing. With varying process conditions, the cor-
relation between process parameters and the manufactured 
output changes. A planning approach via machine learning 
and simulation of the polishing process selects suitable pro-
cess parameters for the NC-code generation. In the final step, 
the approach will be validated and the process parameters 
will be adapted to changing process conditions.

2 � State of the art

In a variety of industrial sectors, polishing represents 
the final and most critical step in the production of high-
quality surfaces and geometric accuracy [7]. Application 
examples for the finishing of high-end products include 
dental restaurations [8, 9], joint prostheses [10, 11], mold 
inserts [12–14] or components for the implementation 
in optical or optoelectronical devices [15–17]. In order 
to meet the desired quality requirements of demanding 
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applications, the use of appropriate process planning is 
crucial. The common challenges in the process planning 
of polishing are choosing the correct tool path, a suitable 
abrasive tool, and appropriate process parameters [6]. The 
decision-making is carried out via the expert knowledge 
of human process planners [18]. Their ability to detect the 
optimal solution is limited [2]. Due to the shifting inter-
actions which determine the process result, mechanical 
polishing seems to be highly complex [19]. In summary, 
there is potential to optimize process planning within com-
mon polishing processes in order to improve quality and 
reduce costs.

Although self-optimizing process planning is gaining 
increasing interest at the moment, core elements like digi-
tal process planning as well as data feedback from the pro-
cess and quality control are already described in the VDI 
4499 Part 2 guideline [20]. A literary overview of different 
approaches toward the implementation of self-optimizing 
process planning in SOMS for manufacturing processes is 
presented in [2]. While many processes with a geometrical 
defined cutting edge have already been investigated with 
respect to self-optimization, polishing operations have not 
been in the limelight of research.

Strategies for the quality control of the manufactured 
polished output are determined directly on the workpiece 
by the shape deviation [21] or roughness [22, 23]. In addi-
tion, sensors can be used to measure acoustic emission [24, 
25] or force [26] during polishing in order to obtain indi-
rect information on the quality. Through supervised learn-
ing, the training data set for the polishing process is formed 
from input parameters such as cutting speed vc, feed rate vf, 
cutting depth ft or grain size of the tool and from measured 
output variables such as roughness parameters or material 
removal rates [27]. Supervised machine learning is mostly 
applied in manufacturing processes to predict the best pos-
sible correlation between process parameters and manu-
facturing outcome [28]. The key advantage of supervised 
methods like Support Vector Regression is the additional 
minimization of the generalization error instead of the 
calculated deviation between the observed and predicted 
data. The generalization describes the achievement of a 
generalized solution, if the regression model is provided 
with other data than the training data [29]. The influence 
of unforeseen disturbances or unknown process variables, 
which appear variably in the process and reduce the model 
accuracy, is compensated by the feedback of the new data 
sets and the adjusted correlations between inputs and out-
puts [30]. This approach is a key-enabler of self-optimizing 
production system [31]. Based on the data a simulation 
model of the manufacturing process can be developed. 
Simulation models represent the real process conditions. 
This makes it possible to draw on optimum parameters or 

tool paths when generating the NC-code in order to create 
the desired target workpiece.

3 � Approach of a self‑optimizing process 
planning

In order to automate the production and post-processing as 
well as to fulfill the high surface requirements at the same 
time, a planning approach is developed which ensures the 
appropriate parameterization of the process. It consid-
ers the individual processing case to achieve the desired 
roughness locally.

The overall approach for the polishing process in the 
machine tool is shown in Fig. 1. After measuring the ini-
tial roughness and assigning it locally to the workpiece, 
the planning algorithm and roughness model are used to 
generate a suitable NC-code for the polishing process. 
This NC-code contains the tool path and the locally 
selected process parameters to achieve the desired target 
roughness.

In order to continuously improve the prediction of the 
target variable on the basis of the selected process param-
eters, the planning algorithm is extended by a self-optimizing 
roughness model. By measuring the resulting roughness after 
polishing, a comparison of the predicted and measured rough-
ness results can be made. The measured values are stored in 
a database after each processing so that the database grows 
continuously. This data is fed back into the roughness model-
ling and thus serves to improve the prediction. The knowledge 
of all previous iterations is used to plan the next iteration. By 
using a machine learning method (Support Vector Machine, 
SVM), the model is continuously adapted and improved.

Fig. 1   Method for self-optimizing adaption of process parameters
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3.1 � Simulation of the polishing process

The implementation of the self-optimizing process planning 
is carried out by using algorithms for tool path generation 
and for deriving the locally suitable feed rate. This is based 
on an initially measured topography as well as the actual 
contact surface of the flexible polishing tool. The entire 
planning algorithm is implemented in the material removal 
simulation software IFW CutS which provides an open sim-
ulation platform for the technology-oriented simulation of 
manufacturing processes. IFW CutS offers basic functions 
of a dexel-based geometric process simulation on the basis 
of NC-based tool paths [32].

3.1.1 � Contact width model of the polishing tool

To determine the contact area of the polishing tool at a 
defined inclination angle, only the contact width of the 
path of the polished area is considered. The contact width 
describes the width of the resulting polished path. This is 
due to the fact that for the roughness modelling the result-
ing roughness of the path is decisive and not the interme-
diate contact. Due to the flexibility of the polishing tool, 
the resulting width of the polished path cannot be taken 
directly from the determined cutting conditions of the 
simulation. To determine the contact width, the curvature 
radii are varied in experiments from R = 50 to 120 mm 
for both convex and concave workpieces. In the polish-
ing tests, the depth of cut is varied in three steps (ft = 1; 
1.5; 2 mm). The influence of the inclination angle is not 
investigated in detail any further and is kept constant at 
α = 30° which, based on preliminary tests, represents a 
good compromise between sufficient material removal and 
wear resistance. The feed and cutting speeds are also kept 
constant (vf = 300 mm/min, vc = 15 m/s), as these have no 
influence on the width of the polished path, which can also 
be explained by the geometric conditions.

The widths of the polished paths are found to be largely 
constant over the various radii of curvature, with occa-
sional variations of 1–2 mm when polishing along the cur-
vature. This results from the same contact conditions due 
to the constant angle between tool and workpiece. That 
is achieved by adjusting the inclination angle along the 
curvature during the polishing process. Across the cur-
vature, however, the widths differ with changes in curva-
ture. In this case, the different resulting widths of different 
curvatures from the experiment are mapped using a con-
tact width model (Fig. 2). Thus all possible widths from 
R = 50 to 120 mm of different curvatures are enclosed by 
the ellipse.

The different circles represent the radii of curvature from 
R = 50 to 120 mm for the concave and convex workpieces 
respectively. Each contact width measured in the polishing 

experiments is plotted in this diagram as a horizontal line 
corresponding to its respective radius of curvature, so that 
both ends of the line touch the corresponding circle. An 
ellipse can be placed around these lines, resulting from dif-
ferent widths. The center of the ellipse is located at the tool 
center point (TCP). This is shown on the right side of Fig. 2 
as an example of a depth of cut of ft = 2 mm. Different forms 
of ellipses result from different depths of cut. The parameters 
for describing the ellipse are derived from this. For a depth 
of cut of ft = 2 mm, for example, the ellipse parameters are 
a = 12.2 mm (radius in x-direction) and b = 5.5 mm (radius in 
y-direction). The contact described by these ellipse param-
eters forms the basis for describing the contact conditions 
in the process simulation.

The empirically determined contact width model is imple-
mented in the material removal simulation. The workpiece 
is loaded into the simulation via a point cloud in comma-
seperated value (CSV)-format. Each point in the CSV-file 
contains information about position, orientation and local 
roughness value. This information is transferred to the dex-
els and serves as the basis for creating the dexel grid. So-
called oriented dexels are used for the discretization. These 
are oriented perpendicular to the surface [33]. This property 
makes the representation of curved workpieces with oriented 
dexels particularly suitable.

In each time step, from the quantity of all dexels pen-
etrated by the tool, the roughness is changed only by the 
dexels located within the contact zone. This zone is defined 
by the ellipse calculated from the contact width model. With 
this ellipse surface, the contact zone can be determined with-
out having to explicitly determine the curvature of the work-
piece across the tool, because the ellipse surface contains all 

Fig. 2   Contact width model
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possible widths resulted of different curvatures (from R = 50 
to 120 mm).

3.1.2 � Initial tool path

The initial tool path defines the movement of the tool and 
forms the basis for the adjustment of the process vari-
ables to achieve the desired roughness. It consists of points 
based on the addition of an offset value along the direction 
vector of the surface normal of each dexel. These points 
represent the positions of the tool center point (TCP). 
The offset value is calculated depending on the selected 
depth of cut and the inclination angle between tool and 
workpiece. The initial tool path is obtained by stringing 
together position values of the TCP from the tool. This 
results in polishing paths that run next to each other with-
out overlap and cover the entire surface (full cut). In addi-
tion, the tool moves in the same direction (zig strategy). 
This is advantageous in terms of avoiding abrupt changes 
of direction.

In order to keep the contact width of the polishing tool 
as constant as possible, including for curved components, 
the approach is to keep the inclination angle between the 
tool and the workpiece constant. This is achieved by rotat-
ing the tool in the feed direction in line with the change 
in curvature of the workpiece. The information of the sur-
face normals in the individual dexels is used for this. The 
process simulation and the resulting initial tool path are 
shown in Fig. 3.

3.1.3 � Representation and processing of the local workpiece 
information

In order to store the roughness from the measurement file 
locally as a surface attribute, an algorithm is developed 
which acquires roughness from the measurements quanti-
tatively for a defined surface area and assigns the rough-
ness values to individual points or dexels. This is achieved 
by implementing so-called dexel extenders. Each dexel is 
assigned its own extender. The roughness of individual 
workpiece areas is represented by coloring the dexels based 
on the roughness value stored in the extenders which is also 
shown in Fig. 3. In addition to the roughness, the extend-
ers can also store any information for the respective dexel. 
Along with measured and simulated roughness values, so-
called roughness lists (which contain the roughness values 
of different polishing iterations), locally selected process 
variables, and other variables for simulation and evaluation 
are also stored. The information about the locally selected 
feed rate is later included in the knowledge database from 
the extenders and used for the self-optimizing roughness 
modelling.

The extenders are used to simulate only the change in 
roughness. A shape deviation due to polishing is not con-
sidered, but can be taken into account by cutting the dex-
els. However, the polishing experiments show that there is 
hardly any change in the shape of the workpiece.

3.2 � Adaptation of the polishing process to reflect 
individual processing requirements

The initial tool path is adapted in such a way that more inten-
sive machining is carried out in areas of poor surface qual-
ity or where a specified target roughness has not yet been 

Fig. 3   Resulting initial tool path in the simulation and on the work-
piece

Fig. 4   Polishing planning algorithm
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reached. This is achieved by local reduction of the feed rate. 
Further roughness reduction is achieved by polishing multi-
ple times at the same spot. The procedure for the adaptation 
of the NC-code is shown in Fig. 4. The tool moves according 
to the initial tool path in the material removal simulation. In 
each time step, the local situation is determined by reading 
and evaluating the extenders of the dexels penetrated by the 
tool and located within the contact zone determined by the 
contact width model. Based on the average initial roughness 
value of all penetrated dexels of the contact zone, the appro-
priate polishing case and the corresponding feed rate at this 
point are derived, allowing a maximum roughness reduc-
tion without falling below the selected target roughness. The 
roughness model used for this purpose is based on data from 
polishing experiments. Three different polishing cases are 
distinguished: no change in the feed rate necessary, change 
in the feed rate necessary, and no polishing.

The predicted roughness resulting from the selected feed 
rate is updated in the extenders of the affected dexels. The 
feed rate is updated in the initial NC-code at the respective 
position. As a result, by detecting the change of the polishing 
case, the NC-code segment is only added when the feed rate 
is changed. In places where the target roughness is already 
present, polishing is no longer performed and the polishing 
tool is moved upwards away from the workpiece.

In addition, a choice can be made between two differ-
ent polishing strategies: with the undercutting strategy, pol-
ishing is performed in each case as soon as the measured 
roughness fails to meet the target roughness. The algorithm 
then selects the feed rate with which the maximal possible 
roughness reduction can be achieved without falling below 
the target roughness. If this is not possible, polishing is 
still performed at the feed rate which results in the smallest 
roughness reduction for this situation. Alternatively, with the 
approximate strategy, polishing will only be performed, if 
the roughness predicted from the selected feed rate is equal 
to or above the target roughness after polishing.

Areas are polished repeatedly, if the roughness has not 
yet reached the desired target value. This is done in the 
subsequent polishing iteration. The maximum number of 
polishing iterations is initially specified for repeated pol-
ishing. The planning of the process variables for a polish-
ing iteration is based on the predicted roughness values 
of the previous iteration. For this purpose, the extenders 
contain so-called roughness lists, which store the rough-
ness values for each polishing iteration. During interac-
tion between tool and workpiece, the roughness values of 
the first polishing iteration are updated with the predicted 
roughness value. For the prediction of the following itera-
tion, the values of the first iteration are used as initial 
roughness values. These are then stored in the second 
iteration of the roughness list. This is continued until the 
given number of maximum iterations is reached. The result 

is an adapted NC-code for the individual machining case. 
The generated NC-code, based on CLDATA, is converted 
via the postprocessor and can thus be used on the machine.

4 � Experimental investigations

For the experimental investigations, flat and simple curved 
workpieces are polished with varying parameters and an 
EVE type 1455 flexible polishing tool with the diameter 
D = 26 mm. The silicon carbide grains, which are bonded 
in polyurethane, are coarse enough to achieve the desired 
roughness range. Coarser grains, however, show increased 
wear and consequently higher roughness variations. In 
order to release the grains and ensure stable polishing con-
ditions, all tools are used over a period of 5 min prior to the 
actual experiments. The polishing tools are changed after 
machining each workpiece, at the latest after 20 paths. The 
experiments are performed on a 5-axis machine tool (Sauer 
Ultrasonic 10) without cooling lubricant. The workpiece 
material is brass (Ms 58 according to DIN17660). The flat 
brass samples are ground beforehand in order to achieve 
consistent initial conditions (Ra = 0.3–0.4 μm). For this 
process, the parameter settings vc = 25 m/s, vf = 40 mm/
min, ft = 0.01 mm and axial feed rate vfa = 200 mm/min 
are selected. The roughness measurements are carried out 
by tactile measurements on a Mahr Perthometer Concept 
Kontur with the settings shown in Table 1. Only the center 
of the polished path is measured and the measured values 
are assumed for the complete path.

The curved samples are produced by milling. The 
parameters (vf = 1400 mm/min, vc = 240 m/s, cutting depth 
ap = 0.66 mm, cutting width ae = 2; 1.33; 1; 0.8 mm) are 
chosen in such a way that a comparable initial roughness 
can be achieved. In order to exclude the influence of the 
initial roughness on the polished result, the difference 
between the polished surface roughness and the initial 
roughness ΔRa of the material is selected as the target 
value. In the following, a negative ΔRa indicates a reduc-
tion of the initial roughness.

Table 1   Measurement settings and technical specifications of the sty-
lus profilometer

Parameter Setting

Cut-off
DIN EN ISO 4288

0.8 mm

Roughness parameter
DIN EN ISO 4287

Ra in μm

Measuring direction Polishing direction
Measuring position Center of polished path
Vertical resolution 0.77 nm
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4.1 � Generating training data sets

In the experiments, the isolated influence of the feed rate 
on the roughness is examined in more detail because this 
has the greatest influence according to the screening exper-
iments in [8]. The other parameters are kept constant. In 
the experiments, the feed rate is varied in ten steps from 
vf = 50 mm/min to vf = 500 mm/min. The inclination angle 
is kept constant at α = 30° and the depth of cut at ft = 2 mm. 
The cutting speed is also kept constant at vc = 15 m/s. The 
data from the experiments is used to train the machine 
learning model. The results in Fig. 5 show that a higher 
roughness reduction can be achieved with a slow feed rate, 
which was to be expected. Thus, this parameter can be used 
for process planning to set desired target roughness values. 
In order to model the development of the surface after mul-
tiple machining steps, the samples are polished with varied 
repetition and feed rates. After each pass, the roughness is 
measured. During the experiments, polishing is repeated 
up to five times. The roughness reduction decreases with 
increasing repetition. In some cases, however, a roughness 
increase can also occur. The influence of different initial 
roughness values before polishing, generated by the differ-
ent polishing repetitions, is taken into account for further 
modelling. The increased standard deviations may be due 
to uncertainty of roughness measurement or wear of the 
polishing tool. A systematic error can be excluded because 
the roughness difference is normally distributed. This is 
shown by the Shapiro–Wilk test, where the p-value is 0.25 
and thus above the significance level of 0.05. Furthermore, 
five repeated measurements at the same surface location 
show a standard deviation of 0.003 μm regarding Ra. In 
this context, a reproducible measurement can be achieved 
by the stylus profilometer.

In order to be able to examine the influence of the cur-
vatures of the components, two different radii of curvature 
(R = 60 mm and R = 120 mm) are selected for the convex and 
concave components respectively. For each unique geometry 
of the convex and concave parts, polishing tests are carried 
out by varying the feed rate, depth of cut, and number of 
repeated polishing operations. The feed rate is varied in five 
different step values (vf = 133.2; 200; 300; 400; 466.8 mm/
min). The depth of cut is also varied in five steps (ft = 0.67; 
1; 1.5; 2; 2.33 mm) and the number of polishing operations 
is varied in three steps (N = 2; 3; 4). All factor stage com-
binations are determined by using an orthogonal, rotatable, 
and centrally-composed experimental design. The polishing 
direction is transverse to the milling direction.

4.2 � Extension of the planning algorithm 
with a self‑optimizing roughness model

The planning algorithm is extended with a learning rough-
ness model. In order to improve predictions of the roughness 
difference, the obtained polishing results are fed back to the 
roughness model. For this purpose, it is necessary to provide 
continuously updated data of the measurement after the pro-
cess. For the planning and analysis of the iterative polishing 
process, measured values from a tactile roughness measur-
ing instrument are used. As roughness cannot be measured 
over the entire surface, an interim solution is implemented 
by assigning the measured values over circular zones. The 
actual mean roughness value is measured around the center 
of each circular zone. Each circular zone represents one 
measured value so that all dexels within this circular zone 
have the same values. By selecting the radius and position of 
the circular zones, the entire surface of the workpiece is ini-
tialized with the measured values. For the plane workpiece, 
for example, eight circular zones are evenly distributed over 
the entire workpiece, as shown in the top right-hand corner 
of Fig. 3. The roughness measurements took place at the 
center of each circular zone.

The locally measured values before and after polishing, 
the locally selected process variables, as well as each pre-
dicted roughness are stored in the respective extenders. The 
resulting process information is exported from the extenders 
and stored in a knowledge database. The knowledge database 
then proceeds to grow with each polishing iteration and the 
generated roughness function is trained with larger data sets. 
Thus, a feedback of the polishing result into the roughness 
model is realized in order to allow a continuous, iterative 
update and adjustment of the prediction.

An SVM is used for modeling the acquired process data. 
In this study, MATLAB’s “Regression Learner” is applied. 
The settings are listed in Table 2. Other available model 
types such as Linear Regression, Decision Tree, Ensemble 
Learning or Gaussian Process Regression were tested, but Fig. 5   Roughness changes with variation of feed rate
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showed low prediction accuracy for this case. The model 
was trained with data sets from the initial experiments and, 
later, from the knowledge database. The cross-validation is 
applied because of its suitability for smaller data sets. Due 
to the fixed division of the measurement data set into 50 
equally sized segments, one segment is used as validation 
data set and the remaining 49 as training data. After 50 runs, 
in which the segment assignment remains unchanged and the 
segment changes each time as validation data set, each seg-
ment is used once for validation [34]. This allows the data to 

be split randomly, which leads to a more equal distribution 
of the data and avoids overfitting.

Figure 6 shows the derived roughness model. The rough-
ness model achieves a coefficient of determination of 83%.

In order to transfer the ML-model from MATLAB to the 
simulation, an Excel file is generated as output from MAT-
LAB, which contains the roughness function in discretized 
form. Different parameter combinations and the resulting 
changes in roughness are saved as a list for a range and step 
size to be set. For predicting the roughness change in process 
planning, the list is searched for the cases where the initial 
roughness of the list is closest to that of the simulation. The 
corresponding predicted value is used for the simulation 
and the appropriate feed rates are derived from this list. By 
means of an additional category in which the type of cur-
vature is considered, the aspect of workpiece geometry is 
included in the database.

4.3 � Validation of the self‑optimizing planning 
algorithm

The algorithm’s ability to learn over the iterations and 
the self-optimizing planning of polishing processes were 
examined using three workpieces. The workpieces included 
planes (P1, P2 and P3), a single convex curved surface 
(R = 60 mm, R60) and a double concave curved surface 
(R = 90 mm in both directions, R90). On the surface, differ-
ent initial roughness values are produced in various areas by 
milling or grinding. This represents an individual machin-
ing case. The planning algorithm is tested to see how well 
a given target roughness can be achieved using the self-
optimizing polishing process with increasing data sets. The 
applied initial roughness model was based on the experi-
ments presented in Sect. 4.1. The surface is measured after 
each iteration, so that the next iteration is planned based on 
current roughness values. The actual roughness values are 
added to the knowledge base after each iteration and the 
roughness model is updated by re-training.

Table 3 gives an overview of the evaluation of all com-
ponent geometries (P1, P2, P3, R60 and R90) with regard 
to the prediction quality of the roughness change ΔRa. The 
results are evaluated by means of the Root Mean Square 
Error (RMSE). The information from the extenders is used 

Table 2   MATLAB settings of the SVM model

Parameter Setting

App Regression learner
Validation Cross-validation, 50 folds
Model type Cubic SVM
Kernel function Cubic
Kernel scale Automatic
Box constrait Automatic
Epsilon Automatic
Standardize data True
R2 83%

Fig. 6   3D-SVM regression roughness model

Table 3   Prediction accuracy 
(RMSE) of self-optimizing 
polishing using various 
workpieces

Workpiece Iteration

Initial 1st 2nd 3rd 4th 5th

P1 0.07 0.22 0.15 0.31 0.08 0.06
P2 0.07 0.10 0.05 0.04 Done Done
P3 0.07 0.13 0.02 0.02 Done Done
R60 0.05 0.28 0.00 0.04 Done Done
R90 0.05 0.15 0.07 0.25 0.03 0.07
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for the analysis by comparing the measured roughness 
values with the predicted roughness values. For P2 and 
P3, the waviness of the milling process is not taken into 
account in the roughness measurement and is filtered out 
accordingly. In addition, polishing is performed with the 
approximate polishing strategy. For P1, on the other hand, 
the waviness is taken into account, which resulted in more 
polishing iterations being necessary. This distinction is not 
necessary for the remaining components, as they do not 
show any waviness due to the grinding process. For P1 and 
the curved components, the undercutting polishing strat-
egy is chosen. It can be generally seen that the deviation 
in the first iteration has increased for all parts compared 
to the starting data set in iteration 0. A possible explana-
tion is the different range of the initial roughness between 
the experiments in Sect. 4.1 and the one generated here. 
Some of the workpieces exhibit initial roughness values 
that are also higher in some areas than those of the previ-
ous experiments. With increasing iterations, however, the 
RMSE value tends to decrease, which indicates a smaller 
deviation between the measured and predicted value. This 
shows the learning ability of the method with continuous 
adaption of the roughness model. The planning time is 
only significantly longer if the model is re-trained after 
each iteration. However, this can be done in larger inter-
vals if the quality of prediction is sufficient.

Figure 7 depicts exemplary the development of the 
roughness over the course of three polishing iterations for 
the surfaces P2 and P3. It can be seen that four areas with 
different initial roughness values can be distinguished. 
The aim of the polishing process is in all cases to reduce 
the roughness to Ra = 0.2 µm. The results show that the 
surface quality improves with repeated machining. In this 
case, the target roughness is largely achieved after three 
iterations. In areas where the target is already achieved, 
repeated polishing no longer takes place (grey areas).

The validation shows that the approach works for differ-
ent workpieces. In Fig. 7 it is demonstrated that P2 and P3 
produce similar results after three iterations. Existing chal-
lenges are firstly the measurement method. Non-polished 
areas show a deviation of up to 0.06 μm after measuring 
again in the following iteration (Fig. 7). This is due to the 
fact that the previous measuring position cannot be hit 
exactly in the following measuring process. Moreover, the 
milling process produces a modified initial surface condi-
tion which differs from the training data set. Especially 
at higher initial roughness values around 0.7 μm, the pol-
ished roughness of P2 and P3 shows higher deviations in 
comparison with lower initial roughness values in further 
iterations. Nevertheless, the model is capable of dealing 
with different initial situations and is able to derive appro-
priate process parameters to obtain the target roughness.

5 � Conclusion and outlook

Process planning for finishing operation of complex work-
piece geometries is usually done manually, which requires 
expert knowledge. In this study, an approach is presented 
for a self-optimizing planning of a polishing process, 
which aims to achieve a desired surface roughness inde-
pently of the initial roughness. For this purpose, a digital 
process chain and a learning roughness model based on 
SVM were developed. Although the polishing process 
itself is characterized by several influencing parameters, 
a prediction accuracy of 83% could be achieved. Based on 
the model an iterative procedure allows to adapt the polish-
ing process in a self-optimizing manner. The approach was 
validated using plane and curved workpiece geometries.

In future work, it will be investigated to what extent 
the model accuracy can be improved by adding further 
input parameters such as tool wear and suitable surface 
measurement methods. Additionally, the transferability of 
the planning approach will be investigated by means of 
further set-ups such as new polishing tool and workpiece 
combinations. In this respect, the learning capability for 
unknown conditions will be validated.
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