
Applied Mathematics & Optimization (2021) 84:1373–1393
https://doi.org/10.1007/s00245-020-09681-4

Reinforced Limit of a MEMSModel with Heterogeneous
Dielectric Properties

Philippe Laurençot1 · Katerina Nik2 · Christoph Walker2

Published online: 14 May 2020
© The Author(s) 2020

Abstract
A MEMS model with an insulating layer is considered and its reinforced limit is
derived by means of a Gamma convergence approach when the thickness of the layer
tends to zero. The limiting model inherits the dielectric properties of the insulating
layer.
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1 Introduction

Idealized microelectromechanical systems (MEMS) consist of two dielectric plates:
a rigid ground plate above which an elastic plate is suspended. The latter is electro-
statically actuated by a Coulomb force which is induced across the device by holding
the two plates at different voltages. In this set-up there is thus a competition between
attractive electrostatic forces and restoring mechanical forces due to the elasticity of
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Fig. 1 Geometry of �δ(u) when n = 1 for a state u = v with empty coincidence set (green) and a state
u = w with non-empty coincidence set (blue)

the plate. When the two plates are not prevented from touching each other, a contact
of the plates commonly leads to an instability of the device—also known in the liter-
ature as “pull-in instability”—which is revealed as a singularity in the corresponding
mathematical equations, e.g., see [9,16] and the references therein. In contrast, when
the ground plate is coated with an insulating layer preventing a direct contact of the
plates, see Fig. 1, a touchdown of the elastic plate on this layer does not result in
an instability as the device may continue to operate without interruption (though it
still leads to a peculiar situation from a mathematical point of view). Different math-
ematical models describing this setting including an insulating layer were introduced
[2,4,10,12,13,17]. The basic assumption in all these models is that the state of the
device is fully described by the vertical deflection of the elastic plate and the electro-
static potential in the device. According to [4,10,12,13] the dynamics of the former is
governed by an evolution equation while that of the latter is governed by an elliptic
equation in a time-varying domain enclosed by the two plates. Due to the hetero-
geneity of the dielectric properties of the device, this elliptic equation is actually a
transmission problem (see (1.1) below) on the non-smooth time-dependent domain
with a transmission condition at the interface separating the insulating layer and the
free space. The analysis of such a model turns out to be quite involved [10, Section 5].
Therefore, several simpler and more tractable models were derived on the assumption
of a vanishing aspect ratio of the device [2,4,10,12,13]. Thanks to this approximation
the electrostatic potential can be computed explicitly in terms of the deflection of the
elastic plate, and the model thus reduces to a single equation for the deflection.

The aim of the present work is to derive an intermediate model by letting only the
thickness of the insulating layer go to zero (instead of the aspect ratio of the device).
Our starting point is the model analyzed in [10] in which we introduce an appropriate
scaling of the dielectric permittivity in dependence on the layer’s thickness (see (2.1a)
below) and use a Gamma convergence approach to study the limiting behavior. The
specific choice of the scaling is required in order to keep relevant information of the
dielectric heterogeneity of the device and can be interpreted as a reinforced limit from
a mathematical point of view [1].
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To be more precise, we recall the model stated in [10, Section 5]. Let D ⊂ R
n

with n ≥ 1 be a bounded C2-domain representing the (identical) horizontal cross-
section of the two plates (actually, only the cases n ∈ {1, 2} are physically relevant
for applications to MEMS, the ground plate being D × (−H − d,−H) and thus a
two or three dimensional object). The dielectric layer of thickness δ > 0 on top of the
ground plate located at z = −H − δ with H > 0 is then given by

Rδ := D × (−H − δ,−H).

The deflection of the elastic plate from its rest position at z = 0 is described by a
function u : D̄ → [−H ,∞) with u = 0 on ∂ D, so that

�(u) := {(x, z) ∈ D × R : −H < z < u(x)}

is the free space between the elastic plate and the top of the dielectric layer. We let

�(u) := {(x,−H) : x ∈ D, u(x) > −H}

denote the interface separating free space and dielectric layer and put

�δ(u) := {(x, z) ∈ D × R : −H − δ < z < u(x)} = Rδ ∪ �(u) ∪ �(u).

If the elastic plate and the insulating layer remain separate, that is, if u > −H in D,
then �(u) coincides with

� := D × {−H}.

In contrast, a touchdown of the elastic plate on the insulating layer corresponds to a
non-empty coincidence set

C(u) := {x ∈ D : u(x) = −H}

and a different geometry as the free space �(u) then has several connected compo-
nents. It is worth pointing out that in this case – independent of the smoothness of the
function u – these components may not be Lipschitz domains, a feature which requires
some special care in the mathematical analysis.

The different situations with empty and non-empty coincidence sets are depicted
in Fig. 1.

In the model considered in [10, Section 5], the deflection u of the elastic plate
is governed by an evolution equation involving contributions from mechanical and
electrostatic forces, the latter depending on the electrostatic potential denoted by ψ in
the following. However, for the derivation of the limiting problem for the electrostatic
potential, the evolution of u does not play any role. We thus consider throughout this
paper a fixed geometry �(u); that is, we consider the function u : D̄ → [−H ,∞)

with u = 0 on ∂ D describing the deflection of the elastic plate as given and fixed. We
refer to [10, Section 5] for the full model.
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Given such a function u, the electrostatic potential ψ = ψu,δ satisfies the trans-
mission problem

div(σδ∇ψ) = 0 in �δ(u) , (1.1a)

�ψ� = �σδ∂zψ� = 0 on �(u) , (1.1b)

ψ = hu,δ on ∂�δ(u) , (1.1c)

and the corresponding electrostatic energy of the device with geometry �δ(u) is

Ee,δ(u) := −1

2

∫
�δ(u)

σδ|∇ψu,δ|2 d(x, z).

Here, σδ is the permittivity of the device, which is different in the insulating layer and
free space, and hu,δ is a given suitable function describing the boundary values of the
electrostatic potential. By �·� we denote the jump of a function across the interface
�(u). The Lax-Milgram theorem provides the existence of a unique electrostatic
potential ψu,δ = χu,δ + hu,δ solving (1.1) in a variational sense, and the function
χu,δ ∈ H1

0 (�δ(u)) is the minimizer of the Dirichlet integral

Gδ[ϑ] := 1

2

∫
�δ(u)

σδ|∇(ϑ + hu,δ)|2 d(x, z)

among functions ϑ ∈ H1
0 (�δ(u)), see Proposition 3.2 below.

In the following we shall derive the limiting model obtained from (1.1) as δ → 0
when imposing suitable assumptions on the function hu,δ defining the boundary values
of the potential (see (2.2) below) and on the permittivity σδ (see (2.1) below), so that
information on the dielectric heterogeneity is inherited. As for the permittivity we
assume that it is constant (normalized to 1) in �(u) and a reinforced limit σδ = O(δ)

in Rδ . We then shall follow [1] to compute the Gamma limit with respect to the L2-
topology of the family of functionals (Gδ)δ∈(0,1) as δ → 0, which turns out to be the
functional

G[ϑ] := 1

2

∫
�(u)

∣∣∇(ϑ + hu)
∣∣2 d(x, z) + 1

2

∫
D

(
σ
∣∣ϑ + hu − hu

∣∣2)(x,−H) dx

with hu and hu defined below in (2.6) and in (2.8), respectively, see Theorem 3.1. Let
us emphasize here that an utmost challenging feature of the limiting problem is that
�(u) need not be a Lipschitz set as it may have cusps when the coincidence set C(u)

is nonempty. Therefore, the usual trace theorem is not available and a meaningful
definition of G requires a suitable definition of a trace on (D \ C(u)) × {−H} for
functions in (a subset of) H1(�(u)), see Lemmas 2.1 and 2.2. Once this issue is settled,
the existence of a minimizer χu of G in a suitable subset of H1(�(u)) is shown by
classical arguments, see Proposition 3.3. The derivation of the corresponding Euler-
Lagrange equation offers further challenges again related to the non-smoothness of
�(u). Indeed, a formal computation reveals that ψu = χu + hu solves Laplace’s
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equation on �(u) with a Robin boundary condition along the interface �(u) and a
Dirichlet condition on the other boundary parts; that is,


ψu = 0 in �(u) , (1.2a)

ψu = hu on ∂�(u) \ �(u) , (1.2b)

−∂zψu + σ(ψu − hu) = 0 on �(u) . (1.2c)

However, a rigorous computation relies on Gauß’ theorem which requires some geo-
metric condition on the boundary of �(u) and the existence of boundary traces for
∇χu , see [7].1 Due to the Robin boundary condition the resulting model is consistent
in the sense that touching plates again do not lead to a singularity in the equations.

Remark 1.1 Of course, if the coincidence set C(u) is empty, then �(u) is a Lips-
chitz domain and the derivation of (1.2) only requires that χu belongs to H2(�(u)).
However, this property is not guaranteed by classical elliptic regularity theory since
�(u) is only Lipschitz. In the special case that D is a one-dimensional interval and
under appropriate choices of hu and hu , we provide a rigorous justification of (1.2) in
Theorem 3.5.

In Sect. 2 we first list the precise assumptions that we impose on the permittivity
σδ and on the function hu,δ defining the boundary values of the electrostatic potential.
Moreover, since, as pointed out above, the set �(u) may not be Lipschitz for defor-
mations u with non-empty coincidence set C(u) and thus standard trace theorems are
not valid, we derive in Sect. 2 also boundary trace theorems in weighted spaces for
functions in H1(�(u)). Section 3 is dedicated to the computation of the Gamma limit
of (Gδ)δ∈(0,1) as δ → 0, which is the main result of this paper, see Theorem 3.1.
Moreover, we derive in Sect. 3 the limiting equations (1.2).

From now on, the function u is fixed and assumed to satisfy

u ∈ H1
0 (D) ∩ C(D̄) with u ≥ −H in D , (1.3a)

and
�(u) satisfies the segment property (1.3b)

in the sense of [11, Definition 10.23].

2 Assumptions and Auxiliary Results

In this section we state the precise assumptions imposed on the permittivity σδ and
the function hu,δ defining the boundary values of the electrostatic potential. We also
provide some auxiliary results regarding boundary traces for functions defined on the
possibly non-Lipschitz set �(u).

1 We thank Elmar Schrohe for pointing out this reference.
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2.1 Assumptions on�ı and hu,ı

To inherit in the limit δ → 0 the information of the permittivity from the insulating
layer, we specifically assume that the permittivity scales with the layer’s thickness;
that is, we assume that the permittivity of the device is given in the form

σδ(x, z) :=
{

δσ (x, z) , (x, z) ∈ Rδ ,

1 , (x, z) ∈ �(u) ,
(2.1a)

for δ ∈ (0, 1), where σ ∈ C(D̄ × [−H − 1,−H ]) is a fixed function with

σmax := max
D̄×[−H−1,−H ]

σ , σmin := min
D̄×[−H−1,−H ]

σ > 0. (2.1b)

Regarding the boundary values of the electrostatic potential given in (1.1c) we fix two
C2-functions

hb : D̄ × [−H − 1,−H ] × [−H ,∞) → R (2.2a)

and
h : D̄ × [−H ,∞) × [−H ,∞) → R (2.2b)

satisfying

hb(x,−H , w) = h(x,−H , w) , (2.2c)

σ(x,−H)∂zhb(x,−H , w) = ∂zh(x,−H , w) , (2.2d)

for (x, w) ∈ D × [−H ,∞). We then define

hδ(x, z, w) := hb

(
x,−H + z + H

δ
,w

)
(2.3a)

for (x, z, w) ∈ D̄ × [−H − δ,−H) × [−H ,∞) and

hδ(x, z, w) := h(x, z, w) (2.3b)

for (x, z, w) ∈ D̄ × [−H ,∞) × [−H ,∞), and observe that, by (2.2), for (x, w) ∈
D̄ × [−H ,∞),

lim
z↘−H

hδ(x, z, w) = lim
z↗−H

hδ(x, z, w) ,

lim
z↘−H

σδ(x, z)∂zhδ(x, z, w) = lim
z↗−H

σδ(x, z)∂zhδ(x, z, w).
(2.4)

In the following, we shall also use the abbreviations

hu,δ(x, z) := hδ(x, z, u(x)) , (x, z) ∈ �δ(u) , (2.5)
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and
hu(x, z) := h(x, z, u(x)) , (x, z) ∈ �(u). (2.6)

Then (2.4) entails
�hu,δ� = �σδ∂zhu,δ� = 0 on �(u). (2.7)

Furthermore, we set

hu(x,−H) := hb(x,−H − 1, u(x)) , x ∈ D̄. (2.8)

2.2 Traces in H1(Ä(u))

As pointed out already in the introduction, the region �(u) need not be Lipschitz
(besides not being connected) when the elastic plate touches the insulating layer; that
is, when C(u) �= ∅. That there is still a meaningful definition of boundary traces on
D \ C(u) for functions in H1(�(u)) in this case is the content of the subsequent
result. We follow [14], exploiting the special geometry of �(u) to show that traces
are well-defined in weighted spaces.

Lemma 2.1 Suppose (1.3) and set Mu := ‖H + u‖L∞(D).

(a) There exists a bounded linear operator

γu ∈ L
(

H1(�(u)), L2
(
D \ C(u), (H + u)dx

))

such that γuϑ = ϑ(·, u) for ϑ ∈ C1
(
�(u)

)
and

∫
D\C(u)

|γuϑ |2(H + u) dx (2.9)

≤ ‖ϑ‖2L2(�(u)) + 2Mu‖ϑ‖L2(�(u))‖∂zϑ‖L2(�(u)) .

(b) There exists a bounded linear operator

γb ∈ L
(

H1(�(u)), L2
(
D \ C(u), (H + u)dx

))

such that γbϑ = ϑ(·,−H) for ϑ ∈ C1
(
�(u)

)
and

∫
D\C(u)

|γbϑ |2(H + u) dx

≤ ‖ϑ‖2L2(�(u)) + 2Mu‖ϑ‖L2(�(u))‖∂zϑ‖L2(�(u)) .

(2.10)

Proof (a) Let ϑ ∈ C1
(
�(u)

)
. For x /∈ C(u) and z ∈ (−H , u(x)), it follows from

Hölder’s inequality that
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ϑ(x, u(x))2 = ϑ(x, z)2 + 2
∫ u(x)

z
ϑ(x, z∗)∂zϑ(x, z∗) dz∗

≤ ϑ(x, z)2 + 2

(∫ u(x)

−H
|ϑ(x, z∗)|2 dz∗

)1/2 (∫ u(x)

−H
|∂zϑ(x, z∗)|2 dz∗

)1/2

.

Hence,

(H + u)(x)ϑ(x, u(x))2

≤
∫ u(x)

−H
ϑ(x, z)2 dz

+ 2(H + u)(x)

(∫ u(x)

−H
|ϑ(x, z∗)|2 dz∗

)1/2 (∫ u(x)

−H
|∂zϑ(x, z∗)|2 dz∗

)1/2

.

We use once more Hölder’s inequality to obtain

∫
D\C(u)

|γbϑ |2(H + u) dx

≤ ‖ϑ‖2L2(�(u)) + 2Mu‖ϑ‖L2(�(u))‖∂zϑ‖L2(�(u)) .

(2.11)

Owing to (1.3b), the space C1
(
�(u)

)
is dense in H1(�(u)) according to [11, The-

orem 10.29] or [15, II.Theorem 3.1]. We then infer from (2.11) that the mapping
ϑ �→ ϑ(·, u) from C1

(
�(u)

)
to L2

(
D \ C(u), (H + u)dx

)
extends by density to a

linear bounded operator γu from H1(�(u)) to L2(D \ C(u), (H + u)dx) and which
satisfies (2.11).
(b) The proof being similar to that of (a), we omit it here. ��

For simplicity, we use the notation

ϑ(x, u) := γuϑ(x) , ϑ(x,−H) := γbϑ(x) , x ∈ D \ C(u) ,

for ϑ ∈ H1(�(u)).
Next, we introduce H1

B(�(u)) as the closure in H1(�(u)) of the set

C1
B(�(u)) :=

{
ϑ ∈ C1(�(u)) : ϑ(x, u(x)) = 0 , x ∈ D

and ϑ(x, z) = 0 , (x, z) ∈ ∂ D × (−H , 0]
}

.

Next, we introduce H1
B(�(u)) as the closure in H1(�(u)) of the set

C1
B(�(u)) :=

{
ϑ ∈ C1(�(u)) ϑ(x, u(x)) = 0 , x ∈ D

and ϑ(x, z) = 0 , (x, z) ∈ ∂ D × (−H , 0]
}
.
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Since ϑ(x, u(x)) = ϑ(x,−H) = 0 for x ∈ C(u) and ϑ ∈ C1
B(�(u)), we agree upon

setting ϑ(x, u(x)) = ϑ(x,−H) := 0 for all x ∈ C(u) and ϑ ∈ H1
B(�(u)) in the

reminder of this paper. For functions in H1
B(�(u)) we derive a Poincaré inequality

and improve the information on the trace along � from Lemma 2.1:

Lemma 2.2 Suppose (1.3) and let ϑ ∈ H1
B(�(u)). Then

‖ϑ‖L2(�(u)) ≤ 2‖H + u‖L∞(D)‖∂zϑ‖L2(�(u)) , (2.12)

and the trace ϑ �→ ϑ(·,−H) yields a bounded linear operator from H1
B(�(u)) to

L2(D) with
‖ϑ(·,−H)‖2L2(D) ≤ 2‖ϑ‖L2(�(u))‖∂zϑ‖L2(�(u)) . (2.13)

Proof Consider first ϑ ∈ C1
B

(
�(u)

)
. Since ϑ(x, u(x)) = 0 for x ∈ D, it follows from

Hölder’s inequality that, for x /∈ C(u) and z ∈ (−H , u(x)),

|ϑ(x, z)|2 = |ϑ(x, u(x))|2 − 2
∫ u(x)

z
ϑ(x, z∗)∂zϑ(x, z∗) dz∗

≤ 2

(∫ u(x)

−H
|ϑ(x, z∗)|2 dz∗

)1/2 (∫ u(x)

−H
|∂zϑ(x, z∗)|2 dz∗

)1/2

. (2.14)

Consequently, using again Hölder’s inequality gives

‖ϑ‖2L2(�(u)) =
∫

D\C(u)

∫ u(x)

−H
ϑ(x, z)2 dzdx

≤ 2
∫

D\C(u)

(H + u)(x)

(∫ u(x)

−H
|ϑ(x, z∗)|2 dz∗

)1/2

×
(∫ u(x)

−H
|∂zϑ(x, z∗)|2 dz∗

)1/2

dx

≤ 2‖H + u‖L∞(D)‖ϑ‖L2(�(u))‖∂zϑ‖L2(�(u)) .

Hence,
‖ϑ‖L2(�(u)) ≤ 2‖H + u‖L∞(D)‖∂zϑ‖L2(�(u)) ,

and we complete the proof of (2.12) by a density argument.
Next, consider again ϑ ∈ C1

B

(
�(u)

)
and x /∈ C(u). We infer from (2.14) with

z = −H that

ϑ(x,−H)2 ≤ 2

(∫ u(x)

−H
|ϑ(x, z∗)|2 dz∗

)1/2 (∫ u(x)

−H
|∂zϑ(x, z∗)|2 dz∗

)1/2

.
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Since ϑ(x,−H) = 0 for x ∈ C(u), we use once more Hölder’s inequality to obtain

∫
D

ϑ(x,−H)2 dx ≤ 2
∫

D

(∫ u(x)

−H
|ϑ(x, z∗)|2 dz∗

)1/2 (∫ u(x)

−H
|∂zϑ(x, z∗)|2 dz∗

)1/2

dx

≤ 2‖ϑ‖L2(�(u))‖∂zϑ‖L2(�(u)) ,

which shows (2.13) for ϑ ∈ C1
B

(
�(u)

)
. We again complete the proof by a density

argument. ��

3 The Reinforced Limit

As announced in the introduction we shall derive the limiting equations of (1.1) as
δ → 0 when assuming the reinforced limit (2.1) on the permittivity. For this we first
compute the Gamma limit of the functionals (Gδ)δ∈(0,1) and then study the behavior
of the corresponding minimizers.

3.1 The Gamma Limit of the Electrostatic Energy

Fix M ≥ ‖u‖L∞(D) + H , so that

− H ≤ u(x) ≤ M − H , x ∈ D , (3.1)

and set

�M := D × (−H − 1, M).

Define for δ ∈ (0, 1)

Gδ[ϑ] :=
⎧⎨
⎩

1

2

∫
�δ(u)

σδ|∇(ϑ + hu,δ)|2 d(x, z) , ϑ ∈ H1
0 (�δ(u)) ,

∞ , ϑ ∈ L2(�M ) \ H1
0 (�δ(u)) ,

with hu,δ given in (2.5). Also, for ϑ ∈ H1
B(�(u)), we set

G[ϑ] := 1

2

∫
�(u)

∣∣∇(ϑ +hu)
∣∣2 d(x, z)+ 1

2

∫
D

(
σ
∣∣ϑ +hu −hu

∣∣2)(x,−H) dx , (3.2)

with hu and hu defined in (2.6) and (2.8), respectively, and

G[ϑ] := ∞ , ϑ ∈ L2(�M ) \ H1
B(�(u)).

Then the main result of the present paper is the following convergence.
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Theorem 3.1 Suppose (1.3) and (2.2)-(2.3). Then

� − lim
δ→0

Gδ = G in L2(�M ).

For more information on Gamma convergence we refer, e.g., to [5].

Proof (i) Asymptotic weak lower semi-continuity. Considering

ϑδ → ϑ0 in L2(�M ), (3.3)

we shall show that

G[ϑ0] ≤ lim inf
δ→0

Gδ[ϑδ].

Due to the definitions of the functionals we may assume without loss of generality
that ϑδ ∈ H1

0 (�δ(u)) for δ ∈ (0, 1) and

sup
δ∈(0,1)

Gδ[ϑδ] < ∞. (3.4)

Therefore, by (2.1), (2.2), and (3.4), we have

sup
δ∈(0,1)

‖∇ϑδ‖L2(�(u)) < ∞. (3.5)

Thus, invoking (3.3) and (3.5) we may further assume that

ϑδ⇀ϑ0 in H1(�(u)). (3.6)

Since ϑδ belongs to H1
0 (�δ(u)), which is the closure of C∞

c (�δ(u)) in H1(�δ(u)),
and C∞

c (�δ(u)) ⊂ C1
B(�(u)), it readily follows from the definitions of �δ(u) and

�(u) that ϑδ belongs to H1
B(�(u)), the latter being a closed subspace of H1(�(u)).

Thus (3.6) implies that ϑ0 ∈ H1
B(�(u)). Moreover, (2.13), (3.3), and (3.5) yield

ϑδ(·,−H) → ϑ0(·,−H) in L2
(
D

)
. (3.7)

Next, since, for each ε > 0, there is δε ∈ (0, 1) such that

|σ(x, z) − σ(x,−H)| ≤ ε , (x, z) ∈ Rδε ,
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it follows from (3.4) that

lim inf
δ→0

δ

∫
Rδ

σ (x, z)|∇(ϑδ + hu,δ)|2 d(x, z)

= lim inf
δ→0

δ

∫
Rδ

σ (x,−H)|∇(ϑδ + hu,δ)|2 d(x, z)

≥ lim inf
δ→0

δ

∫
Rδ

σ (x,−H)|∂z(ϑδ + hu,δ)|2 d(x, z).

The property ϑδ(·,−H − δ) = 0 a.e. in D and Hölder’s inequality yield

|(ϑδ + hu,δ)(x,−H) − hu,δ(x,−H − δ)|2 ≤ δ

∫ −H

−H−δ

|∂z(ϑδ + hu,δ)(x, z)|2 dz

for a.e. x ∈ D while (2.2c) and (2.3) imply for x ∈ D (recalling (2.6) and (2.8))

hu,δ(x,−H) = hu(x,−H) , hu,δ(x,−H − δ) = hu(x,−H).

Consequently,

lim inf
δ→0

δ

∫
Rδ

σ (x, z)|∇(ϑδ + hu,δ)|2 d(x, z)

≥ lim inf
δ→0

∫
D

σ(x,−H)
∣∣ϑδ(x,−H) + hu(x,−H) − hu(x,−H)

∣∣2 dx

=
∫

D
σ(x,−H)

∣∣ϑ0(x,−H) + hu(x,−H) − hu(x,−H)
∣∣2 dx ,

where we used (3.7) and ϑδ(x,−H) = 0, x ∈ C(u) (since ϑδ ∈ H1
0 (�δ(u))) to derive

the last equality. Since hu,δ = hu and σδ = 1 in �(u) it follows from (3.6) that

1

2

∫
�(u)

|∇(ϑ0 + hu)|2 d(x, z) ≤ lim inf
δ→0

1

2

∫
�(u)

σδ|∇(ϑδ + hu,δ)|2 d(x, z).

Therefore, gathering the last two inequalities gives

lim inf
δ→0

Gδ[ϑδ] ≥ G[ϑ0] ,

and thus the weak lower semi-continuity of the functionals (Gδ)δ∈(0,1) follows.
(ii) Recovery sequence. To prove the existence of a recovery sequence it suffices, by

definition of the functionals (Gδ)δ∈(0,1), to consider ϑ ∈ H1
B(�(u)). Let ϑ̄ denote the
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trivial extension of ϑ to D × (−H , M) and then its reflection to D × (−2H − M, M);
that is,

ϑ̄(x, z) :=

⎧⎪⎪⎨
⎪⎪⎩

0 , x ∈ D , u(x) < z < M ,

ϑ(x, z) , x ∈ D , −H < z ≤ u(x) ,

ϑ(x,−2H − z) , x ∈ D , −2H − u(x) < z ≤ −H ,

0 , x ∈ D , −2H − M < z ≤ −2H − u(x).

Let

τδ(x) :=
⎧⎨
⎩
1 , d(x, ∂ D) >

√
δ ,

d(x, ∂ D)√
δ

, d(x, ∂ D) ≤ √
δ ,

x ∈ D ,

where d(·, ∂ D) denotes the distance to ∂ D. Since the C2-regularity of the boundary of
D implies that d(·, ∂ D) is C2 near ∂ D (see [6, Lemma 14.16]), we have τδ ∈ H1(D)

for δ small enough. Define now

ϑδ(x, z) := z + H + δ

δ
ϑ̄(x, z) + z + H + δ

δ

[
hu,δ(x,−H) − hu,δ(x,−H − δ)

]
τδ(x)

− [
hu,δ(x, z) − hu,δ(x,−H − δ)

]
τδ(x) , (x, z) ∈ Rδ ,

and

ϑδ(x, z) := ϑ(x, z) , (x, z) ∈ �(u).

The regularities of ϑ , ϑ̄ , and τδ imply that ϑδ ∈ H1(Rδ) ∩ H1(�(u)) and thus, since
moreover �ϑδ� = 0 on �(u), we deduce ϑδ ∈ H1(�δ(u)). By construction, it follows
that ϑδ vanishes on ∂�δ(u), hence ϑδ ∈ H1

0 (�δ(u)). We now claim that

G[ϑ] = lim
δ→0

Gδ[ϑδ]. (3.8)

Indeed, for (x, z) ∈ Rδ we note that

∂z(ϑδ + hu,δ)(x, z)

= 1

δ
ϑ̄(x, z) + 1

δ

[
hu,δ(x,−H) − hu,δ(x,−H − δ)

]
τδ(x)

+ z + H + δ

δ
∂zϑ̄(x, z) + (

1 − τδ(x)
)
∂zhu,δ(x, z) ,

(3.9)

and then handle the terms separately. From (2.3) and σδ = δσ inRδ we obtain
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∫
Rδ

σδ(x, z)

∣∣∣∣1δ ϑ̄(x, z) + 1

δ

[
hu,δ(x,−H) − hu,δ(x,−H − δ)

]
τδ(x)

∣∣∣∣
2

d(x, z)

= 1

δ

∫ −H

−H−δ

∫
D

σ(x, z)
∣∣ϑ̄(x, z) + [

hu(x,−H) − hu(x,−H)
]
τδ(x)

∣∣2 dxdz.

Thus, recalling the definition of τδ and using Lebesgue’s theorem,

lim
δ→0

∫
Rδ

σδ(x, z)

∣∣∣∣1δ ϑ̄(x, z) + 1

δ

[
hu,δ(x,−H) − hu,δ(x,−H − δ)

]
τδ(x)

∣∣∣∣
2

d(x, z)

=
∫

D
σ(x,−H)

∣∣ϑ̄(x,−H) + hu(x,−H) − hu(x,−H)
∣∣2 dx . (3.10)

Next, we have

∫
Rδ

σδ(x, z)

∣∣∣∣ z + H + δ

δ
∂zϑ̄(x, z)

∣∣∣∣
2

d(x, z) ≤ δσmax

∫ −H

−H−δ

∫
D

∣∣∂zϑ̄(x, z)
∣∣2 dxdz,

so that

lim
δ→0

∫
Rδ

σδ(x, z)

∣∣∣∣ z + H + δ

δ
∂zϑ̄(x, z)

∣∣∣∣
2

d(x, z) = 0 (3.11)

since ϑ̄ ∈ H1(D × (−2H − M, M)). Moreover, from (2.3) it follows that

∂zhu,δ(x, z) = 1

δ
∂zh1

(
x,−H + z + H

δ
, u(x)

)
, (x, z) ∈ Rδ , (3.12)

from which we get, using substitution,

∫
Rδ

σδ(x, z)
∣∣(1 − τδ(x)

)
∂zhu,δ(x, z)

∣∣2 d(x, z)

≤ σmax

∫ −H

−H−1

∫
D

∣∣(1 − τδ(x)
)
∂zh1 (x, ξ, u(x))

∣∣2 dxdξ.

Hence, by definition of τδ and Lebesgue’s theorem,

lim
δ→0

∫
Rδ

σδ(x, z)
∣∣(1 − τδ(x)

)
∂zhu,δ(x, z)

∣∣2 d(x, z) = 0. (3.13)

Gathering (3.9), (3.10), (3.11), and (3.13) we derive

lim
δ→0

∫
Rδ

σδ(x, z)|∂z(ϑδ + hu,δ)|2 d(x, z)

=
∫

D
σ(x,−H) |ϑ(x,−H) + hu(x,−H) − hu(x,−H)|2 dx .

(3.14)
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Next, still for (x, z) ∈ Rδ , we compute

∇xϑδ(x, z) = z + H + δ

δ
∇x ϑ̄(x, z)

+ z + H + δ

δ

[∇x hu,δ(x,−H) − ∇x hu,δ(x,−H − δ)
]
τδ(x)

+ z + H + δ

δ

[
hu,δ(x,−H) − hu,δ(x,−H − δ)

]∇xτδ(x)

− [∇x hu,δ(x, z) − ∇x hu,δ(x,−H − δ)
]
τδ(x)

− [
hu,δ(x, z) − hu,δ(x,−H − δ)

]∇xτδ(x) ,

where

∇x hu,δ(x, z) = ∇x h1

(
x,−H + z + H

δ
, u(x)

)

+ ∂whb

(
x,−H + z + H

δ
, u(x)

)
∇x u(x).

(3.15)

We further note that

0 ≤ τδ(x) ≤ 1 , 0 ≤ z + H + δ

δ
≤ 1

for (x, z) ∈ Rδ . Gathering these observations, recalling that σδ = δσ in Rδ , and
denoting the norm of hb in C1(D̄ × [−H − 1,−H ] × [−H , M]) by ‖hb‖C1 we
deduce

∫
Rδ

σδ(x, z)
∣∣∇x (ϑδ + hu,δ)

∣∣2d(x, z)

≤ c δσmax

∫
Rδ

|∇x ϑ̄(x, z)|2 d(x, z)

+ c δσmax‖hb‖2C1

∫ −H

−H−δ

∫
D

(
1 + |∇x u(x)|2 + |∇xτδ(x)|2

)
dxdz

≤ c δσmax

∫
Rδ

|∇x ϑ̄(x, z)|2 d(x, z)

+ c δ2σmax‖hb‖2C1

∫
D

(
1 + |∇x u(x)|2 + |∇xτδ(x)|2

)
dx .

Now, since the distance function d(·, ∂ D) ∈ C2 (see [6, Lemma 14.16]) satisfies the
eikonal equation we have

|∇xτδ(x)| ≤ 1√
δ

, x ∈ D ,
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and since u ∈ H1
0 (D) and ϑ̄ ∈ H1(D × (−2H − M, M)), we deduce that the right-

hand side of the above estimate is of order δ, hence

lim
δ→0

∫
Rδ

σδ(x, z)
∣∣∇x (ϑδ + hu,δ)

∣∣2 d(x, z) = 0. (3.16)

Consequently, we derive from (2.1a), (2.3), (3.14), (3.16), and (2.2c)

lim
δ→0

∫
�δ(u)

σδ|∇(ϑδ + hu,δ)|2 d(x, z)

=
∫

�(u)

∣∣∇(ϑ + hu)
∣∣2 d(x, z)

+
∫

D
σ(x,−H) |ϑ(x,−H) + hu(x,−H) − hu(x,−H)|2 dx

= 2G[ϑ];

that is, (3.8) since ϑδ ∈ H1
0 (�δ(u)). This proves the assertion. ��

3.2 Minimizers

Now that we have shown the Gamma convergence of the functionals (Gδ)δ∈(0,1)
towards G, we can deduce useful information on the relation between their mini-
mizers. We first recall from the Lax-Milgram theorem (also see [10, Proposition 3.1,
Lemma 3.2]) the following result regarding the solvability of the transmission prob-
lem (1.1):

Proposition 3.2 Suppose (1.3) and (2.2)–(2.3). For δ ∈ (0, 1), there is a unique mini-
mizer χu,δ ∈ H1

0 (�δ(u)) of the functional Gδ on H1
0 (�δ(u)). It satisfies

∫
�δ(u)

σδ|∇χu,δ|2 d(x, z) ≤ 4
∫

�δ(u)

σδ|∇hu,δ|2 d(x, z). (3.17)

In addition, ψu,δ := χu,δ + hu,δ is a variational solution to (1.1).

As for the functional G we note:

Proposition 3.3 Suppose (1.3) and (2.2). There is a unique minimizer χu ∈ H1
B(�(u))

of the functional G on H1
B(�(u)). It satisfies

‖∇χu‖2L2(�(u)) + ‖√σχu(·,−H)‖2L2(D)

≤ 4‖∇hu‖2L2(�(u)) + 4‖√σ(hu − hu)(·,−H)‖2L2(D) .

Proof It readily follows from (2.1b), the Poincaré inequality (2.12), and the Lax-
Milgram theorem that there is a uniqueminimizerχu ∈ H1

B(�(u)) ofG on H1
B(�(u)).

Since χu satisfies
G[χu] ≤ G[ϑ] , ϑ ∈ H1

B(�(u)) ,
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we obtain the claimed estimate by taking ϑ ≡ 0 in the previous inequality. ��
As a consequence of Theorem 3.1 and Propositions 3.2 and 3.3, we obtain the

convergence of the minimizers of the functionals.

Corollary 3.4 Suppose (1.3) and (2.2)-(2.3). Then

χu,δ −→ χu in L2(�(u)) and χu,δ⇀χu in H1(�(u))

as δ → 0, and

lim
δ→0

Gδ

[
χu,δ

] = G[χu].

Proof Let δ ∈ (0, 1). We use (2.1a), (3.12), and (3.15) to obtain that

∫
�δ(u)

σδ|∇hu,δ|2 d(x, z) ≤ c1

for a constant c1 > 0 independent of δ. This estimate, along with (2.1b) and (3.17),
implies that

‖∇χu,δ‖2L2(�(u)) + δ‖∇χu,δ‖2L2(Rδ)
≤ c1. (3.18)

On the one hand, we infer from the Poincaré inequality (2.12) and (3.18) that

‖χu,δ‖H1(�(u)) ≤ c2. (3.19)

On the other hand, since χu,δ(·,−H − δ) ≡ 0 we can use the same argument as for
the derivation of (2.12) to show that

‖χu,δ‖L2(Rδ) ≤ 2δ‖∂zχu,δ‖L2(Rδ).

Therefore, using (3.18) and the trivial extension of χu,δ ,

‖χu,δ‖L2(D×(−H−1,−H)) ≤ c3
√

δ. (3.20)

Now, despite of the possible non-Lipschitz character of �(u), the embedding of
H1(�(u)) in L2(�(u)) is compact, see [15, I.Theorem 1.4] or [11, Theorem 11.21],
and we infer from (3.19) and (3.20) that there are a function ζ ∈ L2(�M )∩ H1(�(u))

vanishing in �M \ �(u) and a sequence δn → 0 such that χu,δn → ζ in L2(�M )

and χu,δn ⇀ζ in H1(�(u)). Thus, Theorem 3.1 and the fundamental theorem of �-
convergence [5, Corollary 7.20] imply that ζ is a minimizer of G on L2(�M ) and
that

lim
n→∞ Gδn

[
χu,δn

] = G[ζ ].

Obviously, this implies that ζ |�(u) ∈ H1
B(�(u)) is a minimizer of G on H1

B(�(u)),
hence ζ |�(u) = χu by Proposition 3.3 and it is independent of the sequence (δn)n∈N.
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Clearly, G[ζ ] only depends on ζ |�(u) = χu and is independent of the sequence
(δn)n∈N. This proves the claim. ��

3.3 The LimitingModel

Finally, we shall derive the analogue to Eqs. (1.1) satisfied by ψu := χu + hu for
which we suppose that χu ∈ H1

B(�(u)) ∩ H2(�(u)) and that Gauß’ theorem applies
for�(u) and∇χu (which requires some geometric condition on the boundary of�(u)

and the existence of boundary traces for ∇χu , see [7]).
Let u ∈ H1

0 (D) ∩ C(D̄) satisfy (3.1). Since χu ∈ H1
B(�(u)) is the minimizer of

G on H1
B(�(u)) by Corollary 3.4, it satisfies the variational equality

0 =
∫

�(u)

∇(χu + hu) · ∇φ d(x, z)

+
∫

D
σ(x,−H)

(
χu(x,−H) + hu(x,−H) − hu(x,−H)

)
φ(x,−H) dx

for any φ ∈ H1
B(�(u)). Then, by standard computations,

0 =
∫

�(u)

∇(χu + hu) · ∇φ d(x, z)

+
∫

D
σ(x,−H)

(
χu(x,−H) + hu(x,−H) − hu(x,−H)

)
φ(x,−H) dx

= −
∫

�(u)


(χu + hu)φ d(x, z) +
∫

∂�(u)

∇(χu + hu) · n∂�(u)φ dS

+
∫

D
σ(x,−H)

(
χu(x,−H) + hu(x,−H) − hu(x,−H)

)
φ(x,−H) dx .

Therefore, since φ vanishes on ∂�(u) \ � ,

0 = −
∫

�(u)


(χu + hu)φ d(x, z) −
∫

D
∂z(χu + hu)(·,−H)φ(·,−H) dx

+
∫

D
σ(·,−H)

(
χu(·,−H) + hu(·,−H) − hu(·,−H)

)
φ(·,−H) dx .

(3.21)

Consequently, in this caseψu = χu +hu ∈ H2(�(u)) solves Laplace’s equation with
mixed boundary conditions of Dirichlet and Robin type as announced in (1.2). The
corresponding electrostatic energy is

Ee(u) := −G[ψu − hu] ;

that is,

Ee(u) = −1

2

∫
�(u)

∣∣∇ψu
∣∣2 d(x, z)
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− 1

2

∫
D

σ(x,−H)
∣∣ψu(x,−H) − hu(x,−H)

∣∣2 dx ,

where hu is defined in (2.8). By Corollary 3.4 we have Ee,δ(u) → Ee(u) as δ → 0.

For the special case that D is an interval in R and hb is of the form

hb(x, z, w) = h(x,−H , w) + (z + H)
(
h(x,−H , w) − h(x, w)

)
(3.22)

for (x, z, w) ∈ D̄ × [−H − 1,−H ] × [−H ,∞) with h ∈ C2(D̄ × [−H ,∞)), the
previous computation can be rigorously justified.

Theorem 3.5 If D = (a, b) ⊂ R, u ∈ H2(D) ∩ H1
0 (D) with u ≥ −H in D, and

h and hb satisfy (3.22), then (1.2) admits a unique solution ψu ∈ H2(�(u)) with
∂zψu(·,−H) ∈ L2(D \ C(u)). It is given as ψu = χu + hu with χu ∈ H1

B(�(u))

being the unique minimizer of G on H1
B(�(u)).

Remark 3.6 We point out once more that, since �(u) need not be Lipschitz, the stated
L2-regularity of ∂zψu(·,−H) does not follow from the H2-regularity of ψu by a
standard trace theorem. In fact, Lemma 2.1 only ensures that ∂zψu(·,−H) belongs to
the weighted space L2(D \C(u), (H +u)dx). That ∂zψu(·,−H) additionally belongs
to L2(D \ C(u)) follows a posteriori from (1.2c), as shown in the proof below.

Proof of Theorem 3.5 Since D is a one-dimensional interval, H2(D) is embedded in
C(D̄), which implies (1.3a) as well as (1.3b) by [11, Exercise 10.26]. It follows
from [3,8] that the unique minimizer χu ∈ H1

B(�(u)) of G on H1
B(�(u)) belongs to

H2(�(u)). Thanks to (1.3b) and [11, Theorem 10.29], see also [15, II.Theorem 3.1],
there is a sequence (χu, j ) j≥1 in C∞(

�(u)
)
such that

lim
j→∞ ‖χu, j − χu‖H2(�(u)) = 0. (3.23)

Now, for j ≥ 1 and φ ∈ C1
B

(
�(u)

)
, we infer from [7, Folgerung 7.5] and the

regularity of χu, j , φ, and h that Gauß’ theorem can be applied in each connected
component of �(u), as there are at most two singular points. Therefore, we obtain

∫
�(u)

∇(χu, j + hu) · ∇φ d(x, z)

= −
∫

�(u)


(χu, j + hu)φ d(x, z) +
∫

∂�(u)

∇(χu, j + hu) · n∂�(u)φ dS

= −
∫

�(u)


(χu, j + hu)φ d(x, z) −
∫

D
∂z(χu, j + hu)(·,−H)φ(·,−H) dx ,

since φ vanishes on ∂�(u) \�(u). Now, thanks to (3.23), it is straightforward to pass
to the limit j → ∞ in the two integrals over �(u). Moreover, by Lemma 2.1 and
(3.23),

lim
j→∞

∫
D\C(u)

∣∣∂zχu, j (·,−H) − ∂zχu(·,−H)
∣∣2 (H + u) dx = 0.
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Consequently, if φ(·,−H) is compactly supported in D \ C(u), then

lim
j→∞

∫
D

∂z(χu, j + hu)(·,−H)φ(·,−H) dx =
∫

D
∂z(χu + hu)(·,−H)φ(·,−H) dx .

Thanks to the above analysis, the identity (3.21) holds true for any test function φ ∈
C1

B

(
�(u)

)
such that φ(·,−H) is compactly supported in D \ C(u). We then deduce

from (3.21) thatψu = χu +hu satisfies (1.2a) and (1.2b) in L2(�(u)) and L2(∂�(u)\
�(u)), respectively, while

∂zψu(·,−H) = (
σ(χu + hu − hu)

)
(·,−H) a.e. in D \ C(u). (3.24)

Since χu ∈ H1
B(�(u)), the right-hand side of (3.24) belongs to L2(D \ C(u)) by

Lemma 2.2 and the regularity of hu and hu , so that ∂zψu(·,−H) also belongs to that
space. ��

The analysis of the complete MEMS model coupling (1.2) to an equation for u is
performed in a forthcoming research [8] for n = 1.
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