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Abstract
We present a concurrent material and structure optimization framework for multiphase hierarchical systems that relies on
homogenization estimates based on continuum micromechanics to account for material behavior across many different
length scales. We show that the analytical nature of these estimates enables material optimization via a series of
inexpensive “discretization-free” constraint optimization problems whose computational cost is independent of the number
of hierarchical scales involved. To illustrate the strength of this unique property, we define new benchmark tests with several
material scales that for the first time become computationally feasible via our framework. We also outline its potential in
engineering applications by reproducing self-optimizing mechanisms in the natural hierarchical system of bamboo culm
tissue.

Keywords Multiphase topology optimization · Concurrent design · Continuum micromechanics · Homogenization ·
Hierarchical systems · Sensitivity analysis

1 Introduction

Natural materials such as wood, bone, or rocks and
soils (Wegst et al. 2015; Zheng et al. 2014) can be
considered multiphase and multiscale systems, whose
multiphase composition evolves over multiple length
scales, with heterogeneities ranging from micrometers
to centimeters. Their complex multiphase hierarchical
organization in conjunction with mechanical, physiological
and reproductive constraints poses significant challenges for
the study of their behavior. In particular, natural materials
develop self-optimizing mechanisms across multiple scales,
driven by the environment in which they are created
(Wölf 1986; Gibson 2012; Gao et al. 2003). A rational
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understanding of these mechanisms help pave the way
forward to many engineering applications such as the
genetic tailoring of crops (Brulé et al. 2016; McCann et al.
2014), bone remodeling and patient-specific diagnostic
simulations (Rodrigues et al. 2002b; Blanchard et al. 2016;
Nguyen et al. 2017), and the fabrication of bioinspired
engineering materials (Wegst et al. 2015; Holstov et al.
2015).

In the literature, one can find several classes of methods
that work towards that goal. Substantial progress has been
made over the past three decades in topology optimization
methods (Bendsøe and Kikuchi 1988; Bendsøe 1989;
Bendsøe and Sigmund 2013; Wang et al. 2003; Sigmund
and Maute 2013), which have been extended to optimize
multiscale systems (Coelho et al. 2009; Radman et al. 2013;
Cadman et al. 2013; Gao et al. 2019; Wang andWang 2004).
In this context, integrating homogenization in topology
optimization is a well-established concept, often applied in
conjunction with relaxation to ill-defined 0-1 type problems
(Bendsøe and Sigmund 2013; 1999; Hassani and Hinton
1998; Allaire and Aubry 1999) and implemented through
computational homogenization or “unit-cell” methods (Fish
2013; Michel et al. 1999; Guedes and Kikuchi 1990;
Fritzen et al. 2016; Xia and Breitkopf 2017). The increase
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in design variables, however, driven exponentially with
each additional scale, restricts existing methods to simple
scenarios with essentially no more than two scales.

The idea of concurrent multiscale analysis and topology
optimization (Xia and Breitkopf 2014; 2015; Rodrigues
et al. 2002a; Coelho et al. 2008; Nakshatrala et al. 2013)
is to divide the multiscale problem into two nested sub-
problems, one at the macroscale (structure) and the other
at the microscale (material). At each macroscale material
point, the microstructure is optimized under macroscale
influence. In turn, the microscale sub-problems at material
points provide the constitutive material behavior for the
macroscale structure optimization problem. Due to their
large computational cost, existing methods are limited to
small two-scale problems. In particular, they are unable to
handle multiphase hierarchical systems. We note that as a
first step out of this dilemma, the material sub-problem
has been formulated in the context of rule-of-mixture-based
homogenization methods (Jog et al. 1994; Theocaris and
Stavroulakis 1999).

From a multiscale analysis viewpoint, the cost for resolv-
ing hierarchical scales computationally, e.g., through mul-
tiscale finite elements (Efendiev et al. 2013; Nguyen and
Schillinger 2019a; 2019b) or computational homogeniza-
tion (Yuan and Fish 2009; Le et al. 2015; Liu et al. 2016;
Bessa et al. 2017), increases exponentially with each addi-
tional scale, making the computational treatment of mul-
tiphase hierarchical systems prohibitively expensive. Con-
tinuum micromechanics provides a rigorous framework to
analytically transfer statistical information of multiphase
hierarchical systems, such as volume fraction, shape of
constituents, and interaction between constituents into esti-
mates of associated macroscale properties (Zaoui 2002;
Suquet 2014). Continuum micromechanics-based homog-
enization has been successfully applied to describe nat-
ural multiscale systems such as wood, bone, or cement
(Fritsch and Hellmich 2007; Fritsch et al. 2009; Pichler
and Hellmich 2011; Morin et al. 2017; Hofstetter et al.
2005). In our recent work (Gangwar and Schillinger 2019;
Gangwar et al. 2020), we showed that continuum microme-
chanics models can accurately predict both linear elastic and
inelastic behavior of plant materials. We also demonstrated
that each hierarchical level can be statistically characterized
through microimaging techniques.

In this article, we combine well-established and mature
results from the continuum micromechanics and topology
optimization frontiers to derive an efficient concurrent
material and structure optimization method that can
tackle the computing challenge of optimizing multiphase
hierarchical systems. Our method is based on the division of
the compliance minimization problem in two sub-problems,
utilizing the pointwise definition of material design
variables. The master problem optimizes the macroscale

distribution of a set of materials, whereas slave problems at
each material point optimize homogenized properties with
respect to microscale design variables expressed within a
continuum mechanics framework.

Our article is structured as follows. In Section 2, we
briefly review relevant principles of continuum microme-
chanics in the light of multiscale topology optimization. In
Section 3, we discuss the concurrent material and struc-
ture optimization formulation, including a definition of
the admissible design space for both sub-problems. In
Section 4, we discuss the finite element discretization of
the master problem and the implementation of both master
and slave problems within a general optimization algorithm.
In Section 5, we define new test problems that illustrate
the efficiency of our method, and apply our framework
for understanding self-optimizing mechanisms of bamboo
culm. We close with a summary and outlook in Section 6.

2Multiscaling concepts in continuum
micromechanics

Continuum micromechanics forms a rigorous foundation
for the analytical estimation of homogenized properties
of hierarchical systems with random microstructures. In
this section, we briefly review basic multiscale analysis
principles that we will use later in the context of concurrent
material and structure optimization.

2.1 Foundation principles

The goal of any homogenization method is to replace
the actual complex heterogeneous medium with a ficti-
tious homogeneous one that has equivalent global behavior
(Zaoui 2002; Suquet 2014). Figure 1 illustrates the key
concepts. An important objective is to establish an “equiv-
alent homogeneous element” whose mechanical response
is equivalent to a representative volume element (RVE) of
the microheterogeneous material. For the existence of such
an RVE, a minimal requirement is that the characteristic
length, d , of the considered inhomogeneities and deforma-
tion mechanisms is much smaller than the size, l, of the
RVE. As a consequence, the RVE can be considered repre-
sentative of the material in the macroscaleally homogeneous
body (see Fig. 1). Moreover, l must be much smaller than
the characteristic length scale of the variation in the load-
ing on the macroscale structure, L. Therefore, proper scale
separation implies that:

d � l � L. (1)

We start with the variational form of the macroscale
boundary value problem defined on a domainΩ as shown in
Fig. 1. The domain is subjected to traction t at the Neumann
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Fig. 1 Homogenization and
multiscale principles

boundary ΓN and prescribed displacements at the Dirichlet
boundary ΓD with a body force field b. The weak form
states: Find a macroscale displacement field ū ∈ U such
that∫

Ω

Σ(ū) : E(v) dΩ =
∫

Ω

b·v dΩ+
∫

ΓN

t ·v ds, ∀v ∈ U,

(2)

where the spaceU of test and trial functions is kinematically
admissible. A constitutive relation between the stress Σ and
the strain E will close this boundary value problem.

Figure 1 schematically illustrates the homogenization
framework for establishing the relation between Σ and
E. The macroscale strain tensor E is calculated for each
material point in the domain Ω . Next, E is utilized to
formulate boundary conditions imposed on the microscale
RVE. A numerical solution or an analytical estimate
of the microscale boundary value problem will provide
the macroscale stress tensor Σ . The nature of boundary
conditions on the microscale RVE is unknown, and that
makes the microscale boundary value problem an “ill-
posed” problem. Assumptions on the boundary conditions
have to be made to define this boundary value problem.

2.2 Microscale problem and choice of boundary
conditions

According to the homogeneous strain boundary conditions,
the RVE is subjected to prescribed surface displacements
ug(x, ȳ) at the boundary such that:

ug(x, ȳ) = E(x) · ȳ. (3)

Here, any field f (x, y) denotes a microstructural field
variation in the RVE domain Ωy situated at a macroscale
material point x. The position vector at the boundary of
the RVE is denoted by ȳ. The corresponding kinematically

compatible microscale trial strain field e(x, y) inside the
RVE fulfills an equivalent volume average as:

〈e(x, y)〉Ωy = 1

|Ωy |
∫

Ωy

e(x, y) dΩy = E(x). (4)

Similarly, homogeneous stress boundary conditions rely
on surface tractions T g(x, ȳ) that are prescribed at the
boundary and produce a constant stress Σ(x) in the
fictitious homogeneous material at a point x:

T g(x, ȳ) = Σ(x) · n, (5)

where n is the unit outward normal at the boundary of the
RVE. Any equilibrated trial stress field τ (x, y) in the RVE,
that is, ∇y · τ (x, y) = 0, obeys:

〈τ (x, y)〉Ωy = 1

|Ωy |
∫

Ωy

τ (x, y) dΩy = Σ(x). (6)

We assume that all constituent phases in the RVE are
linear elastic and perfectly bonded with each other. This
assumption allows us to define a strain energy potential

inside the RVE domain Ωy as:

(7)

where defines the linear elastic tensor at the
microscale RVE situated at the macroscale material point
x. The principle of minimum potential energy at the
microscale RVE is based on the actual strain field ε in the
RVE as:

(8)

where is the set of kinematically admissible trial
strain fields following the homogeneous strain boundary
conditions (3) and (4).
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For the linear elastic constituent phases, the effective
strain energy potential at the macroscale is:

(9)

where is the homogenized stiffness tensor at the
macroscale material point x. Following (8), (9), and Hill’s
Lemma, we conclude:

(10)

Relation (10) bridges macro- and microscales. Given a
complete material and geometric description of the RVE,
(10) can be solved numerically. In the case of partial
statistical information, however, only suitable estimates to
can be obtained, which we summarize in the following

subsection. We can also derive an equivalent statement
to (10) for the complementary stress potential with the
statically admissible trial stress field set as:

(11)

2.3 Homogenization based on Eshelby’s analytical
solution

The linear constitutive relations for the constituent phases
in the RVE imply that the trial strain and stress fields (e, τ )
must be linear and homogeneous with respect to E and Σ .
Therefore, e and τ can be written in terms of the strain and
stress concentration tensors and as:

(12)

Using these relations in (10) and (11), we arrive at the
following bounds:

(13a)

(13b)

It is clear from (13) that the estimation of the concentration
tensors and will result in the upper and lower bound
for the homogenized stiffness . The simplest choice for

and is to assume a uniform strain or stress state
throughout the RVE, i.e., or , where is a
fourth-order symmetric unit tensor. This choice leads to the
well-known Voigt and Reuss estimates, which have been
used in topology optimization as an interpolation between
solid and void (Swan and Kosaka 1997a, b). However, the
Voigt-Reuss bounds do not consider any other statistical
information beyond the volume fraction.

Homogenization schemes based on Eshelby’s matrix-
inclusion solutions can incorporate the volume fraction,
the shape of phases, and their interaction with each other.

Eshelby’s problem relates strains in an ellipsoidal inclusion
perfectly bonded with the surrounded homogeneous infinite
elastic matrix to the applied homogeneous strains at infinity.
We denote the elastic moduli of the ellipsoidal inclusion
and the matrix as and , respectively. The strains in
the inclusion in response to the homogeneous strain E0

at infinity are uniform. The uniform strain field εH in the
inclusion is:

(14)

The Hill tensor characterizes the morphology of the
inclusion and its interaction with the surrounding matrix.

depends on the shape and orientation of the inclusion
as well as the stiffness tensor of the reference matrix .

Analytical expressions for can be found in Laws (1977),
Laws (1985), and Masson (2008).

An important consequence of Eshelby’s analytical
solution is that the strain field in the inclusion is uniform.
Given the uniform stiffness moduli of the phases in the RVE,
we can replace the stress and strain fields in the phases with
the average stress and strain values σ r and εr . Following (4)
and (6), we write E and Σ in terms of εr and σ r as:

E =
∑

r

φrεr and Σ =
∑

r

φrσ r , (15)

where φr is the volume fraction of the phase r . Following
(12), we can relate the average micro-strain εr and the
macro-strain E via an average concentration strain tensor
:

(16)

We combine (15) and (16) with the phase constitutive
relation . Comparison with the macroscale
constitutive relation yields the homogenized
estimate of stiffness in terms of the volume fraction,
stiffness, and localization tensor of constituent phases as:

(17)

For the estimation of , we approximate the average
strains in each phase r by the inclusion strains εH in
(14), i.e., εr = εH . It implies that the average strains εr

in each phase of the RVE are considered equal to those
of an ellipsoidal inhomogeneity with the phase stiffness
, embedded in a fictitious infinite matrix with stiffness
, subjected to some homogeneous strain E0 applied at

infinity. Using the strain average rule in (15), we find a
relation between the homogenized macro-strain E and the
homogeneous strainE0 at infinity in the fictitious matrix as:

(18)
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With εr = εH , the substitution of E0 in (14) and the
comparison with (16) yields the following estimate of the
concentration strain tensor :

(19)

The homogenized stiffness follows from (17) as:

(20)

where s is a free index for each phase in the RVE. Expres-
sion (20) relies on the statistical characterization of the
RVE, including the volume fraction of constituents, geo-
metric characteristics such as orientation and shape of
constituents, and morphological characteristics such as the
interaction of different constituents in the RVE. The ana-
lytical expression (20) can replace the microscale boundary
value problem (10), modeling hierarchical materials through
sequential upscaling from the lowermost to the macroscale.

Remark 1 A typical topology optimization problem intends
to find the optimal distribution of one material as opposed
to voids denoted by a “0-1” integer parametrization (often
called black and white design). This problem is ill-posed
as non-convergent finer geometric details are obtained with
mesh refinement (Allaire and Aubry 1999). The existence

of such solutions relies on relaxation, that is, replacing inte-
ger variables with density-like continuous variables. The
relaxation is achieved by “homogenization / interpolation”
between solid material and void. One such example is the
famous solid isotropic material with penalization (SIMP)
model. BENDSØE and SIGMUND showed in Bendsøe and
Sigmund (1999) that these artificial interpolation models
fall within a framework of micromechanics-based models in
many physically realizable circumstances. Thus, the relax-
ation is naturally built in our continuum micromechanics-
based homogenization approach. This allows us to use
gradient-based optimization approaches as outlined in this
paper.

3 Concurrent material and structure
optimization in amicromechanics
framework

In this section, we formulate a minimum compliance (or
maximum stiffness) problem for concurrent material and
structure optimization, departing from Xia and Breitkopf
(2014), Rodrigues et al. (2002a), and Theocaris and
Stavroulakis (1999).

3.1 Aminimum compliance formulation based on
micromechanical design variables

As illustrated in Fig. 2, we assume a fixed reference domain
Ω subjected to traction t at the Neumann boundary ΓN

and prescribed displacements at the Dirichlet boundary

Fig. 2 Sketch of a representative problem for material optimization in a continuum micromechanics framework

1179



T. Gangwar and D. Schillinger

ΓD with a body force field b. At each material point
x, microstructural heterogeneities are described by a
set m(x). The set m(x) contains the geometric and
mechanical characterization of phases that span multiple
well-separated microscales, consisting of volume fraction,
material properties, shape, and orientation of the different
phases in the hierarchical system. Assuming linear elastic
behavior of all constituents, the homogenized macroscale
stiffness at each material point x depends
on the density ρ(x) and the set m(x). Our design vector is
therefore [ρ(x), m(x)]T .

We write a minimum compliance problem in the
displacement-based formulation as:

(21)

where U denotes the space of kinematically admissible
displacement fields ū, and E(ū) denotes the linearized
strains. and Ead define the set of admissible design
variables at the macroscale and microscales, respectively,
with possible design constraints. The admissible set
that seeks a limit on the total material mass Mreq available
for design can be written as:

(22)

where ρmin and ρmax are the bounds on the macroscale
material density ρ.

The definition of the admissible set Ead is again
illustrated via the multiscale configuration shown in Fig. 2.
We observe a well-separated three-scale hierarchical system
with three base constituent materials denoted as Materials
A, B, and C with densities ρA, ρB , and ρC , respectively.
At a material point P, the volume fraction of Materials B
and C at the lowermost scale are γB and γC such that
γB + γC = 1. Material B forms spherical inclusions in
the matrix of Material C at this scale. The homogenized
material from this scale forms the matrix M that hosts
Material A inclusions with the orientation θA and the
elongation ratio ζA at the mesoscale. The density of the
matrix M is simply ρM = (γBρB + γCρC). The volume
fractions of Material A and matrix M are φA and φM with
φA + φM = 1. The microstructure characterization field set
m(x) is {φA(x), θA(x), ζA(x), γC(x)}.

We can thus write the admissible set Ead as:

Ead = {m(x) | ρ(x) = ρAφA(x) + ρM(x)(1 − φA(x)),

0 < φmin
A < φA(x) < φmax

A ≤ 1,

ρM(x) = ρB(1 − γC(x)) + ρC γC(x),

0 < γmin
C < γC(x) < γmax

C ≤ 1,

θA(x) ∈ [−π/2, π/2],
ζA(x) ∈ [1, ζmax], x ∈ Ω

}
. (23)

Here, the volume fraction of Material A is bounded by
φmin

A and φmax
A , and the volume fraction of Material C

is bounded by γmin
C and γmax

C at their respected scales.
Also, the elongation ratio of the Material A inclusions
is bounded by ζmax. These bounds may reflect additive
manufacturing constraints on multimaterial composite
systems or biological constraints in natural materials.
We emphasize again that the multiscale configuration of
Fig. 2 is used for the purpose of illustration, but is easily
generalized to cover any other multiphase hierarchical
system.

3.2 Decomposition intomaster and slave problems

We note that for a given macroscale density field ρ(x), the
admissible set Ead is defined pointwise in the domain Ω .
It allows us to decompose the design formulation (21) as
follows:

(24)

The variational structure of (24) corresponds to a saddle
point problem with respect to the admissible set Ead and
the space of kinematically admissible displacements U .
LIPTON worked out in detail and proved the essential
conditions that are required for this property to hold (Lipton
1994). This saddle point nature allows us to interchange
the second and third operators (max and min). This
interchangeability along with the pointwise definition of
Ead is crucial for decomposing the problem into material
and structure optimization sub-problems (Jog et al. 1994).

In the following, we exploit this property to define
“master” and “slave” sub-problems. We rewrite formulation
(24) as:

(25)

1180



Concurrent material and structure optimization of multiphase hierarchical systems...

We reformulate (25) by defining the pointwise maximum
strain energy density Φ and splitting it into two sub-
problems. The outer “master” problem is:

(26)

The pointwise maximum strain energy density sub-problem
or “slave” problem is:

(27)

A combination of (26) and (27) constitutes the con-
current material and structure optimization model. For a
given material density distribution ρ(x), the maximization
problem (27) determines the stiffest material microstructure
configuration for the evaluated macroscale strain at each
material point x. The minimization problem in (26) looks
for the kinematically admissible equilibrated displacement
field for a given density distribution ρ(x). The locally opti-
mum strain energies Φ in (26) are driven by the pointwise
maximization problems in (27) that again depend on the
displacement field solution ū. This interdependency makes
the equilibrium problem a constitutively nonlinear elastic-
ity problem. Finally, the outer maximization problem (26)
seeks the optimal material distribution ρ(x) in the domain
Ω .

Remark 2 The current formulation decomposes the struc-
ture and material optimization problem by exploiting the
saddle point property of the variational structure of compli-
ance minimization. This decomposition is possible, albeit
not straightforward, if other optimality criteria based on,
e.g., minimal mass, stress, displacement control, or natu-
ral frequency are used. In this context, a general multiscale
optimization formulation that decomposes structure and
material level problems according to a general optimality
criterion was recently presented in Sivapuram et al. (2016).
Our approach could be integrated in such a formulation,
replacing computationally costly computational homoge-
nization calculations by analytical micromechanics-based
estimates

4 Finite element discretization
and implementation

In this section, we focus on the finite element discretiza-
tion of the concurrent material and structure optimization

formulation and corresponding algorithmic aspects. This
includes the treatment of the nonlinearity that results from
the interaction between material-scale and structure-scale
optimization, and a review of macroscale density optimiza-
tion, including essential sensitivity analysis. For illustration
purposes, we continue to write out our formulation for the
special case of the multiscale configuration shown in Fig. 2,
but emphasize again that it is easily generalized to cover
any other multiphase hierarchical system. In the following,
we use vector-matrix notation to represent the introduced
quantities, consistent with standard finite element literature
(Hughes 2000). However, we keep the same symbols for the
respective vector-matrix notation.

4.1 Master problem: structure optimization

We discretize the concurrent material and structure design
formulation presented in Section 3 with standard finite
elements (Hughes 2000). To this end, we split the domain
Ω into Ne finite elements, where each element has Ngp

Gauss quadrature points. For our example material in Fig. 2,
the topology design variables [ρ(x), m(x)]T can now be
defined elementwise as:

ρ = [ρ1, ρ2, ρ3, ..., ρNe ],
m = [(m1

1, .., m
Ngp
1 ), (m1

2, ..,m
Ngp
2 ), ..., (m1

Ne
, ..,m

Ngp
Ne

)],
mx

j = [φx,j
A , θ

x,j
A , ζ

x,j
A , γ

x,j
C ], x = 1, ..., Ngp, j = 1, ..., Ne.

(28)

The macroscale density ρj is assumed to be constant
in each element, with j being the element index. The
microscale design variable set m is defined at each
(macroscale) Gauss point, with x being the Gauss point
index. The microscale design variable mx

j consists of

volume fraction φ
x,j
A , orientation θ

x,j
A , elongation ζ

x,j
A ,

all for Material A , and volume fraction γ
x,j
C of

Material C.
We can relate the macroscale stress Σ with the

macroscale strain E at a Gauss point x inside element j in
terms of the design variables ρj and mx

j as:

(29)

where is the homogenized stiffness at this point.
Interested readers can find the analytical expression for ,
derived from continuum micromechanics, in Appendix 1.
The macroscale strain E(x) at a point x inside element j

is approximated by the element displacement vector ūj of
the element j and the strain-displacement matrix B(x) that
contains shape function information:

E(x) ≈ B (x) ūj . (30)
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Denoting the compliance of the system with fc(ρ), we
obtain the following discretized formulation of the “master”
problem (26) utilizing the definitions (28) to (30):

minρ : fc(ρ) = f T
extū

s.t. : r̄(ū, ρ, m̄) = 0

M(ρ) =
Ne∑
j=1

ρj |Ωj | = Mreq = Mfrac × ρC × |Ω|
ρj ∈ [ρmin, ρmax], ∀j = 1, 2, ..., Ne.

(31)

The quantities in (31) require further explanation: f ext is
the external force vector, ū is the global displacement vector
that represents the converged macroscale displacement
solution, and M(ρ) is the total mass of the occupying
domain, where ρj and |Ωj | are the density and the volume
of element j , respectively. The total available mass Mreq

can be expressed in terms of fraction Mfrac with respect to
the mass when the densest material occupies the complete
domain. The force residual at the macroscale scale is
defined as:

(32)

where wx contains the Gauss point weight and the
determinant of the Jacobian matrix and ūj is again
the element displacement vector of element j . We
observe that the microstructure design variables m are
implicitly accounted for by r̄ . At each Gauss point x,
the homogenized stiffness is evaluated based on a
microstructure configuration m̄ that maximizes the local
strain energy.

Identifying the term in the bracket inside (32) as the
element stiffness matrix for element j , we can rewrite (32):

r̄(ū, ρ, m̄) = f T
ext − K(ρ, m̄(ū))ū, (33)

where K denotes the global stiffness matrix of the
system. For a given macroscale density distribution ρ,
the microstructure m defined at each Gauss point is
optimized with respect to the macroscale strains evaluated
at each Gauss point according to (27). The optimized
microstructure configuration m̄ updates the macroscale
constitutive behavior that is incorporated in K .

4.2 Slave problem: material optimization

For a given material distribution ρ and displacement
solution ū, the formulation of a “slave” problem (27) at a

Gauss point x inside element j is:

(34)

where σ and ε are the stress and strain fields inside the
microscale RVE region Ωy situated at the Gauss point x.
It is important to note that we keep (34) in tensor notation,
considering its direct relation with Section 2. The optimized
configuration m̄x

j that maximizes the strain energy density
is sought in the microscale design variable space mx

j =
[φx,j

A , θ
x,j
A , ζ

x,j
A , γ

x,j
C ]. All the microstructure constraints

directly follow from the admissible set Ead defined in (23).
The first two conditions in (34) represent equilibrium

and strain compatibility in the microscale RVE as discussed
in Section 2.2, and correspond to the strong form of the
variational statements (10) and (11). If the microstructure
is deterministic, these equations can be discretized and
solved using the finite element method. The volumetric
average of the stress σ over the microscale RVE volume
uses the macroscale stress, and hence the homogenized
stiffness . In Section 2.3, we derived the estimates
for based on continuum micromechanics, when only
partial statistical information about the microstructure is
available (see also Appendix 1). The analytical expression
(53) renders (34) a straightforward “discretization-free”
constraint optimization problem that can be solved by
standard gradient-based methods (Boyd et al. 2004).
Interested readers are referred to Appendix 1 for a brief
discussion on solving the microscale optimization problem.
The solution of (34) at each Gauss point yields the
optimized microstructure configuration set m̄.

4.3 Interaction of material and structure scales

Due to the interaction of the material and structure scales,
the equilibrium equation (33) is nonlinear. Our approach
to resolve this nonlinearity is based on Xia and Breitkopf
(2014). For a given macroscale density distribution, we
intend to find the equilibrium solution that minimizes the
compliance of the system. We may find many possible
solutions of the microstructure variable set m that can
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potentially satisfy the macroscale equilibrium. We illustrate
this point in Fig. 3. For a given external force vector f ext,
many equilibrium solutions exist at the structure scale,
depending on different macroscale variable sets. However,
we are only interested in the admissible equilibrium solution
that minimizes the compliance (or maximizes the stiffness)
of the system, lying on a representative load-displacement
curve. We can write this preposition mathematically as
follows:

min
ū∈ūsol

f T
extū, s.t. : Ksol(ρ, m̄(ūsol))ūsol = f ext , (35)

where ūsol is the set of admissible equilibrium displacement
solutions and Ksol is the stiffness matrix of the system.

It is apparent from Fig. 3 that the solution ū that
satisfies (35) is the first converged displacement solution
highlighted by the solid-red line. We can iteratively find this
solution, using a quasi-Newton method based on the initial
stiffness K0. We illustrate this procedure in Fig. 3 by the
displacement solutions shown in dashed-red lines. Given the
known solution ūk at the kth iteration, we find the increment
in the solution Δūk as:

K0Δūk = f ext − f k
int . (36)

The internal force vector f k
int is evaluated with the known

displacement solution ūk as:

(37)

m̄
x,k
j is obtained by solving the microstructure optimization

problem (34), where kinematic boundary conditions are
derived from the displacement solution ūk . The iterative
solution stops when the displacement convergence criteria
is met. The optimum solution of the microscale design
variables and the corresponding stiffness at the converged

Fig. 3 Quasi-Newton method with initial stiffness that resolves the
nonlinearity based on the interaction of material and structure scales

displacement solution ū are m̄(ū) and Kopt(ρ, m̄(ū)),
respectively. The objective function fc(ρ) is:

fc(ρ) = f T
extū = ūT Kopt(ρ, m̄(ū))ū. (38)

4.4 Sensitivity analysis andmacroscale design
update

The macroscale design problem (31) can be solved by well-
established optimization algorithms (Bendsøe and Sigmund
2013; Xia and Breitkopf 2017). First, we need to derive
the sensitivity of the objective function with respect to the
design variables. Using the adjoint method, we write the
sensitivity of the objective function fc with respect to the
macroscale design variable ρ as Bendsøe and Sigmund
(2013):

∂fc

∂ρ
= −ūT ∂Kopt(ρ, m̄(ū))

∂ρ
ū. (39)

Using (32), we rewrite the sensitivity for each element j

with respect to its density ρj as:

(40)

The homogenized stiffness at each Gauss
point inside an element j is a function of microscale
variables φ

x,j
A , θ

x,j
A , ζ

x,j
A , and γ

x,j
C (see Appendix 1).

Furthermore, φx,j
A and γ

x,j
C relate to ρj via (34). Using the

chain rule, we find the first derivative of with respect to
ρj as:

(41)

where the partial derivatives of with respect to φ
x,j
A

and γ
x,j
C are evaluated at the optimum solution m̄ of the

microscale design variables. We evaluate these derivatives
using finite difference approximations. Using (34) and
standard algebraic manipulation, we arrive at the following
expressions:

(42)

Sensitivity numbers rank the element sensitivities that
are used to update the macroscale design variable.
The sensitivity numbers for the compliance minimization
problem are:

αj = − ∂fc

∂ρj

. (43)
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To avoid mesh dependency and checkerboard patterns,
the sensitivity numbers are first smoothed with a filtering
scheme defined as:

αj =
∑Nj

j ′=1 gjj ′ αj∑Nj

j ′=1 gjj ′
, (44)

where Nj is the set of neighboring elements for which
center-to-center distance Δ(j, j ′) to element j ′ is smaller
than the filter radius rmin. The weight factor gjj ′ is defined
as:

gjj ′ = max {0, rmin − Δ(j, j ′)}. (45)

To improve convergence, the sensitivity numbers are further
averaged with the sensitivity numbers of the previous design
iteration as:

αi+1
j → (αi+1

j + αi
j )/2. (46)

The ratio of sensitivity numbers and the mass constraints
is written as:

Bi
j =

(
αi

j

Λi |Ωj |

)η

, (47)

where Λi is the Lagrange multiplier corresponding to the
total material mass constraint in design update i, and η is
a damping parameter. We emphasize that mesh dependency
and convergence are two critical issues for any topology
optimization algorithm. The heuristic scheme summarized
in (44) to (47) has been shown to overcome these challenges
for mesh-susceptible problems such as “0-1” type and path-
dependent inelastic designs (Xia et al. 2018; Xia et al.
2017).

The macroscale density is updated using the well-known
optimality criteria method (Sigmund 2001):

ρi+1
j =

⎧⎪⎨
⎪⎩
max(ρmin, ρ

i
j − μ) if ρi

jB
i
j ≤ max(ρmin, ρ

i
j − μ)

min(ρi
j + μ, ρmax) if min(ρi

j + μ, ρmax) ≥ ρi
jB

i
j

ρi
jB

i
j otherwise

(48)

To prevent a singular global stiffness matrix, the lower
limit ρmin on ρj is limited by a small value of 0.001.
The maximum possible element density, ρmax, depends on
the density of the constituents at the microscales and the
prescribed bounds in (23). μ is a small move parameter that
improves the stability, for instance by preventing multiple
holes appearing and disappearing during optimization. The
Lagrange multiplier Λi is updated using the bisection
method to satisfy the mass constraint. The design iterations
stop when the density convergence criteria is met.

4.5 Algorithmic framework

We cast our developments in the algorithmic framework
summarized in Algorithm 1 that mainly consists of three
blocks. The outer block represents the macroscale structure
optimization iterations using the optimal-criteria method. It
stops when the macroscale density ρ reaches convergence.
The innermost block optimizes the microstructure with
respect to the microscale design variables m for all Gauss
points with the prescribed macroscale strain E(x). The
middle block combines the structure and material scales and
solves the boundary value problem for displacements for
a given distribution of macroscale density, following our
discussion in Section 4.3.

We note that in our context the optimal design can take
any value of macroscale density within the allowable
range or so-called gray intermediate densities. However, the
design framework can be modified for the discrete topology
optimization setting with 0-1 type designs. We also note that
bi-directional evolutionary structural optimization (BESO)
and level-set methods (Huang and Xie 2008; Xia et al.
2018; Sethian and Wiegmann 2000; Allaire et al. 2004)
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could replace the optimality criteria method in the current
framework for 0-1 type design problems.

4.6 Computational cost

Integrating homogenization estimates based on continuum
micromechanics in concurrent structure and material
optimization leads to an algorithmic framework whose
computational cost is independent of the number of
hierarchical length scales involved. We briefly illustrate
this significant advantage via a qualitative analysis of the
underlying computational complexity.

With nmacro macroscale optimization iterations, n
eq
itr

average quasi-Newton nonlinear equilibrium iterations, and
ngp gauss points in the macroscale domain, the overall CPU
time scales as:

(49)

Here, Tμ is the average CPU time required for the solution
of one microscale analysis and optimization problem.
We note that nmacro, n

eq
itr, and ngp in (49) are barely

modifiable for a required macroscale spatial discretization.
This restriction leaves us with Tμ for reducing TCPU.

With nested computational homogenization in the sense
of standard FE2 type approaches, the computational
complexity of Tμ for s microscale levels (s = 2 in Fig. 2)
can be approximately written as:

(50)

where n
μ(s)
gp and n

μ(s)
micro denote the number of quadrature

points in the spatial discretization of the RVE at the sth scale
and the number of microstructure optimization iterations
required, respectively.

With continuum micromechanics, Tμ is essentially the
time to solve the “slave” problem (34). As discussed, this
can be achieved by solving a straightforward constraint
optimization problem that seeks the solution in the
microscale design variable space, using fast gradient-based
optimization methods (Boyd et al. 2004). The solution of
a slave problem is equivalent to solve a set of (n + p)
nonlinear equations with (n + p) variables, where n and
p are the total number of design variables and the total
number of equality constraints, respectively. The addition of
another hierarchical scale potentially increases the number
of design variables and constraints in the “slave” problem.
However, a few additional design variables do not lead to an
exponential increase in computational cost required to solve
(34). We detail this computational aspect in Appendix 1. We
can therefore assume that in our approach, Tμ in (49) scales
linearly with each scale characterization.

Focusing on the solution of one microscale analysis and
optimization problem, Fig. 4 compares the scaling of the

µ

Fig. 4 Computational cost of one microscale optimization problem for
different numbers of hierarchical scales

estimated order of the computational cost with increasing
number of materials scales in the two approaches discussed.
We observe that for computational homogenization, even
a simple two-scale (s = 1) problem results in the
explosion of the computational expense. For example, given
a discretization in each microscale RVE of n

μ(1)
gp ≈ 40 ×

40 × 4 and an average number of optimization iterations
n

μ(1)
micro ≈ 20, the total computational expense Tμ is of

order ∼ 105. If we assume the same RVE discretizations
and iteration numbers across multiple scales, we observe in
Fig. 4 that the total increases exponentially when s > 1.
In contrast, the computational cost in our approach remains
within the same order of magnitude, even when s > 1.

5 Numerical examples

In this section, we first define two test examples with
hierarchical systems at the material level that are suitable
to illustrate the computational efficiency and validity of our
concurrent material and structure optimization framework.
We then outline the application of our concurrent framework
for optimizing natural multiphase hierarchical systems,
using the example of bamboo culm.

5.1 Messerschmitt-Bölkow-Blohm (MBB) beam

We first consider a standard bridge-type structure that is
illustrated in Fig. 5. In a structural optimization context,
the macroscale configuration is often referred to as
Messerschmitt-Bölkow-Blohm (MBB) design problem. The
length and height of the macrostructure are 2.0 and 1.0,
respectively. The bottom-left end is pinned, and the bottom-
right end has a roller support. The structure is loaded
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Fig. 5 Multiphase hierarchical
system I: the MBB beam

with a vertical point load of magnitude one, applied in the
middle of the bottom edge of the structure. We discretize
the macroscale structure with a 100 × 50 mesh of 4-
node quadrilateral elements, resulting in 5000 macroscale
design variables. Each element contains four Gauss points,
resulting in 100 × 50 × 4 = 20, 000 “slave” problems.

In the scope of this work, we extend the MBB test case
at the material level. As illustrated in Fig. 5, we consider a
hierarchical system that consists of Materials A, B, and C
at two different length scales. Their densities are ρA = 0,
ρB = 0.5, and ρC = 1.0, respectively; their Young’s moduli
are EA = 0.0, EB = 0.5, and EC = 1.0, respectively;
and Poisson’s ratio of all constituents is 0.3. For Material
A, the elongation ratio of inclusions ranges from ζA = 1
to ζmax

A = 5, and its minimum volume fraction is γA =
0.2. For Material C, the volume fraction at the lowermost
scale is allowed to assume any value between γmin

C = 0
and γmax

C = 1. As a consequence, the macroscale density
at each point is restricted within the range of ρmin = 0
to ρmax = 0.8. We conclude that at each Gauss point,
the material microstructure is parametrized by the volume

fraction φ
x,j
A , the orientation θ

x,j
A , the elongation ζ

x,j
A , and

the volume fraction γ
x,j
C , resulting in 80,000 microscale

design variables.
The total amount of material mass available cannot

fall below Mfrac = 0.4. As an initial condition at the
macroscale, we assume the maximum possible density ρmax

in each element. At the material level, we assume an initial
microstructure configuration with φA = 0.1, θA = 0.0,
ζA = 1.0, and γC = 1.0 at each Gauss point. In each design
update, we reduce the target mass fraction by 0.025 until we
reach the specified mass fraction Mfrac = 0.4. The move
parameter μ and the damping parameter η are set to 0.05
and 0.5. We choose rmin = 0.075 for the design sensitivity
filter (45). Given a macroscale density distribution ρ, the
quasi-Newton scheme uses the initial stiffness matrixK0 for
finding the optimum design variables m̄ (see Section 4.3).

Figure 6a and b show a convergence plot for the
macroscale design updates and the number of quasi-Newton
iterations for the macroscale structure problem, respectively.
The macroscale design algorithm stops when the relative
change in the macroscale density field falls below 0.001.

Fig. 6 Convergence of macroscale and microscale iterative procedures. a Convergence of compliance and mass fraction with respect to number
of macroscale design iterations. b Convergence of the quasi-Newton method in the 19th design iteration
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Fig. 7 Optimum density distribution for the MBB problem

We observe that the algorithm takes 28 density updates to
converge to the final design for the MBB problem. The
displacement convergence criterion for the quasi-Newton
method in each macroscale design iteration is ||ūk+1 −
ūk||/||ūk|| < 10−2. For each macroscale density update
iteration, it takes 4 to 8 quasi-Newton iterations to reach
the macroscale equilibrium solution. A slave problem takes
about 0.003 s on a Mobile Dell Precision 5550 workstation.
The total computational time for the macroscale design
problem is approximately 2 h with approximately 4 min per
design iteration.

Figures 7, 8, and 9 illustrate the final design of the
MBB problem, including the optimized microstructure
configurations. The macroscale density plotted in Fig. 7
shows a large diffuse gray region that maximizes the
compliance by optimally distributing the constituents at

different scales. The result resembles natural materials such
as bones and plants that often exhibit dense cortical-type
regions supported by diffuse softer material.

Figure 8 illustrates the details of the optimized morphol-
ogy at the mesoscale. The yellow color represents the matrix
material resulting from homogenization of the lowermost
scale. The blue color displays the volume fraction, orienta-
tion, and elongation of Material A inclusions. We observe
that in the main branches, the inclusions are fully elongated
and oriented in the direction of the largest principal stress.
In the diffuse regions and joints of the main branches, the
morphology is more complex, exhibiting gradual changes in
the inclusion characteristics.

The equivalent volume fractions of the three Materials
A, B, and C at the macroscale satisfy φ̄A + φ̄B + φ̄C = 1
and can thus be computed as follows: φ̄A = φA, φ̄B =

Fig. 8 Optimized
microstructure at the mesoscale
for the MBB problem
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Fig. 9 Optimized volume
fractions of Material B and
Material C for the MBB problem

(1−φA)(1−γC) , and φ̄C = (1−φA)γC . Figure 9 displays
the equivalent material volume fraction of Material B and
Material C at the macroscale, where we use 60% opacity
for both. We can identify regions dominated by Material B
and C as well as a mixing zone. As expected, the stronger
Material C is deposited in the main branches, whereas the
softer Material B concentrates in the transition zones.

For a qualitative comparison, Fig. 10 illustrates typical
monoscale designs for the MBB problem that we obtained
via the solid isotropic material with penalization model
(SIMP) (Bendsøe 1989; Rozvany 2001). In the SIMP
method, Young’s modulus is artificially interpolated for
intermediate densities as E = ρpE0, where p is the
material exponent and E0 denotes Young’s modulus of the
base material. We illustrate two typical optimum density
distributions obtained with material exponents p = 1 and
p = 3. The interpolation with p = 1 corresponds to
the Voigt upper bound material interpolation. The grayscale
design with p = 1 does not satisfy the Hashin-Shtrikman
bound, and, therefore, it cannot be physically realized

(Bendsøe and Sigmund 1999). However, the Voigt upper
bound interpolation-based designs in topology optimization
are popular. Thus, we compare the design shown in Fig. 10a
with the corresponding design from our method for insights
on the local material adaption. In general, this density
layout is similar to the density distribution presented in
Fig. 7 with noticeable differences in the diagonal area. In
our examples, the material definition is extensive, allowing
the redistribution of constituents with local adaption in
the morphology. This results in efficient utilization of the
lighter Material B and a local morphology based onMaterial
A inclusions as detailed in Figs. 8 and 9. However, in the
SIMP design, material configuration choices are limited
to a simple density-based parametrization that results in a
diffuse distribution of the material in the diagonal area.

5.2 Cantilever beam

As a second test, we define the cantilever design problem
illustrated in Fig. 11. The length and height of the

Fig. 10 Typical monoscale design using the solid isotropic material with penalization model (SIMP) with different material exponent parameters.
a Material exponent p = 1. bMaterial exponent p = 3
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Fig. 11 Multiphase hierarchical
system II: the cantilever problem

macrostructure are 2.0 and 1.0, respectively. The left edge
is fixed, and the central 4% of the right edge are loaded
with a traction of magnitude 1.0 per unit length. We employ
the same discretization of the macroscale domain as in
the previous example. The total amount of mass available
is restricted to Mfrac = 0.6. The move parameter μ, the
damping parameter η, and the design sensitivity filter radius
rmin are 0.05, 0.5, and 0.06, respectively. The rest of the
parameters are the same as in the previous example.

We observe in Fig. 12 that the optimized density
distribution is qualitatively similar to a standard monoscale
variable thickness design. An apparent difference, however,
is the significant diffused gray region with complex
microstructures, resulting from a complex stress-strain
distribution throughout the domain, mainly due to the
small length to height ratio. This complex distribution
drives the microstructure to adapt itself to achieve optimal
performance. Figures 13 and 14 show the morphology of
Material A inclusions and the volume fraction distributions
of Materials B and C, respectively.

In the diffuse transition regions, the complex strain
distributions result in the discontinuity of the flow of the
inclusions, as observed in Figs. 13 and 8 in Section 5.1.
In these regions, slave problems often have multiple local

Fig. 12 Optimum density distribution for the cantilever problem

optima with very close optimal values. For example, an RVE
under pure shear has exactly two optimal configurations
with inclusion orientation of 45◦ and 135◦ that have the
same optimal value. Therefore, the discontinuity in the flow
is a result of locally optimal solutions to slave problems.
Adding local connectivity constraints to the slave problems
can tackle this issue (Kumar and Suresh 2019; Groen and
Sigmund 2018; Allaire et al. 2019).

5.3 Towards hierarchical optimization of bamboo
culm

During their growth, the hierarchical composition of bio-
materials is subjected to many mechanical, physiological,
biological, and phylogenetic constraints. In addition to
computationally tractable multiscale analysis, incorporat-
ing these constraints represents a main challenge for an
optimization algorithm. A few studies have attempted mul-
tiscale optimization of biomaterial systems such as bone
remodeling and bioinspired functional materials (Rodrigues
et al. 2002b; Coelho et al. 2009; Radman et al. 2013).
Several obstacles, however, such as high computational
cost and phenomenological tuning, have limited many
existing approaches in efficiently and accurately modeling
self-adaption and growth of biomaterials and other natu-
ral hierarchical systems. With the following example, we
demonstrate the potential of our optimization framework to
overcome these challenges and fill this gap.

Bamboo culm materials organize themselves hierarchi-
cally across multiple length scales. As illustrated in Fig. 15,
these scales range from base constituents such as lignin,
cellulose, hemicellulose, and pectin to microstructures at
the cell wall, cell, functional-tissue, and cross-section lev-
els (Wegst et al. 2015). Moreover, bamboo does not show
secondary growth of tissues and therefore heavily relies on
microstructure optimization at the material level (Amada
et al. 1996; Liese and Weiner 1996). Figure 16 illustrates
that microimaging results confirm the functional optimiza-
tion in bamboo materials at different length scales (Dixon
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Fig. 13 Optimized
microstructure at the mesoscale
for the cantilever problem

and Gibson 2014; Mannan et al. 2017). In our previous
work, we developed and validated a continuum microme-
chanics model of bamboo material, building on existing
experimental and imaging data about its hierarchical orga-
nization (Gangwar and Schillinger 2019). Here, we use this
model for accurately assessing material composition and
behavior across different scales. For further information
on its implementation as relevant to the current paper, the
interested reader is referred to Appendix 2.

Figure 17 summarizes the resulting hierarchical opti-
mization problem. We assume that bamboo culm adapts
itself to optimally resist bending caused by lateral wind
loads. We model one quadrant of the bamboo cross section
under symmetry boundary conditions and apply linearly

varying radially symmetric axial strains. The outer and inner
radius of the quadrant are 90 mm and 72 mm. The quadrant
is discretized with a 90 × 13 mesh of 4-node quadrilateral
elements, where the aspect ratio of each element is as close
to one as possible. This strain distribution is equivalent to
the combination of pure bending caused by lateral wind
from each direction. With known axial strains and zero out-
of-plane shear strains, the problem can be reduced dimen-
sionally such that only in-plane displacements and strains
are unknown. For further details on our implementation, the
interested reader is referred to Appendix 2.

Following our multiscale material model, the microstruc-
ture design variables are the cell wall volume fraction
φwall in the parenchyma tissue, the volume fraction φfib of

Fig. 14 Optimized volume
fractions of Material B and
Material C for the cantilever
problem
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Fig. 15 Hierarchical structure of bamboo and its micromechanical representation. Adapted from Wegst et al. (2015) with kind permission from
Nature Publishing Group

fibers in the vascular bundles, and the volume fraction φvb

of vascular bundles at the cross-section scale. In bamboo
plants, parenchyma tissues and xylem-phloem vessels are
responsible for food storage and nutrient-water transport,
respectively, and are therefore required to be built in for
functional reasons. We incorporate this biological constraint
by adopting the bounds on these volume fractions that are
experimentally reported in Dixon and Gibson (2014) in the
“slave” optimization problem. At the structure scale, the
total amount of material is restricted by the reported average
density. We interpret this constraint as the limitation posed
by the available biological energy required in the synthesis
of biomass per unit volume in the bamboo plant.

Figure 18 illustrates the optimized material distribution
at the structure scale and the optimized material microstruc-
ture configuration, both obtained with our framework. The
optimum density distribution exhibits a strong gradient
towards the outer part of the cross section, which is in
agreement with the engineering intuition and consistent
with experimental observations. Figure 18 also plots the

optimized mesoscale morphology along a radial strip of
eight 4-node elements. The yellow color represents the
parenchyma matrix, and the area of blue circles represents
the optimized volume fraction φvb of vascular bundles at
a particular location. We also plot the optimized vascular
bundle morphology at two locations, showing different fiber
volume fractions φfib. The obtained radial trends for the
microscale design variables follow the trends experimen-
tally reported in Dixon and Gibson (2014). We therefore
conclude that our framework can quantitatively predict the
functional organization and self-adapting mechanism for
this natural hierarchical system.

6 Summary, conclusions, and outlook

In this article, we presented a concurrent material and struc-
ture optimization framework for hierarchical systems that
relies on continuum micromechanics estimates for mul-
tiscale analysis. The analytical nature of these estimates
enables simple constraint optimization problems at the
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Fig. 16 Macroscale anatomy of bamboo with microstructure details through scanning electron microscopy images. The images are reported by
Mannan et al. (2017) and reproduced with kind permission from Royal Society Publishing
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Fig. 17 Model problem for the hierarchical optimization of bamboo culm

material level that are essentially independent of the number
of hierarchical scales, rendering our framework computa-
tionally tractable for multiphase hierarchical systems. We
successfully verified our optimization framework for two
newly defined test problems that are motivated by standard
macroscale configurations, but involve hierarchical material
definitions at the microscale.

We also applied our framework to simulate self-
adapting mechanisms in natural systems. To this end,
we integrated an existing continuum micromechanics
model for bamboo within our optimization framework. We
demonstrated that the resulting optimum design identified
by our framework corresponds to material configurations at
different scales that are observed in nature. We emphasize
that the framework presented in this paper is general and
naturally extends to many other engineering applications,

involving multiphase hierarchical systems in advanced
additive manufacturing and man-made composite material
systems.

At this stage of development, our framework is developed
for compliance optimization problems with an overall linear
elastic material response. Natural systems, however, often
exhibit multiscale inelastic behavior and develop dissipation
based energy absorption mechanisms against external
impacts. This calls for the extension of our framework to
inelasticity that originates from the material microscales in
hierarchical systems. We think that such an extension can
be achieved via continuum micromechanics-based inelastic
homogenization methods that are well established for wood,
plants, bone, and cement (Fritsch et al. 2009; Pichler and
Hellmich 2011; Gangwar and Schillinger 2019; Hofstetter
et al. 2008).

Fig. 18 Optimized material distribution and microstructure configuration for the bamboo culm example
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Appendix 1. Homogenized stiffness through
continuummicromechanics

We state the analytical expression for the macroscale
homogenized stiffness at a material point x in the
domain Ω (see Fig. 2). The expression at each scale is
based on (20). The microstructure characterization variables
{φA(x), θA(x), ζA(x), γC(x)} are defined in Fig. 2.We drop
(x) from these variables for conciseness of presentation in
the following expressions.

At the lowermost scale RVE, Material B forms spherical
inclusions in the matrix of Material C. The stiffness tensors
for Materials B and C are and , respectively. The
volume fraction of Materials B and C at the lowermost scale
are γB and γC such that γB + γC = 1. The RVE can be
suitably modeled by the Mori-Tanaka scheme. Hence, we

assume that and the Hill tensor , which
corresponds to spherical inclusions in the isotropic matrix
of Material C. Following (20), we arrive at the homogenized
stiffness tensor of the RVE:

(51)

This homogenized material matrix M hosts the inclusions of
Material A with stiffness . The orientation and elongation
ratio of these inclusions are θA and ζA, respectively.
We estimate the homogenized stiffness of this RVE with

the Mori-Tanaka scheme. We assume that and

the Hill tensor , which corresponds to
spheroidal inclusions with the elongation ratio ζA in the
isotropic matrix of material M. We write the macroscale
homogenized stiffness in the co-ordinate system aligned
with the inclusion elongation direction following (20). The
expression is:

(52)

The macroscale stiffness tensor in the global co-ordinate
system is obtained with the help of the standard tensor
transformation matrix T as:

(53)

The expressions for the Hill tensors and are
given in Masson (2008). We note that the evaluation of
(51) to (53) requires only a few matrix operations involving
3× 3 matrices, and can thus be considered computationally
inexpensive.

Now, we can rewrite the optimization statement (34):

(54)

where we omit the constraints posed in (34) for clarity
of notation. Equation (54) can be simplified further by
eliminating θA (Pedersen 1989; Jog et al. 1994). We know
that for a general orthotropic material, the maximum strain
energy is obtained by aligning the material axis with the
principle strain axes. Therefore, the macroscale strain at
each Gauss point entails the optimal material orientation θ̄A

at the particular Gauss point. This further helps us simplify
problem (54) to:

(55)

This reduced problem can be solved by standard
gradient-based fast optimization algorithms. Generally
speaking, the solution of (55) is equivalent to finding a
solution of the KKT equations that correspond to this
constraint problem (Boyd et al. 2004). The KKT equations
are a set of (n + p) nonlinear equations with (n + p)
variables, where n and p are the total number of design
variables and the total number of equality constraints. In
this example, n = 3 and p = 2. It is straightforward
to see that each additional scale will result in the addition
of a few design variables and constraints. This does not
lead to an exponential increase in computational efforts to
solve a slave problem. Newton’s method and its variants are
computationally efficient to solve these equations. Readers
interested in a detailed mathematical analysis of such
methods are referred to Boyd et al. (2004).

We use the quasi-Newton method of Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) with default parameters
implemented in the SciPy library to solve this problem.
The total time for one slave problem on a Mobile Dell
Precision 5550 workstation is approx. 0.001 s. In addition,
all slave problems are independent of each other, and hence
are completely parallelizable on a GPU or multi-threaded
CPU architecture.

Appendix 2. Details on the bamboo
application case

We briefly summarize the key components for implement-
ing the bamboo optimization problem in Section 5.3. We
refer to Section 4 in Gangwar and Schillinger (2019) for fur-
ther details on the multiscale characterization and homog-
enization of the elastic properties of bamboo culm. In the
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current model, we assume that the cell wall fraction φwall in
the parenchyma tissues, the fiber fraction φf ib in the vas-
cular bundles, and the vascular bundle fraction φvb at the
cross-section scale are the microstructure design variables
at each Gauss point in the domain. Bamboo is a transversely
isotropic material, being isotropic in the cross-sectional
plane. The macroscale homogenized stiffness tensor as a
function of the microscale design variables can be written
as:

(56)

Here, and are the homogenized stiffness tensors
of parenchyma tissues and vascular bundle tissues, respec-
tively. For the analytical expression of these estimates and
other notation, we refer to Gangwar and Schillinger (2019).

We write the discretized optimization statement of the
“slave” sub-problems for the bamboo example following
(34):

(57)

where ρ is the given macroscale dry density for the relevant
finite element. ρwall and ρfib are the density of cell wall
materials and sclerenchyma fibers. The first statement in
the constraints simply connects ρ with the microscale
design variables through the rule of mixture. We adopt
the minimum and maximum values of the design variables
reported in Dixon and Gibson (2014) as the bounds in
the above optimization problem. These bounds for φwall,
φfib, and φvb are [0.18, 0.22], [0.70, 0.95], and [0.15, 0.60],
respectively. This optimization problem is a constraint
optimization problemwith nonlinear equality constraint. We
utilize the sequential least squares programming (SLSQP)
method implemented in the SciPy library to solve this
problem.

The “master” problem to obtain the optimal material
density distribution is rewritten following (31) as:

(58)

At the macroscale, the total material is restricted by the
reported average density ρavg. In the bamboo problem, we
consider a three-dimensional state of stress and strain with
zero out-of-plane shear strain components and known axial
strains that is ε13 = ε23 = 0, and ε33(x) = f (x1, x2).
Essentially, the problem reduces to a two-dimensional case
where only in-plane displacements and strains are unknown.
Therefore, the problem can be discretized with standard 4-
node quadrilateral elements. To enforce known ε33(x) =
f (x1, x2), we modify the strain-displacement matrix as:

B =

⎡
⎢⎢⎢⎣

∂N1
∂x

0 0 ....
0 ∂N1

∂y
0 ....

0 0 ε33(x)
4 ....

∂N1
∂y

∂N1
∂x

0 ....

⎤
⎥⎥⎥⎦ ,

and set the axial displacement component in the displace-
ment vector ū to one.

The sensitivity analysis for the macroscale design update
follows from Section 4.4. The first derivative of with
respect to density ρ is replaced with

(59)

The derivative of with respect to microscale design
variables at the material level is evaluated using finite
difference approximations. The move parameter μ, the
damping parameter η, and the design sensitivity filter radius
rmin are 0.02, 0.5, and 0.01.
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