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Abstract
Concrete steel towers are increasingly being used for onshore wind turbines. The lower part consists of separated segmented 
concrete rings connected with dry joints. Due to slight deviations from the axisymmetric cross-section, closely spaced modes 
occur. Therefore, the influences of small system changes on closely spaced modes, particularly the mode shapes, should be 
investigated to enable reliable vibration-based monitoring. In this context, the influence of imperfections due to the waviness 
of the dry joints requires attention. As no acceleration measurements on concrete towers considering small system changes 
have been performed so far, this has not yet been investigated. Therefore, an experiment is carried out using a large-scale 
laboratory model of a prestressed concrete segment tower. The system modifications are introduced by changing the preload. 
This changes the influence of imperfections of the surfaces of the horizontal dry joints, estimated by measuring strain and 
displacement at the lowest joint. An increasing preload causes the first two pairs of bending modes to move closer together. 
This enables to study the effect of the closeness of natural frequencies on the related mode shapes based on the same structure. 
Thus, the known effects of increasing uncertainty of the alignment and a rotation of the mode shape in the mode subspace 
with closer natural frequencies can be shown experimentally. In this work, the operational modal analysis (OMA) methods 
Bayesian-OMA (BAYOMA) and Stochastic Subspace Identification (SSI) are used. Local imperfections can significantly 
affect modal parameters, so these should be considered for vibration-based monitoring.

Keywords  Close modes · Concrete steel tower · OMA · Identification uncertainty

1  Introduction

In the construction of wind turbines, the tower is a deci-
sive cost factor due to material and transport costs. With 

increasing tower heights, hybrid towers are often used for 
onshore wind turbines. This type of tower, as shown in 
Fig. 1, consists of segmented concrete rings with vertical and 
horizontal dry joints in the lower part and conical steel tubes 
in the upper part. They reach hub heights of over 160 m [6] 
and can be particularly economical due to lower transport 
as well as manufacturing costs compared to conventional 
steel towers. The increase in economic efficiency is achieved 
by prefabricating the lower tower section in segments and 
providing the structural integrity by externally prestressing 
the concrete after stacking the segment rings.

In a segmented concrete tower, geometric and material 
nonlinearities occur due to the contact at the horizontal dry 
joints. Due to the manufacturing process, the contact surface 
exhibits imperfections in the form of waviness, as shown in 
Fig. 1. The waviness leads to an uneven load distribution 
between segment rings on a local level. Hence, an inhomo-
geneous stress distribution emerges at the joint, as Theiler 
et al. [28] demonstrated numerically. In a large-scale labora-
tory experiment of a prestressed segmented concrete tower, 
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the inhomogeneous strain distribution was detected using 
displacement and strain measurements at the joint [23]. The 
experiments showed that while the mean value of the strain 
distribution at the joint increases with the preload, the inho-
mogeneous strain distribution remained qualitatively the 
same under varying preload.

An early damage detection for the segment joints can 
be achieved using a structural health monitoring (SHM) 
approach. A distinction can be made between local and 
global monitoring. In the case of local monitoring, meas-
urements are taken in the area of an expected damage loca-
tion—for example, concrete spalling at the dry joint. Strain 
gauges are often used for this purpose. In contrast to this, 
global monitoring, like vibration-based, attempts to obtain 
a statement about the global state of the monitored structure 
on the basis of fewer sensors [16]. This makes global moni-
toring significantly more cost-effective. However, measure-
ments are more difficult to interpret and usually damages as 
small as with local monitoring cannot be identified. For a 
global vibration-based monitoring concept of a hybrid tower, 
knowledge of the influence of imperfections on the modal 
parameters is necessary.

For vibration-based global monitoring, operational modal 
analysis (OMA) identification methods are mostly used, as 
they do not require equipping the monitored structure with 
additional excitation actuators like e.g. electromagnetic 
shakers. A challenge that arises when monitoring a tower 
structure with a symmetrical cross-section is the identifi-
cation of closely spaced bending modes. The widely used 
frequency domain decomposition (FDD) method determines 
the modal parameters from the singular value decomposi-
tion (SVD) of the spectral matrix [10]. Hence, the FDD 
can only approximately identify the modal parameters in 

the case of closely spaced modes, because the excitation 
can usually not be modally decoupled. An alternative fre-
quency domain identification method is the Bayesian opera-
tional modal analysis (BAYOMA), which is able to properly 
identify closely spaced modes [3]. In addition, this method 
also provides the uncertainty of modal parameters. A more 
detailed investigation of the identification uncertainty of 
closely spaced modes when using BAYOMA demonstrates, 
that mode shapes in particular are more uncertain to identify 
than in a well separated case [4]. However, in case of a high 
signal to noise ratio (SNR), the identification of the mode 
subspace (MSS) is still possible with a low uncertainty. A 
detailed description of the BAYOMA method is given in 
Sect. 2.

In time domain, the stochastic subspace identification 
(SSI) [29] is a popular OMA method. A distinction can 
be made between covariance-driven (SSI-COV) and data-
driven stochastic subspace identification (SSI-DAT). In 
SSI-DAT, the raw data is used as the basis for the system 
identification, whereas in SSI-COV, covariance matrices are 
used. For both methods, it is a challenge to distinguish physi-
cal modes from spurious modes and to find stable paths with 
respect to the model order. So-called stabilisation diagrams 
and various additional algorithms are used for the mode 
selection, with some of these being able to identify closely 
spaced modes [18, 26].

In addition to the methods mentioned above, there are 
further OMA algorithms that can identify closely spaced 
modes, like natural excitation technique with eigensys-
tem realisation (NExT ERA) [19] and poly-reference least 
squares complex frequency-domain (pLSCF) [24].

In the literature, there are several examples of experi-
mental investigations of the dynamics of structures with 
closely spaced modes. For instance, a prototype of a concrete 
tower of a wind turbine was investigated [12]. In that study, 
the cross-section was symmetrical, however, the bending 
modes were well-separated due to attachments mounted to 
the structure. Similar results were shown in a study of a 
monopole telecoms structure [20], where the expected align-
ment of the first mode shape due to physical attachments 
also corresponds to the identified alignment. Brownjohn 
et al. [11] investigated the dynamics of offshore lighthouses 
using BAYOMA and also found a significant difference in 
the bending mode natural frequencies, which are also due to 
attachments. However, by taking into account the uncertain-
ties of the mode shapes, the alignment of the mode shapes 
was not necessarily the same as the visible structural symme-
try. The influence of environmental conditions and damage 
on closely spaced modes was investigated using the Leibniz 
University Test Structure for Monitoring (LUMO) consid-
ering the identification uncertainties [22]. In this study, the 
comparison of mode shapes with a mode subspace proved 
to be much more reliable than a simple comparison of mode 

Fig. 1   Right: Sketch of a wind turbine with a hybrid tower similar to 
[23]. Left: Illustration of the imperfection due to waviness of a dry 
horizontal joint
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shapes and thus a better damage-sensitive feature for closely 
spaced modes. Dooms et al. examined a silo using the SSI 
and found out that in case of closely spaced modes, com-
plex mode shapes occur that have no dominant phase in the 
complex plane [15]. A similar observation was made when 
examining a steel mast [27].

In this work, the investigations of the influence of small 
system changes on modal parameters, in particular on the 
mode alignment, of closely spaced modes are carried out on 
a large scaled prestressed concrete tower with horizontal dry 
joints in a laboratory. This makes it possible to selectively 
insert system changes, such as changes of the preload. At 
the same time, undesirable influences, such as temperature 
changes and operational conditions, can be largely avoided. 
Due to the symmetrical tower structure closely spaced 
modes occur, which can be influenced by system changes. 
As OMA methods do not require measurements of the exci-
tation, they are suitable for many real-world applications, 
like vibration-based monitoring of tower structures. There-
fore, OMA methods are used in this case study. The excita-
tion in the experiment originates from the ambient influ-
ences from the laboratory and is not measured.

BAYOMA is used as the identification method, since 
an uncertainty calculation can be carried out. This allows 
a more precise investigation of closely spaced modes and 
the influence of smallest system changes. To verify that the 
effects to be observed are not caused by the identification 
method, the results are compared with the SSI-COV. In order 
to be able to estimate the changes in the imperfections due 
to the change of the preload, local monitoring of the lowest 
joint is also performed on the basis of strain and displace-
ment measurements. In the following chapter, the two identi-
fication methods are described in more detail and the special 
characteristics of closely spaced modes are discussed. Chap-
ter 3 describes the experiment and the results are presented 
in Chapter 4. Afterwards, the study will be summarised and 
an outlook will be given.

2 � Operational modal analysis

For vibration-based monitoring of large structures, OMA 
is usually employed. Unlike experimental modal analysis, 
the excitation is unknown [9]. Instead, it is assumed that 
the structure is excited with a distributed stochastic force 
f  , which exhibits a white noise spectrum in the considered 
frequency range. The structural responses (displacements 
u , velocities u̇ and accelerations ü ) of a linear time invariant 
mechanical structure to such a force are expressed using the 
equation of motion for a n degree-of-freedom (DOF) system

(1)Mü + Cu̇ + Ku = f ,

with M , C and K as mass -, damping- and stiffness matrices. 
For the case of modal damping, the system can be modally 
decoupled with u = �q , where � is the modal matrix, that 
contains n mode shape vectors � = [�1...�n] and the modal 
coordinate vector q . The decoupled equation of motion for 
each mode corresponds to that of a single DOF system

where pj is the modal force, �j is the modal damping and 
f0j the natural frequency of the system. BAYOMA uses 
modal decoupling, which is described in the following sub-
section. In contrast, the SSI-COV identifies a state space 
model for the system. This method will be briefly explained 
in subsection 2.2.

2.1 � Bayesian operational modal analysis

The basic idea of BAYOMA was introduced by Yuen et al. 
[31]. The method has been improved by Au et al. [2, 3] by 
reducing the number of design variables of the underlying 
numerical optimisation problem in case of many measure-
ment degrees of freedom or closely spaced modes. In this 
chapter, an insight into the method is given. More informa-
tion can be found in the corresponding literature e.g. [5].

The scaled discrete Fourier transformation (DFT) F  of 
a measured Gaussian distributed acceleration signal ü with 
nChannel channels, Ndata data points and a sampling rate fs with 
the corresponding frequency point fk = kfs∕Ndata is

where i is the imaginary number. In case of a high sampling 
rate and a long data duration, the DFT is asymptotically 
independent and Gaussian distributed at different frequen-
cies. In the case of Nmodes dominant modes in the considered 
frequency range, the model of the DFT is

where �j is the unit norm mode shape vector, sjk is the modal 
force in the frequency domain, �k is the modelling error and 
hjk is the transfer function of a damped 1-DOF system for 
acceleration responses. The assumption that the power spec-
tral density (PSD) of the modelling error is equal for all 
channels and has the constant value Se in the considered fre-
quency range leads to E[�k�∗k |�] = SeInChannel , where InChannel is 
the nChannel x nChannel unity matrix. In addition, it is assumed, 
that the hermitian PSD matrix of the modal force S is con-
stant in the considered frequency range and independent of 
the modelling error, the expected value of the PSD is

(2)q̈j + 4𝜁j𝜋f0jq̇j + 4𝜋2f 2
0j
qj = pj,

(3)Fk = F(fk) =

√
1

Ndatafs

Ndata−1∑
j=0

üje
−2�ijk∕Ndata ,

(4)

Fk =

Nmodes∑
j=1

�jhjksjk + �k with hjk =
−1

1 − �2
jk
− 2�jk�ji

and �jk =
f0j

fk
,
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Thus, Ek(�) corresponds to the theoretical PSD of the 
modal parameters � and corresponds to the covariance 
matrix of Fk . For two dominant modes, Eq. 5 is dependent 
on 9 + 2nChannel parameters

In the special case of incoherence of the modal force, the 
modal force matrix S is a diagonal matrix, so that the modes 
can be perfectly decoupled. In this case, extensions of the 
FDD could also identify the closely spaced modes without 
a bias. Applying the special case of Bayes’ theorem, where 
the prior of the modal parameters is uniformly distributed, 
results in the posterior being proportional to the likelihood.

The negative loglikelihood function (NLLF) L for a multi-
variate Gaussian distribution is

where Nf  is the number of considered frequency points. The 
most probable values (MPV) of the modal parameters can 
then be obtained by minimising the NLLF and, therefore, 
solving for Θ.

With an increasing number of sensors, the number of 
parameters to be identified increases according to Eq. 6. To 
make the number of design parameters independent of the 
number of sensors, the mode shape subspace (MSS) is deter-
mined before starting the optimisation. The MSS is a sub-
space spanned by the m dominating mode shapes. To obtain 
the dominating mode shapes for the MSS the real part of the 
spectral matrix can be summed up over the frequency range 
of interest, assuming that the mode shape is real-valued

The dominating mode shapes can be obtained by an eigen-
value decomposition. In the case of two modes, the MSS 
�1,2 is determined from the unit norm eigenvectors � of the 
two highest eigenvalues. The subsequent optimisation only 
needs to determine the rotation angle �1 and �2 of the modes 
in the MSS to obtain the mode shapes � = �1,2T(�1, �2) 
using the transformation matrix T

(5)

Ek(Θ) = E[FkF
∗
k
|�] =

Nmodes∑
j=1

Nmodes∑
m=1

hjkh
∗
mk
Sjm�j�

T
m
+ SeInChannel = �Hk�

T + SeInChannel

with Hk = diag([h1,k … hNmodes,k
]) S diag([h1,k … hNmodes,k

])∗.

(6)
� = [�T

1
,�T

2
, f01, f02, �1, �2, S11, S22, Re(S12), Im(S12), Se].

(7)

L(�) = nChannelNf ln� +

Nf∑
k=1

ln||Ek(�)|| +
Nf∑
k=1

F
∗
k
Ek(�)−1Fk,

(8)D =

Nf∑
k=1

Re(FkF
∗
k
).

This converts the expected value of Eq. 5 into

with  �� = [�1, �2, f01, f02, �1, �2, S11, S22, Re(S12), Im(S21), Se] . 
Due to the transformation matrix, the unit length constraint 
is satisfied. Thus, 11 parameters are to be identified regard-
less of the number of sensors. Note that the mode shapes are 
not necessarily orthogonal due to the chosen sensor posi-
tions and measuring directions. An efficient way of solving 
this optimisation problem, as well as adjusting the mode 
subspace for very noisy data, can be found in [3].

Given the assumed Gaussian distribution, the posterior 
covariance of the modal parameters is calculated from 
the inverse Hessian matrix of the NLLF (Eq. 7) with the 
excepted value of Eq. 5 at the MPV. The mode shapes are 
constrained to unit norm in BAYOMA. The consideration of 
this constraint in the derivation, as well as the possibility of 
the numerical and analytical double derivation, is described 
in [2]. The roots of the diagonal entries are the standard 
deviation of the corresponding modal parameters.

2.2 � Covariance‑driven stochastic subspace 
identification

In the stochastic subspace identification, the system is mod-
elled as a linear time-invariant discrete-time stochastic state 
space model

with the state matrix A , the output matrix C , the discrete-
time state vector xk and the discrete-time output vector yk 
[7]. The unknown input is modelled by the process noise 
wk and the measurement noise vk . Both are assumed to be 
zero mean, uncorrelated and possessing a white noise power 
spectral density.

The modal parameters are calculated from the state 
matrix A and the output matrix C . This is accomplished 
by determining the eigenvalues �i and eigenvectors �i of 
A and deriving the continuous-time eigenvalues �i using 
�i = ln (�i)fs.

(9)T(�1, �2) =

[
cos(�1) cos(�2)

sin(�1) sin(�2)

]
.

Ek(��) = �1,2THk(�1,2T)
T + Se�In�

T ,

(10)
xk+1 = Axk + wk

yk = Cxk + vk
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The modal parameters, i.e. the natural frequencies fi , 
damping ratios �i and mode shapes �i , can then be obtained 
with

The various SSI algorithms are classified in the literature as 
covariance-driven SSI or data-driven SSI [9]. The main dif-
ference between these approaches is the formulation of the 
subspace matrix H , from which the observability matrix O 
can be obtained. In this study, the SSI-COV is used for the 
system identification. In that case, the matrix H with l block 
rows and m block columns is assembled from the covariance 
matrices Ry(i)

The subspace matrix H can be expressed as the matrix prod-
uct H = OZ , using the observability matrix O and a matrix 
Z . The observability matrix is defined as

A singular value decomposition (SVD) is used to obtain 
H = USVT , which enables solving for the matrices O and Z

The system matrix A can be constructed by removing one 
block from the top and one block from the bottom of O . In 
the first block of O , the output matrix C can be found [7].

In contrast to BAYOMA, the elements of the mode 
shape vectors identified using SSI are complex-valued. 
In case of a modally damped system, the mode shape is 
therefore oriented in a straight line in the complex plane 
at an angle called mean phase (MP) [25]

(11)fi =
||�i||
2�

, �i =
−Re(�i)

||�i||
, �i = C�i.

(12)H =

⎡
⎢⎢⎢⎣

Ry(1) Ry(2) … Ry(m)

Ry(2) Ry(3) … Ry(m + 1)

⋮ ⋮ ⋱ ⋮

Ry(l) Ry(l + 1) … Ry(l + m − 1)

⎤
⎥⎥⎥⎦
.

(13)O =

⎡
⎢⎢⎢⎣

C

CA

...

CAl−1

⎤
⎥⎥⎥⎦
.

(14)O = US1∕2 and Z = S1∕2VT .

(15)

MP(�j) = arctan

(
−V12

V22

)
with USVT = [Re(�j) Im(�j)],

where USVT is the SVD. V12 as well as V22 are the corre-
sponding elements of the matrix V . Using the mean phase, 
the mode can then be rotated to the real axis accordingly

In this process, deviations from the mean phase lead to inac-
curacies. The mean phase deviation (MPD) metric

has been established as a quality criterion for identified 
mode shapes [25]. In Eq. 17, n is the number of elements of 
the mode shape �j . Closely spaced modes can be detrimental 
to the mode shape identification and should be considered 
when using this established procedure. Further details are 
described in the next section.

2.3 � Special aspects of closely spaced modes

There are several metrics for determining the closeness of 
natural frequencies [4, 30], which are mathematically simi-
lar. In this paper, the formulation by Au et al. [4] is cho-
sen, because it is usually used in context of BAYOMA. The 
closeness of two modes can be expressed using the distance 
in terms of the frequency as well as the half-width of both 
modes. Therefore, in addition to the natural frequencies, the 
damping ratios are necessary to determine the closeness. For 
nearly equally damped modes, the close mode factor ej for 
mode j can be calculated as follows

In this study, the close mode factor e of a mode pair j and k 
is calculated as the mean value of ej and ek . A visualisation 
of the PSD of two modes with different close mode fac-
tors is shown in Fig. 2. For e ≤ 1 , the natural frequencies 
of the modes are within the half-power width of each other. 
This range is referred to as closely spaced modes in the fol-
lowing. From about e > 10 onwards, the modes are clearly 

(16)�j,real = Re
(
�je

−iMP
)
.

(17)

MPD(�j) =

∑n

k=1

����jk
��� arccos

��������

Re(�jk)V22 − Im(�jk)V12

����jk
���
�

V2
12
+ V2

22

��������∑n

k=1

����jk
���

(18)ej =
|||||
fk − fj

fj�j

|||||
.

Fig. 2   A visualisation of the 
PSD of two modes with differ-
ent close mode factors
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well-separated. In the extreme case of two equal natural fre-
quencies e = 0 , a double eigenvalue problem occurs.

In this case, every linear combination of the two eigen-
vectors is also a eigenvector of the system, so that only 
the mode subspace (MSS) can be uniquely determined. A 
visualisation of the MSS for the first bending mode of a 
cantilever beam, spanned by the two linearly independent 
vectors � k and �m is given in Fig. 3. Another possible 
eigenvector is �j.

Usually, the frequencies are not exactly the same in 
real-world engineering structures. Theoretical considera-
tions show that small mass and stiffness changes lead to 
rotations of mode shapes of very closely spaced modes 
within the MSS [8]. A more detailed investigation of the 
identification uncertainty of closely spaced modes demon-
strates, that the mode shape in particular is more uncertain 
to identify than other modal parameters [4]. In case of a 
high signal to noise ratio (SNR) the identification of the 
MSS is possible with a very low uncertainty. The main 
part of the uncertainty of the mode shape is orthogonal 
to the MSS and corresponds to the position in the MSS. 
This uncertainty is independent of the SNR and depends 
mainly on the close mode factor e as well as the disparity 
factor d, which describes the ratio of the modal forces of 
the two modes

where Sjj is the modal force of the considered mode j and Skk 
the modal force of the neighbouring mode k. The closer the 
modes and the smaller the disparity factor, the more uncer-
tain is the position of the mode shape j in the MSS. For this 
reason, the well known modal assurance criterion (MAC) [1]

is prone to high uncertainties for closely spaced modes. 
Therefore, Gres et al. [17] propose to employ a scaled and 

(19)djk =
Sjj

Skk
,

(20)MACj,k =

|||�H
j
�k

|||
2

�H
j
�j�

H
k
�k

.

shifted �2 distribution for the comparison of two almost 
equal modes considering their uncertainties. In the case of 
closely spaced modes, a beta distribution is better suited to 
describe the resulting probability density function [22].

A modification to MAC for comparing closely spaced 
modes is the subspace of order 2 modal assurance crite-
rion (S2MAC) [13]. The S2MAC compares a subspace 
spanned by two mode shapes [� k�m] with a mode shape 
vector �j . For real-valued unit norm modes, such as those 
resulting from BAYOMA identification, the S2MAC can 
be calculated as

Similar to the distribution of the MAC, the distribution of 
the S2MAC can be expressed as a beta distribution.

In this paper a tower with closely spaced bending 
modes is examined. The vibration is measured in x- and 
y-direction in all measuring levels (ML). Accordingly, the 
direction angle � of a mode shape can be calculated analo-
gously to the MP in Eq. 15

where �x are the entries of the mode shape in x-direction, 
and �y are the entries of the mode shape in y-direction. For 
bending modes, the angle corresponds to the alignment of 
the mode shape in the MSS and is accordingly subject to 
higher uncertainty. The distribution of the direction angle 
can be modelled as a Gaussian distribution.

In order to compare the mode shapes identified with 
BAYOMA and SSI-COV, the complex mode shapes have 
to be transformed to real mode shapes. In the case of 
closely spaced modes, greater care is required. The mode 
shapes are often not on one straight line in the complex 
plane. In the case of a nearly axisymmetric structure, a 
circle was observed in the complex plane [15]. The meas-
urement was taken at one height at six different angles in 
radial direction of the structure to investigate wineglass 
modes. To monitor bending modes, in many applications, 
two sensors are used at one height, which measure at 90◦ 
to each other. If measurements are situated at different 
heights, two dominant lines are observed—one for every 
measurement direction—in the complex plane for each 
mode shape in the case of closely spaced modes. This will 
be shown in more detail in Chapter 4.

When converting the mode into real space according to 
Eq. 16, this can lead to an incorrect alignment of the mode. 
As a result, the direction angle � can be incorrect. When 
comparing with a mode subspace using the S2MAC, the 
error has no influence. One indicator of the phenomenon 

(21)

S2MACj,k,m =
(�T

j
� k)

2 − 2(�T
j
� k)(�

T
k
�m)(�

T
j
�m) + (�T

j
�m)

2

1 − (�T
k
�m)

2
.

(22)� = arctan

(
−V12

V22

)
with USVT = [�x �y],

Fig. 3   Visualisation of the mode subspace (MSS) from the first bend-
ing mode pair [� k�m] of a cantilever structure. Another possible 
mode shape �j is shown in green (colour figure online)
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is the MPD. When separate mean phases occur for each 
measured spatial direction the MPD increases.

3 � Investigated structure

The experiment took place at the Test Centre Support 
Structures located at the Leibniz University of Hannover. 
The investigated prestressed reinforced concrete tower 
consists of 16 conical concrete ring segments (designated 
E1 to E16) with a total height of 7.5 m and is shown in 
Fig. 4.

Each individual segment has a wall thickness of 4 cm 
and a compressive strength of 7 7MPa. The lowest concrete 
ring is fixed to the foundation by a high-strength mortar. A 
steel cross serves as the upper tower termination, which is 
joined to the uppermost concrete ring segment by a steel 
insert. To preload the joints, a tendon is used in the tower 
centre, which is anchored to the foundation and to the head 

construction. In addition, the foundation is attached to the 
clamping field with four steel anchors. The pre-tension 
force applied is about 300 kN per steel anchor.

In this experiment, local joint monitoring at the low-
est joint, as well as global monitoring of tower and tendon 
dynamics are investigated. Low-noise IEPE accelerometers 
with a customised IEPE signal conditioner with a high-pass 
filter cut-off frequency of 0.0106 Hz are used to measure 
the dynamics of the tower [21]. Two accelerometers are 
mounted on each concrete segment in the x and y-direction 
to investigate the bending modes of the tower (32 acceler-
ometers in total).

To determine the preload, four electrical strain gauges 
are installed on the tendon on two measurement levels. Two 
strain gauges were installed at each level. In addition, three 
acceleration sensors are attached to the steel in x-direction 
to determine the natural frequencies of the tendon.

It is expected, that the highest imperfections of the sur-
face of the dry joint can be observed between segment E16 

Fig. 4   Sensor setup attached 
to the tower. Left: Picture of 
the tower, center: sketch of the 
tower with measuring posi-
tions, top right: strain gauge on 
the tendon, center right: IEPE 
accelerometer
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and E15 due to the largest joint surface. Therefore, sensors 
for local monitoring are installed at the lowest joint between 
segment E16 and E15. The changes in strain distribution 
in z-direction over the circumference of the ring segment 
are recorded by eight selectively arranging strain gauges 
placed in the immediate vicinity of the joint (blue diamonds 
in Fig. 5) as well as eight strain gauges at a distance of 20 m 
from the joint (red stars in Fig. 5). In addition, eight laser 
sensors distributed around the circumference above the 
strain gauges on segment E16 measure the change in dis-
placement due to changing preload from 15 mm above to 
15 mm below the joint. The detailed arrangement of the 
sensor setup at the segments E15/E16 is shown in Fig. 5. It 
should be noted that at segment E16, the strain gauge failed 
at 73 degrees.

4 � Results

In this section, the influence of preload on the natural fre-
quencies and mode shapes is investigated in more detail. In 
the following, a credible interval encompassing two stand-
ard deviations is used for the uncertainties of the natural 
frequencies and the direction angle in the figures. This cor-
responds approximately to a 95% credible interval, which is 
used to display MAC and S2MAC.

For each preload level, 40 data sets are evaluated. The 
number of data sets results from a data selection that 
excluded too strong harmonic disturbing excitation from 
the operation in the laboratory as well as a uniform size 
per preload. The measurement time for each data set is 
10 min and the signals were recorded simultaneously using 
a sampling rate of 1000 Hz and a 24bit digital to analogue 
converter.

4.1 � Influence of the preload on the joint

An important parameter for segmented towers is the preload. 
The preload Fp can be determined from the strain gauges on 
the tendon

where Esteel is the Young’s modulus of steel, �meas is the 
measured strain on the tendon and Asteel is the effective 
cross-sectional area. The dependence of the strain on the 
preload close to the lowest joint and in the middle of the ring 
segment E16 is shown in Fig. 6.

The strain measurements, shown in Fig. 6a, imply that 
the load transfer between the joint starts at different preload 
levels at the different measurement points. This is indicative 
of unevenness in the joint and is consistent with the results 
of Klein et al. [23]. The expected linear relationship sets in 
at a preload level above 500 kN for all strain gauges. The 
strain distribution is more homogeneous in the middle of 
segment E16 (Fig. 6b), which is evident from a linear rela-
tionship between strain and preload at lower preload levels. 
Nevertheless, there are deviations in the strain distribution 
over the entire cross-section, which can be caused by an 
inhomogeneous material. In addition, it can also be the effect 
of the imperfection of the joint. In Fig. 6c, the laser measure-
ments initially show large increase in displacement at low 
preloads, which changes to the expected linear relationship 
as the preload increases. The higher increase in displacement 
at low preload compared to higher preload mainly occurs 
due to the closing of the joint. At higher preload, the linear 
behaviour is caused mainly by the straining of the concrete. 
The deviations of the displacements, as well as the strain at 
the joint in Fig. 6a, over the cross-section indicate an imper-
fection of the joint due to a waviness. Thus, the strain and 
displacement sensors, which are mounted shifted by 22.5 
degrees, do not show any similar trends in the distribution. 
The dynamics of the tower are studied at five preload levels 
(150 kN, 300 kN, 450 kN, 640 kN and 750 kN), which are 

(23)Fp = �measEsteelAsteel,

Fig. 5   Displacement laser 
sensors and strain gauges at the 
joint between segment E15 and 
E16. The colour gradient in the 
right shows the colours for the 
different sensor positions for 
Fig. 6 (colour figure online)
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marked by the black dashed lines in Fig. 6. Due to the strain 
distribution at the joint shown in Fig. 6a as well as the dis-
placement distribution shown in 6c, it can be assessed that 
only a part of the joint surface is involved in the load transfer 
at the lower three preload levels.

4.2 � Influence of the preload on the dynamics 
of the tower

The basics of the dynamics of the tower are initially pre-
sented using the first preload level of 150 kN. For further 
investigations, all preload levels are used. The experiments 
are performed under ambient excitation, which is mainly 
caused by machine equipment operating in the laboratory. 
The upper part of Fig. 7 shows the first two singular values 
in the spectral matrix of the acceleration sensors in the fre-
quency range from 0 Hz to 45 Hz. The averaged spectrum 
is not used for the identification but only for visualisation.

In the following, the first two bending mode pairs and 
the first tendon mode are evaluated. The ranges used for 
identification with BAYOMA are marked black in the upper 
diagram of Fig. 7. The frequency ranges between 15 Hz 
and 20 Hz, as well as 30 Hz and 35 Hz are not considered 
further, since they belong to modes where mainly the ten-
don is moving decoupled from the rest of the structure. If 
only accelerometers on the tower are used to calculate the 
averaged spectral matrix, the peaks between 15 and 20 Hz 
become significantly smaller as shown in the middle of 

Fig. 7. Nevertheless, the first tendon mode is still strongly 
excited. This is due to the interaction of the first tendon 
mode with the tower. The tendon accelerometers are not 
used to identified the bending modes of the tower in order to 
prevent unnecessary noise. The narrow peaks (e.g. between 
24 and 26 Hz) in the spectrum are caused by harmonic exci-
tation from aggregates located in the laboratory. In order 
to save computing time, especially when using the SSI, the 
signals are low-pass filtered and subsequently downsampled 
to 125 Hz, as the modes investigated in this study are below 
50 Hz. For identification using the SSI, model orders up to 
120 are evaluated. The covariance matrices are formed from 
the inverse DFT of the spectral matrices. Since BAYOMA 
always uses an unaveraged spectrum for the identification, 
the SSI is applied in the same manner. The mode selection 
of the SSI is done by a multi-stage clustering algorithm [25], 
which takes eigenvalue, frequency and damping deviation as 
well as the MAC as criteria. In contrast to [25] the MPD is 
not used as a criterion, because of the mean phases divided 
according to the measurement direction. An example of 
a stabilisation diagram is shown in the lower diagram of 
Fig. 7, where the modes are marked according to the clus-
tering results. In Fig. 8, the two investigated bending mode 
shapes of the tower with dominant x-direction for a preload 
of 150 kN identified with BAYOMA are shown. The mode 
shapes of the SSI are similar and therefor not shown.

The tendon mode is not shown in this figure due to the 
low spatial sensor resolution on the tendon.

Fig. 6   Dependence of strain and 
displacement in z-direction on 
the preload
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Fig. 7   Top: Two highest singu-
lar values (SV) of the averaged 
spectral matrix with tendon-
accelerometers. The identi-
fication range of BAYOMA 
is marked with black lines. 
Middle: Without tendon-accel-
erometers. Bottom: Stabilisation 
diagram from the SSI-COV 
based on an unaveraged spectral 
matrix. The data is from a 
measurement at a preload level 
of 150 kN

Fig. 8   Mode shape of the first 
two bending modes in the 
x-direction at 150 kN preload 
identified with BAYOMA. For 
visualisation, a linear interpola-
tion is used between the sensors 
and outside the sensors a linear 
extrapolation. The deflection in 
the clamping is set to 0
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The influence of the preload on the investigated natu-
ral frequencies is shown in Fig. 9. As expected, there is an 
almost linear relationship between the preload and the first 
tendon mode. Thus, the imperfections have only a minor 
influence on the tendon mode, so the modes will not be con-
sidered further in the investigations. The situation is differ-
ent for the bending modes of the tower structure. At the low 
preload level, the bending modes are each well separated 
in the frequency domain. As the preload increases, the dis-
tance in the frequency domain between the bending modes 
decreases. In addition, all natural frequencies increase. This 
effect decreases with higher preload levels. The cause of 
this effect is probably the imperfections in the joints. With 
low preload, only parts of the joint surface participate in 
the load transfer, which leads to an asymmetric stiffness in 
the bending directions. As the preload increases, a larger 
area contributes to the load transfer so that the stiffness 
becomes more symmetrical. Therefore the natural frequen-
cies are getting closer. Due to this effect, it becomes possible 
to investigate the influence of closely spaced modes on the 
same structure for different distances in the frequency range. 
Unlike the first pair of bending modes, the closeness of the 
second bending modes increases up to a preload of 450kN 

and then decreases slightly. This may be due to imperfec-
tions, but cannot be said with absolute certainty. A compari-
son of the two applied identification methods using the B1X 
mode as an example is shown in Fig. 10.

The natural frequencies are normalised for each preload 
level to the median of the natural frequency identified with 
BAYOMA. The deviation of both identification methods is 
less than 0.5 % for all preload levels. Noticeable are the 
deviations of the lowest preload level. However, these are 
negligible compared to the system change. Basically, both 
identification methods identify similar natural frequencies, 
which correspond to the trend of Fig. 9, so the observed 
effect in natural frequencies does not depend on the identi-
fication method.

In the following, the mode shapes are examined in more 
detail. For this study, the MAC, S2MAC and the direction 
angle � identified with BAYOMA are used. The most prob-
able value (MPV) and the uncertainty of the parameters are 
determined from the covariance matrices of the mode shape 
using a Monte Carlo method with 1000 samples each. A beta 
distribution is assumed for the MAC and S2MAC, while 
a normal distribution is used for the direction angle. The 

Fig. 9   The averaged and the 95% confidence interval of the natural frequencies identified with BAYOMA and the close mode factor as a depend-
ence on the preload levels

Fig. 10   Comparison of B1X natural frequency identified with BAYOMA (blue) and SSI-COV (red). For normalisation, the median of the natu-
ral frequency identified with BAYOMA is used for each preload level (colour figure online)
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identification results of the first measurement at a preload 
level of 150 kN serve as the reference mode shapes.

Figure 11 shows the MAC, S2MAC and direction angle 
for the first bending mode pair. As expected, the uncer-
tainty of the MAC as well as of the direction angle increases 
with decreasing distance in the frequency domain and thus 
increasing preload. However, the uncertainty of the S2MAC 
stays nearly constant, while the absolute value decreases 
slightly. This indicates a minor change in the MSS, which 
is slightly larger in the B1Y direction. This observation 
supports the theory, that the MSS of closely spaced modes 
remains relatively constant for small system changes and the 
main change is in the alignment of the mode in the MSS. 
Since the S2MAC only indicates changes in the MSS, it 
remains close to 1. The MAC compares two mode shapes so 
that changes in alignment are also noticeable in the MAC. 
The results of the modes identified with the SSI are very 
similar, so they are not presented.

The most significant changes of the mode shape at differ-
ent preload levels is the direction angle � . The trend of that 

angle of the mode shape identified with BAYOMA and the 
SSI is shown in Fig. 12.

As the preload increases, the mode rotates slightly coun-
terclockwise independent of the identification method. This 
supports the theoretical considerations of Brincker et al. [8], 
which state that a rotation of the mode shapes in the MSS 
is observed in the transition from well-separated modes to 
closely spaced ones. In this experiment the direction angle 
is nearly equivalent to the rotation angle in the MSS. It is 
also apparent, that the observed uncertainties are increasing.

Similar results were obtained for the second bending 
mode pair, as shown in Fig. 13.

The smaller the distance in frequency space, the lower 
the MPV of the MAC value. Also, the uncertainties of the 
MAC as well as of the direction angles increase the closer 
the modes become. In contrast to the first pair of bending 
modes, the B2X mode is identified more reliably except for a 
preload of 450 kN. At this preload level, the MAC and direc-
tion angle scatters very strongly, because in this case, the 
modes are very closely spaced. Like the first bending mode 

Fig. 11   Influence of the preload on the MAC, S2MAC and direction angle � of the first bending mode pair identified with BAYOMA. Red is the 
B1X, blue the B1Y (colour figure online)

Fig. 12   Direction angle � of the first bending mode pair at differ-
ent preload levels with the median of the corresponding close mode 
factors e calculated from BAYOMA identifications. Dots are single 
measured values, lines correspond to the 25-75 percent percentile and 

the dashed line to the median. Red is the B1X, blue the B1Y. The 
upper line represents the identification with BAYOMA, the lower 
with the SSI (colour figure online)
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pair, the bending mode in y-direction deviates more from 
the reference MSS than the one in x-direction, which can 
be observed with the S2MAC and indicates a change of the 
MSS. Due to the change of the MSS compared to the refer-
ence MSS at 150kN, a part of the high alignment uncertainty 
also affects the S2MAC. Thus, the S2MAC becomes more 
uncertain with increasing preload.

As with the first bending mode pair, mode rotation can 
be observed by changing the preload, which is shown in 
Fig. 14. In addition, a greater scattering is also observed for 
closer modes. In this case, the observed clockwise rotation 
of the alignment of the mode correlates with the close mode 
factor. For higher preload levels, the median of the direction 
angles differs between the two identification algorithms for 
both bending mode pairs. Possible reasons are the lower 
energy level at higher preload levels and the errors during 
the transformation of complex modes of the SSI to real ones 
due to multiple dominant phases in the complex plane.

Figure 15 shows that the uncertainty of the direction 
angle is mainly dependent on the close mode factor. With a 

decreasing close mode factor, the standard deviation of the 
alignment angle increases. For the second bending mode 
pair, in contrast to the first bending mode pair, a linear trend 
appears to be present in the logarithmic representation, 
which is only absent at the 450kN preload level due to the 
large scattering. The cause of the scattering is probably due 
to the very closely spaced modes. The standard deviation 
of the first bending mode dominating in the x-direction is 
significantly higher than in the y-direction except at 750kN 
preload. For the second pair of bending modes, the standard 
deviation of the B2Y mode is higher than the one of the B2X 
mode. This is consistent with the investigation in Fig. 12 and 
Fig. 14. Au et al. [4] list in their proposed uncertainty laws 
for closely spaced modes further influences on the uncer-
tainty of the mode shape within the mode subspace, e.g. the 
ratio between the modal power of both modes, modal damp-
ing, and the number of periods in the measurement time. 
For latter reason, the angles of the second bending mode 
pairs can be determined with less uncertainty than those of 
the first mode. The difference in the uncertainties of the x 

Fig. 13   Influence of the preload on the MAC, S2MAC and direction angle � of the second bending mode pair identified using BAYOMA. Purple 
is the B2X, yellow the B2Y

Fig. 14   Direction angle � of the second bending mode pair at dif-
ferent preload levels with the median of the the corresponding close 
mode factors e calculated from BAYOMA identifications. Dots are 
single measured values, lines correspond to the 25-75 percent percen-

tile and the dashed line to the median. Purple is the B2X, yellow the 
B2Y. The upper line represents the identification with BAYOMA, the 
lower with the SSI (colour figure online)
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and y-direction occurs due to the different excitation levels. 
The more excited mode with a disparity factor greater than 
1 has a lower standard deviation of the direction angle than 
the less excited mode. For this reason, at 750kN the higher 
alignment angle uncertainty changes from B1x to B1y mode. 
Without the change of the disparity factor, the close-mode 
factor would be linearly related to the angular uncertainty 
in the double logarithmic representation, as in the second 
bending mode pair. It is important to note that the signal to 
noise ratio has no influence on the uncertainty of the mode 
alignment in the mode subspace, but on the identification of 
the mode subspace itself [4].

Theoretically, the identification uncertainty of BAY-
OMA should be similar to the observed uncertainty if all 

assumptions are satisfied and the data sets are comparable 
[2]. However, despite of laboratory conditions, there are 
differences in the data sets, such as excitation and small 
temperature changes, so that the observed and identifica-
tion uncertainty of BAYOMA differ. A comparison of the 
uncertainty of the direction angle is shown in Fig. 16.

Here, the boxplots correspond to the identification 
uncertainty of BAYOMA of the individual measurement 
data sets. The observed standard deviation of the entire 
measurement series of the MPV of BAYOMA is shown in 
green and of the SSI in magenta. The trend of the observed 
and identification uncertainties is the same for the stud-
ied modes. However, the observed uncertainties are often 
higher. Particularly large deviations of the uncertainties 

Fig. 15   Standard deviation 
of the direction angle � of the 
mode shape as a dependence of 
the close mode factor e and the 
disparity factor d on the modal 
forces subdivided according to 
the different preload levels

Fig. 16   Comparison of the identification uncertainty of BAYOMA 
(boxplot) and the observed uncertainty (BAYOMA: green line, SSI: 
magenta line) of the direction angle � for different preload levels. The 

close mode factor e of identification results of BAYOMA is shown as 
well (colour figure online)



1057Journal of Civil Structural Health Monitoring (2023) 13:1043–1060	

123

can be observed for lower close mode factors. The rea-
sons are temperature as well as excitation changes in the 
period under consideration. In addition, assumptions of 
BAYOMA, especially of the excitation, may be violated, 
so that the calculated uncertainties may be inaccurate. 
Moreover, the observed uncertainty of the angle of the SSI 
is mostly higher than the one of BAYOMA. The reason 
for the higher dispersion is probably the effect of the two 
mean phases of the complex mode shape in the complex 

plane separated by the measurement directions, as shown 
in Fig. 17.

A real mode is necessary for the calculation of the direc-
tion angle. Due to the two dominant phases in the complex 
plane, an error occurs in the transformation from the com-
plex to the real mode, which is noticeable in the alignment 
of the mode. A measure for the inaccuracy is the mean phase 
deviation (MPD), which is shown for the four observed 
modes in Fig. 18.

Fig. 17   Illustration of two B1X modes of two different preload levels 
in the complex plane separated according to measurement directions. 
On the left for a mode at a preload level of 150 kN, that the MP is 

almost identical to the MP in the dominant direction. On the right for 
a mode at a preload level of 750 kN, where two lines exist in the com-
plex plane

Fig. 18   Distribution of the MPD of the complex mode shape of the SSI as well as the close mode factor e as a function of the preload levels

Fig. 19   Distribution of the MPD of the complex mode shape B1X of the SSI as well as the close mode factor e as a function of the preload lev-
els separated according to measurement directions
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As expected the MPD values correlate with the close 
mode factor. As shown in Fig. 17, at higher preload levels 
each measurement direction has a different mean phase 
in the complex plane. This leads to high MPD values and 
errors in the transformation into the real space. By taking 
into account the measurement directions separately, the 
MPD becomes significantly lower. This is shown in Fig. 19 
for the B1X mode.

The MPD values in the dominant x-direction is signifi-
cantly lower, which supports the hypothesis of two different 
phases in the complex plane.

5 � Summary and outlook

This study investigates the influence of small system changes 
on the modal parameters of a large-scale experimental pre-
stressed concrete tower with a total height of 7.5 m. The sys-
tem changes are introduced by changing the preload, which 
changes the influence of the imperfections due to surface 
waviness of dry horizontal joints. To monitor the effects 
of the imperfections at the joints, a local instrumentation 
encompassing strain gauges and laser sensors was applied 
to the lowest joint. With increasing preload, a larger area 
of the joint surface is likely to contribute to the load trans-
fer. For both bending mode pairs, the respective distance 
between the natural frequencies becomes smaller with 
increasing preload. This effect makes it possible to experi-
mentally investigate the influences of closely spaced modes 
in more detail for the same structure. The known effect that 
closer natural frequencies lead to a rotation of the mode 
shape in the mode subspace could be demonstrated experi-
mentally using BAYOMA and SSI-COV. Furthermore, it 
could be shown that the uncertainty of the alignment of the 
mode shape in the MSS increases with the closeness of the 
modes. Another influence on the uncertainty is the dispar-
ity of the modal force of the closely spaced modes, which 
makes the alignment of the more excited mode significantly 
more reliable to identify. The S2MAC metric, which specifi-
cally indicates changes of the mode subspace, was found to 
be a more reliable quantity than the traditional MAC met-
ric. Even a slight change in the mode subspace due to the 
preload change could be observed using the former metric. 
A comparison of the observed and identification uncertainty 
of BAYOMA of the direction angle shows that while the 
trend matches, significant deviations occurred in some cases. 
This can be explained on one hand due to changes in excita-
tion, temperature, etc., which make the data sets not exactly 
comparable. On the other hand, BAYOMA’s assumptions 
are almost always violated in reality, so the uncertainties 
are a good guide, but one should be aware that they are not 
numerically exact. The investigation of the complex mode 
shapes of closely spaced modes identified with the SSI-COV 

indicated different dominating phases in the complex plane 
separated by the measurement directions. This means that 
greater caution is required when transforming complex 
closely spaced modes into the real space. This may lead to 
higher uncertainties in the alignment of the real mode in the 
mode subspace compared to BAYOMA as shown in Fig. 16.

The study showed that for structures, which exhibit 
closely spaced modes as well as joints, the joint surface 
imperfections can have a great influence on the modal 
parameters - and here in particular - on the alignment of 
the mode shape in the mode subspace. It can therefore be 
assumed that other types of small system changes have a 
similarly significant effect on the mode shapes, but not nec-
essarily on the natural frequencies. For this reason, methods 
based solely on tracking changes in natural frequencies or 
which use, e. g. overall vibration levels, may not be adequate 
to detect small system changes or damages. This should be 
the subject of future scientific research. In addition, methods 
that have modal parameters as input, like model updating for 
damage localisation, should take into account the imperfec-
tions. Furthermore, metrics should be used that are insensi-
tive to the slight changes in mode alignment in the MSS. In 
the future, the influence of the imperfections of real wind 
turbine hybrid towers should be investigated. Moreover, 
appropriate data normalisation methods should be applied 
in order to reduce the influence of the imperfections and 
environmental and operational conditions, thereby enabling 
a reliable damage detection.

In future works on the experiment, the higher modes 
could be analysed using additional excitation sources. In 
addition, the identification uncertainties of the SSI [14] 
should also be calculated and compared with those of BAY-
OMA, especially for closely spaced modes. The cause of 
the different mean phases of the complex mode shape of 
closely space modes separated by measurement direction 
identified with the SSI, should also be investigated in more 
detail. The experiment will be used in the future to inves-
tigate the dynamic joint opening with a hydraulic actuator.
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