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Chapter 5
The Interplay Between Instructional Pace,
Skill Externalities, and Student
Achievement: An Empirical Assessment

David Kiss

Abstract This article empirically validates a theoretical model from Kiss (B.E. J
Econ Anal Policy 17:1–10, 2017) that addresses the transmission channels through
which increases in peer achievement levels may affect other students’ achievement.
In his model, a higher share of better students has two effects: first, weaker students
benefit from skill externalities generated by their better classmates. At the same time,
however, better students further induce teachers to instruct at a more demanding
pace. Based on these two effects, I derive three hypotheses and test them on data on
German secondary school students. Empirical findings are consistent with the
model’s predictions: increases in the share of better classmates (a) are always
beneficial for good students, (b) may hurt weak students, and (c) boost weak
students’ achievement if the extent of interaction between better and weaker students
is high. Taken together, these findings suggest that encouraging better and weaker
students to interact more could be Pareto-improving.

5.1 Introduction

Peer characteristics are a key factor in parental school choice decisions (Bayer et al.,
2007; Black, 1999), and therefore in discussions on both ability tracking (Duflo
et al., 2011; Hanushek & Wößmann, 2006) and school competition (Altonji et al.,
2015; Rouse, 1998). An important reason for this lies in the positive influence of
good classmates on student achievement.1 Nonetheless, little is known about the
causes behind the positive relationship between peer and own achievement levels.

1This has been shown in numerous empirical studies that carefully account for potential
endogeneity issues (see, for a summary, Sacerdote, 2011). These studies suggest that, on average,
a one standard deviation increase in peer achievement levels boosts own achievement by 0.1
standard deviations. Throughout this article, the terms ability, (academic) achievement, skills, and

D. Kiss (✉)
Leibniz University Hannover, Hanover, Germany
e-mail: kiss@aoek.uni-hannover.de

© The Author(s) 2023
S. Weinert et al. (eds.), Education, Competence Development and Career
Trajectories, Methodology of Educational Measurement and Assessment,
https://doi.org/10.1007/978-3-031-27007-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27007-9_5&domain=pdf
mailto:kiss@aoek.uni-hannover.de
https://doi.org/10.1007/978-3-031-27007-9_5#DOI


However, any assessment of the expected consequences of interventions that change
the skill composition of classes would require a profound understanding of trans-
mission channels.
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So far, the theoretical literature has identified disruptive student behaviour
(Lazear, 2001), effort spillovers (Foster & Frijters, 2009; Fruehwirth, 2013), and
parental investments in their child’s education (Das et al., 2013; Pop-Eleches &
Urquiola, 2013) as possible causes. This article empirically validates Kiss (2017),
who provides an additional theoretical explanation. In his model, better students
induce teachers to instruct their classes at a higher instructional pace. Whereas this is
beneficial for good students because of their well-developed learning capabilities,
weaker students struggle with a more demanding pace. Therefore, the so-called pace
effect is positive for better students and negative for weaker students. The model
further presumes that better students generate positive skill externalities (spillover
effects) that enhance the learning potential of their weaker classmates. Consequently,
better students improve weaker students’ achievement only if (negative) pace effects
are offset by (positive) spillover effects.

The most important variable in the theoretical model is the share of higher
achieving students in a class, denoted by n. Because classes are populated by only
two types of student (better and weaker ones), changes in n are equivalent to changes
in the average achievement levels of classes. To see why, consider a class in which a
weak student is replaced by a better one. Obviously, both the share of better students
n and the average achievement level of the class would increase in this case.

Using longitudinal data on German secondary students, I empirically test the
following three hypotheses derived from the theoretical model:

H1. Better classmates have a positive effect on good students’ achievement.
H2. Better classmates may have a negative effect on weak students’ achievement.
H3. Weak students benefit from better classmates if the extent of interaction between

student types is high.

All three hypotheses are supported by empirical findings, because the signs of the
estimated coefficients are in line with the model’s predictions.2 For math scores,
results further indicate that skill externalities are stronger among students of the same
gender. This chapter therefore contributes to the literature in two ways. First,
empirical support for H2 challenges the general notion that better peers are always
beneficial for students.3 Second, the large heterogeneity in the magnitude of

(test) scores are used interchangeably, and ‘peer’ is just a synonym for ‘classmate’. For better
readability, the gender of students is female and that of teachers is male.
2The corresponding estimates tend to have the ‘correct’ signs; however, they turn out to be
non-significant in most cases.
3Most of the theoretical (empirical) studies summarized by Epple and Romano (2011) and
Sacerdote (2011) presume (report) positive ability peer effects. One of the few exceptions is
research on ordinal rank effects: for example, Cicala et al. (2016) and Elsner and Isphording
(2017) find that students experiencing a drop in their relative achievement (compared to their
classmates) are more likely to have behavioural problems and lower secondary school graduation
rates.



estimated ability peer effects found in the literature may stem (partly) from differ-
ences in the extent of interaction between student types.
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In addition, I would like to highlight two aspects of this article: first, the purpose
of this article is to provide empirical evidence that is primarily descriptive but
consistent with the causal relationships outlined in the theoretical model. Second,
to empirically detect diverging impacts of the interplay between pace and spillover
effects on various student types, the empirical assessments only focus on students
with higher or lower skills. According to the theoretical model, the impacts on the
“median student” are expected to lie between the more polar cases that are
analyzed here.

This chapter proceeds as follows: Sect. 5.2, “Model and hypotheses” briefly
summarizes Kiss (2017) and derives the three hypotheses. Section 5.3, “Empirical
strategy” presents the data and the empirical strategy. Section 5.5 “Results” reports
the results. The final section provides a summary and conclusions.

5.2 Model and Hypotheses

5.2.1 Summary of the Theoretical Model

In Kiss (2017), classes are populated by two student types

θ 2 l, hf g

with l types denoting weaker students and h types denoting better students. Each
type’s learning capability or potential qθ equals

qh = h

ql = lþ s n, ið Þ

with qh > ql > 0. That is, the largest amount of knowledge an h type can accumulate
during a period (say, a school year) equals her potential qh = h.

Regarding l types, their learning potential is determined by both their type and a
non-negative function s(n, i) that captures the extent of knowledge externalities
(‘spillovers’) generated by their better classmates. Spillovers s(n, i) are a positive
function of two variables: n 2 (0, 1) denotes the share of h types (i.e. better peers) in
a class. s(n, i) is assumed to be increasing in n, because better peers may have a
positive effect on l types’ learning efforts or help them through study collaborations.
The second variable i 2 (0, 1) denotes the extent of interaction between h types and
l types, with larger values representing higher levels of interaction. Because of that,



p

s(n, i) is also increasing in i.4 If, for example, a student’s type θ is correlated with
socio-economic status, then i may vary across classes due to regional differences in
the extent of social segregation.
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Even though spillovers s(n, i) are non-negative, they are further constrained from
above, so that qh > ql > 0 holds for any n and i, meaning that h types have the
potential to learn more than l types. The outcome of interest, however, is a student’s
final achievement

aθ pð Þ= qθ - p- qθj j,

which is a function of her potential qθ and the instructional pace p. The pace p is set
by the teacher and reflects the amount of material covered during a school year. From
this it becomes apparent that

aθ p= qθð Þ= qθ > aθ p≠ qθð Þ: ð5:1Þ

Equation 5.1 means that a student can realize her full potential qθ = max
p

aθ pð Þ only
if the instructional pace is perfectly targeted. Consequently, final achievement aθ is
depressed whenever p ≠ qθ. The intuition behind this is simple: a student cannot
realize her full potential whenever she is bored ( p< qθ) or overchallenged ( p> qθ).
Therefore, one can think of qθ as both θ’s learning potential and θ’s optimal pace.

5.2.2 The Three Hypotheses

Figure 5.1 plots aθ for each student type as a function of the share of better students
n, while holding the extent of interaction i constant.5 One can see that ah> al for any
n, meaning that h types learn more than l types. Regarding the marginal effect of
increases in n on each type’s learning, two things become apparent. First,

H1: The higher the share of better students n, the more h types learn.

This is inferred simply from the fact that an h type’s final achievement ah has a
positive slope for any n in Fig. 5.1. The reason for this lies in the endogenous
variable p, the instructional pace set by the teacher. Teachers are assumed to choose
p based on the following rule: the larger the share of student type θ in a class, the
more closely the instructional pace is tailored to that group’s potential qθ =

arg max aθ pð Þ. In the model, teacher utility is therefore maximized at

4As will be shown later, changes in n and i affect weak students’ achievement in different ways.
5All functional form choices (e.g. the teacher’s utility function) are stated and discussed in
Kiss (2017).
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Fig. 5.1 Final achievement aθ of each student type as a function of n. (n 2 (0, 1) denotes the share
of better students (h types) in a class. Because there are only two student types θ 2 {h, l}, higher
values of n are equivalent to higher average achievement levels in classes)

p� = n � qh þ 1- nð Þ � ql, ð5:2Þ

which is a convex combination of each type’s potential qθ. Obviously, if n was zero
or one, then teachers would have chosen a pace that had maximized achievement
growth of all students (recall Eq. 5.1 in conjunction with Eq. 5.2). However, as I am
interested in mixed classes—which implies 0 < n < 1—teachers are assumed to
weigh each student type’s optimal pace qθ by her share in Eq. 5.2.

Because qh > ql, the teacher’s optimal pace p
� is increasing in n—that is, a larger

proportion of better students induces teachers to instruct at a more demanding level.
In the lingo of the model, the so-called pace effect is positive for h types, because a
more demanding pace allows h types to better realize their potential.6

Second, one can infer from graph al in Fig. 5.1 that

H2: The marginal effect of n on an l type’s achievement is negative for small n, and
becomes positive once n exceeds some threshold.

The model makes this interesting prediction because increases in the share of better
students are accompanied by two opposing effects on l types’ learning: on the one
hand, better peers generate additional (positive) knowledge externalities, which is
referred to as the spillover effect. At the same time, however, better peers further
induce teachers to set a higher instructional pace, which turns out to be too demand-
ing for weaker students. Therefore, the net effect of increases in n on al depends on
the interplay between spillover and pace effects. For small n, positive spillover

6Additionally, note that changes in n and i affect p� in different ways: both n and i are determinants
of ql = l + s(n, i); however, the weighting of qh and ql in the teacher’s utility-maximizing pace p�

depends solely on n.



effects are dominated by negative pace effects. Once n is sufficiently large, however,
further increases in n turn out to generate knowledge externalities that overcompen-
sate negative pace effects.
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Fig. 5.2 Final achievement of l types (high vs. low levels of interaction). (Increases in the extent of
interaction between better and weaker student types are represented by a counterclockwise rotation
of the graph of al)

So far, the extent of interaction between student types was held constant in
Fig. 5.1. In Fig. 5.2, achievement of weaker students al is plotted twice—once for
low and once for high levels of interaction. One can observe that

H3: An increase in the extent of interaction raises l types’ achievement.

The reason for this is the following: higher interaction levels generate additional
skill externalities that translate into higher achievement levels al. Put differently:
increases in the extent of interaction are represented in Fig. 5.2 by a counterclock-
wise rotation of the graph of al. Figure 5.2 further suggests that the detrimental effect
of better peers for low initial values of n—as stated in H2—may not exist if
interaction levels are sufficiently high.

5.3 Empirical Strategy

5.3.1 Data, Institutions, and Descriptive Statistics

This study employs Starting Cohort 3 of the National Educational Panel Study
(NEPS). In these data, students are assessed the first time in the autumn of 2010
after enrolling in 5th grade of German secondary school. Thereafter, their educa-
tional progress is tracked in yearly follow-up assessments. The key variables used in
this study are math skills in Grades 5 and 7: math skills in Grade 5 are used to



classify students into l and h types that then allows me to compute the share of better
students n. Math skills at Grade 7 serve as a proxy for the outcome of interest: final
achievement aθ.

7
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Even though NEPS students are also assessed at later grades, this study focuses
on only the early stages of a student’s secondary school career. The reason lies in the
key explanatory variable n that is required to correlate as little as possible with other
unobservable determinants of final achievement aθ. Whereas the analysis presented
here is primarily descriptive, biases due to self-selection or omitted variables can be
reduced by exploiting the fact that new classes are created at 5th grade—the
beginning of German secondary education.

Compared to later grades, potential confounding factors should correlate less with
n among 5th graders for the following reasons: (a) students in newly formed
5th-grade classes usually graduated from different elementary schools; (b) parents
who are sensitive to peer characteristics require some time to properly assess their
child’s new class environment; and (c) similarly, teachers also first have to interact
with their new classes before they can decide whether, for instance, they are willing
to continue instructing them in later grades.8

The analysed data are summarized by student type in Table 5.1. Based on the
distribution of math scores of all 5th graders in the sample, a student is classified as
l type if her 5th grade math score lies below the 25th percentile and as h type if her
math score lies above the 75th percentile. As expected, average math percentile
scores are much lower for l types than for h types (.12 vs. .87). The next row contains
summary statistics for a student’s math percentile score at the beginning of 7th grade
that serves as the proxy for final achievement aθ. There is some regression to the
mean, because the percentile scores of l types are increasing and those of h types are
decreasing over time. The remaining variables are self-explanatory: girls are some-
what over-represented among l types and under-represented among h types. In
addition, l types are more likely to have less educated parents and to enrol in
lower level secondary schools.

5.3.2 Empirical Tests of H1 and H2

To empirically test the relationship between final achievement and the share of better
classmates, the following regression model is estimated:

7Unfortunately, math skills are assessed in NEPS only once every 2 years (see Bela et al., 2012, for
details and Blossfeld et al., 2011, for a general introduction to the NEPS). However, this should not
be a great cause for concern because (a) math skills are highly autocorrelated and (b) the compo-
sition of classes is relatively stable over time.
8Transitions from primary to secondary education serve as natural experiments in the ability peer
effects studies conducted by Gibbons and Telhaj (2016), Kiss (2013), and Sund (2009).
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Table 5.1 Descriptive statistics (German secondary students)

Student type Weak (l type) Good (h type)

Variable M SD M SD

Math percentile (5th grade) .12 .07 .87 .07

Math percentile (7th grade) .18 .15 .75 .19

Female (5th grade) .57 .39

Age (in years, 5th grade) 10.6 .64 10.3 .53

Parental education

Lower secondary .10 .01

Vocational training .48 .19

High school .08 .08

Tertiary .34 .72

Type of secondary school

Lower secondary .28 .01

Multi-track .13 .04

Middle secondary .30 .09

Comprehensive .12 .02

Upper secondary .17 .84

N(students) 580 768

Standard deviations not reported for dummy variables. Unit of analysis: secondary students who
were enrolled in 5th grade when first assessed. A student is classified as l type below the 25th
percentile in the math achievement distribution at the beginning of the 5th grade and as h type if her
math score lies above the 75th percentile. ‘Parental education’ denotes the highest educational
degree of a student’s parents. It is classified according to the International Standard Classification of
Education (ISCED) guidelines, see OECD (1999) for details

mpci7 = β � nc5 þ γ � n2c5 þ δ0 � xi5 þ εic5 ð5:3Þ

in which mpci7 2 [0, 1] denotes the math achievement percentile of student i at the
beginning of 7th grade, and serves as a proxy for final achievement aθ. The variable
of interest is nc5, the share of higher achieving classmates in Grade 5. The c subscript
indicates that nc5 is constant across students attending the same class. As shown in
Fig. 5.1, the relationship between math skills and n is nonlinear—to account for this,
Eq. 5.3 further includes a square of nc5. xi5 denotes a vector of control variables (age,
gender, indicators for parental education, and school type). Errors εic5 are clustered
on the class level.

H1 is tested by first restricting the data to h types and then estimating Eq. 5.3.
According to the theoretical model, returns to increases in n are positive, but
diminishing for h types (see Fig. 5.1). Because

∂mpci7
∂nc5

= β þ 2γ � nc5, ð5:4Þ

one would therefore expect bβ> 0 and bγ< 0.
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H2 is tested in the same fashion: the data are now constrained to l types before
Eq. 5.3 is estimated. According to Fig. 5.1, ∂mpci7

∂nc5
is negative for small n and

eventually becomes positive as n further increases—this is the case if bβ< 0 andbγ> 0 in Eq. 5.4.

5.3.3 The Empirical Test of H3

It was stated in Sect. 5.2, “Model and hypotheses” that the extent of interaction may
vary across classes due to regional differences in social segregation levels. The
empirical test of H3, however, is based on the following assumption:

A1. Same-gender peers interact more than different-gender peers.

To exemplify A1, consider the following 5th-grade class of 22 students: 6 high-
achieving girls, 5 high-achieving boys, 6 low-achieving girls, and 5 low-achieving
boys. What would be the marginal effect of an additional high-achieving girl on the
achievement levels of low-achieving girls and boys? Under A1, the positive effect of
that additional high-achieving girl would be stronger on low-achieving girls than on
low-achieving boys, because same-sex friendships and social ties are both more
likely to develop and be sustained over time.

Under A1, the following procedure is implemented to test H3:

1. Based on a percentile-threshold π, each student (regardless of gender) is classified
as either h or l type.9

2. Each class c is split into two subclasses c1 and c2. This is done in two different
ways, called scenarios:

• Scenario 1: The first subclass c1 consists of all high- and low-achieving girls
who are enrolled in c. The second subclass c2 comprises all high- and
low-achieving boys enrolled in c.

• Scenario 2: c1 comprises all high-achieving girls and low-achieving boys
enrolled in c. Similarly, all high-achieving boys and low-achieving girls in
c are grouped into subclass c2.

3. For both scenarios (same- vs mixed-sex subclasses), the share of better students in
each subclass is computed. To be precise,

9Table 4.1, for example, π is set to 25 to identify l types and to 75 to identify h types.

https://doi.org/10.1007/978-3-031-27007-9_4#Tab1
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• n either equals nggc1,5 , the share of high-achieving girls in c1, the ‘girls-only’

subclass (in 5th grade). Alternatively, n= nbbc2,5 equals the share of high-
achieving boys in the ‘boys-only’ subclass c2.

• Under the second scenario, n equals either ngbc1,5 or n
bg
c2,5.

10

4. Estimate Eq. 5.3 and treat subclasses c1 and c2 as if they were separate classes

This estimation procedure has the appealing property of using the same data to
construct subclasses in two different ways. A comparison of estimates therefore
allows inferences to be drawn on the effect of changes in the extent of interaction on
the achievement growth of l types: because the same data are used in both scenarios,
differences in results can emerge only from differences in the way subclasses were
constructed. Under A1, the extent of interaction is higher in same-sex subclasses (see
H3 and Fig. 5.2). In terms of marginal effects (see Eq. 5.4 in conjunction with H2),

these considerations translate into bβlow <bβhigh and bγlow >bγhigh, with ‘low’ indicating
whether the analysis was based on the mixed-sex sample in which I assume
interaction levels to be low between student types, and ‘high’ indicating whether
the analysis was based on the same-sex sample in which I assume interaction levels
to be high between student types.

5.4 Results

5.4.1 Main Findings

H1 is tested with the following three-step procedure:

1. Based on a percentile threshold π 2 {75, . . ., 85}, the h type dummy is coded as
follows:

h typei5 =
1 if mpci5 ≥ π
0 if mpci5 < π

0 that is, h typei5 = 1 if i’s math skill (measured at

the beginning of the 5th grade) is equal or greater than the πth percentile.
Otherwise, h typei5 = 0 for any student i scoring below π.

2. Based on h typei5, the share of high achievers nc5 is computed for each class c.
3. Before Eq. 5.3 is estimated, the data are restricted to h types only.

Point estimates of β and γ are plotted against π in Fig. 5.3: for any 75 ≤ π ≤ 85,
estimates of β turn out to be positive—that is, the larger the share of high-achieving
students in a class, the more h types learn. However, the graph of ah is only concave
for negative values of γ (recall Eq. 5.4). Because bγ turns out to be positive in some
cases, Fig. 5.3. confirms H1 only partially—it should be noted, however, that the

10In our hypothetical class of 22 students (before the high-achieving girl was added), these shares

are nggc1,5 =
6
12, n

bb
c2,5 =

5
10, n

gb
c1,5 =

6
11, and nbgc2,5 =

5
11.



sign of bγ is of secondary importance with respect to the theoretical prediction that
final achievement of h types is increasing in n. The average values of bβ and bγ are .14
and - .03, respectively, and non-significant for any π 2 {75, . . ., 85}.11
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Fig. 5.3 Empirical test of H1 (estimates of β and γ for h types). (This figure reports estimates of β
(solid line) and γ (dashed line) for h types for various thresholds π 2 {75, . . ., 85}. H1 is derived

from the theoretical model that predicts bβ> 0 and bγ< 0 for h types. Sample sizes range from
449 (π = 85) to 768 (π = 75). Both the estimation procedure and the relationship between β and γ
are discussed at the beginning of Sect. 5.5, “Results”)

H2 is tested in the same manner. The l type dummy

l typei5 = 1 mpci5 ≤ πð Þ for π 2 15, . . . , 25f g

identifies students who score at the πth percentile or below, and π now takes on
values between 15 and 25. The share of l types is computed for each class and
interpreted as 1 - nc5. Similar to the empirical test of H1, the data are restricted to
l types before Eq. 5.3 is estimated.

11One might be puzzled by the fact that the graphs of β and γ are symmetric along some horizontal
axis. Recalling Fig. 4.1 in conjunction with Eq. 5.3, note that any specific trajectory in Fig. 4.1 is

represented by a unique combination of β and γ. Therefore, similar values of bβ and bγ under two
different π imply that the graphs of ah are (almost) overlapping. The symmetry arises for the
following reason: because mpc7 2 [0, 1] is bounded from above, the curvature of ‘initially steep’

graphs of ah (that is, for large bβ) must be more pronounced, which implies a large absolute value ofbγ
. Put differently, the degree of curvature of the positively sloped, concave, and bounded graph ah
imposes a mechanical relationship between β and γ.

https://doi.org/10.1007/978-3-031-27007-9_4#Fig1
https://doi.org/10.1007/978-3-031-27007-9_4#Fig1
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Fig. 5.4 Empirical test of H2 (estimates of β and γ for l types). (This figure reports estimates of β
(solid line) and γ (dashed line) for l types under various thresholds π 2 {15, . . ., 25}. Here, the share
of l types in a class is interpreted as 1 - n. H2 is derived from the theoretical mode, that predictsbβ< 0 and bγ> 0 for l types. Sample sizes range from 334 (π = 15) to 580 (π = 25))

Point estimates of β and γ are plotted against π in Fig. 5.4. Consistent with H2,
point estimates of β are now negative and point estimates of γ are now positive for
any π, and the average value of bβ is .06 and of bγ is .21. All estimates of β turn out to
be non-significant and all estimates of γ to be significant. It should further be noted
that the point estimates of β become positive if π > 30, i.e., if the threshold to
identify l-types takes on “too large” values.12

To test H3, each class c is split into subclasses c1 and c2 in two different ways
(see Sect. 5.3.3, “The empirical test of H3” for details). In both cases, each subclass
encompasses h and l types. Under the first scenario, c1 contains only girls and c2
only boys. In the second scenario, high-achieving girls and low-achieving boys
constitute c1, and subclass c2 comprises high-achieving boys and low-achieving
girls. The marginal effect of increases in n should therefore depend on the way
subclasses are constructed (same-sex vs mixed-sex). Based on the theoretical model,
one would expect larger marginal effects in classes with higher levels of interaction
(see Eq. 5.4). In terms of regression coefficients on the marginal effect of increases in

the share of better classmates on l types, this notion translates into bβhigh >bβlow andbγhigh <bγlow —with ‘high’ indicating whether the analysis was conducted on the

12Put differently: to empirically assess the model’s predictions, there must be a sufficiently large
skill gap between l and h types.



same-sex sample and ‘low’ indicating whether it was conducted on the mixed-sex
sample.
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Estimates of Eq. 5.3 are plotted in Fig. 5.5 for same-sex (top figure) versus mixed-

sex subclasses (bottom figure). One can see that bβhigh >bβlow for any threshold
π 2 {15, . . ., 25} at which students are classified into l and h types. The average

values of bβhigh are -0.01, and the mean values of bγhigh are 0.10. The average values
of bβlow are -0.08, and the mean values of bγlow are 0.21.13 In essence, this set of
findings resembles the two graphs of al in Fig. 5.2, therefore empirically supporting

H3: this can be inferred from ahighl being steeper than alowl , which is reflected by bβhigh
being larger than bβlow . In addition, both ahighl and alowl are convex, which is also
confirmed by the data because bγ> 0 in both scenarios.

5.4.2 Robustness Checks Based on Reading Scores

To check the robustness of the results, the analyses from Sect. 5.5.1, “Main findings”
are repeated with reading (rather than math) scores—that is, students are classified
into l and h types based on their reading scores at the beginning of 5th grade, and
final achievement is now proxied by reading scores measured in Grade 7.

The empirical findings reported in Fig. 5.6 are mostly in line with the theoretical
model: bβ is positive among h types (top figure) and negative for l types (bottom
figure). As before, H1 is confirmed only partially, because bγ is negative in only 50%
of cases (top figure). However, as implied by H2, bγ is positive among l types for any
π 2 {15, . . ., 25}. Again, most of the estimated β and γ are non-significant.14

H3, however, is not empirically supported for reading scores. According to H3, bβ
should be larger in high-interaction (i.e. same-sex) subclasses. This is not confirmed

by the data because mean bβhigh� �
≈ - 0:08<mean bβlow� �

≈ - 0:06. One may won-

der whether this finding invalidates H3 or could be explained by some systematic
differences in the acquisition of math and reading skills. It might be the case, for
instance, that math skills are more easily transferable between student types who are
collaborating in study groups. In addition, weaker students (or their parents) may
have a greater awareness of both their math deficits and the need to overcome them.

13Regarding significance levels, none of the bβ and 59% of the bγ are significant.
14In the top figure, only 9% of the bβ and none of the bγ are significant at the 10% level; in the bottom

figure, none of the bβ and 27% of the bγ are significant.
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Fig. 5.5 Empirical test of H3 (estimated β and γ in high- and low-interaction classes).

(H3 translates into bβhigh >bβlow and bγhigh <bγlow—that is, the marginal effect of better peers is
increasing in the extent of interaction between student types. Interaction levels are assumed to be
higher in same-sex subclasses (top figure) than in mixed-sex subclasses (bottom figure), see Sect.
5.3.3, “The empirical test of H3” for details)
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Fig. 5.6 Robustness checks for H1 and H2 based on reading scores. (Unlike Figs. 5.3 and 5.4,
students are now classified as l or h types based on their reading scores at the beginning of 5th grade,
and final achievement aθ is proxied by reading scores at the beginning of 7th grade. The top figure
reports estimates of β (solid line) and γ (dashed line) for h types under various thresholds
π 2 {75, . . ., 85}, therefore providing an empirical test for H1. The bottom figure tests H2 by
reporting estimates of β and γ for l types for π 2 {15, . . ., 25}. Sample sizes range between 445 and
741 in the top figure and between 328 and 589 in the bottom figure)
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5.5 Summary and Conclusions

Though there is compelling empirical evidence that students tend to learn more in
classrooms with higher shares of good peers, little is still known about the causes
behind this relationship. This article complements our understanding about trans-
mission channels by empirically validating the theoretical model on the interplay
between instructional pace, skill externalities, and student achievement formulated
by Kiss (2017). Three hypotheses on the impact of better peers on student achieve-
ment are tested with data on German secondary students. To minimize biases, all
analyses are based on a sample of newly formed 5th-grade classes at the beginning of
German secondary education.

The empirical findings for math achievement support each hypothesis. Better
peers (a) boost good students’ achievement, (b) can have a detrimental effect on
weak students (presumably because they induce teachers to set a too demanding
instructional pace), and (c) raise weaker students’ achievement if the extent of
interaction between student types is high. Results (a) and (b) are confirmed by
robustness checks based on reading scores. However, the third hypothesis is empir-
ically supported only for math scores—one plausible explanation might be the
greater awareness of weaker students for both their math deficits and the need to
overcome them.

A more profound understanding of transmission channels allows a better assess-
ment of the expected consequences of interventions that change the skill composi-
tion of classes. In addition, it may help to identify potentially Pareto-improving
interventions—in our case, all students may benefit from learning environments that
encourage them to interact more.
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