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Abstract
This article studies Kummer K3 surfaces close to the orbifold limit. We improve upon esti-
mates for the Calabi–Yaumetrics due to Kobayashi. As an application, we study stable closed
geodesics. We use the metric estimates to show how there are generally restrictions on the
existence of such geodesics. We also show how there can exist stable, closed geodesics in
some highly symmetric circumstances due to hyperkähler identities.
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1 Introduction

Einstein metrics are interesting objects both from a physics and from a geometry perspective.
Bypostulating enough symmetry, non-compact, examples have been found in bothLorentzian
and Riemannian geometry. For instance the solutions due to Schwarzschild [63], Eguchi–
Hanson [25], Calabi [17], Gibbons–Hawking [31] and Kronheimer [44, 45], to name just
a few. These are so-called gravitational instantons. On compact manifolds, very few exam-
ples are known explicitly. An idea dating back to Page [59] and Gibbons–Pope [33] is to
desingularize certain orbifolds by blowing up the singular points and gluing in gravitational
instantons. This procedure produces a family of almost-Einstein metrics with concentrated
curvature. By an implicit function argument [28, 39, 40], by Twistor methods [50, 67, 68],
or by solving the Monge–Ampère equation [21, 43, 47], one can perturb the given metric
to an Einstein metric. Since the original metric was close to solving the Einstein equation,
one could hope that the metric is close to the solution of the Einstein equation. This turns
out to be the case in several instances. This in turn allows one to study the geometry of the
unknown Einstein metric by studying its known approximation.

As the size of the exceptional divisor in the blow-up tends to 0, both the patchwork metric
and the Einstein metric degenerate to an orbifold metric. In fact, work by Bando, Kasue, and
Nakajima [7, 10, 57] and Anderson [2] shows that a converse is true; a sequence of compact
4-manifolds and Einstein metrics with volume, diameter, and Euler characteristic bounds
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have convergent subsequences. The limit spaces have at worst isolated orbifold singularities.
The orbifold limits are the added points of a compactification of the moduli space of Einstein
metrics [2, 10, 57]. This makes understanding the orbifold limit more important.

In this paper, we will study the oldest and best-known example, namely the Kummer con-
struction of a K3 surface. In this case, one can go beyond the general convergence statements
of Nakajima and Anderson, and describe in more detail exactly how the Einstein metric
degenerates. This programme was initially carried out by Todorov and Kobayashi [43, 47].
We have chosen to go through the arguments of Kobayashi in great detail in the hope that
the present paper can serve as an introduction to this fascinating topic.

As an application, we study stable, closed geodesics on Ricci-flat Kummer K3 surfaces
close to the orbifold limit. The lengths of closed geodesics on a Riemannian manifold is a
much studied geometric quantity (see [20, 22–24, 37] for some highlights). For generic met-
rics it has been shown [62, Corollary 2] that there are infinitely many geometrically distinct,
closed geodesics. The same holds for an arbitrary metric if one imposes mild topological
assumptions (see [32, Theorem 4] and [71, Theorem (2nd)]). The topological conditions are
fulfilled by all compact Calabi–Yau manifolds. We propose to restrict attention to the lengths
of stable, closed geodesics.

Definition 1.1 Let (M, g) be a Riemannian manifold. A closed geodesic γ : S
1 → M is said

to be stable if δ2Eγ ≥ 0. Written out, this means

δ2Eγ (ξ, ξ) =
∫
S1
|∇γ̇ ξ |2 − 〈R(γ̇ , ξ)ξ, γ̇ , 〉 dt ≥ 0 (1.1)

for all vector fields ξ along γ , where R(U , V ):=∇U∇V − ∇V∇U − ∇[U ,V ] is the Riemann
tensor.

Consider the number N (L) of stable, closed geodesics of length at most L , where one
counts families of geodesics as a single geodesic. If the manifold (M, g) is compact and real
analytic then it is a consequence of [65, Proposition 1.2] that N (L) is finite for any L ≥ 0.
For stable geodesics one has the following trichotomy based on curvature.

Theorem 1.2 [53, 56] Let (M, g) be a compact, connected, real-analytic Riemannian man-
ifold of real dimension n. Let N (L) be as above. Then, we have the following asymptotic
behaviour as L →∞.

• If Ric ≥ κ(n − 1) for some κ > 0, then N (L) is constant for L > π√
κ
.

• If the sectional curvature vanishes, then N (L) ∼ c(M)Ln for some constant c(M) > 0
depending on the manifold.

• If the sectional curvature is negative everywhere, thenN (L) ∼ ec(M)L
c(M)L for some constant

c(M) > 0 depending on the manifold.

The hardest part of the above statement is the negative curvature case, which is [53], [54,
Equation 6.87]. The positive case follows by the proof of the Bonnet–Myers theorem, and
the flat case is a direct computation on a flat torus.

Theorem 1.2 is an example of a comparison geometry, and a natural question is whether
or not one can replace sectional curvature by Ricci curvature. This motivates the following
question.

Question 1 Let (M, g) be a compact, connected, Ricci-flat manifold of dimension n. Is it
true that N (L) ∼ c(M)Ln for some constant c(M) > 0?
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Remark 1.3 Wedo not knowwhat happens for Ric < 0. Our guess is that this condition is too
weak, seeing how (in the light of [48, Theorem A]) the condition Ric < 0 gives absolutely
no information about the underlying manifold in dimensions n ≥ 3.

If one additionally assumes that the manifold is Kähler, then P. Gao and M. Douglas have
put forward physics-based arguments in [30] for why the answer to the above question should
be yes.

Conjecture 1 [30] Any compact, Ricci-flat Calabi–Yau manifold1 (X , g̃) has stable, closed,
non-constant geodesics. In fact, if the manifold is of real dimension n thenN (L) ∼ C(X)Ln

for some constant C(X) > 0.

When Douglas and Gao published their work, there were no examples of a single stable,
closed geodesic on a Ricci-flat, compact Calabi–Yau manifold. They, however, suggest as a
starting point to investigate the conjecture on a Kummer K3 surface (the construction will
be recalled in Sect. 2). In this article, we follow their advice and derive some constraints on
stable, closed geodesics on Kummer K3 surfaces. Additionally, we show that the Riemann
curvature tensor vanishes at certain points if the K3 surface has enough symmetry. Roughly
speaking, a Kummer K3 surface is the minimal resolution of the orbifold T

4/{±1} equipped
with a Kähler metric g which is Eguchi–Hanson near any blown-up point, flat far away from
the exceptional divisor, and a gluing of these two in between. We shall refer to this metric
g as the patchwork metric. By the Calabi–Yau theorem, 2.2, there exists a unique Ricci-flat
metric g̃ in the Kähler class of g. What we show is then the following.

Theorem 1.4 Let X be a Kummer K3 surface with metrics g and g̃ as above. Then, when
the exceptional divisor E ⊂ X has small enough volume, there is an open set U ⊂ X with
E ⊂ U ⊂ X such that no stable, closed geodesic (with respect to either g or g̃) on X ever
enters U.

Theorem 1.5 Assume the set-up of Theorem 1.4. Let Ui ⊂ X be a suitable neighbourhood
around a single component Ei of the exceptional divisor. Then, when the volume of E is small
enough there are no stable, closed geodesics which stay completely inside Ui .

See Theorems 3.1 and 3.4 for the detailed statements.

Theorem 1.6 Let X be the Kummer K3 surface associated with the torus T = C
2/� where

�:=(Z{1, i})2 ⊂ C
2. Let g be the patchwork metric and let g̃ denote the unique Ricci-flat

metric in the Kähler class of g. Then there are totally geodesic tori T
2 ⊂ X and points

p ∈ T
2 where the Riemann tensor of (X , g̃) vanishes. Furthermore, if the minima of the

curvature of T
2 are local minima of the holomorphic sectional curvature of X, the tori are

flat.

See Theorem 5.4 for a more detailed statement and a precise description of how some of
these tori look like. Theorem 5.5 is the precise statement of the second half of the theorem.

To our knowledge, the only previous work on stable geodesics on compact, Ricci-flat
Calabi–Yau manifolds are the articles [13, 14, 30]. What Bourguignon and Yau prove in [14]
is the following, a result we will need later.

1 Our definition of a Calabi–Yau manifold is a Kähler manifold (X , g) with vanishing first Chern class
c1(X) = 0 and trivial first cohomology group, H1(X;R) = 0.
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Theorem 1.7 [14] Assume (X , g̃) is a hyperkähler manifold of real dimension 4. Assume
γ : S

1 → X is a non-constant geodesic. Then, γ is stable if and only if the entire Riemann
curvature tensor vanishes along γ .

Theorem 1.7 is both a clear-cut criterion and a major hurdle for stability. A priori, it is not
clear that a Ricci-flat space has a single point with vanishing Riemann tensor. Indeed, the
Eguchi–Hanson space of [17, 25] has a Ricci-flat metric with nowhere vanishing Riemann
tensor. The Eguchi–Hanson Kähler potential is given by (2.1), and the norm of the curvature
tensor in (2.4). This is a non-compact manifold, so it does not contradict the above conjecture.
In the presence of symmetries, Theorem1.6 tells us that theRiemann tensor vanishes at certain
points on a Kummer K3 surface. We do not know of other results of this kind. In particular,
we do not know what happens on an arbitrary K3 surface.

The layout of the paper is as follows. We recall the Kummer construction, including the
patchwork metric and metric estimates, in Sect. 2. Section3 deals with the no-go results
Theorems 1.4 and 1.5. Section4 starts by studying what one can say about the curvature
of hyperkähler 4-manifolds in the presence of symmetry, before specializing to a particular
Kummer K3 surface in Sect. 5. To improve the flow, we have relegated some of the com-
putations of the derivatives of the curvature to “Appendix A”. In Sect. 6, we reprove the
metric estimates of R. Kobayashi and correct some of the methods. We also include a short
discussion of other approaches one could try to deduce Kobayashi’s estimates.

We end the introduction by listing some general obstructions to studying the conjecture
of [30].

• There is no explicitly known, non-flat, Ricci-flat metric on a compact Riemannian man-
ifold. The stability of geodesics is, however, very dependent on the details of the metric
(e.g. Theorem 1.7).

• In the case of a K3 surface, Theorem 1.7 has as corollary that any stable, closed geodesic
has nullity equal to 3, and the linearized Poincaré map has all eigenvalues equal to 1.
This says that stable, closed geodesics on K3 surfaces are very degenerate critical points
of the energy function, making them harder to study using Morse–Bott-type methods.

• TheRicci-flatness condition on a Calabi–Yaumanifold can be though of as specifying the
volume to be “Euclidean” (Eq. (2.6) is the precise meaning of this). Deriving statements
about the length spectrum can as such be seen as asking for length information when
given information about the volume.

• A compact Calabi–Yau manifold with Ricci-flat metric always has finite isometry group
(a fact due to S. Bochner—see [60, Theorem 1.5, p. 167] for instance). This makes it
challenging to construct geodesics as fixed point sets of isometries.

• The fundamental group of a compact Calabi–Yau manifold is always finite. So, unlike in
the case of a flat torus, one cannot realize enough stable, closed geodesics as non-trivial
homotopy classes to fulfil the conjecture. Indeed, on a non-simply connected, compact
manifold there are always closed geodesics whichminimize the energy in their homotopy
class, and are as such strictly stable, meaning all variations of the energy function are
nonnegative, and not just the second variation.

• In Bourguignon [13, Théorème 2.9] proves that if one has a hyperkähler 4-manifold with
a strictly stable, closed, non-constant geodesic then the manifold is flat. In particular, K3
surfaces never have strictly stable, closed geodesics.

Some words about the notation. Local expressions for Kähler metrics g on manifolds X of
complex dimension n will be treated as Hermitian n×n matrices. Determinants and traces of
Hermitian matrices are with respect to the complex matrices, not the associated real matrices.
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The complex Hessian of f will be denoted by ∂∂ f , where we allow ourselves to sometimes
think of this as a (1, 1)-form and sometimes as a Hermitian matrix, i.e. the components of
the (1, 1)-form. So

(∂∂ f )μν := ∂μ∂ν f := ∂ f

∂zμ∂zν
.

Tensor norms of complex tensors and the Laplacianwill also be defined using the Hermitian
matrices as follows.


 f := gνμ∂μ∂ν f = Tr(g−1∂∂ f )=:Trg(∂∂ f ),
|∇ f |2g := gνμ∂μ f ∂ν f ,

|∂∂ f |2g := gνμgβα(∂μ∂β f )(∂α∂ν f ) = Tr(g−1(∂∂ f )g−1(∂∂ f )).

Similar definitions hold for higher rank tensors. The complex Laplacian acting on functions
coincides (up to a constant scaling) with the real Laplacian. The complex Hessian does not
coincide with the real Hessian. Indeed, in complex dimension 1 we have ∂∂ f = g
 f .

For the real Hessian, we write D2 f . Its pointwise norm is

|D2 f |2g :=Tr
(
g−1
R

D2 f g−1
R

D2 f
)
,

where gR is the symmetric 2n×2n-matrix associated with g. The Hölder semi-norm of D2 f
is defined as.2

|D2 f |α = sup
x,y

|D2 f (x)− D2 f (y)|g
d(x, y)α

,

where the supremum is over all x ∈ X and all y �= x contained in normal coordinate charts
centred at x , and the tensor D2 f (y) means the tensor at x obtained by parallel transport
along the radial geodesic between x and y.

2 The Kummer construction

The Kummer construction is a well-known construction which associates with any 4-torus
T ∼= C

2/� a K3 surface X . The idea of the patchwork metric which we put on X comes from
[33, 59]. To our knowledge, Kobayashi was the first to write out the details of this metric in
[43]. This is our main source on the Kummer construction. There is a twistorial discussion in
[50], but they do not have any explicit metric estimates. Another possible reference is [21].
See also [51, Chapter 5] for more details.

Let us first give an algebraic-geometric description of the Kummer construction. This is a
standard result and can be found in [8, p. 224] for instance. Let � ⊂ C

2 be a non-degenerate
lattice. Let T :=C

2/� be the associated 4-torus. Let μ2:={±1} act diagonally on C
2. Then,

this induces an action on T with precisely 16 fixed points. The quotient Y :=T /μ2 is a
complex space with singular set Sing(Y ) = �/2�. The singular points are A1-singularities.
Blowing up each of these singular points once leads to a non-singular space X along with a
blow-down map π : X → Y . This is the minimal resolution of X and is called the Kummer
K3 surface associated with the torus T .

2 See [49, p. 44].
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Near any of the fixed points, the singular space Y looks like C
2/μ2, and the resolution of

this can be identified with OCP1(−2) = T ∗CP
1. We like to think of OCP1(−2) as

OCP1(−2) =
{
((z, w), (ξ : ς)) ∣∣ zς2 = wξ2} ⊂ C

2 × CP
1,

and themap (C2\{0})/μ2 → OCP1(−2)\CP
1 canbegiven as [(z, w)] �→ ((z2, w2), (z : w)).

The blow-down mapOCP1(−2)→ C
2/μ2 inverting the above map away from the zero sec-

tion will be discussed in the proof of Lemma 6.9. The resolutionOCP1(−2) can be equipped
with the Eguchi–Hanson metric, which was discovered in [25] and generalized in [17]. See
[52] for a detailed discussion about these metrics and the resolutions. The Eguchi–Hanson
Kähler potential is given in (2.1).

To describe the metric we put on X , we need to have a look at what happens near a blown-
up point. This is done for us in [43, pp. 293–297]. Let z be the coordinates on C

2, and define
u:=|z|2

C2 :=|z1|2 + |z2|2. Choose some a > 0 and let fEuc, fa : (C2\{0})/μ2 → R be the
Euclidean Kähler potential and Eguchi–Hanson Kähler potential, respectively, namely

fEuc(z) := u

fa(z) :=
√
a2 + u2 − a · arsinh

(a
u

)
. (2.1)

Here arsinh(x):= log
(
x +√1+ x2

)
denotes the inverse function of sinh. The Eguchi–

Hanson Kähler potential (2.1) is not regular down to u = 0, but the Eguchi–Hanson
metric gEH:=∂∂ fa does extend across the zero-section CP

1 ⊂ OCP1(−2) to give a
complete metric, as is seen by choosing suitable coordinates. Here, we are identifying
(C2\{0})/μ2 ∼= OCP1(−2)\CP

1. We postpone this computation until Lemma 6.9 in Sect. 6.
Let 0 < δ � 1 be some fixed number and letχ : [0,∞)→ R be a smooth cut-off function

with the following properties.

• χ(u) = 1 for u ≤ 1
• χ(u) = 0 for u ≥ 1+ δ.

Then
�a(z) := fEuc(z)+ χ(u(z))( fa(z)− fEuc(z)) (2.2)

defines a spherically symmetric Kähler potential on (C2\{0})/μ2 for all values of a small
enough. We shall write �a(z)=:ϕa(u(z)). Furthermore, on the complement of any orbiball
V :=(C2\BR(0))/μ2 we may write

�a(z) = u + a2ξa(z) (2.3)

for some function ξa : V → R which is regular as a → 0. For later use, we also record the
norm squared of the Riemann tensor of the Eguchi–Hanson metric,

|RiemgEH |2gEH =
24a4

(a2 + u2)3
. (2.4)

This is an L2-function with most of its mass concentrated near u = 0; hence, the patchwork
metric is a metric of concentrated curvature.

We want to define a Kähler metric on all of X whose Kähler potential is given by (2.2)
close to the exceptional divisor and flat far away from it. Let π : X → Y be the blow-
down map as above. Let Sing(Y ) = ∪16i=1{pi } denote the singular points of Y and let
E := ∪16i=1 Ei := ∪16i=1 π−1({pi }) be the exceptional divisor of X . Fix a number 0 < δ � 1,
and choose numbers ai , 1 ≤ i ≤ 16, such that 0 < ai � 1. Then, there exists a Kähler
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metric g on X with the following properties. Each component Ei ⊂ X has a neighbourhood
Ui ⊂ X such that Ui :=Bl0(B1+2δ(0)/μ2) and Ei = CP

1. By scaling X if necessary, we
may assume Ui ∩ Uj = ∅ for i �= j . On Bl0(B1+2δ(0)/μ2) the Kähler potential of g is
given by (2.2) with parameter ai . In particular g is equal to the Eguchi–Hanson metric with
potential (2.1) on Bl0(B1(0)/μ2) and g|Ei = ai gFS where gFS is the Fubini–Study metric
on CP

1. On any of the necks Ni :=(B1+δ(0)\B1(0))/μ2 the metric is not Ricci-flat. Outside
of all the sets Ui the metric g is flat.

The metric g will be called the patchwork metric. We will follow [43] and write
|a|2:=∑16

i=1 a2i . The limit |a| → 0 is called the orbifold limit, and |a|2 being small is
what we mean by being close to the orbifold limit.

Remark 2.1 The cohomology-class of the patchwork metric does not depend on the specific
choice of χ . If ξ is another cut-off function, then the difference of the resulting Kähler forms
will locally look like i∂∂((χ − ξ)( fEuc− fai )), which is the differential of a globally defined
function (one simply extends by 0 to the whole manifold). Hence, the Ricci-flat metric in the
next theorem does not depend on the choice of χ .

The patchwork metric is not Ricci-flat due to the neck regions, hence is not the final metric
wewant to put on X . The celebrated Calabi–Yau theorem of [15, 16, 72] provides the solution
to this problem.

Theorem 2.2 [72, Theorem 2] Assume (X , g) is a Kähler manifold of complex dimension n,
and assume the first Chern class vanishes, c1(X) = 0. Let ω be the Kähler form associated
with g, and let ψ : X → R be a function such that Ricg = ∂∂ψ . Define the constant A > 0
by

A:=
∫
X ω

n∫
X eψωn

. (2.5)

Then, there is a unique function φ : X → R subject to the normalization
∫
X φ ω

n = 0 such
that ω̃:=ω + i∂∂φ is a Kähler form satisfying the Monge–Ampère equation

ω̃n = Aeψωn . (2.6)

The Kähler metric g̃ associated with ω̃ is Ricci-flat.

Whenwe additionally assume H1(X;R) = 0, then X has a finite fundamental group. This
follows from Cheeger–Gromoll splitting theorem, [18] and the Calabi–Yau [72, Theorem 2].
Let X̃ denote the universal cover of X . Then H1(X̃;Z) = 0, and c1(X) = 0 �⇒ c1(X̃) = 0.
So X̃ admits a nowhere zero holomorphic n-form η. We normalize this so that

exp(ψ)
ωn

n! = in
2
η ∧ η.

In terms of this n-form, we may write

A =
∫
X̃ ω

n∫
X̃ eψωn

=
∫
X̃ ω

n/n!∫
X̃ i n2η ∧ η . (2.7)

The Calabi–Yau theorem applies to any Kummer K3 surface. K3 surface are already
simply connected, so we do not need to pass to a universal cover. The only work one has to
do is to decide on what η is and then use this to compute the constant A in (2.7). We will
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formulate this as a little lemma and supply a proof since [43] does not compute A. Let η be
the nowhere vanishing holomorphic 2-form on X induced from

η = dz1 ∧ dz2

on C
2. For (measurable) subsets V ⊂ X , we write

VolEuc(V ) = 1

4

∫
V
η ∧ η

and

Volg(V ) = 1

4

∫
V
dVolg = 1

4

∫
V
det(g)η ∧ η.

Remark 2.3 Note that the volume forms here differ from the real versions by a factor of 4;
hence, we divide the integrals by 4 to compensate. To see this, note that if η = (dx1+ idy1)∧
(dx2 + idy2), then η ∧ η = 4dx1 ∧ dy1 ∧ dx2 ∧ dy2. One could alternatively define the
Kähler form as ω = i

2 gμνdz
μ∧dzν and the holomorphic volume form to be η = 1

2dz∧dw.
This is a conventional choice, but we will drop these extra factors of 1

2 to simplify several
formulas.

Definition 2.4 Let X be a Kummer K3 surface with nowhere vanishing holomorphic volume
form η. A pair z, w of locally defined coordinates on X such that η = dz ∧ dw are called
holomorphic Darboux coordinates.

Remark 2.5 If ω = igμνdzμ ∧ dzν is the Kähler form in holomorphic Darboux coordinates,
then

dVolg = ω2

2
= det(g)η ∧ η.

Lemma 2.6 Let (X , g) be a Kummer K3 surface with patchwork metric g as described above.
Then, the constant A given by (2.7) takes the value

A = 1− |a|2 π2

2VolEuc(T )
(2.8)

Proof By (2.7) we have

A =
∫
X ω

2

2
∫
X η ∧ η

.

The denominator is simply

2
∫
X
η ∧ η =

∫
T
η ∧ η = 4VolEuc(T ),

where we have used
∫
X =

∫
Y = 1

2

∫
T . Let N = ∪16i=1Ni denote the union of all the neck

regions of X . We may decompose the integral in the numerator into an integral over X\N
and N , and use that ω2 = 2η∧ η on X\N since this is satisfied by both the Euclidean metric
and the Eguchi–Hanson metric. Thus,∫

X
ω2 =

∫
X\N

ω2+
∫
N
ω2 = 2

∫
X\N

η∧η+
∫
N
ω2 = 2

∫
X
η∧η+

∫
X\N

(ω2−2η∧η). (2.9)
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It thus only remains to compute

∫
N
ω2 = 8Volg(N ) = 8

16∑
i=1

Volg(Ni ).

Working on a single neck Ni , the Kähler potential of g is given by (2.2). For any spherically
symmetric Kähler potential in 2 complex dimensions F(z) = �(u(z)), we have det(∂∂F) =
(� ′(u)) · (u� ′(u))′, as one can check directly, where u = |z|2

C2 as before. Using spherical

coordinates with r2 = u (and hence also r3dr = udu
2 ), and recalling that�a(z) = ϕa(u(z)),

we therefore have

Volg(Ni ) =
∫ u=1+δ

u=1

∫
RP3

det(∂∂�ai ) dVolRP3
udu

2

= Vol(RP
3)

2

∫ u=1+δ

u=1
(uϕ′ai (u))(uϕ

′
ai (u))

′ du = Vol(RP
3)

4

(
uϕ′ai (u)

)2 ∣∣u=1+δ
u=1 .

By (2.2) and the fact that the cut-off function χ satisfies χ(u = 1+ δ) = 0 = χ ′(u = 1) =
χ ′(u = 1+ δ) and χ(u = 1) = 1, we find ϕ′ai (u = 1) =

√
1+ a2i and ϕai (u = 1+ δ) = 1,

hence

Volg(Ni ) = Vol(RP
3)

4

(
(1+ δ)2 − (1+ a2i )

) = VolEuc(Ni )− π2a2i
4
.

This shows∫
Ni

ω2 = 8Volg(Ni ) = 8VolEuc(Ni )− 2π2a2i = 2
∫
Ni

η ∧ η − 2π2a2i .

Summing over 1 ≤ i ≤ 16 and inserting back into (2.9) gives (2.8). ��
Remark 2.7 The fact that the expression (2.8) becomes negative for large enough values of
|a|2 shows why one had to restrict to small values of |a|2 when gluing the metrics. The
problem is traceable to the fact that (2.2) ceases to be plurisubharmonic for large values of
|a|2.

We also remark that (2.8) is independent of the choice of cut-off since
∫
X ω

2 only depends
on the Kähler class and η is metric-independent. As such, the positivity of (2.8) puts a strict
upper bound on |a|.

2.1 Estimates

The metrics g and g̃ on a Kummer K3 surface are related by the (nonlinear) elliptic PDE
(2.6), so one could hope to get estimates on g − g̃ using Moser iteration and a maximum
principle due to [72]. This works as long as the curvature is sufficiently concentrated and
as long as no component Ei is shrunk a lot faster than the rest. Concretely, we make the
following assumption.

Assumption 2.8 Let

ra :=maxi ai
mini ai

be the ratio between the largest and smallest component of the exceptional divisor E . We
assume there is a constant C ≥ 1 independent of a such that

ra ≤ C
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for all values a = (a1, . . . , a16) under consideration.
The estimates we need were obtained by Kobayashi [43], and the results are as follows.

Theorem 2.9 [43, Equations 46–48] Assume X is a Kummer K3 surface with Kähler form ω
associated with the patchwork metric g and ω̃ = ω+ i∂∂φ satisfies (2.6) with

∫
X φ ω

2 = 0.
Let U ⊂ X be any open set such that E ⊂ U. Then, there are constants Ck > 0, k ≥ 0,
depending on U but not on the parameters ai such that for all small enough values of |a| we
have

‖φ‖Ck (X\U ,g) ≤ Ck |a|2. (2.10)

Moreover, there is a constant C > 0, independent of the parameters ai such that for all
small enough values of |a| we have

‖φ‖Ck (X ,g) ≤ C |a|2− k
2 (2.11)

Kobayashi only states (2.11) for even k’s. The odd cases are handled by the Gagliardo–
Nierenberg interpolation inequality (see for instance [3, Theorem 3.70]).

These estimates will be crucial in Sect. 3 to prove Theorems 1.4 and 1.5.

Remark 2.10 In words, (2.10) says that when the exceptional divisor E is small, g is close
to g̃ as long as one stays away from E . The second bound (2.11) gives weaker estimates
valid also near E . The Ck-estimates of φ translate into Ck−2-estimates for the metric g̃. The
C4-estimates of φ are sometimes called estimates at the level of curvature.

We will reprove Theorem 2.9 in Sect. 6. Our arguments are roughly the same as
Kobayashi’s, with some added detail and some corrections.

2.2 Isometries

Even though the Ricci-flat metric g̃ is not known explicitly, it will inherit the isometries of g.

Proposition 2.11 Assume the set-up of Theorem 2.2. Let g̃ be the Ricci-flat Kähler metric in
the Kähler class of g. Assume F : X → X is a (anti-) holomorphic isometry of g. Then, F is
also an isometry of g̃.

Proof The isometry F preserves the Monge–Ampère Eq. (2.6) and the Kähler form ω up to
sign. By the uniqueness of the solution, it also has to preserve ω̃ up to sign. The details are
as follows.

Let ω and ω̃ be the Kähler forms of g and g̃, respectively. Let ε = +1 if F is holomorphic
and ε = −1 if F is anti-holomorphic. Then, F∗ω = εω. Since F is an isometry, we also
have ψ ◦ F = ψ and

A =
∫
X ω

n∫
X eψωn

=
∫
X F∗ (ωn)∫

X F∗
(
eψωn

) .
Applying F∗ to the Monge–Ampère Eq. (2.6) gives us

(F∗ω̃)n = F∗(ω̃n) = F∗
(
Aeψωn) = Aeψ◦F (F∗ω)n = εn Aeψωn = εnω̃n .

So εF∗ω̃ solves the Monge–Ampère equation. Since F is (anti-) holomorphic, we find

F∗(ω̃) = ε (ω + i∂∂φ ◦ F)
.
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So both φ and φ ◦ F solve the equation subject to the normalization∫
X
φ ωn =

∫
X
(φ ◦ F)F∗ωn = 0.

By the uniqueness, we that conclude φ = φ ◦ F and F is an isometry of g̃. ��
Remark 2.12 Proposition 2.11 is known to the experts. In [1, Proposition 2.2], a very similar
statement is proven for projective Calabi–Yau manifolds, ι : X → CP

N when one takes
ω = ι∗(ωFS), i.e. the metric is induced by the Fubini–Study metric. Their arguments are
essentially the above ones.

Proposition 2.13 Assume X is a Kummer K3 surface with patchwork metric as described
above. Assume all the components of the exceptional divisor have the same size, meaning
ai = a j for 1 ≤ i, j ≤ 16. Let g̃ be the unique Ricci-flat metric in the Kähler class of g.
Assume FC : C

2 → C
2 is an affine map FC(z) = Bz+ b with B ∈ U (2) such that B� = �

and b ∈ 1
2�. Then FC induces an isometry F : X → X of both g and g̃.

Similarly, if τC : C
2 → C

2 denotes the complex conjugation map and τC(�) = �, then
τC induces an isometry τ : X → X of both g and g̃.

Maps of these forms are the only (anti-) holomorphic isometries of (X , g).

Proof The argument that one gets an induced map F : X → X goes as follows. Since
FC(z + �) = FC(z) + � holds for all z ∈ C

2 we get an induced map FT : T → T . The
requirement b ∈ 1

2� implies FT (−z) = −FT (z), sowe get awell-definedmap FY : Y → Y .
Since this came from an affinemap, it extends to the blow-up, and the argument, whenwritten
out, looks like this. To extend to the blow-up, it suffices to see what happens locally. Since
blowing up commutes with taking the quotient, i.e. Bl0(C2/μ2) = Bl0(C2)/μ2, it suffices
to see what happens when blowing up points inC

2. In this case, we extend a given affine map
FC : C

2 → C
2 to a map FBl : Blp(C2)→ BlF(p)(C2) by sending a pair (q, �) ∈ C

2×CP
1

to (F(q), F(�)), which makes sense since affine maps map lines to lines. This gives us our
required map F : X → X . The same line of arguments works for anti-holomorphic maps.

To see that the induced map is an isometry of g, we split X into two different kinds
of regions; the flat region and the neck+Eguchi–Hanson regions (the sets called Ui in the
construction above). In the flat region, there is nothing to show. In one of the patches Ui ,
we have a metric whose Kähler potential is given by (2.2), and this potential is preserved by
maps of the above form. Completely analogous arguments work for the map τ .

We may therefore apply Proposition 2.11.
To see that the above maps are the only (anti-) holomorphic isometries of (X , g), one

can argue using the curvature as follows. The neck regions are not Ricci-flat, whereas the
complement is. So an isometry has to map the neck regions to neck regions. The Euclidean
region is flat, and the Eguchi–Hanson patches have nowhere vanishing curvature. So these
regions cannot be interchanged either. Letting U = ∪iUi denote all the non-flat regions,
we therefore have a map f : X\U → X\U , and F :=π ◦ f ◦ π−1 : Y\π(U ) → Y\π(U ).
We will show that this lifts to an isometry of the flat torus (with some open set removed),
hence has to have the above form. The orbifold Y = T /μ2 is simply connected, and by
the Seifert–Van Kampen theorem, [35, Theorem 1.20], Y\π(U ) is as well. Let P : T → Y
denote the quotient map and let V :=P−1(π(U )) ⊂ T . Away from the singular points of Y ,
P is a covering map. By [35, Proposition 1.33], F lifts to an isometry F̃ : T \V → T \V .
Hence, F̃ takes the above affine form. So f agrees with an isometry induced from an affine
mapping of C

2 on X\U ; hence, the two isometries agree everywhere. ��
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Remark 2.14 We do not know if the isometry group of (X , g̃) is bigger than that of (X , g).
For toy models, this can easily be the case. Consider (Cn/�, g0) with any Kähler metric g0
without non-trivial isometries. Use Theorem 2.2 to find the Ricci-flat metric g in the Kähler
class of g0. Then, g is the flat metric and thus has an infinite isometry group, even though
the isometry group of g0 is trivial.

2.3 Homothety of a Kummer K3 surface

Both the Euclidean metric and the Eguchi–Hanson Kähler potentials are homogeneous in
simultaneous scaling of the coordinate z and the parameter a. This property will then be
inherited by the solution φ. Here are the details.

Let α > 0 and consider the homothety SCα : C
2 → C

2 given by

SCα (z) = αz.
Let � ⊂ C

2 be any non-degenerate lattice and let �α = SCα (�) be the scaled lattice. Denote
by X and Xα the Kummer K3 surface associated with the lattice � and �α , respectively. Let
ga denote the patchwork metric on X with parameter a = (a1, . . . , a16), and denote by g̃a
the Ricci-flat metric in the Kähler class of ga . These are denoted by g and g̃, respectively,
for most of the paper. On Xα , we put the same kind of patchwork metric with locally defined
Kähler potential (2.2), but we modify the cut-off function to be

χα(z) = χ
( z

α

)
= χ(S−1α (z)).

We denote this Kähler potential by �αa .

Lemma 2.15 The map SCα induces an isometry

Sα : (X , α2ga)→ (Xα, gα2a)

and

Sα : (X , α2 g̃a)→ (Xα, g̃α2a).

Proof Thatwe get inducedmaps can be argued as in the proof Proposition 2.13. The important
properties are SCα (z) = −SCα (−z) and that SCα is affine.

One easily checks that the Eguchi–Hanson potential (2.1) satisfies

fα2a(αz) = α2 fa(z).
The same goes for the Euclidean potential. Hence, in an Eguchi–Hanson and neck region,

�α
α2a(αz) = α2�a(z).

We are abusing notation a bit, seeing how the left-hand side is locally defined on Xα and the
right-hand side is locally defined on X , but one could think of the equality as happening on a
punctured ball in C

2. Away from the Eguchi–Hanson and neck regions, the isometry is clear.
This shows the claimed isometry with respect to the patchwork metric.

For the isometry of the Ricci-flat metric, we argue as in the proof of Proposition 2.11. It
is also clear that Aeψ is the same for (X , ga) and (Xα, gα2a). Hence,

3

(α2(ωa + i∂∂φa))
2(z) = Aeψ(α2ωa)

2(z) = Aeψ(ωα2a)
2(Sα(z)) = (ωα2a + i∂∂φα2a)

2(Sα(z)),

3 Here, we are indulging in some abuse of notation. φa : X → R, whereas φα2a : Xα → R. We also write
simply ψ even though it depends on a and appears once as a function ψ : X → R and once as a function
ψ : Xα → R.
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which shows that both α2φa(z) and φα2a(Sα(z)) solve the Monge–Ampère equation. By
uniqueness, α2φa(z) = φα2a(Sα(z)) and Sα is an isometry between the Ricci-flat metrics as
well. ��

The homothety Sα clearly maps �/2� to �α/2�α , hence maps the exceptional divisor of
X to the exceptional divisor of Xα . In fact, (Sα)|E is α-independent. So Lemma 2.15 says in
particular

(α2φa)|E = (φα2a)|E .
Here, we are abusing notation again, since the right-hand side E is a subset of Xα .

3 Closed geodesics: No–Go theorems

There are two main results about geodesics on a Kummer K3 surface in this section. The-
orem 3.1 constrains stable, closed geodesics to stay away from the exceptional divisor E ,
whereas Theorem 3.4 says that closed, stable geodesics cannot stay inside an Eguchi–Hanson
patch.

Theorem 3.1 Let (X , g) be a Kummer K3 as constructed above. Let g̃ be the Ricci-flat metric
in the Kähler class of g. Then, for each value of |a| small enough, there is an a-dependent
open set Va ⊂ X with E ⊂ Va such that no stable, closed geodesic (with respect to either g
or g̃) in X ever enters Va.

Proof The idea is to use the estimates of [43] to show that the curvature of g̃ doesn’t vanish
anywhere near E . Then, we appeal to Theorem 1.7 to get our conclusion for geodesics with
respect to g̃. Here are the details.

Let p ∈ Ei ⊂ E and pick holomorphic normal coordinates with respect to g at p,
meaning gμν(p) = δμν , gμν,α(p) = 0, and gμν,αβ(p) = −Rμναβ(p) hold, where R is

the Riemann curvature tensor of g. Write φμν(p):= ∂2φ
∂zμ∂zν (p) and so on for more indices.

Introduce the 2 × 2-matrix h via h:=g̃−1(p) − g−1(p) = g̃−1(p) − �. By (2.11) for
k = 2 we know that φμν(p) ∈ O(|a|), hence also h ∈ O(|a|), as is seen by writing
g̃−1(p) = (�+ ∂∂φ(p))−1 = �+∑∞

k=1(−1)k(∂∂φ(p))k . We may use a standard formula
for the Riemann tensor associated with a Kähler metric (see [72, Eq. 1.14] for instance)
namely

R̃μναβ = −
∂2 g̃μν
∂zα∂zβ

+ g̃λσ
∂ g̃μλ
∂zα

∂ g̃σν
∂zβ

to write the Riemann tensor R̃ of g̃ in the above coordinates as

R̃μναβ(p) = Rμναβ(p)− φμναβ(p)+ (δλσ + hλσ )φμαλ(p)φνβσ (p).

By (2.11) for k = 3 and k = 4 and the above bound on h we may estimate this as

Rμναβ(p)− C ≤ R̃μναβ(p) ≤ Rμναβ(p)+ C (3.1)

for some |a|-independent constant C > 0. Let V ∈ TpEi ⊂ TpX be such that |V |g̃ = 1.
Then (2.11) for k = 2 gives 1− C̃ |a| ≤ |V |2g ≤ 1+ C̃ |a| for some constant C̃ > 0. Inserting
this into (3.1) we find

Sectg(p)(1− C̃ |a|)2 − C ≤ Sectg̃(p) ≤ (1+ C̃ |a|)2Sectg(p)+ C, (3.2)
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where Sectg(p) and Sectg̃(p) denote the holomorphic sectional curvatures of g and g̃, respec-
tively, evaluated on TpEi . Since we are on Ei we may use that g|Ei = ai gFS , FS being short
for Fubini–Study, to write Sectg(p) = 2

ai
. Using the ratio ra = max1≤i≤16 ai

min1≤i≤16 ai , we bound this

as 2
|a| ≤ Sectg(p) ≤ 4ra|a| ; hence, (3.2) finally becomes

2

|a| − C1 + C2|a| ≤ Sectg̃(p) ≤ 4ra

(
1

|a| + C3 + C4|a|
)

for |a|-independent constantsCi > 0. This shows that Sectg̃(p) > 0 for all |a| small enough.
To see that there are no closed, stable geodesics with respect to g one can argue in a couple

of ways. The fastest is probably to appeal to Theorem 1.7, which applies since the Eguchi–
Hanson patch has a hyperkähler metric whose Riemann curvature tensor doesn’t vanish in
any point (see [25, Equation 2.28] or [51, Equation 4.8]). Another argument is to first see
directly (see [70, Theorem 5.3], [51, Chapter 4.5]), or [52, Theorem 8] that the only closed,
non-constant geodesics in Eguchi–Hanson space are the ones contained in the CP

1. Hence,
they are closed geodesics in (CP

1, gFS), all of which are unstable. ��
Remark 3.2 That the components Ei of the exceptional divisor have induced metrics with
positive curvature (even for the Ricci-flat metric) can be seen in numerical solutions like [38,
Figure 3].

The next result says that any geodesic with respect to g̃ is close to being a geodesic with
respect to g.

Theorem 3.3 Assume the same set-up as in Theorem 3.1. Then, for all values of |a| small
enough there is a constant C > 0 independent of |a| such that if γ : (−ε, ε) → X is a
geodesic with respect to g̃ we have

|Dg
t γ̇ (t)|g ≤ C |a| 12 |γ̇ |2g, (3.3)

where Dg
t = ∇γ̇ is the covariant derivative associated with g.

Proof Let� and �̃ denote theChristoffel symbols in somecoordinates of g and g̃, respectively.
Define the tensor � by

�λμα :=�̃λμα − �λμα. (3.4)

Then
�λμα = g̃σλ

(
g̃α,σ ,μ − �ραμg̃ρσ

) = g̃σλ∇μg̃ασ , (3.5)

where ∇ denotes the covariant derivative associated with g. Let γ : (−ε, ε) → X be a
geodesic with respect to g̃. Then,

|Dg
t γ̇ |g =

∣∣∣Dg
t γ̇ − Dg̃

t γ̇

∣∣∣
g
= |�(γ̇ , γ̇ )|g . (3.6)

This is the equation which will give us (3.3) after we estimate |�(γ̇ , γ̇ )|. To this effect, we

claim there exists C > 0 independent of |a| such that ‖�‖C0(X ,g) ≤ C |a| 12 , and this will
follow by Kobayashi’s estimates. Let p ∈ X and, like in the proof of Theorem 3.1, choose
holomorphic normal coordinates at p with respect to g, meaning gμν(p) = δμν etc. In these
coordinates, we may write

�(p)λμα = (δσλ + hσλ)φ(p)μασ ,
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where h and φ(p)μασ are as in the proof of Theorem 3.1. In that proof, we also saw that h ∈
O(|a|). From (2.11), with k = 3 we have |φ(p)μασ | ≤ ‖φ‖C3(X ,g) ≤ C1|a| 12 . Altogether,
we thus find

|�(p)λμα| ≤ C1|a| 12 (1+ C2|a|) ≤ C |a| 12 .
At the point p, still in holomorphic normal coordinates, we thus compute

|�|2g(p) =
2∑

μ,α,λ=1

∣∣�(p)λμα
∣∣2 ≤ C̃ |a|.

The left-hand side is independent of coordinate system, and since p was arbitrary this proves
the claim. ��
Theorem 3.4 Assume the same set-up as in Theorem 3.1. Then, for all values of |a| small
enough, no stable, closed geodesic with respect to g̃ can stay completely within an Eguchi–
Hanson patch Ui .

Proof Assume there is a closed, stable geodesic γ with respect to g̃ in an Eguchi–Hanson
patch Ui . By Theorem 3.1, we may assume that γ stays away from Ei ∼= CP

1. Consider
the distance squared d(t) between γ (t) and CP

1. This distance is realized by geodesics
as follows. Let ρs(t) denote the family of radial4 geodesics with respect to the metric g
connecting γ (t) and CP

1, meaning ρ0(t) ∈ CP
1 for all t , ρ1(t) = γ (t), and Dg

s ∂sρs(t) = 0
for all t ∈ S

1 and s ∈ (0, 1). Then

d(t) =
∫ 1

0
|∂sρs(t)|2g ds.

The function d needs to have a maximum, meaning there is some T such that ḋ(T ) = 0 and
d̈(T ) ≤ 0. We shall show that (3.3) implies d̈(T ) > 0, hence forcing a contradiction.

We start by computing ḋ(t). Note that Dg
t ∂s = Dg

s ∂t (see for instance [19, Lemma 3.4]).
Since s �→ ρs(t) is a geodesic, D

g
s ∂sρs(t) = 0. So5

ḋ(t) = 2Re
∫ 1

0

〈
Dg
t ∂sρs(t), ∂sρs(t)

〉
g ds

= 2Re
∫ 1

0

〈
Dg
s ∂tρs(t), ∂sρs(t)

〉
g ds

= 2Re
∫ 1

0
∂s

(〈∂tρs(t), ∂sρs(t)〉g) ds

= 2Re
(〈∂tρs(t), ∂sρs(t)〉g) ∣∣s=1s=0.

The lower limit vanishes for all t since ∂sρs(t)|s=0 is normal to Ei ∼= CP
1, whereas

∂tρs(t)|s=0 is tangential. Differentiating this again we find

d̈(t) = 2Re
(〈
Dg
t ∂tρs(t), ∂sρs(t)

〉
g +

〈
∂tρs(t), D

g
t ∂sρs(t)

〉
g

) ∣∣
s=1.

4 For s > 0, ρs (t) ∈ O
CP1 (−2)\CP

1 ∼= (C2\{0})/μ2. Writing [z(t)] for the image of γ (t) under this
identification, ρs (t) takes the form ρs (t) = θ(s, t)[z(t)] for some function θ , hence the name radial geodesic.
5 In this section, we are thinking of the metric as a hermitian metric, whose real part is the corresponding
Riemannian metric. This is to make better use of the complex coordinates on C

2.
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To say something more about these expressions we need to recall some basic facts about the
Eguchi–Hanson metric g. The region we are interested in is (B1(0)\{0})/μ2 with Kähler
potential given by (2.1). We use z = (z1, z2) as coordinates and write u = |z|2

C2 as before.
The Kähler metric associated with (2.1) reads

〈U , V 〉g =
√
1+ a2i

u2

(
〈U , V 〉C2 − a2i

a2i + u2
〈U , z〉C2 〈z, V 〉C2

u

)
, (3.7)

where 〈U , V 〉C2 :=U1V1 +U2V2 is the Euclidean inner product. From this, it follows that

〈z, V 〉g = u√
a2i + u2

〈z, V 〉C2 (3.8)

holds for any V ∈ C
2.

Using the formula (see for instance [5, Equation 4.39]) �λμα = ∂gμν
∂zα gνλ we also find

�λμα = −
a2i

u(a2i + u2)

(
zμδ

λ
α + zαδ

λ
μ − 3

zαzμ
u

zλ
)
. (3.9)

We can locally write ρs(t) = θ(s, t)z(t) for some function θ satisfying (amongst others6)
θ(1, t) = 1 and ∂sθ > 0 for all t . In particular ∂tρ|s=1 = ż(t). Inserting this into our above
expressions for ḋ(t), we find

ḋ(t) = 2Re
(
(∂tθ)(∂sθ)|z(t)|2g + θ(∂sθ) 〈z(t), ż(t)〉g

) ∣∣
s=1

= 2(∂sθ)(1, t)Re 〈z(t), ż(t)〉g .
We deduce that ḋ(T ) = 0 ⇐⇒ Re 〈z, ż〉g (T ) = 0, which by (3.8) happens if and only if
Re 〈z, ż〉C2 (T ) = 0. We similarly find

〈
Dg
t ∂tρs(t), ∂sρs(t)

〉
g

∣∣
s=1 = ∂sθ(1, t)

〈
Dg
t ż(t), z(t)

〉
g .

The term
〈
∂tρs(t), D

g
t ∂sρs(t)

〉
g

∣∣
s=1 needs a bit more work. We have

Dg
t ∂sρ

λ
s = Dg

t (∂sθ z)
λ = ∂t (∂sθ z)λ + (∂sθ)�λμα żμzα

= (∂t∂sθ)zλ + (∂sθ)żλ + (∂sθ)�λμα żμzα.
Here, the indices are raised using the Euclidean metric; zμ = zμ and so on. Using (3.9) we
have

�λμα ż
μzα = − a2i

a2i + u2
żλ + 2a2i

u(a2i + u2)
〈z, ż〉C2 zλ

(3.8)= − a2i
a2i + u2

żλ + 2a2i√
a2i + u2

〈z, ż〉g zλ.

6 One can find θ more or less explicitly. Since ρs (t) is supposed to be a radial geodesic, the geodesic

equation has to be fulfilled, so using (3.9) and (3.8) we see that ∂2s θ +
a2i

(a2i +u2θ4)θ
(∂sθ)

2 = 0 is the

ODE satisfied by θ . This has ∂sθ(s, t) =
√
d(t)(a2i +θ(s,t)4u(t)2)

1
4

θ(s,t)u(t) as a first integral, where we can write
√
d(t) = ∫ 1

0
su(t)

(a2i +s4u(t)2)
1
4
ds. We shall not need these explicit expressions, however.
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Inserting this, we find

Dg
t ∂sρ

λ
s = (∂t∂sθ)zλ + (∂sθ)

u2

a2i + u2
żλ + (∂sθ) 2a2i√

a2i + u2
〈z, ż〉g zλ.

Hence,〈
∂tρs(t), D

g
t ∂sρs(t)

〉
g

∣∣
s=1 =

〈
ż(t), Dg

t ∂sρs(t)
〉
g

= (∂t∂sθ) 〈ż(t), z(t)〉g + (∂sθ)
⎛
⎝ 2a2i√

a2i + u(t)2
| 〈z(t), ż(t)〉g |2 + u(t)2

a2i + u(t)2
|ż(t)|2g

⎞
⎠ .

Taking the real part and setting t = T removes the term (∂t∂sθ) 〈ż(t), z(t)〉g since
Re 〈ż(T ), z(T )〉g = 0.

We thus conclude

d̈(T ) = 2(∂sθ(1, T ))

⎛
⎝Re

〈
z, Dg

t ż
〉
g +

u2

a2i + u2
|ż|2g +

2a2i√
a2i + u2

| 〈z, ż〉g |2
⎞
⎠ .

We estimate this from below by dropping the nonnegative term
2a2i√
a2i +u2

| 〈z, ż〉g |2 (recalling
that ∂sθ > 0) and observing that

Re
〈
z, Dg

t ż
〉
g ≥ −|z|g|Dg

t ż|g
(3.3)≥ −|z|gC |a| 12 |ż|2g (3.8)= −C u2√

a2i + u2
|a| 12 |ż|2g.

From this, we deduce

d̈(T ) ≥ 2u2(∂sθ)√
a2i + u2

|ż|2g
⎛
⎝−C |a| 12 + 1√

a2i + u2

⎞
⎠ ≥ u2(∂sθ)√

a2i + u2
|ż|2g

⎛
⎝−C |a| 12 + 1√

a2i + 1

⎞
⎠ .

By choosing |a| small enough we have d̈(T ) > 0 and d therefore does not have a maximum.
This is the desired contradiction. ��
Remark 3.5 The strategy of the above proof is similar to [70, Theorem 5.3] and [52, Theo-
rem 8]. Enlarging slightly to include the neck region in the consideration would not change
anything, since a similar argument would go through, where one compareswith the Euclidean
metric instead of the Eguchi–Hanson metric. See [51, Theorem 7.3] for details.

Let us stress that the above theorem forbids a stable, closed geodesic from staying inside
ofUi . It does not rule out a geodesic entering and leavingUi and closing up somewhere else
in X . This is a possibility envisioned in [30, pp. 12–13], and we do not rule this out, but
would note the restrictions imposed upon such a geodesic by Theorems 3.1 and 3.3.

4 Curvature of Hyperkähler 4-manifolds

In this section, we analyse the Riemann curvature tensor of a Hyperkähler 4-manifold. Most
of the statements rely on having enough isometries. We need some preliminaries first. We
will start by recalling some facts from Riemannian geometry.

123



20 Page 18 of 52 Annals of Global Analysis and Geometry (2023) 63 :20

Lemma 4.1 Assume (M, g) is a Riemannian manifold with Levi–Civita connection ∇.
Assume F : M → M is an isometry. Then,

F∗(∇UV ) = ∇F∗U F∗V (4.1)

holds for all tangent vector fields U , V ∈ �(T M). In particular, if R denotes the Riemann
curvature tensor, then

〈R(V ,W )U , Z〉p = 〈R(F∗V , F∗W )F∗U , F∗Z〉F(p) (4.2)

holds for all p ∈ M and all U , V ,W , Z ∈ TpM.

Proof Define ∇′ by ∇′UV :=F−1∗
(∇F∗U F∗V

)
and verify that ∇′ is a torsion-free metric

connection, hence ∇′ = ∇. ��

4.1 Curvature of hyperkähler 4-manifolds

We next turn to some facts about hyperkähler manifolds in real dimension four and at the
same time establish some notation.

Lemma 4.2 Let (X , g̃) be a Ricci-flat Kähler manifold of real dimension 4 with complex
structure I and nowhere vanishing holomorphic 2-form η. Then, there exist complex struc-
tures J , K such that I J = K. These complex structures are metric compatible, meaning
∇ J = J∇ and ∇K = K∇.

In fact, one can write down such complex structures explicitly, following [17, p. 287]
or [9, p. 6]. Let z, w be holomorphic Darboux coordinates such that the metric g̃ takes the
matrix form

g̃ =
(
g̃zz g̃zw
g̃wz g̃ww

)

with

det(g̃) = A

being some constant. Then, we may define a complex structure by

J
∂

∂z
= 1√

A

(
−g̃zw ∂

∂z
+ g̃zz

∂

∂w

)
(4.3)

and

J
∂

∂w
= 1√

A

(
−g̃ww ∂

∂z
+ g̃wz

∂

∂w

)
. (4.4)

For any p ∈ X and V ∈ TpM we introduce the notation

σI J (V ):= 〈R(V , I V )JV , V 〉
and similarly for σI K (V ), σJ K (V ), σI I (V ) etc. These satisfy σI J (V ) = σJ I (V ) and so on.

The Ricci-flatness condition7 reads

σI I (V )+ σJ J (V )+ σKK (V ) = 0 (4.5)

7 Once one knows that there exists 3 metric-compatible, mutually orthogonal complex structures I , J , K ,
then (4.5) is actually a direct consequence of the Bianchi identity.
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for any V ∈ TpM .
The significance of the above σ ′s is that they determine the Riemann curvature tensor of

X .

Lemma 4.3 Let (X , g̃)be ahyperkählermanifold of real dimension 4. Fix some V ∈ TpX\{0}
for some p ∈ X. Then, the holomorphic sectional curvature W �→ σI I (W ) at p defines a
quartic on TpX with coefficients given by σI I (V ), σJ J (V ), σI J (V ), σI K (V ), and σJ K (V ).

Proof Let W = αV + β I V + μJV + νKV ∈ TpX be any tangent vector. Then, by
iteratively using identities like 〈R(Iv, Jw)u, t〉 = 〈

R(I 2v, I Jw)u, t
〉 = −〈R(v, Kw)u, t〉

for any t, u, v, w ∈ TpX and the standard Riemann tensor symmetries, one arrives at

〈R(W , IW )IW ,W 〉 = (
α2 + β2 − μ2 − ν2)2 σI I (V )+ 4(βμ− αν)2σJ J (V )
+ 4(αμ+ βν)2σKK (V )+ 4(βμ− αν)(α2 + β2 − μ2 − ν2)σI J (V )
+ 4(αμ+ βν)(α2 + β2 − μ2 − ν2)σI K (V )
+ 8(αμ+ βν)(βμ− αν)σJ K (V ). (4.6)

Using (4.5) one can solve away one of the σ ’s, σKK (V ) = −σI I (V ) − σJ J (V ), say.
So in particular, the holomorphic sectional curvature of W is completely determined by
σI I (V ), σJ J (V ), σI J (V ), σI K (V ), and σJ K (V ). ��
Remark 4.4 A neat way of writing (4.6) is to use the following coordinates on S

3. Assuming
|W | = |V |, we can write

α + iβ = cos

(
θ

2

)
e

i
2 (ψ+φ)

μ+ iν = sin

(
θ

2

)
e

i
2 (ψ−φ)

where

0 ≤ θ < π
0 ≤ φ ≤ 2π

0 ≤ ψ ≤ 4π

as in [25, Eq. 2.4]. Then

〈R(W , IW )IW ,W 〉 = cos2(θ)σI I (V )+ sin2(θ) sin2(φ)σJ J (V )

+ sin2(θ) cos2(φ)σKK (V )+ sin(2θ) sin(φ)σI J (V )

+ sin(2θ) cos(φ)σI K (V )+ sin2(θ) sin(2φ)σJ K (V ). (4.7)

We note the absence ofψ in (4.7), which corresponds to theU (1)-symmetry of the holomor-
phic sectional curvature.

The next result shows how the presence of symmetry can drastically reduce the available
degrees of freedom in the Riemann tensor.

Theorem 4.5 Let (X , g̃) be a hyperkähler manifold of real dimension 4. Assume F : X → X
is a holomorphic isometry of order 4 with positive-dimensional fixed point set M :=Fix(F).
Then, σI J (V ) = σI K (V ) = σJ K (V ) = 0 and σJ J (V ) = σKK (V ) for any V ∈ TpM ⊂ TpX
and p ∈ M.
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Proof Let us start by seeing how F∗ acts in a single tangent space. Let p ∈ M , and V ∈ TpM .
Then, V is necessarily fixed by F∗. Since F is holomorphic, M is a complex submanifold,
and I V is fixed by F∗ as well. Since p = F(p), everything will be taking place at p and we
shall be omitting references to the point everywhere. Consider now F∗(JV ). Using that V is
fixed, that F is an isometry, and that JV ⊥ V we deduce 〈V , F∗(JV )〉 = 〈F∗V , F∗(JV )〉 =
〈V , JV 〉 = 0. Similarly, 〈I V , F∗(JV )〉 = 0. It thus follows that there exists θ ∈ [0, 2π) such
that F∗(JV ) = (cos(θ)+ I sin(θ))JV . A direct computation shows F4∗ (JV ) = (cos(4θ)+
I sin(4θ))JV . By assumption F4∗ (JV ) = JV , so cos(4θ) = 1, sin(4θ) = 0. The solutions
θ = 0 and θ = π can be ruled out as these would make F an order 1 or 2 isometry,
respectively (see [60, Theorem 1.1, p. 137] for instance). We conclude that F∗(JV ) = ±KV
and F∗(KV ) = ∓JV . In words; F∗ fixes TpM and rotates the orthogonal complement of
TpM ⊂ TpX by 90◦.

This already provides us with plenty of information due to Lemma 4.1. Recalling the
notation of Lemma 4.2, we next aim to show that for any p ∈ M and V ∈ TpX the following
holds

σI J (V ) = σI K (V ) = σJ K (V ) = 0 (4.8)

and
σJ J (V ) = σKK (V ). (4.9)

To see this, we use (4.2) and the above knowledge of how F∗ acts

σJ K (V ) = 〈R(V , JV )KV , V 〉
(4.2)= 〈R(F∗V , F∗(JV ))F∗(KV ), F∗V 〉
= − 〈R(V , KV )JV , V 〉
= −σK J (V ).

But σJ K (V ) = σK J (V ), so σJ K (V ) = 0. Similarly, one computes σI J (V ) = ±σI K (V )
and σI K (V ) = ∓σI J (V ), which combine to say σI J (V ) = −σI J (V ) and σI K (V ) =
−σI K (V ). The same kind of computation also gives σJ J (V ) = σKK (V ). ��

The proposition can actually be generalized to isometries of other orders.

Theorem 4.6 Let (X , g̃) be a hyperkähler manifold of real dimension 4. Assume F : X → X
is a holomorphic isometry of order k ≥ 2 with positive-dimensional fixed point set
M :=Fix(F). Then σI J (V ) = σI K (V ) = σJ K (V ) = 0 for any V ∈ TpM ⊂ TpX and
p ∈ M. If k > 2, then σJ J (V ) = σKK (V ) and σJ K (V ) = 0 as well.

Proof One argues as above that for p ∈ M and V ∈ TpM , F∗ acts by rotating the orthogonal
complement by θ = ± 2π

k . One then computes as above that

σI J (V ) = cos(θ)σI J (V )+ sin(θ)σI K (V )

and

σI K (V ) = cos(θ)σI K (V )− sin(θ)σI J (V ).

This means (σI J , σI K ) is fixed by a non-trivial rotation, hence has to be 0. Using this, we
further compute

σJ J (V ) = cos2(θ)σJ J (V )+ sin2(θ)σKK (V )
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When sin(θ) �= 0, this implies σJ J (V ) = σKK (V ). Similarly, one computes

σJ K (V ) = cos(2θ)σJ K (V )+ sin(θ) cos(θ)(σKK (V )− σJ J (V )),
hence σJ K (V ) = 0. ��
Remark 4.7 One can prove the same theorem for Ricci-flat Kähler manifolds of complex
dimension 2, i.e. without using the hyperkähler structure. Choosing local coordinates z1, z2
near a point p ∈ M such that M locally takes the form {z2 = 0}, the action of f∗ is given
by multiplying ∂

∂z2
by a k’th root of unity while leaving ∂

∂z1
invariant. Assuming k > 2, the

only invariant components of the Riemann tensor are then the ones with an equal number
of 2- and 2-indices. The independent components are then R1111, R1122, R1221, R2222. The
Ricci-flatness gives us 3 additional equations,

0 = Rμν = Rμν11g
11 + Rμν12g

21 + Rμν21g
12 + Rμν22g

22.

This completely determines the Riemann tensor in terms of R1111.
When k = 2, the invariant components are the ones where the total number of 2- and 2

indices is even. So we get one more independent component, namely R1212. The Riemann
tensor then has 2 degrees of freedom instead of 1.

Corollary 4.8 Assume the set-up of Theorem 4.6 with k > 2. Then the Riemann curvature
tensor of X at p ∈ M ⊂ X is uniquely determined by the Gauss curvature of M at p.
In fact, if K : M → R is the Gauss curvature, V ∈ TpM ⊂ TpX is a unit vector, and
W = αV + β I V + μJV + νKV ∈ TpX is arbitrary, then

〈R(W , IW )IW ,W 〉 = (
(α2 + β2)2 + (μ2 + ν2)2 − 4(α2 + β2)(μ2 + ν2))K(p)

Proof By the Gauss–Codazzi theorem (see [19, Theorem 2.5] for instance) and the fact that
M is totally geodesic, σI I (V ) equals the holomorphic sectional curvature (of the induced
metric) of M , and the holomorphic sectional curvature exactly equals the Gauss curvature of
a Riemann surface. The expression then follows from (4.6). ��
Remark 4.9 Yet another corollary of the above result is that if the fixed point set has a
connected component which is a torus, then there has to be points where the curvature of
M vanishes (simply by the Gauss–Bonnet theorem), hence points where the entire curvature
tensor of X vanishes. The zero set of the curvature on a Riemann surface does not have to be
made up of geodesics, however. Indeed, just compute what happens for a torus embedded in
R
3, via (θ, φ) �→ (((R + r cos(θ)) cos(φ), (R + r cos(θ)) sin(φ), r sin(θ)). One finds that in

this case,K = 0 on the two circles (R cos(φ), R sin(φ),±r), neither of which are geodesics.
Remark 4.10 In the coordinates of Remark 4.4, the sectional curvature reads

〈R(W , IW )IW ,W 〉 = 1

4
(3 cos(2θ)− 1)K

4.2 Derivatives of the curvature

To proceed, we will formulate some results about the derivative the holomorphic sectional
curvature on a hyperkähler manifold. We will write∇ (instead of ∇̃) for the covariant deriva-
tive associated with g̃. We only refer to a single (hyperkähler) metric in this section, so the
risk of confusion is minimal.
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Proposition 4.11 Let (X , g̃) be as in Theorem 4.5. Let V be a unit vector field defined in
some open neighbourhood U of M with the property that Vp ∈ TpM for all p ∈ M. Then,
for any critical point of the function σI I (V ) : U → R lying in M, we have


 〈R(V , I V )I V , V 〉 := (∇2
V + ∇2

I V + ∇2
JV + ∇2

KV ) 〈R(V , I V )I V , V 〉
= −6σI I (V )2 − 24|∇JV V |2σI I (V ). (4.10)

Proof Let W be any vector field. Then

∇W 〈R(V , I V )I V , V 〉 = 〈∇W R(V , I V )I V , V 〉 + 4 〈R(∇WV , I V )I V , V 〉
and

∇2
W 〈R(V , I V )I V , V 〉 =

〈∇2
W R(V , I V )I V , V

〉+ 8 〈∇W R(∇WV , I V )I V , V 〉
+ 4

〈
R(∇2

WV , I V )I V , V
〉+ 4 〈R(∇WV , I∇WV )I V , V 〉

+ 8 〈R(∇WV , I V )I V ,∇WV 〉 .
The terms ∇W R and ∇2

W R denote covariant derivatives of R as a 4-tensor, and we will deal
with these terms last using the second Bianchi identity. Since |V | = 1, 〈∇WV , V 〉 = 0 so
there are real functions α,μ, ν depending on W such that

∇WV = α I V + μJV + νKV .

A quick computation reveals

∇2
WV = −(α2 + μ2 + ν2)V + (∇Wα)I V + (∇Wμ)JV + (∇W ν)KV .

We compute each of the above terms on the right-hand side, using the shorthand σI I (V ) and
so on introduced above.

〈∇W R(∇WV , I V )I V , V 〉 = μ 〈∇W R(V , KV )I V , V 〉 − ν 〈∇W R(V , JV )I V , V 〉 ,〈
R(∇2

WV , I V )I V , V
〉 = −(α2 + μ2 + ν2)σI I (V )+ (∇Wμ)σI K (V )− (∇W ν)σI J (V ),

〈R(∇WV , I∇WV )I V , V 〉 = (α2 − μ2 − ν2)σI I (V )+ 2αμσI J (V )+ 2ανσI K (V ),

〈R(∇WV , I V )I V ,∇WV 〉 = μ2σKK (V )+ ν2σJ J (V )− 2μνσJ K (V ).

So

∇2
W 〈R(V , I V )I V , V 〉 =

〈∇2
W R(V , I V )I V , V

〉
+ 8(μ 〈∇W R(V , KV )I V , V 〉 − ν 〈∇W R(V , JV )I V , V 〉)
+ 8

(
μ2σKK (V )+ ν2σJ J (V )− (μ2 + ν2)σI I (V )

)
+ 4 ((∇Wμ)+ 2αν) σI K (V )

+ 4 (−(∇W ν)+ 2αμ) σI J (V )

− 4μνσJ K (V ).

Evaluating this at a critical point in the fixed point set, p ∈ M , simplifies the expression
vastly. By Theorem 4.5, σI J = σJ K = σI K = 0 and σJ J = σKK = − 1

2σI I . Furthermore,
being a critical point implies ∇WσI I = 0 for all vector fields W , hence

0 = ∇WσI I = 〈∇W R(V , I V )I V , V 〉 + 4 〈R(μJV + νKV , I V )I V , V 〉
= 〈∇W R(V , I V )I V , V 〉 + 4μσI K − 4νσI J = 〈∇W R(V , I V )I V , V 〉 .
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This will imply that also 〈∇W R(V , KV )I V , V 〉 = 0 = 〈∇W R(V , JV )I V , V 〉, as we now
demonstrate case by case. When W = V or I V , the result follows by the same argument
using isometries as in the proof of Theorem 4.5. The key being that the expression contains
an odd number of JV - and KV -factors. WhenW = JV , we use the second Bianchi identity
to say

〈∇JV R(V , KV )I V , V 〉 = − 〈∇V R(KV , JV )I V , V 〉 − 〈∇KV R(JV , V )I V , V 〉 .
On the last term, we apply the isometry sending JV �→ ±KV , KV �→ ∓JV to argue

〈∇JV R(V , KV )I V , V 〉 = −1

2
〈∇V R(KV , JV )I V , V 〉 = −1

2
〈∇V R(V , I V )I V , V 〉 .

The right-hand side vanishes at a critical point. WhenW = KV , we use the Bianchi identity
to say

〈∇KV R(V , KV )I V , V 〉 = − 〈∇I V R(V , KV )V , KV 〉 − 〈∇V R(V , KV )KV , I V 〉 .
Writing ∇V V = α I V and ∇I V V = β I V for some functions α, β : M → R, we find

−〈∇I V R(V , KV )V , KV 〉 = ∇I V σKK − 4 〈R(∇I V V , KV )KV , V 〉
= −1

2
∇I V σI I − 4βσJ K .

The last term vanishes on M , and the first term is 0 at a critical point. This shows that
〈∇W R(V , KV )I V , V 〉 = 0 at a critical point p ∈ M . Using the isometry mapping JV to
±KV shows that 〈∇W R(V , JV )I V , V 〉 = 0 as well.

All in all, this shows

∇2
WσI I =

〈∇2
W R(V , I V )I V , V

〉− 12(μ2 + ν2)σI I
at any critical point p ∈ M . We recall μ = 〈JV ,∇WV 〉, ν = 〈KV ,∇WV 〉. Using the order
4 isometry shows

0 = 〈JV ,∇V V 〉 = 〈JV ,∇I V V 〉 ,
〈JV ,∇JV V 〉 = 〈KV ,∇KV V 〉 ,

and

〈KV ,∇JV V 〉 = − 〈JV ,∇KV V 〉 .
We therefore find


σI I = 〈
R(V , I V )I V , V 〉 − 24|∇JV V |2σI I .
Using Proposition A.4 from Appendix A for 
R, we finally find


σI I = −6σ 2
I I − 24|∇JV V |2σI I

at a critical point p ∈ M . ��
Remark 4.12 A key fact used is that the Laplacian acting on the Riemann tensor gives
something proportional to the square of the Riemann tensor. (A.4) is the precise statement.
Something similar is true on an arbitrary Ricci-flat Kähler manifold without assuming it to
be hyperkähler. The result is (see [66, Eq. 3.108])

−1

2

Rμναβ = Rμνλσ R

σλ
αβ + Rμσλβ R

σ
να
λ − Rμλασ R

λ
ν
σ
β .
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The second thing used in the above proof is that the order 4 symmetry restricts the degrees
of freedom of the Riemann tensor, allowing us to get a simple expression for the Laplacian.

5 A special K3 surface

From now on we will specialize to a special Kummer K3 surface. The precise assumptions
and notation is as follows.

Notation 5.1 Let�:=Z{1, i} ⊂ C and let (X , g) denote the Kummer K3 surface associated
with the torus with lattice �:=� ⊕ �. We will also assume that all components of the
exceptional divisor have the same volume, ai = a j for 1 ≤ i, j ≤ 16.

We write Q : C
2 → Y for the quotient map (quotienting with respect to both � and μ2)

and π : X → Y for the blow-down map, with inverse π−1 : Y\Sing(Y )→ X\E .
For any suitable affine map FC : C

2 → C
2, FC(z) = Bz+b we denote the induced map

(using Proposition 2.13) by F : X → X . These maps will all have the property that they map
E to E , so give rise to isometries (using the same name for the restrictions) F : X\E → X\E .

These restricted maps satisfy π ◦ F ◦ π−1 ◦ Q = Q ◦ FC, a fact which will be used
implicitly.

For MC ⊂ C
2 with Q(MC) ⊂ Y\Sing(Y ), we write M :=π−1 ◦ Q(MC) ⊂ X .

We start by describing the isometries induced by affine maps.

Proposition 5.2 The holomorphic isometries of (X , g) are induced by the affine maps of the
form

FC(z) = Bz+ b

where

B ∈ U (2) ∩ GL(2,Z[i]) =
{(
α 0
0 β

)
,

(
0 α
β 0

) ∣∣∣α, β ∈ μ4

}

with μ4 := {±1,±i}, and b ∈ ( 1
2�

)2
. Any anti-holomorphic isometry is induced by one of

the above forms composed with τC for τC(z):=z. There are 512 distinct isometries. All of
them are isometries of (X , g̃) as well. The maximum order of these isometries is 8.

These isometries play a central role in the arguments to come. We will single out some of
them.

Notation 5.3 We consider the following map C
2 → C

2

f C
(
z
w

)
:=

(
z

iw + 1
2

)
, (5.1)

along with the induced map f : X → X . This map is an isometry of (X , g) of order 4.
We also consider the following subset:

MC:=
{(

z
1+i
4

) ∣∣∣z ∈ C

}
(5.2)

The corresponding set in X is denoted by M = π−1 ◦ Q(MC). Note that Q(MC) lands in
Y\Sing(Y ) due to the shift by an element not in 1

2�, so π
−1 is well defined.

123



Annals of Global Analysis and Geometry (2023) 63 :20 Page 25 of 52 20

Theorem 5.4 The submanifold M ⊂ X described above is a totally geodesic torus. There
are points p ∈ M such that the Riemann tensor of (X , g̃) vanishes at p.

Proof The image Q(MC) ⊂ Y lands in the smooth part due to the shift by 1+i
4 /∈ 1

2�. Clearly

Q(MC) is a torus, and π is biholomorphic when restricted, π : X\E ∼=−→ Y\Sing(Y ), hence
M ⊂ X is a torus.

Furthermore, M is fixed by the order 4 isometry f . So by Theorem 4.5, the Riemann
tensor of (X , g̃) at p ∈ M is uniquely determined by the Gauss curvature of M at p. But
any torus has points of vanishing Gauss curvature due to the Gauss–Bonnet theorem; hence,
there are points where the curvature of (X , g̃) vanishes. ��

The next proposition indicates that the torus in Theorem 5.4 could be flat. The proposition
contains a non-trivial assumption, however. Assume M ⊂ X is a torus which is fixed by an
order 4 isometry f . LetV be a unit vector field onM . By an extension ofV to a neighbourhood
M ⊂ U ⊂ X , we mean a unit vector field V : U → T X such that

• V restricts to a tangent vector field on M , V|M : M → T M ;
• ∇WV restricts to a tangent vector field on M , (∇WV )|M : M → T M , for all vector fields

W : U → T X .

A concrete example would be that if (z, w) are local coordinates with M locally being given
by {w = 0}, and V = h ∂

∂z with h:= 1
|∂z |g̃ . Then (4.3) along with ∇∂z∂z = 0 = ∇∂w∂z say

∇JV V ‖ V , and similarly for ∇KV V .

Theorem 5.5 Let M ⊂ (X , g̃) be a torus which is fixed by an order 4 holomorphic isometry.
Let V be a unit vector tangent field of M, extended to a neighbourhoodU of M. If the function
σI I (V ) : U → R has its minima on M, then M is flat.

Proof Proposition 4.11 gives us an expression for 
σI I at critical points. We will argue
that the last term drops out. Using the order 4 isometry f , we see that ∇JV V has to be
proportional to a combination of JV and KV when restricted to M . Hence, ∇JV V = 0 on
M . Proposition 4.11 therefore says


σI I = −6σ 2
I I

for any critical point on M . Hence, a minimum is possible if and only if σI I = 0 at the
minimum. But

∫
M σI I dVolg̃|M = 0 by the Gauss–Bonnet theorem, and σI I = 0 everywhere

on M as a consequence. ��
Remark 5.6 Any critical point for (σI I )|M is also a critical point for σI I due to the order 4
isometry. Indeed, ∇JV σI I = −∇JV σI I and similarly for ∇KV . So ∇σI I = 0 if and only if
∇V σI I = ∇I V σI I = 0. Hence, there are critical points of σI I on M . What is not clear (hence
the assumption in the above result) is that these critical points are minima.

We end by pointing out that the lattice� = �⊕�with� = Z{1, i} is not the only possible
choice leading to a result like Theorem 5.4. Another possibility is to choose ζ := exp

( 2π i
3

)
,

�:=Z{1, ζ } and � = �⊕�. The affine map

f C
(
z
w

)
=

(
z

ζw + 1+ζ
2

)

induces an order 3 holomorphic isometry f : X → X . The set

MC:=
{(

z
1+2ζ
6

) ∣∣ z ∈ C

}
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maps to a torus M ⊂ X which is a connected component of the fixed point set of f .
Theorem 5.4 therefore applies to this M .

6 Proof of Kobayashi’s estimates

Here, we will go through large parts of the proof of Kobayashi’s estimates. Most of the key
arguments are due to [43], but there are two minor mistakes we correct. The first is that
Kobayashi seems to assume the constant A from (2.7) is 1. One can of course absorb A into
the definition of ψ , (6.1), but this will cause ψ to be different from 0 outside of the neck
regions. The fact that A is not 1, but somewhat smaller, see (2.8), slightly changes the proof
of Case 1 of Lemma 6.5. The second mistake is that Kobayashi refers to standard theory
for the real Monge–Ampère equation to deduce Hölder bounds. One instead has to use the
corresponding complex theory, which we do in Proposition 6.8.

Additionally, we clarify the choice of coordinates used by introducing holomorphic Dar-
boux coordinates, and give a detailed analysis of a suitable coordinate systemnear a connected
component Ei ∼= CP

1 of the exceptional divisor E .
Our notation is as before; (X , g) denotes a Kummer K3 surface with patchwork metric

depending on 16 parameters ai and |a|2 = ∑
i a

2
i . The constant A is defined in (2.7) and

takes the value given in (2.8). We introduce the function ψ : X → R via

eψ = 2η ∧ η
ω2 . (6.1)

This can either be interpreted as theRadon–Nikodymderivative, or simply the proportionality
functionwhichmust exist between the two top forms η∧η andω2/2. In holomorphicDarboux
coordinates, i.e. where η = dz1 ∧ dz2, we have

ψ = − ln det(g),

and (6.1) is a way of making this function globally well defined. As we prove in Appendix B,
(B.6), we have

‖ψ‖C0(X) ≤ C |a|2. (6.2)

for some constant C > 0. The argument is that ψ = 0 outside of the neck regions, and in the
necks one can see that the Euclidean and Eguchi–Hanson metrics differ by terms of order
a2. With this notation out of the way, we may write the Monge–Ampère equation as

ω̃2:=(ω + i∂∂φ)2 = 2Aη ∧ η = Aeψω2. (6.3)

6.1 C0-estimates

The C0 estimate of Kobayashi is as follows.

Proposition 6.1 [43] Assume φ is the solution to (6.3) subject to the normalization
∫
X
φ ω2 = 0.

Then, there is a constant C > 0 such that for all values of |a| small enough, we have
‖φ‖C0(X) ≤ C |a|2 (6.4)
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We will forego a full proof, which proceeds via Moser iteration and is well explained in
[43]. We would nevertheless like to sketch parts of it to point out some important features.

Sketch of proof From the Monge–Ampère Eq. (6.3), we have

(1− Aeψ)ω2 = ω2 − ω̃2 = −i∂∂φ ∧ (ω̃ + ω). (6.5)

Multiplying this by φ|φ|2(p−1) for p ≥ 1, integrating by parts, and dropping a nonnegative
term leads to∫

X
|d|φ|p|2ω2 ≤ Cp

∫
X
|1− Aψ ||φ|2p−1ω2 ≤ C |a|2 p

∫
X
|φ|2p−1ω2, (6.6)

where we have also used (6.2) and (2.8). This is the key estimate we need. For p = 1, one
can use the Hölder inequality on the right-hand side to get an L2-norm of φ. Replacing the
left-hand side by ‖φ‖2L2(X ,g) via the Poincaré inequality (B.3), we get ‖φ‖L2(X ,g) ≤ C |a|2.
Going back to (6.6), we can use the Sobolev inequality (B.4) to replace the gradient norm by
a higher L p-norm. Concretely, one finds

‖φ‖2p
L4p(X ,g)

≤ C
(
2p|a|2 + ‖φ‖L2p(X ,g)

) ‖φ‖2p−1
L2p(X ,g)

. (6.7)

Iterating this, starting at p = 1, will lead to the required L∞-bounds. ��
Remark 6.2 There are a couple of important aspects of this estimatewewould like to point out.
Firstly, the factor |a|2 appears as |1− Aeψ |, which essentially measures the Ricci curvature
of the patchwork metric in the neck regions. A better approximation of the Ricci-flat metric
would then have given us a smallerC0-bound on the correction,whichwould have propagated
into the Ck-bounds.

Secondly, the fact that the Patchwork metric has bounded volume, diameter and Ricci
curvature as a → 0 gives us uniform Poincaré- and Sobolev constants, which ensures that
our constants stay a-independent. Details can be found in Appendix B.

6.2 C2-estimates

The C2-estimates follow from the Monge–Ampère equation as soon as we have estimates
on 
φ. To see this, we recall the function

exp(ψ) = 2η ∧ η
ω2 .

In holomorphic Darboux coordinates, the Monge–Ampère Eq. (6.3) reads

det
(
g + ∂∂φ) = A,

where A is defined by (2.7). The determinant of the complex 2-matrix we write as

det
(
g + ∂∂φ) = det(g) det

(
1+ g−1∂∂φ

) = exp(−ψ) (1+ tr(g−1∂∂φ)+ det(g−1∂∂φ)
)
.

Now tr(g−1∂∂φ) = 
φ and tr(g−1∂∂φg−1∂∂φ) = |∂∂φ|2g per definition, and

det(g−1∂∂φ) = 1

2

(
tr(g−1∂∂φ)2 − tr(g−1∂∂φg−1∂∂φ)

)

= 1

2

(
(
φ)2 − |∂∂φ|2g

)
.
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With this, we may write the Monge–Ampère equation as

2(A exp(ψ)− 1) = 2
φ + (
φ)2 − |∂∂φ|2g. (6.8)

We note how (6.8) is independent of the choice of coordinates.
This tells us that a bound on
φ directly translates into a bound on ∂∂φ. So we set about

bounding
φ as in [43, 72]. Let ra = maxi ai
mini ai

. Then, we will prove there is a constant C > 0
independent of |a| such that

− C |a|2 ≤ 
φ ≤ Cra |a| (6.9)

holds for any point in X . The trick to be employed in proving (6.9) is essentially a
maximum principle. We will consider the function F(x):= exp(−Cφ(x))Trg(g̃)(x) =
exp(−Cφ(x))(2 + 
φ) for some positive constant C (to be determined later). The func-
tion F has a maximum due to the compactness of X , and at a maximum we have 
̃F ≤ 0,
where we have introduced 
̃F = tr(g̃−1∂∂F) = g̃νμ∂μ∂νF . Below, there will be an exten-
sive computation deriving a lower bound on 
̃F . This lower bound at a single point will
essentially establish (a stronger version of) (6.9) at a single point, which then gets translated
into a proof of (6.9) at an arbitrary point.

The proof is long, and is subdivided into several steps. We start by recalling a important
estimate from [72], which essentially comes from computing two derivatives of the Monge–
Ampère equation.

Proposition 6.3 [72, Equation 2.22]Choose holomorphic normal coordinates at p and diag-
onalize8 ∂∂φ(p), meaning gμν̄(p) = δμν̄ , gμν̄,α(p) = 0, and φμν̄(p) = δμν̄φμμ̄(p). Then,
the following inequality holds for any positive real number C at the single point p.

exp(Cφ)
̃
(
exp(−Cφ)Trg(g̃)

)

≥ 
ψ − 4R11̄22̄ − 2CTrg(g̃)+
(
C + R11̄22̄

) Trg(g̃)2
det(g̃)

. (6.10)

Lemma 6.4 Let K : X → R≥0, K :=|Riem|2g denote the Kretchsmann scalar for the patch-
work metric g. Introduce

Ra :=
∥∥∥√K

∥∥∥
L∞(X ,g)

. (6.11)

Then, there are constants C1,C2 > 0 (independent of a) such that for all small enough values
of |a|, we have the bounds

C1
ra
|a| ≤ Ra ≤ C2

ra
|a| . (6.12)

In particular, in the special coordinates of Proposition 6.3, we have

R11̄22̄(p) ≤
√
K (p) ≤ C

ra
|a| (6.13)

for an arbitrary point p ∈ X, and

R11̄22̄(p) ≤
√
K (p) ≤ C |a|2 (6.14)

if p is in a neck region.

8 See [66, Prop. 3.1.1] for instance for a proof that these coordinates exist.
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Proof In the Euclidean region, we have K = 0. In a neck region Ni , (2.3) implies there is
a constant C > 0 such that K ≤ Ca4i for small enough values of ai . In an Eguchi–Hanson

patch Ui , (2.4) says K (z) = 24a4i
(a2i +u2)3

with u = |z|2
C2 . All in all, we find

R2
a = max

1≤i≤16
24

a2i
,

from which it follows that9

2
√
6
ra
|a| ≤ Ra ≤ 32

√
6
ra
|a| .

��
Lemma 6.5 Let xm ∈ X denote amaximumof the function F(x) = exp(−2Raφ(x))Trg(g̃)(x).
Then, there is a constant C > 0 such that for all small enough values of |a|, we have


φ(xm) ≤ C |a|2. (6.15)

Proof At the single point xm we introduce holomorphic normal coordinates as before such
that gμν̄(xm) = δμν̄ , gμν̄,α(xm) = 0, and φμν̄(xm) = δμν̄φμμ̄(xm). In these coordinates, we
set

k(xm):=R11̄22̄(xm)/Ra . (6.16)

Note that per definition, |k(xm)| ≤ 1.
At the maximum of exp(−2Raφ)Trg(g̃), the left-hand side of (6.10) with C = 2Ra has

to be non-positive. With our choice of notation, we may write this as

0 ≥ 
ψ(xm)

Ra
− 4k(xm)− 4Trg(g̃)+ (2+ k(xm))

Trg(g̃)2

det(g̃)
.

Complete a square in Trg(g̃) to arrive at

4 det(g̃)2

(2+ k(xm))2
− det(g̃)

Ra(2+ k(xm))
(
ψ(xm)− 4k(xm)Ra)

≥
(
Trg(g̃)− 2 det(g̃)

2+ k(xm)

)2

. (6.17)

There are now two possible cases. Either xm lies inside a neck region Ni or it lies outside of
all the neck regions.
Case 1—xm lies outside of the neck regions:

Outside of the necks, ψ(xm) = 
ψ(xm) = 0 by (6.1) by construction of g. Inserting this
into (6.17) gives

4
det(g̃)2

(2+ k(xm))2
+ 4

k(xm) det(g̃)

2+ k(xm)
≥

(
Trg(g̃)− 2 det(g̃)

2+ k(xm)

)2

. (6.18)

The Monge–Ampère equation (6.3) says in holomorphic normal coordinates for g that
det(g̃) = Aeψ = 1 − ϒ |a|2 < 1, where ϒ > 0 is some positive constant which was

9 The argument written out is this. We have maxi
1
ai
= ra

maxi ai
. Then, one uses the comparison between the

max-norm and Euclidean norm; maxi ai ≤ |a| ≤ 16maxi ai .
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computed in (2.8). Hence, one may overestimate the first term on the left-hand side of (6.18)
by

4
det(g̃)2

(2+ k(xm))2
< 4

det(g̃)

(2+ k(xm))2
. (6.19)

Inserting this back into (6.18) and recognizing a square allows one to conclude

4 det(g̃)
(k(xm)+ 1)2

(k(xm)+ 2)2
≥

(
Trg(g̃)− det(g̃)

2+ k(xm)

)2

.

Taking a square root on both sides here and using det(g̃) < 1 twice, one can conclude that

2(k(xm)+ 1)

k(xm)+ 2
>

√
det(g̃)

2(k(xm)+ 1)

k(xm)+ 2

≥ Trg(g̃)− 2 det(g̃)

2+ k(xm)
> Trg(g̃)− 2

2+ k(xm)
,

or

2 = 2(k(xm)+ 2)

k(xm)+ 2
≥ Trg(g̃).

This proves that

φ(xm) ≤ 0

when xm lies outside of the neck regions.
Case 2—xm lies inside the neck regions:

When the maximum xm lies in a neck region, we return to (6.17) and complete the square
on the left-hand side. Suppressing the point xm from the notation, the result is

4 det(g̃)2

(2+ k)2
− det(g̃)

Ra(2+ k)
(
ψ − 4kRa)

=
(
2 det(g̃

2+ k
− 1

4Ra
(
ψ − 4kRa)

)2

− 1

16R2
a
(
ψ − 4kRa)

2

≤
(
2 det(g̃

2+ k
− 1

4Ra
(
ψ − 4kRa)

)2

. (6.20)

Hence, (6.17) says

Trg(g̃) ≤ 4 det(g̃)

2+ k
− 1

4Ra
(
ψ − 4kRa)

or


φ(xm) ≤ 4 det(g̃)

2+ k
+ k − 2− 
ψ

4Ra
= 4(det(g̃)− 1)+ k2

2+ k
− 
ψ

4Ra

Since we are in a neck region, the curvature k is bounded, |k| ≤ C |a|3
ra

. This follows by

(B.5). In normal coordinates for g, the Monge–Ampère equation reads det(g̃) = Aeψ , hence
| det(g̃)− 1| ≤ C |a|2 by (2.8) and (6.2). From (B.6), it also follows that |
ψ | ≤ C |a|2, and
so


φ(xm) ≤ C |a|2

for all |a| small enough. This proves (6.15). ��
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Proof of Equation (6.9) To get an upper bound of ∇φ at an arbitrary point, we can do as
follows, where the first inequality is the definition of xm .

Trg(g̃) = e2Raφ(x)
(
e−2Raφ(x)Trg(g̃)

)

≤ e2Raφ(x)
(
e−2Raφ(xm )(Trg(g̃)(xm))

)

(6.15)≤ e2Ra(φ(x)−φ(xm ))(2+ C |a|2)
(6.4),(6.12)≤ eCra |a|(2+ C |a|2)
≤ 2+ C̃ra |a|.

This proves the upper bound in (6.9).
The lower bound in (6.9) is considerably easier. Let α, β denote the eigenvalues of g−1g̃

in some local coordinates. Then
α + β = Trg(g̃), (6.21)

and by the inequality of arithmetic and geometric means,

Trg(g̃)

2
= α + β

2
≥ √

αβ =
√
det(g−1g̃) =

√
det(g̃)

det(g)
=

√
Aeψ, (6.22)

where we have inserted the Monge–Ampère Eq. (6.3), in the final step. By (2.8) and (6.2),
one can find a constant C > 0 such that

Aeψ ≥ (1− C |a|2)2,
for sufficiently small values of |a|. This can be inserted into (6.22) to establish

2+
φ = Trg(g̃) ≥ 2
√
Aeψ ≥ 2(1− C |a|2),

which proves the lower bound in (6.9). ��
Corollary 6.6 There is a constant C > 0 independent of |a| such that

|∂∂φ|2g ≤ Cra |a|. (6.23)

hold everywhere on X.

Proof From (2.8), (6.2), (6.8), and (6.9), it follows that

|∂∂φ|2g ≤ 2Cra |a| + C2r2a |a|2 + 2(1− A exp(ψ)) ≤ C̃ra |a|.
��

Remark 6.7 The appearance of ra in the C2-estimate is a consequence of using Yau’s maxi-
mum principle, where the maximal holomorphic sectional curvature appears from a double
derivative of the Monge–Ampère equation. This factor of ra then propagates into the higher-
order estimates. We do not know if this is reflected in the actual behaviour of the solution, or
if it is an artefact of the proof. We assume ra is uniformly bounded in a (Assumption 2.8).

It would in general be interesting (and useful for studying the Kähler–Ricci flow on
singular manifolds) if one can derive Yau’s C2-bounds without using the maximum of the
sectional curvature.
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6.3 Hölder regularity

From the above bound on the complex Hessian ∂∂φ, we will follow Siu [64] and Błocki [11,
12], to derive Hölder bounds on the real Hessian D2φ. Since the real and complex Hessians
differ, the corresponding real and complex Monge–Ampère equations differ. Hence, one
cannot simply apply the real theory directly, as [43, p. 302] does. The methods go back to
Evans [26, 27], Krylov [46] and Trudinger [69].

Proposition 6.8 There are constants C > 0 and 0 < α < 1 which do not depend on a such
that

|φ|C2,α(X ,g) ≤ C .

holds for all values of a small enough.

The strategy is the following. Locally, we may write g̃ = ∂∂φ̃ for some Kähler potential
φ̃. In suitable coordinates, the Monge–Ampère equation reads det(∂∂φ̃) = const ., and by
taking derivatives of this equation, we get an elliptic equation we can analyse using a local
Harnack inequality. By combining bounds on sub- and supersolutions, we get a bound on the
oscillation of φ̃, which leads to the Hölder bound on φ̃. Since g̃ = g+ ∂∂φ, we may choose
φ̃ = �+ φ, where � is a Kähler potential for g (e.g. (2.2)). We will show that � is in C2,α

uniformly in the same local coordinates as for φ̃. Hence, φ will be uniformly bounded as
well. We divide the proof into 7 steps.
Step 1—Bounds on the patchwork metric: We first prove that we can cover X by coordinate
charts in such a way that the Monge–Ampère equation becomes simple and the eigenvalues
of the patchwork metric are under control away from the exceptional divisor.

Lemma 6.9 For all |a| small enough, there is an a-independent finite cover Vi of holomorphic
Darboux coordinate charts10 of X and a constant C > 0 such that the eigenvalues of the
metrics g and g̃ in the local coordinates lie in the interval between C−1 |a|ra and C ra|a| .

For any compact set K ⊂ X\E, there is an a-independent constant CK such that the
eigenvalues of g and g̃ in the local coordinate charts K ∩ Vi lie between C

−1
K and CK .

Proof We start with the second part. As long as one stays away from the exceptional divisor,
the patchwork metric g can locally be written

g = gEuc + |a|2h,
where h is bounded with bounded derivatives. Cover the compact set K with finitely many
such coordinate charts to deduce the statement for g. The statement for g̃ follows by Corol-
lary 6.6 as we next show. Let v be an eigenvector for g̃. Then,

|λv| ≤ |gv| + |(∂∂φ)g−1gv| ≤ CK |v|(1+ C
√|a|),

similarly for the lower bound.
To estimate the eigenvalues also near the exceptional divisor, we take a careful look at the

Eguchi–Hanson metric. The Eguchi–Hanson metric on C
2\{0} reads

gEH =
√
1+ a2

u2

(
�− a2

a2 + u2
z ⊗ z

u

)
,

10 If z, w are coordinates on Vi , then η = dz ∧ dw.
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where u = |z|2 is the Euclidean distance squared and we are writing a instead of ai . The

eigenvalues in these coordinates are
√
a2+u2
u and u√

u2+a2 , hence are not bounded.We therefore
need to choose different coordinates. The metric extends to a complete metric on the total
space of the cotangent bundle of CP

1, OCP1(−2), and we will first use coordinate patches
on this total space. Recall that

OCP1(−2) =
{
((z, w), (ξ : ς)) | zς2 = wξ2} ⊂ C

2 × CP
1.

Working on the coordinate chart {ξ �= 0} and writing ζ := ς
ξ
, we have w = ζ 2z. On this

coordinate patch, we introduce the map

f1 : OCP1(−2) ∩ {ξ �= 0} → C
2/μ2

f1((z, ζ
2z), (1 : ζ )) = [

(
√
z, ζ
√
z)
]
.

Here, the brackets on the right-hand side mean the μ2-orbit. This map is well defined. The
map f2 is similarly defined on the set ς �= 0, and f1 = f2 on the overlap {ξ �= 0 �= ς}. Hence,
there is a blow-down map f : OCP1(−2)→ C

2/μ2. See [52] for more details. Pulling back
the Eguchi–Hanson line element using f1 then yields

ds2EH =
1√

a2 + u2

(
1

4
(1+ |ζ |2)2|dz|2 + a2 + (1+ |ζ |2)u2

(1+ |ζ |2)2 |dζ |2

+(1+ |ζ |2)Re(zζdzdζ )
)
, (6.24)

where u = |z|(1 + |ζ |2). Completely analogous expressions will be found on the other set
{ς �= 0}, so we do not write these out.

This removes the divergence in the metric at z = 0 ⇐⇒ u = 0. Indeed, we simply have

ds2EH ,z=0 =
(1+ |ζ |2)2

4a
|dz|2 + a

(1+ |ζ |2)2 |dζ |
2.

The eigenvalues of this metric are clearly uniformly bounded by C
a and Ca on the set |ζ | ≤ 1

and u ≤ 1. For |ζ | ≥ 1, we make one final change of coordinates, writing

z = y

ζ 2
& ζ = − 1

υ
.

In these coordinates, still at u = 0, we find

ds2EH =
(1+ |υ|2)2

4a
|dy|2 + a

(1+ |υ|2)2 |dυ|
2.

These components are again uniformly bounded byCa and C
a for all |υ| ≤ 1. These estimates

were for a single component of the exceptional divisor with parameter ai , so the upper bound
has to be modified to C 1

ai
≤ C ra|a| and the lower bound to C |a| ≤ maxi ai

mini ai
mini ai ≤ raai .

Combined with the estimates away from E , we the statement about the eigenvalues of g
follow. The bounds on g̃ follow from Corollary 6.6 exactly as before.

To see that the above coordinates are (almost) holomorphic Darboux coordinates, we look
at what happens to the holomorphic volume form η = dz1 ∧ dz2 under these coordinate
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transformations. With the above coordinates, z1 = √z, z2 = ζ√z, z = y
ζ 2

and ζ = − 1
υ
, we

find

2dz1 ∧ dz2 = dz ∧ dζ = dy ∧ dυ.

So simply multiplying z and y by a factor of 2 gives us holomorphic Darboux coordinates. ��
The holomorphicDarboux coordinates are not suited for local analysis near the exceptional

divisor since the ratio of the eigenvalues of g is unbounded as a → 0. This can be remedied
by rescaling the fibre coordinate z or y in the above proof.

Lemma 6.10 Near a component Ei of the exceptional divisor, we may choose finitely many
coordinate patches and coordinates (za, ζ ) such that

C−1ai ≤ g ≤ Cai

and

η = ai · dza ∧ dζ

in these coordinates. We shall refer to the above coordinates as rescaled holomorphic Dar-
boux coordinates.

Proof We return to the expression (6.24). By a change of scale, za := z
2a and ua :=2|za |(1+

|ζ |2), (6.24) becomes

ds2EH =
a√

1+ u2a

(
(1+ |ζ |2)2|dza |2 +

(
1+ u2a(1+ |ζ |2)

)
(1+ |ζ |2)2 |dζ |2

+4(1+ |ζ |2)Re (zaζdzadζ )
)
. (6.25)

This expression has eigenvalues bounded by Ca and C−1a for all u ≤ a (i.e. ua ≤ 1) and
|ζ | ≤ 1. For |ζ | ≥ 1, we use ya :=ζ 2za and υ = −1/ζ as before to get the same bounds Ca
and C−1a. ��

We will from now on be working locally on an open subset Vj ⊂ X . By Lemmas 6.9
and 6.10, we may choose this open set to have (rescaled) holomorphic Darboux coordinates.
In particular, Vj may be taken biholomorphic to a Euclidean ball B2R in C

2 centred on
the origin. The Ricci-flat metric g̃ satisfied the Monge–Ampère equation, which in these
coordinates simply reads

det(g̃) = const .,

where the constant is A (a2i A). We may assume there exists a locally defined Kähler potential
φ̃ : Vj → R with ∂∂φ̃ = g̃. We will write φ̃ instead of φ̃ j not to clutter the notation.
Step 2—A local Harnack inequality: The key analysis result will be the following.

Proposition 6.11 [64, p. 102] Let g be a Kähler metric on B2R, the ball of radius 2R centred
on 0 ∈ C

n. Let q > n. Then, there exists a p > 0 and C > 0 such that if gνμ∂μ∂νv ≤ θ and
v > 0 on B2R, then

R−2n/p ‖v‖L p(BR ,g) ≤ C

(
inf
BR
v + R2(q−n)/q ‖θ‖Lq (B2R,g)

)
. (6.26)
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The constant C depends on n, diam(Br , g), Vol(Br , g) and the constant in the Sobolev
inequality

‖ f ‖2L2n/(n−1)(B2R ,g) ≤ CSob

(
‖∇ f ‖2L2(B2R ,g)

+ ‖ f ‖2L2(B2R ,g)

)

for all compactly supported f .

We refer to [64, pp. 107–112] for a proof.

Corollary 6.12 Let X be a Kummer K3 surface with Ricci-flat metric g̃. Let Vj ∼= B2R be
a holomorphic Darboux coordinate patch. Then, the constant C in (6.26) can be chosen
independently of a.

Proof The volume bound follows from the Monge–Ampère equation directly, which pre-
scribes the volume form of g̃. The diameter bound for g is argued in the proof of
Proposition B.2 in Appendix B. The diameter bound for g̃ follows from this and the bound
on ∂∂φ, (6.23). The Sobolev constant can be controlled as long as one has upper and lower
bounds on the volume and diameter and a lower bound on the Ricci curvature - see The-
orem B.1 in Appendix B. The Ricci curvature vanishes for g̃; hence, we have a uniform
Sobolev constant. ��
Step 3—Harnack inequality for supersolutions: The Monge–Ampère equation reads

det(g̃) = const .

in (rescaled) holomorphic Darboux coordinates. Let ζ ∈ C
2 with |ζ | = 1 be arbitrary.

Differentiating the logarithm of the equation and using the Jacobi formula yields

Tr(g̃−1∂∂φ̃ζ ) = 0

and

Tr(g̃−1∂∂φ̃ζζ )− Tr(g̃−1∂∂φ̃ζ g̃
−1∂∂φ̃ζ ) = 0.

The first term on the left-hand side is per definition 
̃φ̃ζζ . The second term is the tensor

norm of ∂∂φ̃ζ , hence can be dropped to give the inequality


̃φ̃ζζ ≥ 0.

This allows us to apply the Harnack inequality to the function

vsup:= sup
B2R
φ̃ζ ζ − φ̃ζ ζ ≥ 0

to deduce
R−4/p

∥∥vsup∥∥L p(BR ,g̃)
≤ C inf

BR
vsup. (6.27)

The constant C on the right-hand side can be chosen to be independent of a, as discussed
in step 2.
Step 4—Harnack inequality for subsolutions: We need two linear algebra results. The first
goes as follows.

Lemma 6.13 [29, Lemme 1] Let H+ denote all n × n Hermitian matrices with positive
eigenvalues. Let A ∈ H+. Then,

det(A)1/n = 1

n
inf{tr(AB) | B ∈ H+, det(B) = 1}.
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Let x, y ∈ B2R . We will specify x later, and y will be integrated. Let B = κ g̃−1(y), where
κ = √A (κ = ai

√
A) when we are in (rescaled) holomorphic Darboux coordinates. Then,

the Monge–Ampère equation says det(B) = 1, and the lemma, implies

√
κ = √

det(g̃(x)) ≤ 1

2
tr(Bg̃(x)).

On the other hand, we trivially have

tr(Bg̃(y)) = 2
√
κ,

so
tr(B(g̃(y)− g̃(x)) ≤ 0. (6.28)

To proceed, we need the second linear algebra result.

Lemma 6.14 [64, p. 103], [12, Lemma 5.17] For 0 < λ < � < ∞, let S(λ,�) denote the
set of Hermitian n × n-matrices with eigenvalues in the interval [λ,�]. Then, one can find
unit vectors ζ1, . . . , ζN ∈ C

n and 0 < λ∗ < �∗ < ∞ depending only on n, λ, and � such
that every H ∈ S(λ,�) can be written

H =
N∑

k=1
βkζk ⊗ ζk

with βk ∈ [λ∗,�∗].
Remark 6.15 The proof yields λ∗ < λ/N and �∗ > �, but can otherwise be chosen arbi-
trarily. We may also assume that the finite set of vectors contains an orthonormal basis.

With this at hand, we find locally defined functions βk with λ∗ ≤ βk ≤ �∗ such that

B = √κ g̃−1(y) =
N∑

k=1
βk(y)ζk ⊗ ζk .

Hence,

tr(B(g̃(y)− g̃(x)) =
N∑

k=1
βk(y)

(
φ̃ζkζk (y)− φ̃ζkζk (x)

)
.

Let

Mk,R := sup
BR

φ̃ζkζk

mk,R := inf
BR
φ̃ζkζk ,

and introduce the oscillation

osc(R) :=
N∑

k=1
(Mk,R − mk,R).

We also introduce the shorthand

wk := φ̃ζkζk .
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Let � ∈ {1, . . . , N } be arbitrary. Then, the Harnack inequality tells us

R−4/p
∥∥∥∥∥∥
∑
k �=�

(
Mk,2R − wk

)
∥∥∥∥∥∥
L p(BR)

≤ R−4/p
∑
k �=�

∥∥Mk,2R − wk
∥∥
L p(BR)

≤ C

⎛
⎝∑

k �=�
(Mk,2R − Mk,R)

⎞
⎠ .

The last sum can be estimated a bit. Since Mk,2R−Mk,R ≥ 0, we can include the term k = �
on the right-hand side. We further have

Mk,2R − Mk,R ≤ Mk,2R − Mk,R + (mk,R − mk,2R) = (Mk,2R − mk,2R)− (Mk,R − mk,R).

So

R−4/p
∥∥∥∥∥∥
∑
k �=�

(
Mk,2R − wk

)
∥∥∥∥∥∥
L p(BR)

≤ C(osc(2R)− osc(R)). (6.29)

From (6.28) and λ∗ ≤ βk ≤ �∗, we find
λ∗|w�(y)− w�(x)| ≤ �∗

∑
k �=�
|Mk,2R − wk(y)|.

Taking averaged L p-norms here and using (6.29) gives us

R−4/p ‖w� − w�(x)‖L p(BR)
≤ �∗
λ∗

C(osc(2R)− osc(R)),

where all the integrals are with respect to y. For any ε > 0, we can find x ∈ B2R such that
w�(x) = m�,2R + ε. Using this on the left-hand side, we deduce

R−4/p
∥∥w� − m�,2R

∥∥
L p(BR)

≤ �∗
λ∗

C(osc(2R)− osc(R))+ Vol(B1)ε.

Since ε was arbitrary, we can send it to 0 and deduce

R−4/p
∥∥w� − m�,2R

∥∥
L p(BR)

≤ �∗
λ∗

C(osc(2R)− osc(R)) (6.30)

for any � ∈ {1, . . . , N }.
Step 5—Combining both Harnack estimates: Let � ∈ {1, . . . , N }. Then, we have

Vol(BR)
1/p(M�,2R − m�,2R) =

∥∥M�,2R − m�,2R
∥∥
L p(BR)

≤ ∥∥w� − m�,2R
∥∥
L p(BR)

+ ∥∥M�,2R − w�
∥∥
L p(BR)

.

Multiplying both sides by R−4/p and using both (6.27) and (6.30) yields

M�,2R − m�,2R ≤ C
�∗
λ∗
(osc(2R)− osc(R)) .

Summing over � gives us
osc(R) ≤ δosc(2R), (6.31)

where δ:=1− λ∗
�∗CN .
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The inequality (6.31) gives us the Hölder regularity by [34, Lemma 8.23]. Indeed, let
r < R. Choose m > 0 so that

2−m R ≤ r ≤ 2−m+1R,

i.e.

m ≥ log
( R
r

)
log(2)

.

Then, (6.31) and the monotonicity of osc say

osc(r) ≤ osc(2−m+1R) ≤ δm−1osc(R) ≤ 1

δ
· δ

log
(
R
r

)
log(2) osc(R) = 1

δ

( r

R

)− log(δ)
log(2)

osc(R).

The oscillation osc(R) can be bounded by bounding |φ̃ζ ζ | for arbitrary ζ . For ζ ∈ C
2, there

are μ, ν ∈ C such that ζ = μz + νw, hence

φ̃ζ ζ = |μ|2φ̃zz + 2Re(μνφ̃zw)+ |ν|2φ̃ww =
〈(
μ

ν

)
, g̃

(
μ

ν

)〉
.

The right-hand side can be bounded by a constant (depending on ζ ) and the largest eigenvalue
of g̃. Hence, by Lemmas 6.9 and 6.10,

|φ̃ζ ζ | ≤ C�,

and
osc(r) ≤ C�

( r

R

)α
(6.32)

with

α = − log(1− λ∗
C�∗ )

log(2)
.

To finish, we have to bound α. We distinguish between being near and away from the excep-
tional divisor. Lemma 6.9 yields uniform bounds on the eigenvalues of g̃ away from the
exceptional divisor. So λ∗

�∗ is uniformly bounded, and thus α < 1 uniformly.
Near the exceptional divisor, the eigenvaluesλ and� are poorly behaved in the coordinates

(6.24), soweuse the rescaled coordinates (6.25). In these coordinates, λ
�
is uniformlybounded

by Lemma 6.10 as long as u ≤ ai . This can be achieved by rescaling R �→ √
ai R. By

Lemma 6.10 and Corollary 6.6, we have � ≤ C
√|a|. Hence,

osc(r) ≤ C
( r

R

)α |a| 1−α2
with α < 1 uniformly. So we get Hölder estimates also near the exceptional divisor.
Step 6—Hölder bounds on g:

Lemma 6.16 Let {Vi } be the cover of (rescaled) holomorphic Darboux coordinate neigh-
bourhoods of Lemmas 6.9 and 6.10. Let� j : Vi → R be Kähler potentials for the patchwork
metric g. Then, there are uniform constants C > 0 and 0 < α ≤ 1 such that

∥∥� j
∥∥
C2,α(Vi ,g)

≤ C .
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Proof For the Euclidean region, this is clear. On an annulus K around a component of the
exceptional divisor Ei , the potential (2.1) can be written

fEH = fEuc + a2i ξK

for some smooth function ξK which is regular as ai → 0. In the neck region, the patchwork
potential can thus be written

� = fEuc + a2i χξK

where χ is a smooth cut-off function as described in Sect. 2. These expressions then give the
required bound.

Near the exceptional divisor, one could compute the real Hessian of the Eguchi–Hanson
potential (2.1) directly and compare. But it is probably easier to just repeat steps 3–5, since
the potential � satisfies

det(∂∂�) = const .

where the constant is 1 (a2i ) in (rescaled) holomorphic Darboux coordinates. ��

Step 7—Hölder bounds on φ: In a coordinate patch Vi , we write

φ̃ = �i + φ,
, hence

|D2φ|2g ≤ |D2φ̃|2g + |D2�|2g ≤ C |D2φ̃|2g̃ + C ≤ C̃,

where we have used Corollary 6.6 to compare the g- and g̃-norm.

6.4 C1 estimates

The C1 estimates of φ follow from a general result in Riemannian geometry.

Lemma 6.17 Let (M, g) be a compact, connected Riemannian manifold with diameter
d:=diam(M, g). Then, there exists a monotonically increasing function α : [0,∞) → R

such that
sup
p∈M

|∇ f |2g ≤ α(d) sup
p∈M

|D2 f |2g (6.33)

holds for any f ∈ C2(M;R).

Proof The idea is simply to integrate the double derivative along a curve. Here are the details.
For an f ∈ C2(M;R), let q ∈ M denote a critical point. This point exists due to the

compactness of M . Let p ∈ M be any point. For ε > 0, let γ : [0, T ] denote a unit speed
curve with γ (0) = q , γ (T ) = p, and T = L(γ ) ≤ d(p, q)+ ε. Let ξ : [0, T ] → R denote
the function

ξ(t):=|∇ f |2g(γ (t)).
This is differentiable, and

ξ ′(t) ≤ 2|D2 f∇ f |g ≤ |D2 f |2g + |∇ f |2g,
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where we have used the unit speed condition and the inequality between arithmetic and
geometric mean. This differential inequality tells us

d

dt
e−tξ(t) ≤ e−t |D2 f |2g(γ (t)),

which integrates to

e−T ξ(T ) ≤
∫ T

0
e−t |D2 f |2g(γ (t)) dt ≤ T sup

p∈M
|D2 f |2g(p).

This then yields

ξ(T ) ≤ (d + ε)ed+ε sup
p∈M

|D2 f |2g(p).

Doing the same construction for other points tells us

sup
p∈M

|∇ f |2g(p) ≤ (d + ε)ed+ε sup
p∈M

|D2 f |2g(p).

Letting ε → 0 gives the required bound with α(d) = ded . ��
Remark 6.18 The above-constructed α is not sharp. Indeed, if there are no critical points for
f between γ (0) = q and γ (T ) = p, then the function ξ(t) = |∇ f |g(γ (t)) is differentiable,
and repeating the above argument yields ξ ′(t) ≤ |D2 f |g(γ (t)), hence

sup
p∈M

|∇ f |g ≤ d sup
p∈M

|D2 f |g.

SinceMorse functions are dense in theC2-topology,we can approximate an arbitrary function
with a function with isolated critical points. By shifting the curve γ a bit, we can make sure
there are no critical points between q and p, and use the above estimate. All in all one finds
α(d) = d2 as a better constant.

6.5 Higher-order estimates

Kobayashi’s approach to proving the higher-order derivatives is worth sketching here. For
t ∈ [0, 1], consider the equation

(
ω + i∂∂φt

)2 = (
1+ t

(
Aeψ − 1

))
ω2 (6.34)

subject to ∫
X
φt ω

2 = 0.

Here A, ψ and ω are as before. This is what one considers for the continuity method to show
that the Monge–Ampère equation has a solution. Computing the t-derivative of (6.34) yields


̃t

(
∂φt

∂t

)
= Aeψ − 1

1+ t(Aeψ − 1)
, (6.35)

where we have introduced


̃t :=Tr
((
g + ∂∂φt

)−1
∂∂

)
.
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Then, (2.8) and (6.2) tell us that the right-hand side is uniformly bounded from above and
below,

∣∣∣∣ Aeψ − 1

1+ t(Aeψ − 1)

∣∣∣∣ ≤ C |a|2.

Indeed, writing " := Aeψ−1
1+t(Aeψ−1) , we have

‖"‖Ck (X ,g) ≤ Ck |a|2

for all k ≥ 0. Repeating the proofs11 of the C2.α-bounds for φt instead of φ gives us
uniform Hölder bounds on ∂∂φt . Staying away from the exceptional divisor, we can write
g = gEuc+O(|a|2). So (6.35) is a Poisson equation with Hölder continuous coefficients and
Hölder continuous right-hand side. So Schauder estimates, [34, Theorem 6.2] from elliptic
theory gives local Ck,α-bounds on ∂tφt , hence also on φ = φ1 by integrating and using
φ0 = 0.

Near the exceptional divisor, one has to use coordinates like (6.24) or (6.25). The last
coordinates require a rescaling, hence the drop in powers of a in [43, equations 47, 48].

6.6 Some alternative proof strategies

There are by now several other routes one could attempt do deduce Kobayashi’s esti-
mates. We would like to mention some which were suggested by the referee as interesting
venues for further research. The first would be to use Donaldson’s bound on the correc-
tion in W 5,2(X , g), [21]. One could try to estimate the Sobolev constant in the embedding
W 5,2(X , g)→ C2,α(X , g), which would allow one to circumvent most of Kobayashi’s argu-
ments. This Sobolev constant will probably not be uniformly bounded since the sectional
curvature and injectivity radius of (X , g) are not uniformly controlled, but if one can get
a good enough control of it in terms of either of these two quantities, this should suffice.
The second route would be to try to use estimates from the Joyce construction. If one starts
out with (X , g) as the almost Ricci-flat Kummer K3 of the paper and consider the product
X × T

3, then one can write down an almost G2 structure on this. After perturbing using
[41, Theorem 11.6.1], one gets an actual G2-structure. This is a Ricci-flat metric on X ×T

3,
hence is an isometric product due to the Cheeger splitting theorem. The G2-perturbation of
Joyce has thus perturbed the patchwork metric into a Ricci-flat metric (circumventing the
Monge–Ampère equation). The precise estimates in Joyce on this perturbation are, however,
too weak for the purposes of this paper. If one could strengthen these estimates like in the
recentwork byDaniel Platt [61], then one should be able to deduce estimates likeKobayashi’s
using the Joyce construction. A third idea would be to build on more general theory of desin-
gularizing Einstein orbifolds like the recent work by Ozuch [58, Theorem 4.6]. They deal
with the problem of the injectivity radius being uncontrolled by introducing weights in their
function spaces which counteract this. It would still entail some work to deduce Kobayashi’s
unweighted estimates from this more general framework, but it should be doable.

11 There is a slight addeddifficultywith theHölder bound.TheMonge–Ampère equation forφt in holomorphic
Darboux coordinates reads det(g+∂∂φt ) = (1− t)e−ψ + t A, so the right-hand side is not constant in the neck
region when t �= 1. The same proof goes through, however, with some harmless additional terms appearing
in (6.31). We refer to [64, pp. 100–107] for the necessary modifications.
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7 Discussion and outlook

7.1 Flatness of the tori

In the author’s unpublished PhD thesis [51], there is an argument that a certain special
Lagrangian torus L , which can be found by similar arguments as in Theorem 5.4 using an
anti-holomorphic isometry of rank 2 of is flat. The argument was that a special Lagrangian
submanifold has a prescribed volume form

VolL =
√
ARe(η)|L =

√
Ag(·, J0·),

where J0 is a complex structure on the flat torus T which is orthogonal to I and A is the
constant in (2.8). But L is Kähler with the Kähler form VolL = ωJ = g̃(·, J ·). Hence,

g̃(·, J ·) = √Ag(·, J0·).

Using the isometries again [51], argues J|L = J0, hence g̃|L = g|L and the torus is flat. The
proof of J|L = J0 is sadly wrong, however.

7.2 Reducing the amount of symmetry

Theorem 5.4 only works for very special tori. A natural questions is what happens when
one perturbs the underlying lattice � or the sizes ai . We do now know the answer to this,
but would remark that closed geodesics need not behave nicely under metric perturbations.
The oldest example of this is due to Morse [55, Chapter IX, Theorem 4.1], where he studies
ellipsoids which are almost spherical. What he finds is that there are closed geodesics which
become infinitely long when the ellipsoid is deformed to a round sphere. There is a modern
proof in [42], and generalizations by Ballmann [4] and Bangert [6]. What this tells us is that
one cannot in general expect the closed geodesics of a perturbed metric to be perturbations
of the original closed geodesics.

We do now know if the situation is improved when considering hyperkähler deformations,
and this is a question we hope to return to in the future.
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Appendix A: Laplacian of the Riemann tensor

Here, we present part of the computation underlying Proposition 4.11. We start with a couple
of lemmas.

Lemma A.1 Assume (X , g̃) is a hyperkähler 4-manifold. Let V be any (locally defined)
tangent vector field. Then,

〈
R(V , I V )I V , V 〉 = 〈[∇JV ,∇V ]R(V , KV )I V , V 〉 + 〈[∇JV ,∇I V ]R(V , JV )I V , V 〉
+ 〈[∇V ,∇KV ]R(V , JV )I V , V 〉
+ 〈[∇KV ,∇I V ]R(V , KV )I V , V 〉 , (A.1)

where


R = (∇2
V + ∇2

I V + ∇2
JV + ∇2

KV )R

is the Laplacian acting on 4-tensors and all the commutators on the right-hand side are
acting on the 4-tensor R.

Proof This follows fromusing the secondBianchi identity twice alongwith somehyperkähler
identities. By the second Bianchi identity and I J = K , we find

∇JV R(V , I V ) = −∇V R(I V , JV )− ∇I V R(JV , V ) = ∇V R(V , KV )+ ∇I V R(V , JV ).

Hence,

∇2
JV R(V , I V ) = ∇JV∇V R(V , KV )+∇JV∇I V R(V , JV )

= [∇JV ,∇V ]R(V , KV )+ ∇V∇JV R(V , KV )

+ [∇JV ,∇I V ]R(V , JV )+ ∇I V∇JV R(V , JV ). (A.2)

To the second term, we apply the second Bianchi identity again to get

∇V∇JV R(V , KV ) = −∇2
V R(KV , JV )− ∇V∇KV R(JV , V )

= −∇2
V R(V , I V )+ ∇V∇KV R(V , JV ).

The fourth term we handle similarly, using the second Bianchi identity in the last two com-
ponents to write

〈∇I V∇JV R(V , JV )I V , V 〉 = −
〈∇2

I V R(V , JV )V , JV
〉− 〈∇I V∇V R(V , JV )JV , I V 〉

= 〈∇2
I V R(V , JV )JV , V

〉+ 〈∇I V∇V R(V , JV )KV , V 〉 .
Hence, we have

〈∇2
JV R(V , I V )I V , V

〉 =〈[∇JV ,∇V ]R(V , KV )I V , V 〉
+ 〈[∇JV ,∇I V ]R(V , JV )I V , V 〉
− 〈∇2

V R(V , I V )I V , V
〉+ 〈∇V∇KV R(V , JV )I V , V 〉

+ 〈∇2
I V R(V , JV )JV , V

〉+ 〈∇I V∇V R(V , JV )KV , V 〉 .
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Performing the same computation with KV instead of JV , we find

〈∇2
KV R(V , I V )I V , V

〉 =〈[∇V ,∇KV ]R(V , JV )I V , V 〉
+ 〈[∇KV ,∇I V ]R(V , KV )I V , V 〉
− 〈∇2

V R(V , I V )I V , V
〉− 〈∇V∇JV R(V , KV )I V , V 〉

+ 〈∇2
I V R(V , KV )KV , V

〉− 〈∇I V∇V R(V , KV )JV , V 〉 .

Using the Bianchi identity again, we rewrite

−〈∇V∇JV R(V , KV )I V , V 〉 = 〈∇2
V R(KV , JV )I V , V

〉+ 〈∇V∇KV R(JV , V )I V , V 〉 ,

so

〈∇2
KV R(V , I V )I V , V

〉 = 〈[∇V ,∇KV ]R(V , JV )I V , V 〉
+ 〈[∇KV ,∇I V ]R(V , KV )I V , V 〉
+ 〈∇V∇KV R(JV , V )I V , V 〉
+ 〈∇2

I V R(V , KV )KV , V
〉− 〈∇I V∇V R(V , KV )JV , V 〉 .

Adding these two expressions and using the Ricci-flatness (equivalently, the first Bianchi
identity) to write

〈∇2
I V R(V , JV )JV , V

〉+ 〈∇2
I V R(V , KV )KV , V

〉 = − 〈∇2
I V R(V , I V )I V , V

〉
,

we arrive at

〈
R(V , I V )I V , V 〉 = 〈[∇JV ,∇V ]R(V , KV )I V , V 〉 + 〈[∇JV ,∇I V ]R(V , JV )I V , V 〉
+ 〈[∇V ,∇KV ]R(V , JV )I V , V 〉 + 〈[∇KV ,∇I V ]R(V , KV )I V , V 〉

as announced. ��

Lemma A.2 Assume (X , g̃) is a hyperkähler 4-manifold. Let U , V ,W be any tangent vector
fields and write (I1, I2, I3) = (I , J , K ) for the complex structures satisfying I J = K. Then,

〈[∇W ,∇U ]R(V , Ii V )I j V , V
〉 = 〈∇[W ,U ]R(V , Ii V )I j V , V 〉
− 2

〈
R(R(W ,U )V , Ii V )I j V , V

〉
− 2

〈
R(V , Ii V )I j V , R(W ,U )V

〉
(A.3)

Proof This follows from the definitions and is quite standard. We start by computing

∇U
〈
R(V , Ii V )I j V , V

〉 = 〈∇U R(V , Ii V )I j V , V
〉

+ 2
〈
R(∇UV , Ii V )I j V , V

〉
+ 2

〈
R(V , Ii V )I j V ,∇UV

〉
.
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Similarly,

∇W∇U
〈
R(V , Ii V )I j V , V

〉 = 〈∇W∇U R(V , Ii V )I j V , V
〉

+ 2
〈∇U R(∇WV , Ii V )I j V , V

〉
+ 2

〈∇U R(V , Ii V )I j V ,∇WV
〉

+ 2
〈∇W R(∇UV , Ii V )I j V , V

〉
+ 2

〈
R(∇W∇UV , Ii V )I j V , V

〉
+ 2

〈
R(∇UV , Ii∇WV )I j V , V

〉
+ 4

〈
R(∇UV , Ii V )I j V ,∇WV

〉
+ 2

〈∇W R(V , Ii V )I j V ,∇UV
〉

+ 4
〈
R(∇WV , Ii V )I j V ,∇UV

〉
+ 2

〈
R(V , Ii V )I j∇WV ,∇UV

〉
+ 2

〈
R(V , Ii V )I j V ,∇W∇UV

〉
.

Subtracting the same expression with U and W swapped, we get

∇[W ,U ]
〈
R(V , Ii V )I j V , V

〉 = 〈[∇W ,∇U ]R(V , Ii V )I j V , V
〉

+ 2
〈
R([∇W ,∇U ]V , Ii V )I j V , V

〉
+ 2

〈
R(V , Ii V )I j V , [∇W ,∇U ]V

〉
.

The left-hand side can be written as

∇[W ,U ]
〈
R(V , Ii V )I j V , V

〉 = 〈∇[W ,U ]R(V , Ii V )I j V , V 〉
+ 2

〈
R(∇[W ,U ]V , Ii V )I j V , V

〉
+ 2

〈
R(V , Ii V )I j V ,∇[W ,U ]V

〉
.

On the right-hand side, we use the definition of the curvature tensor to write

[∇W ,∇U ]V = R(W ,U )V + ∇[W ,U ]V .
This yields the claimed formula. ��

From now on, we assume V is a (locally defined) unit vector field. We recall that σI J =
σI J (V ), etc., are defined so that

R(V , I V )V = −σI I I V − σI J J V − σI K KV

and so on for R(V , JV ) and R(V , KV ). Using this and the previous two lemmas, we arrive
at

Proposition A.3 Assume (X , g̃) is a hyperkähler 4-manifold. Let V be any locally defined
unit tangent vector field. Then,

〈
R(V , I V )I V , V 〉 = 〈∇[JV ,I V ]R(V , JV )I V , V 〉
+ 〈∇[JV ,V ]R(V , KV )I V , V

〉
+ 〈∇[V ,KV ]R(V , JV )I V , V

〉
+ 〈∇[KV ,I V ]R(V , KV )I V , V

〉
− 4(σ 2

I I + 2σJ JσKK + σ 2
I J + σ 2

I K − 2σ 2
J K ) (A.4)
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Proof Lemma A.2 says

〈[∇JV ,∇V ]R(V , KV )I V , V 〉 = 〈∇[JV ,V ]R(V , KV )I V , V
〉

− 2 〈R(R(JV , V )V , KV )I V , V 〉
− 2 〈R(V , KV )I V , R(JV , V )V 〉 .

Using R(JV , V )V = σI J I V + σJ J JV + σJ K KV , we find

〈R(R(JV , V )V , KV )I V , V 〉 = σI J 〈R(I V , KV )I V , V 〉 + σJ J 〈R(JV , KV )I V , V 〉
= σ 2

I J − σI IσJ J .
and

〈R(V , KV )I V , R(JV , V )V 〉 = σJ J 〈R(V , KV )I V , JV 〉 + σJ K 〈R(V , KV )I V , KV 〉
= σJ JσKK − σ 2

J K .

Hence,

〈[∇JV ,∇V ]R(V , KV )I V , V 〉 = 〈∇[JV ,V ]R(V , KV )I V , V
〉

+ 2
(
σJ JσI I + σ 2

J K − σJ JσKK − σ 2
I J

)
.

Similar computations yield

〈[∇JV ,∇I V ]R(V , JV )I V , V 〉 =
〈∇[JV ,I V ]R(V , JV )I V , V 〉
+ 2

(
σI IσKK + σ 2

J K − σJ JσKK − σ 2
I K

)
,

〈[∇V ,∇KV ]R(V , JV )I V , V 〉 =
〈∇[V ,KV ]R(V , JV )I V , V

〉
+ 2

(
σI IσKK + σ 2

J K − σJ JσKK − σ 2
I K

)
,

and

〈[∇KV ,∇I V ]R(V , KV )I V , V 〉 = 〈∇[KV ,I V ]R(V , KV )I V , V
〉

+ 2
(
σJ JσI I + σ 2

J K − σJ JσKK − σ 2
I J

)
.

Adding up these four contributions, writing σKK + σJ J = −σI I , and using Lemma A.1
gives (A.4). ��

Along the fixed point set M of an order 4 holomorphic isometry f : X → X , we may
simplify greatly.

Proposition A.4 Assume the set-up of Proposition 4.11. Let α:= 〈I V ,∇V V 〉 and β:=
〈I V ,∇I V V 〉. Then,

〈
R(V , I V )I V , V 〉 = (α + β)∇V σI I (V )− α∇I V σI I (V )− 6σ 2
I I (A.5)

holds for any point on M.

Proof Let f : X → X denote the isometrywithM asfixedpoint set.Due to f∗(JV ) = ±KV ,
we find

〈
R(V , I V )I V , V 〉 = 2
〈∇[JV ,I V ]R(V , JV )I V , V 〉

+ 2
〈∇[JV ,V ]R(V , KV )I V , V

〉
− 6σ 2

I I (A.6)
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along M . So we analyse the commutators. Since V is unit speed, we have 〈V ,∇WV 〉 =
0 for any W . Since f∗ fixes V , I V and rotates JV , KV , there have to be functions
α, β, μ, ν : M → R such that

∇V V = α I V
∇I V V = β I V ,
∇JV V = μJV + νKV ,

∇KV V = μKV − ν JV .
Using the formula [W ,U ] = ∇WU −∇UW , we thus arrive at

[JV , I V ] = −ν JV + (μ+ β)KV ,

[JV , V ] = μJV + (α + ν)KV .

The second Bianchi identity tells us

〈∇JV R(V , JV )I V , V 〉 = 〈∇I V R(V , JV )JV , V 〉 − 〈∇V R(V , JV )JV , V 〉
and

〈∇KV R(V , JV )I V , V 〉 = 〈∇V R(V , I V )I V , V 〉 + 〈∇JV R(V , KV )I V , V 〉 .
Applying the isometry f to these further gives

〈∇JV R(V , JV )I V , V 〉 = 〈∇KV R(V , KV )I V , V 〉
and

〈∇KV R(V , JV )I V , V 〉 = − 〈∇JV R(V , KV )I V , V 〉 ,
hence

2 〈∇KV R(V , JV )I V , V 〉 = 〈∇V R(V , I V )I V , V 〉 .
We have

〈∇I V R(V , JV )JV , V 〉 = ∇I V σJ J − 4 〈R(∇I V V , JV )JV , V 〉 = ∇I V σJ J + 4βσJ K ,

so σJ J + σKK = −σI I along with σJ J = σKK tell us

2 〈∇I V R(V , JV )JV , V 〉 = −∇I V σI I

on M . Similarly,

2 〈∇V R(V , JV )JV , V 〉 = −∇V σI I .

So

2 〈∇JV R(V , JV )I V , V 〉 = ∇V σI I − ∇I V σI I = 2 〈∇KV R(V , KV )I V , V 〉
and

2 〈∇KV R(V , JV )I V , V 〉 = ∇V σI I = −2 〈∇JV R(V , KV )I V , V 〉
Inserting these into (A.6) then results in

〈
R(V , I V )I V , V 〉 = −2ν 〈∇JV R(V , JV )I V , V 〉 + 2(μ+ β) 〈∇KV R(V , JV )I V , V 〉
+ 2μ 〈∇JV R(V , KV )I V , V 〉 + 2(α + ν) 〈∇KV R(V , KV )I V , V 〉
= (α + β)∇V σI I (V )− α∇I V σI I (V )− 6σ 2

I I
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For any point on M . ��
Remark A.5 We note how the right-hand side of (A.5) is expressed solely in quantities com-
putable on M , even though the Laplacian on the left-hand side involves derivatives normal
to M .

Appendix B: Appendix—parameter independence

In this appendix, we prove the parameter independence of the Poincaré and Sobolev inequal-
ities used in Kobayashi’s estimates. This will be a consequence of the following well-known
result. One potential source with a proof is [36, Theorem 5.3], where the Poincaré inequality
gets discussed as part of the proof.

Theorem B.1 Let (M, gλ) is a compact manifold of dimension m ≥ 3 with a family of
Riemannian metrics gλ. Assume there is a λ-independent constant C > 0 giving

• a lower bound on the volume,

C ≤ Volgλ(M),

• an upper bound on the diameter

diamgλ(M) ≤ C,

• and a lower bound on the Ricci curvature

−Cgλ ≤ Ricgλ .

Then, there are λ-independent constants CP ,CS > 0 depending on the dimension m such
that the following Poincaré and Sobolev inequalities hold for all f ∈ H1(M, gλ) = { f ∈
L2(M, gλ)

∣∣ |d f |gλ ∈ L2(M, gλ)}:
‖ f − fav‖2L2(M,gλ)

≤ CP ‖d f ‖2L2(M,gλ)
(B.1)

and

‖d f ‖2L2(M,gλ)
≥ CS

(
‖ f ‖2

L
2m
m−2 (M,gλ)

− Volgλ (M)
− 2

m ‖ f ‖2L2(M,gλ)

)
, (B.2)

where

fav := 1

Volgλ (M)

∫
M

f dVolgλ

is the average.

Theorem B.1 applies to the Kummer construction.

Proposition B.2 Let (X , g) denote a Kummer K3 with patchwork metric g and Kähler form
ω. Then, for all |a| small enough, there is a constant C > 0 independent of |a| such that∫

X
f 2ω2 ≤ C

∫
X
|d f |2g ω2 (B.3)

holds for all f ∈ H1(X , g) with ∫
X
f ω2 = 0
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and
‖d f ‖2L2(X ,g) ≥ C

(
‖ f ‖2L4(X ,g) − Volg(X)

−1/2 ‖ f ‖2L2(X ,g)

)
(B.4)

holds for all f ∈ H1(X , g).

Proof That the diameter is bounded can be seen as follows. The distance between suitably
close pairs of points in the Euclidean region is independent of a. For pairs of point p, q
in the Eguchi–Hanson region, one can use the triangle inequality and compare with radial
geodesics going from p to the zero section and out again to q . The radial distance is bounded
by the Euclidean distance, as one sees by computing the length of the curve z(t) = tp,

dEH(0, p)
2 =

∫ 1

0
gEH(ż, ż) dt = |p|4C2

∫ 1

0

t2√
a2i + t4|p|4

C2

dt ≤ |p|2
C2 = dEuc(0, p)

2.

In the neck region, the distance is close to Euclidean by (2.3). So the distance between any
two points in X can be bounded (using the triangle inequality several times) uniformly by
a-independent quantities.

The volume form is Euclidean (ω2/2 = η∧η) outside of the neck regionswhere the gluing
takes place. The Ricci curvature vanishes outside of the necks. So it only remains to bound
the volume form and Ricci curvature in the neck regions. However, on any compact subset
of the complement of the zero section in Eguchi–Hanson space, K ⊂ OCP1(−2)\CP

1, it
follows from the explicit form of the Kähler potential (2.1) that we can find a smooth function
ξK such that

fEH = fEuc + a2ξK .

Furthermore, the function ξK is regular as a → 0. From this, it follows that the potential for
the patchwork metric in the neck regions reads

�a = fEuc + |a|2χξK ,
and the patchwork metric reads

g = gEuc + |a|2h (B.5)

for some uniformly bounded h with uniformly bounded derivatives. This then tells us

det(g) = 1+ |a|2tr(h)+ |a|4 det(h) (B.6)

has the form det(g) = 1+ |a|2 · bounded and
Ric = −∂∂ ln det(g) = |a|2ξ̃

for some uniformly bounded ξ̃ . All in all, there is an |a|-independent constant C > 0 such
that

(1− C |a|2)η ∧ η ≤ ω2 ≤ (1+ C |a|2)η ∧ η
and

|Ric|g ≤ C |a|2

hold on all of X . With these, we get |a|-independent bounds on the volume of X and the
Ricci curvature of g for all small enough values of |a|. ��
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