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The next-generation (3G/XG) ground-based gravitational-wave (GW) detectors such as Einstein
Telescope (ET) and Cosmic Explorer (CE) will begin observing in the next decade. Due to the extremely
high sensitivity of these detectors, the majority of stellar-mass compact-binary mergers in the entire
Universe will be observed. It is also expected that 3G detectors will have significant sensitivity down to
2–7 Hz; the observed duration of binary neutron star signals could increase to several hours or days. The
abundance and duration of signals will cause them to overlap in time, which may form a confusion noise
that could affect the detection of individual GW sources when using naive matched filtering; matched
filtering is only optimal for stationary Gaussian noise. We create mock data for CE and ET using the latest
population models informed by the GWTC-3 catalog and investigate the performance loss of matched
filtering due to overlapping signals. We find the performance loss mainly comes from a deviation in the
noise’s measured amplitude spectral density. The redshift reach of CE (ET) can be reduced by 15%–38%
(8%–21%) depending on the merger rate estimate. The direct contribution of confusion noise to the total
signal-to-noise ratio (SNR) is generally negligible compared to the contribution from instrumental noise.
We also find that correlated confusion noise has a negligible effect on the quadrature summation rule of
network SNR for ET, but might reduce the network SNR of high detector-frame mass signals for detector
networks including CE if no mitigation is applied. For ET, the null stream can mitigate the astrophysical
foreground. For CE, we demonstrate that a computationally efficient, straightforward single-detector signal
subtraction method suppresses the total noise to almost the instrument noise level; this will allow for near-
optimal searches.
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I. INTRODUCTION

It has been seven years since Advanced LIGO detected
the first gravitational-wave (GW) event GW150914 [1] on
September 14th, 2015. During these seven years, Advanced
LIGO and Advanced Virgo have continuously moved
toward their design sensitivities [2–5], and have performed
three observation runs (O1, O2, and O3). Nearly 100 GW
signals from compact binary coalescence (CBC) have been
observed, of which more than 90 are from binary black hole
mergers (BBH) [6,7], two come from binary neutron star
inspiral (BNS) [8,9], and two black hole neutron star
mergers (NSBH) [10] with relatively high significance.
With the increasing number of observations, we know more

about the population properties of these CBC sources
[11–13]. KAGRA, a GW observatory in Japan that is
under active development [14], conducted a joint observa-
tion with GEO600 [15] in Germany at the end of O3 [16].
Before 2030, a third LIGO detector, LIGO-India, is
expected to be operating [17], and all these detectors will
be further upgraded toward the Aþ [5,18,19], AdVþ [20]
and KAGRAþ [21] configurations. At that time, there will
be five kilometer-scale observatories [22].
After 2030, these detectors will be joined by more

advanced next-generation (3G/XG) GW detectors, such
as Einstein Telescope (ET) [23–28] in Europe and Cosmic
Explorer (CE) [29–31] in the United States. There will also
be space-borne GW detectors, such as LISA [32,33] and
either Taiji [34–38] or TianQin [39–42]. For the 3G
detectors on the ground, the low-frequency sensitivity will
be improved to enable observation from 2–7 Hz, down
from the 10–20 Hz of second-generation (2G) detectors.
GW signals will stay in the detectors’ sensitive frequency
band for hours or even days [43,44]. The higher sensitivity
of 3G observatories means a significantly higher detection
rate (Oð105Þ BNS mergers per year); the increased
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detection results in numerous signals overlapping in
time. This problem is in fact more serious in space-borne
GW detectors, where Oð108Þ white dwarf binaries from
the Milky Way and nearby galaxies produce a GW
foreground noise [45–48]. For stationary and Gaussian
noise, the matched filter is the optimal linear filter that
maximizes the signal-to-noise (SNR) [49]. For the 2G GW
detectors, the instrumental noise can at most times be
assumed to be stationary and Gaussian, with notable
additive nonstationary “glitches” [50–52]; methods based
on matched filtering are widely used in the search of CBC
signals [53–55].
If in sufficient abundance, numerous overlapping signals

can form another kind of noise in addition to the detector
noise, that is, confusion noise. The authors of [56] first
proposed that Einstein Telescope might be affected by
confusion noise. We note that “confusion noise” is used to
refer to a large population of unresolvable GWs; here we
collectively refer to the foreground population of over-
lapping signals, many of which are individually resolvable,
but retain sufficient numbers to behave as an additive noise
source. A few years later [57] launched the first mock data
challenge for Einstein Telescope; they simulated binary
neutron star (BNS) sources according to a state-of-art
population model at that time, and used the ihope pipeline
[54,58,59] based on matched filtering together with a null
stream method (a technique to cancel the GW strain in the
data for better detector noise estimation) [60–70] to analyze
the simulated data. They found no significant impact of
confusion noise in searching with data from Einstein
Telescope. A later analysis produced consistent results
[71]. These early mock data challenges were conducted
before significant constraints on the CBC population were
available. Recently, several groups have begun to study the
influence of overlapping signals on the parameter estima-
tion for CBC sources [72–77]. There is also a search study
for overlapping signals in 2G cases [78].
Currently, there are a few methods to improve signal

detection in the signal overlapping case. The “null stream”
is a method of cancelling astrophysical sources in detector
data to achieve better power spectral density (PSD)
estimation [60–70]. It requires (1) at least 2 coaligned
(colocated) detectors [62,65] or 3 detectors if not colocated,
(2) the PSD’s shape of each detector should be the same
[57], (3) it is assumed that there are only two polarizations
of GWs, which is consistent with the general theory of
relativity [79,80]. For distant detectors, the null stream
becomes sky-dependent [64], it can only cancel the GW
signal incident from a specific direction at a time (because
the null stream combination is dependent on the time
delays). Thanks to the structure of ET (closed-loop com-
posed of three V-shaped detectors [23]), the distances of the
three subdetectors (E1, E2, E3) are very close, so the time
delay between them can be ignored; all GW signals can be
canceled by appropriately summing the data from these

three subdetectors. However, these assumptions (especially
the first one) might be unrealistic for CE, so we need to
develop other complementary methods. For LISA, a
“global fit” [81] is usually used to avoid the bias caused
by signal overlapping. In this method, the number of
signals in the data is also used as an unknown variable
and the parameter estimation of all signals is done
simultaneously. The degeneracy of parameters and con-
vergence of the sampling in such high-dimensional param-
eter space are potential problems.
In our study, we create mock data for CE and ET. Unlike

the previous two ET mock data challenges, we use CBC
population models based on the latest GWTC-3 observa-
tional constraints. We use these simulated data to inves-
tigate several key factors that might negatively affect the
performance of matched filtering, such as the bias in PSD
estimation, the bias from the SNR contribution of over-
lapping GW signals, and the bias caused by the confusion
noise’s correlation between different detectors. We perform
a computationally optimized matched filtering search to
demonstrate identifying and subtracting the majority of
high SNR sources. We find that postsubtraction, we are
able to obtain a PSD close to the design sensitivity for CE.
This can be used as the first-stage foreground cleaning
before more sophisticated searches.
The structure of this paper is as follows: In Sec. II, we

introduce the CBC population models used in this paper
and how to simulate the time-domain mock data of CE and
ET based on these models. In Sec. III, we derive the
matched filtering equations in the presence of overlapping
signals. In Secs. III A–III C, we investigate the effects of
overlapping signals on PSD estimation, cross term calcu-
lation, and network SNR calculation under correlated
noise. After that, we present our signal subtraction method
and results in Sec. IV. Finally, Sec. V is the summary and
discussion.

II. POPULATION MODELS AND MOCK DATA
GENERATION

In this paper, we need to simulate a realistic population of
the known types of CBC GW sources, such as BBH, BNS,
and NSBH, and then inject their GW signals into simulated
instrumental noise. We create a simulated set of sources that
follows the population estimates of the GWTC-3 catalog
[13]. Researchers have started to use the observed mergers
to constrain parametric models of the population [11,12,82–
84]; the nearly one hundred current observations place some
constraints on the BBH population, however, the BNS and
NSBH populations remain highly uncertain due to the small
number of observed sources.

A. The population models

Quasicircular CBC systems can be described by 15
parameters; these include intrinsic parameters such as mass
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and spin of the components and extrinsic parameters such
as sky localization, luminosity distance, orientation
angle, and polarization angle. In systems containing
neutron stars (such as BNS and NSBH), there are also
the tidal deformation parameters of the neutron star
[85,86]. We choose the prior that sources have an
isotropic distribution of viewing angle, polarization
angle, and sky localization. For the remaining intrinsic
parameters and the distance distribution, we base our
choice for the population of BNS, NSBH, and BBH
parameters on the most constrained models from the
latest GW catalogs.
To specify the distribution of source-frame BBH primary

mass and mass ratio, we use the results of the power-law
+peak mass distribution model (shown in Fig. 10 of [13]).
A recent study shows that the mass distribution of black
holes in NSBH systems also agrees with this distribution
[84], so we adopt the same mass distribution model in the
BBH and NSBH systems. For the mass distribution of
neutron stars in BNS and NSBH systems, we use the
distribution of the power-law model, shown in Fig. 7 of
[13]. There are only four confident observations containing
at least one neutron star (two BNS events, GW170817 [8]
and GW190425 [9], and two NSBH events, GW200105
and GW200115 [10]) and the LVK uses all of these events
to constrain the mass distribution of neutron stars. Due to
the limited number of observations, the NS’s population
properties are poorly constrained.
We choose the spin amplitude distribution of black

holes in both BBH and NSBH systems following the
distribution shown as the solid black curve in Fig. 15 of
[13]. In this work, we use an isotropic spin orientation
distribution for BBH sources, as related parameters are not
highly constrained. For the NSBH and BNS systems,
consistent with the current observations of low spinning
neutron stars [8–10], we assume the neutron star to be
orbit-aligned and slowly spinning in NSBH systems and
nonspinning in BNS systems. We ignore the tidal defor-
mation of the neutron star due to its relatively small effect
on the signal’s SNR [43,87].
The distribution of sources in luminosity distance or

redshift and the total merger rate determines the number of
signals present in the simulated data. We adopt the
simulation method of [43,57,71]; we assume that all
CBC systems are generated by stellar evolution, more
precisely the evolution of field binaries [88], and we
ignore dynamical encounters in the dense environment
[89] and primordial black holes formed in the early
Universe [90]. Since all the CBC systems in the simu-
lation come from stellar evolution, the redshift distribution
of these CBC sources must be directly related to the star
formation rate (SFR). We use the SFR in [91]. The
coalescence rate density in the source-frame is the con-
volution of the star formation rate and the time delay
probability distribution [43],

_ρðzÞ ¼ _ρ0fðzÞ ∝
Z

∞

τmin

_ρ�½zfðz; τÞ�PðτÞdτ

∝
Z

∞

z
_ρ�ðzfÞP½τðz; zfÞ�

dtðzfÞ
dzf

dzf; ð1Þ

where _ρ0 is the local coalescence rate density (in the unit
of Mpc−3 yr−1), which is equivalent to a rescaling factor,
and fðzÞ is the normalized coalescence rate density, such
that fð0Þ ¼ 1 and _ρð0Þ ¼ _ρ0. The SFR _ρ� is in the unit of
M⊙Mpc−3 yr−1. PðτÞ is the probability distribution of the
time delay τ. The time delay τ ¼ tðzÞ − tðzfÞ refers to the
total time from the formation of the binary progenitor
system (when redshift is zf) to the merger of the compact
binary system due to GW emission (when redshift is z).
This delay is determined by the difference between the
lookback time of z and zf, and the lookback time at
redshift z is defined as

tðzÞ ¼ 1

H0

Z
∞

z

dz

ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩmð1þ zÞ3

p ; ð2Þ

where H0 is the Hubble constant, and ΩΛ and Ωm are
the densities of dark energy and nonrelativistic
matter respectively. In this paper, we assume the standard
ΛCDM cosmology [92], so H0 ¼ 67.74 km s−1Mpc−1,
ΩΛ ¼ 0.6910, and Ωm ¼ 0.3075. In Eq. (1), we convert
the integral variable from the time delay τ to the redshift z
for convenience. At present, there are several models of
time delay distribution PðτÞ, such as Gaussian delay
model [93], log-normal delay model [94], power-law
delay model [94] and inverse delay model [95], the first
three are derived from actual observations, and the last one
is suggested by the population synthesis [96–100] and
used by the previous ET mock data challenges [57,71]. We
also use the inverse delay model in this paper, which
means PðτÞ ∝ 1=τ. In order to obtain the distribution of
the event rate of CBC as a function of redshift in the
detector frame, we need to multiply the coalescence rate
density expressed by Eq. (1) by the comoving volume
element dVðzÞ=dz, and then divide it by 1þ z caused by
the time dilation, so we get the following equation

dR
dz

¼ _ρ0fðzÞ
1þ z

dVðzÞ
dz

; ð3Þ

where the comoving volume element dVðzÞ=dz is
described by

dVðzÞ
dz

¼ c
H0

4πD2
L

ð1þ zÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩmð1þ zÞ3

p ; ð4Þ

where c is the speed of light in the vacuum, and DL is the
luminosity distance between the CBC source and the
detector, which is defined as
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DL ¼ ð1þ zÞ c
H0

Z
z

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ Ωmð1þ zÞ3

p : ð5Þ

For the local merger rate of each CBC type, we choose
the rates based on LVK’s population paper of GWTC-3 [13]
and the public presentation [101]. For BBH signals, we
choose 22 Gpc−3 yr−1 and 45 Gpc−3 yr−1 as median and
upper local merger rates respectively, 250 Gpc−3 yr−1 and
1900 Gpc−3 yr−1 for BNS signals, and 170 Gpc−3 yr−1

and 320 Gpc−3 yr−1 for NSBH signals. Note that in the
latest version of [13], they have changed the rate of NSBH to
lower values (several months after our project started), but in
this paper, we still use their original values. The coalescence
rate of BBH, NSBH, and BNS in the detector frame as a
function of redshift is shown for themedian localmerger rate
case as the upper plot of Fig. 1. We draw the redshift
(luminosity distance) of the GW signal from this distribu-
tion. When the redshift is higher than 20, there are few CBC
sources generated by the stellar evolution, so we choose to
simulate GW sources only up to redshift zmax ¼ 20.
We can get the average time interval between two

adjacent GW signals of the same type (the overline means
the average) as,

Δt ¼
�Z

zmax

0

dR
dz

ðzÞdz
�
−1
: ð6Þ

For median local merger rate cases, we find the average
time intervals for BBH, BNS, and NSBH are 359.4 s,

31.6 s, and 46.5 s respectively. For the cases of upper local
merger rate, we find the average time intervals are 175.7 s,
4.2 s, and 24.7 s respectively.

B. Mock data generation

We create mock data for both Einstein Telescope and
Cosmic Explorer. According to population models in the
previous Sec. II A, we use either the median or upper local
merger rate to simulate a population of sources and then
project the GW signal to each detector, according to the
equation

hαðtÞ ¼ Fαþðθ;ϕ;ψÞhþðtÞ þ Fα
×ðθ;ϕ;ψÞh×ðtÞ; ð7Þ

where α is the index of each detector, Fαþðθ;ϕ;ψÞ and
Fα
×ðθ;ϕ;ψÞ are antenna pattern functions for the two GW

polarizations, which depend on the sky localization (θ;ϕ)
and polarization angle ψ . These parameters are sampled
from distributions defined in Section II A. We generate and
save each type of GW signal separately, then add them into
the simulated Gaussian detector noise to create two data-
sets; each dataset has ∼6 hours of data, one for the median
local merger rate case, the other one for the upper local
merger rate case.
We use the latest time-domain phenomenological higher-

order mode model IMRPhenomTPHM [102] to simulate
BBH and NSBH sources. As the mass ratio of BBH and
NSBH systems can be large, higher-order modes will have

FIG. 1. The merger rate density and the cumulative merger rate for the median local merger rate case are shown separately for BNS
(orange), NSBH (green), and BBH (blue) sources. The results are rescaled according to the local merger rate densities (median value)
constrained by GWTC-3. The upper panel shows the merger rate densities according to Eq. (1). Note that all distributions peak around
z ¼ 2 (the gray vertical dotted line), and then decrease monotonically. The lower panel shows the corresponding cumulative merger
rates, which are calculated according to Eq. (3). It can be seen that these curves become steepest near z ¼ 2, and there is almost no
increase after z ¼ 10.
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an impact on GW waveforms [103]. We expect the
tidal deformation of neutron stars in NSBH systems is
relatively weak [43,104], so we do not use the two existing
NSBH models which include the tidal effect [105,106].
In addition, these two models only consider the dominant
(2, �2) mode. For BNS sources, we use the frequency-
domain phenomenological model IMRPhenomD [107]
instead of the post-Newtonian waveforms [108] or
IMRPhenomPv2_NRTidalv2 [109]. Next-generation
GW detectors may observe high-redshift BNS signals, so
the merger and postmerger part of the redshifted signal
might be within the detector’s sensitive frequency band
[44]. However, accurate models of merger and postmerger
waveform of BNS are still under development [110–112],
we use the merger and ringdown parts of IMRPhenomD to
mimic them. We also neglect the tidal deformation of
neutron stars for BNS systems in this paper. In the source
frame, the postmerger signal of a BNS is in the kHz
frequency band [112], according to our population model
most BNSs are at z ∼ 2. The SNR of a BNS postmerger at
70 Mpc is ∼8 for ET, whereas the inspiral would have
an SNR of ∼1000 (we have used IMRPhenomPv2_
NRTidalv2model to calculate SNR for its inspiral part);
the relative SNR in the postmerger is negligible [112]. If
we rescale this example signal to z ∼ 2, we find an inspiral
SNR is ∼12, while postmerger is ∼0.2. For the purposes of
detection, more than 99.9% of the SNR is recovered
without the postmerger signal. We do not expect the
presence of a postmerger signal to bias PSD estimation

due to the negligible relative SNR which is contained
within a shorter duration; most of the data will all be free
of contamination by postmerger signals. We neglect tidal
effects as they will be completely subdominant for the
parts of the signal where there are a significant number of
overlapping sources.

1. Einstein Telescope

Einstein Telescope (ET) [23–28] is the European plan for
the next-generation observatory following Advanced Virgo
[3,20,113]. ET consists of three V-shaped subdetectors
(called E1, E2, and E3); they overlap with each other to
form an equilateral triangle, with an arm length of 10 km. In
order to achieve the required sensitivity at both low
frequency and high frequency, each V-shaped subdetector
uses a “xylophone” configuration, i.e., there is one inter-
ferometer for low frequencies and another for high frequen-
cies [23,26]. This design is intended to bring the sensitive
frequency band of ET down to ∼2 Hz. At present, the site
selection of ET is still under evaluation. We use the fiducial
coordinates and orientation defined in the LALSuite [114]
and assume the ET design sensitivity curve [23,26]. Each of
ET’s subdetectors has a different antenna pattern [57]; the
V-shaped detector has a sensitivity loss of 1=sin π

3
compared

to an equivalent length L-shaped detector (caused by the
opening angle is π

3
, not π

2
) [26,57]. We neglect the effect of

the Earth’s rotation in this paper. In our simulations, we set
the low-frequency cutoff of the ET dataset to 2 Hz.

FIG. 2. An hour of simulated data for CE assuming median local merger rates and corresponding population models. The gray line
represents the sum of all GW signals and detector noise. The black, brown, and green lines represent the injected BBH, NSBH, and BNS
signals, respectively. Because of the difference in the event rate and the signal duration, we can see that BNS signals overlap in time, with
no gaps between signals, NSBH signals also have large overlaps, while many BBH signals remain isolated.
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2. Cosmic Explorer

Cosmic Explorer (CE) is a proposed next-generation
observatory in USA [29–31]. Compared with Einstein
Telescope, CE adopts a more conservative design. CE uses
the L-shaped configuration of the current-generation
observatories, but with an arm length of 40 km. The design
enables sensitivity to frequencies down to ∼5–7 Hz. CE
and ET have their own advantages, and they can form a 3G
detector network to further improve the overall signal
detection capabilities [43,44,115,116]. Similar to ET, the
location of CE has not yet been determined. In this paper,
we place one CE at the position of the LIGO-Hanford
observatory [2]. We use the latest CE design sensitivity [31]
to recolor the stationary, Gaussian, and whitened noise, and
set the low-frequency cutoff of the CE dataset to 5 Hz. We
show an hour of simulated data in Fig. 2. Note that while
BBH signals are still largely separated in time, BNS signals
overlap in time. Due to the improved low-frequency
sensitivity, each BNS signal in the detector sensitivity
band will last for hours or even days [44,57,71]. However,
we note that the majority of signals will remain distinguish-
able, because their time-frequency evolution is different
from each other.

III. THE BIASES OF MATCHED FILTERING
CAUSED BY CONFUSION NOISE

Assuming additive Gaussian and stationary noise, and
for a known signal, the matched filter is the optimal linear
filter that can maximize SNR [49]. As a consequence,
matched filtering is widely used as the basis of modeled
searches for CBC sources [53–55]. In this section, first we
briefly review the basic principles of the matched filtering
method, and then we study whether these overlapping GW
signals will have negative effects on the performance of
matched filtering.
For GW signals from the compact binary coalescence,

there are state-of-art methods to numerically simulate the
GW signals predicted by general relativity [117,118].
However, in order to meet the speed requirements of data
analysis, there are several kinds of approximants, including
post-Newtonian approximation models [108], phenomeno-
logical models [102,107,119,120], effective-one-body
numerical relativity models [121,122], and surrogate mod-
els [123,124]; these models may be compared and cali-
brated with the results of numerical relativity simulations.
In order to understand the behavior of the matched filter,

we first define the scalar or inner product in the frequency
domain as below

hajbi ¼ 4ℜ
Z

fmax

fmin

ãðfÞb̃�ðfÞ
Stoth ðfÞ df; ð8Þ

a and b are two time series, the ãðfÞ is the Fourier
transform of a, the b̃�ðfÞ is the complex conjugate of

the Fourier transform of b, the fmin, and the fmax are the
low frequency cutoff and the high frequency cutoff respec-
tively. The Stoth ðfÞ is the one-sided PSD of the data sðtÞ
(here we include the contribution of all overlapping signals,
not just the SnðfÞ computed from the pure detector noise),
defined by

hs̃ðfÞs̃�ðf0Þi ¼ 1

2
Stoth ðfÞδðf − f0Þ; ð9Þ

s̃ðfÞ is the Fourier-transformed detector data, defined by
s̃ðfÞ ¼ Rþ∞

−∞ sðtÞe−2πitfdt. The “h··i” here means the aver-
age of many noise realizations, not the same as the inner
product “h·j·i”. In the general case, the time-domain
observational data sðtÞ from a GW detector is

sðtÞ ¼ nðtÞ þ
X
j

hjðtÞ ¼ nðtÞ þ
X
j≠k

hjðtÞ þ hkðtÞ; ð10Þ

which is the linear summation of detector noise nðtÞ and all
GW signals

P
j hjðtÞ (among them hkðtÞ is the signal of

interest), j is the number of GW signals in this data, and it is
unknown before data analysis. If there is only one GW
signal hkðtÞ in the data, then

P
j≠k hjðtÞ in the Eq. (10)

disappears.
If we have a template hðt;ΘÞ where the merger is at

tc ¼ 0 andΘ represents all parameters of the waveform, the
template with arbitrary merger time tc is h̃ðf;ΘÞe2πiftc . By
substitution into Eq. (8), we can define

hsjhiðtcÞ ¼ 4ℜ
Z

fmax

fmin

s̃ðfÞh̃�ðfÞ
Stoth ðfÞ e2πiftcdf; ð11Þ

which is just the inverse Fourier transform of the inner
product of s and h. An efficient search for the signal with
unknown time can be efficiently done with a Fourier
transform. According to Eq. (10), we can rewrite Eq. (11) as

hsjhi ¼ hnjhi þ
X
j≠k

hhjjhi þ hhkjhi: ð12Þ

Note that the inner product has contributions from the
detector noise nðtÞ, confusion noise

P
j≠k hjðtÞ made by

overlapping signals, and the particular GW signal hkðtÞ that
we are interested in.
According to Eq. (7), the detector strain caused by the

GW signal is a linear combination of two GW polar-
izations, and the combination coefficients are determined
by the antenna response function of the detector, which
depends on the sky location and polarization angle of the
signal. Together with the source’s luminosity distance,
chirp mass, and inclination angle, these factors affect the
overall amplitude of the signal’s strain. For typical CBC
matched filtering searches [54,55,125] (quasicircular, non-
precessing, and only the dominant (2, �2) mode), it is
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usually assumed that the two polarizations of the signal
satisfy the relationship hþ ¼ ih×, which means that the two
polarizations are related by a phase difference of π

2
. To

maximize over both an overall orbital phase and previously
mentioned angles, we only need to use one of the polar-
izations hþ along with the complex matched filtering
SNR ρðtÞ,

ρ2ðtÞ ¼ hsjhþi2
hhþjhþi

þ hsjh×i2
hh×jh×i

¼ hsjhþi2 þ hsjh×i2
hhþjhþi

¼ 1

σ2

����4
Z

fmax

fmin

s̃ðfÞh̃þ�ðfÞ
Stoth ðfÞ e2πiftdf

����2; ð13Þ

the σ2 is the variance of the noise and is also known as the
optimal SNR, which is the matched filtering SNR when the
template perfectly matches the signal in the absence of
noise. It can be expressed as

σ2 ¼ 4

Z
fmax

fmin

jh̃þðfÞj2
Stoth ðfÞ df: ð14Þ

In the following subsections, we examine the perfor-
mance loss of matched filtering caused by the bias in
the estimation of the PSD caused by numerous over-
lapping signals, the bias due to the cross terms between
the waveform template and overlapping signals in the
data, and the impact of correlated noise on a network
of detectors.

A. Power spectral density estimation

In this subsection, we discuss the impact of overlapping
signals on PSD estimation and the loss of the detector’s
horizon distance [31,54,126] due to a biased estimate of
the instrumental noise. We can see in Eqs. (9) and (10) that
if there are overlapping signals, Stoth ðfÞ should be higher
than the instrumental-only SnðfÞ. We use the median
Welch estimation method [54,127] to calculate the PSD of
our mock data. We use 512 s of data to estimate the PSD
from 35 different times from each of our datasets. The
reason for choosing 512 s is just following the PSD
estimation in the current real searches, we also have tried
other values, and their results are similar. For each 512 s
segment, we use 16 s as the subsegment and 50% overlap
to calculate a PSD using the Welch averaging method. We
use these 35 PSDs to calculate the mean PSD for the entire
dataset as well as the 1-σ confidence interval for each
frequency.
On the left of Fig. 3, we show the total estimated

amplitude spectral density (ASD, the square root of the
PSD) of CE for the median and upper local merger rates.
For comparison, we also plot the design ASD of CE and
the mean ASD of simulated detector noise (without
signals) for comparison. We see that the ASD of the
median merger rate data is only slightly higher than the
design ASD and the mean ASD of the instrumental noise,
just at the boundary of the 1-σ estimate of the instrumental
noise, however, there is a significant bias for the upper
merger rate dataset.

FIG. 3. The different amplitude spectral densities (ASD) of CE (left) and the ratio of the estimated ASD with the signal population to
data that only contains instrumental noise (right). The left panel shows the ASDs in the range of 5–50 Hz. The noise curves are shown for
the ideal CE design sensitivity (black), Gaussian noise-only estimate (gray), noise including signals at the median merger rate (green),
and the upper merger rate (blue). For the noise-only and upper merger rate cases, a 1-σ confidence band is shown. The right panel shows
the ratio of different contributions to the detector noise-only ASD. The ratio of the total ASD to the detector noise ASD (blue) is shown
in addition to the contributions from BNS (green), NSBH (brown), and BBH (orange) sources for both the median (solid) and upper
(dotted) merger rate cases. If there is a monochromatic GW signal, the total ratio (blue) at each frequency gives the SNR reduction factor
due to the confusion noise. In the upper rate scenario, BNS sources dominate the ASD bias and form a quasistationary foreground noise.
BBH sources have negligible effects on the ASD for both rate cases because their presence leaves most of the data uncontaminated.
Noise estimation that uses median or median-mean Welch averaging is not significantly affected by a small number of outliers at a given
frequency. The peak in the ASD bias for CE is around 15 Hz.
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If the value of the local merger rate is between the range
used in our paper, the overall ASD will be between the
green and blue lines shown in the figure. For ET, we show
similar curves on the left of Fig. 4. It can be seen that the
overall impact of overlapping signals on the ASD of ET is
much smaller. Only in the case of upper local merger rate,
will there be deviations noticeably above the detector
noise’s mean ASD between 5 Hz and 11 Hz.
To understand the contribution of each kind of source to

the total ASD of CE, in the right panel of Fig. 3, we
compare the mean ASD of the simulated data only
containing each type of source (BNS, NSBH, BBH) to
the instrumental noise. Each ASD is plotted as deviations
relative to the signal-free detector noise curve. For the
median local merger rate case, we notice a deviation in the
total ASD, which includes contributions from all signal
classes and the instrumental noise, of up to about 10% in
the 5 Hz to 60 Hz range, and for the upper local merger rate,
in this case, the deviation extends to 100 Hz, and in the
range of 10 Hz to 20 Hz, the deviation can reach 20%.
BNS mergers are the main source of bias in the measured

ASD. For the median local merger rate case, the BNS-only
deviation is mainly concentrated below 10 Hz and less than
10%, while for the upper local merger case, the deviation is
most pronounced between 10 Hz and 20 Hz, up to 40%.We
notice that the confusion noise from BNS is almost
stationary, which means its PSD does not vary too much
over time. The contribution of NSBH is far less than that of
BNS and for the BBH datasets, regardless of the merger
rate, the contribution to the total ASD is negligible.
Similarly, for ET we find the ASD deviation mainly

comes from the overlapping BNS signals. The deviation is
mainly concentrated between 5 Hz and 10 Hz. For the
upper local merger rate case, the deviation is at most about
10%, and for the median local merger rate, the deviation is
at most about 5%. The overall deviation is much smaller
than that of CE.

In order to study the loss of signal detection caused by
biased estimation of the PSD or ASD, we calculate the
horizon redshift (distance) under different conditions. The
horizon redshift (distance) means the redshift (luminosity
distance) of the GW source when the GW source is above
the detector plane, face-on, and the optimal SNR is 8, a
threshold often used to characterize the sensitivity of the
detector [31,54,126]. The results are shown on the left side
of Fig. 5, which shows the horizon redshift for GW sources
with different source-frame total masses. The confusion
noise-free estimates are consistent with [31].
The existence of a large population of foreground

signals, left unmitigated, would reduce the sensitivity to
CBC mergers; the most extreme sensitivity loss is for
sources with source-frame total mass ∼10M⊙. For the
median local merger rate case of CE, the horizon redshift
loss of CBCs with source-frame total mass less than 10M⊙
will be 5% to 15%, and for the upper merger rate case, the
loss will be as high as 15% to nearly 40%. For ET, the loss
is generally lower than CE, for the median local merger rate
case, the loss is about 2% to 7%, and for the upper local
merger case, the loss can reach 5% to 20%.
The loss in sensitivity may impact science at various

masses. For example, sources with the total source-frame
mass between 2 and 3M⊙ are useful to study the minimum
mass of the neutron star [128]. Sources with a total source-
frame mass between 1 and 2M⊙ may be primordial in
origin and are the target of subsolar searches [129,130]. For
this kind of source, we find a 2% to 25% loss in the horizon
redshift. For CBCs with a redshift higher than 20, it is
generally considered that they might originate from
Population III (Pop III) stars or primordial black hole
(PBH) mergers formed in very early Universe [131–134],
because these two types of sources do not follow the stellar
evolution, and therefore do not follow the redshift distri-
bution of Fig. 1 (this distribution is only valid for field
binaries). The detection of such events at high redshift can

FIG. 4. The different amplitude spectral densities (ASD) of ET and ASD ratios. The left panel shows the ASDs in the range
of 4–30 Hz. The colors and line styles are consistent with Fig. 3. For ET’s ASD bias, the peak is around 7 Hz.
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be clearly distinguished from the typical stellar-origin
CBCs [132,134]; the presence of overlapping signals will
also significantly reduce their detection efficiency.

B. Matched filtering cross terms

In this subsection, we discuss the effect that cross terms
in Eq. (12) produced by overlapping signals have on the
measured matched filtering SNR. In order to visually show

the bias caused by this term, we show the matched filter
output around an example signal in Fig. 6 for the median
merger rate data. For simplicity, we directly use the mass
parameters of this injected signal to generate the GW
template and then calculate the complex matched filtering
SNR according to Eq. (13); we use the corresponding mean
PSD (the solid green one) in Sec. III A. To understand the
impact of each component of the matched filtering SNR,

FIG. 6. The absolute value of the complex SNR time series for a specific template waveform and its constituent components. The plot
on the left shows the matched filtering SNR time series of an injected signal with its best matching template. Different colors represent
the results of different contributions to the matched filtering SNR. The green line represents the result when there is only the injected
signal (no detector noise and other signals). The blue line represents the result when other overlapping signals are also included in the
data. The gray line represents the result that the data additionally contains the detector noise. Due to the fluctuation of the detector noise
and confusion noise, the peak value of the gray line drops to around 7. The plot on the right shows the normalized histogram (probability
density function) of the SNR time series around the time of the left panel. Even if overlapping signals are included, the total SNR time
series (the gray line) is still consistent with the expected Rayleigh distribution (red dashed line), but the confusion noise itself does not
follow this distribution (the blue line).

FIG. 5. The horizon redshift and horizon redshift loss for different ASDs. The left plot shows the horizon redshift as a function of the
source-frame total mass for the design sensitivity (solid lines) of CE (blue) and ET (green) and for the median (dashed lines) and upper
(dotted lines) merger rate scenarios. Gray shaded areas roughly mark the population of subsolar compact binary, BNS, PBH, and Pop III
sources. The observation of these GW sources will be affected by the confusion noise. The right plot shows the loss percentage of CE
and ET’s horizon redshift relative to that of the design ASD. Note we use the combined sensitivity of ET’s component detectors
(E1, E2, E3).
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we examine: (1) the data with only a specific injected signal
and no detector noise, (2) the data containing all injected
BNS signals but no detector noise, and (3) the data
containing all injected BNS signals and the detector noise.
The left side of Fig. 6 shows 10 s centered on the injection
time. The visual inspection makes it clear that the impact of
overlapping signals is negligible in this example.
We plot the probability density function (PDF) from

∼2800 s of each complex SNR time series jρðtÞj in the right
panel of Fig 6. According to Eq. (13), if there is only
Gaussian and stationary noise of the detector in the data,
then hsjhþi2 and hsjh×i2 are the squares of two Gaussian
variables, so ρ2ðtÞ follows the chi-squared distribution with
2 degrees of freedom, and the degree of freedom is 2
because it is the sum of the squares of 2 Gaussian variables.
So by definition, the modulus of ρðtÞ follows the Rayleigh
distribution [125], as shown by the red dashed line on the
right side of Fig. 6. The total matched filtering SNR
distribution only marginally deviates from the Rayleigh
distribution, just slightly shifting to the direction of high
SNR, this indicates the confusion noise will slightly
increase the signal’s SNR on average. As expected, the
detector noise dominates in the 2800 s data. The SNR of
the GW signal only has a peak around 8 on the right (not
shown in this histogram, because of the number of bins).
The PDF of the confusion noise’s SNR does not follow the
Rayleigh distribution expected from the Gaussian noise.
The overall value is smaller than 1 and the peak value is
close to 0.

C. Correlated noise in the detector network

In this subsection, we investigate the bias caused by the
correlation of confusion noise among different detectors.
For the matched filtering SNR of the detector network, we
generally assume different detectors or data can be com-
bined in quadrature as

ρnet ≡
ffiffiffiffiffiffiffiffiffiffiffiffiX
i

ρ2i

r
; ð15Þ

where ρi is the matched filtering SNR of the ith detector in
the detector network. This formula is strictly valid only
when the noise of each detector is statistically independent
of each other [135,136]. In the absence of confusion noise,
if the distance between detectors is far enough, this is a
reasonable assumption. Real GW searches use Eq. (15) to
calculate the network SNR [55]. However, for the 3G
detector network, even if the instrumental noise is uncorre-
lated, the confusion noise composed of overlapping GW
signals will still be correlated between different detectors
[see Eq. (7)], so there will be a correlation in the total noise,
and Eq. (15) might no longer hold.
Next, we will discuss the network SNR of the detector

network composed of two 3G detectors (such as two CEs)
based on the method of [135,137]. From the Fourier

transform of the time-domain strain [Eq. (10)], we can
obtain the frequency-domain strain of the first detector I

sIðfÞ ¼ nIDðfÞ þ nICðfÞ þ hIðfÞ; ð16Þ

and the detector noisenðfÞ, the confusion noisePj≠k hjðfÞ,
and the signal hkðfÞ are given as nIDðfÞ, nICðfÞ, and hIðfÞ,
respectively. According to Eq. (9), we can get the one-sided
PSD for nIDðfÞ and nICðfÞ as

hnIDðfÞn�IDðf0Þi ¼
1

2
SDðfÞδðf − f0Þ;

hnICðfÞn�ICðf0Þi ¼
1

2
SCðfÞδðf − f0Þ; ð17Þ

similarly, for the second detector II we have the same results,
just change the index from “I” to “II.”We assume the PSDs
of these two detectors are same and the confusion noise is
isotropic. According to the independence of each compo-
nent, we have (m; n ¼ I; II)

hnmDðfÞn�nDðf0Þi ¼ hnDðfÞn�Cðf0Þi ¼ 0; ð18Þ

and for the confusion noise in two detectors, we have

hnmCðfÞn�nCðf0Þi ¼
1

2
SCðfÞγðfÞδðf − f0Þ; ð19Þ

where γðfÞ is the overlap reduction function (ORF)
[138,139], which only depends on the relative position
and orientation between two detectors, −1 ≤ γðfÞ ≤ 1.
Then we can rewrite Eq. (17) and corresponding equations
for the detector II in a matrix form, which is the noise matrix
or the PSD matrix [135,137],

SmnðfÞ ¼ h½nmDðfÞ þ nmCðfÞ�½nnDðfÞ þ nnCðfÞ��i

¼ ½SDðfÞ þ SCðfÞ�
 

1
PðfÞγðfÞ
1þPðfÞ

PðfÞγðfÞ
1þPðfÞ 1

!
; ð20Þ

in the equation, we ignore 1
2
δðf − f0Þ for simplicity, and

we define PðfÞ≡ SCðfÞ=SDðfÞ as the PSD ratio between
the confusion noise and the instrumental noise. As we
can see, if there is no confusion noise (PðfÞ ¼ 0), the
PSD matrix becomes a diagonal matrix, the diagonal
element is just the PSD of the detector noise. But in general
cases, the diagonal element is the approximation for the PSD
of the total noise Stoth ðfÞ ≈ SDðfÞ þ SCðfÞ. We use “≈”
because we ignore the phase difference between SDðfÞ and
SCðfÞ, but the ensemble average can approximately elimi-
nate this random phase difference.
Following [135,137], we generalize the discussion and

conclusions with the sky-averaged SNR, rather than for a
CBC signal with specific parameters. We replace the numer-
ator in Eq. (14) with the sky-averaged hhIðfÞhIðfÞ�iβ, here
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we use the “β” to abstractly represent sky localization and
polarization angle, “h··iβ” means average over these param-
eters. We additionally account for the variation of each term
with the frequency and the integral over the frequency range,

σ21β ¼ 4

Z
fmax

fmin

hhIðfÞhIðfÞ�iβ
SDðfÞ þ SCðfÞ

df; ð21Þ

similar to the noise matrix, we have

hhIðfÞhIðfÞ�iβ ¼ hhIIðfÞhIIðfÞ�iβ;
hhIðfÞhIIðfÞ�iβ ¼ hhIIðfÞhIðfÞ�iβ ¼ γðfÞhhIðfÞhIðfÞ�iβ;

ð22Þ

so we have the signal matrix for this two-detector network

HmnðfÞ ¼ hhmðfÞhnðfÞ�iβ
¼ hhIðfÞhIðfÞ�iβ

�
1 γðfÞ

γðfÞ 1

�
; ð23Þ

multiplied by the inverse of the PSDmatrix [Eq. (20)], we can
generalize Eq. (21) to σ22β ¼ 4

R fmax
fmin

tr½HmnðfÞSmnðfÞ−1�df,
the off-diagonal elements in the matrixHmnðfÞSmnðfÞ−1 are
caused by the correlated noise. If we divide it by σ21β, we get

σ22β
σ21β

¼
R fmax
fmin

2½1þPðfÞ�½1þPðfÞ−γðfÞ2PðfÞ�
½1þPðfÞ�2−PðfÞ2γðfÞ2

hhIðfÞhIðfÞ�iβ
SDðfÞþSCðfÞ dfR fmax

fmin

hhIðfÞhIðfÞ�iβ
SDðfÞþSCðfÞ df

; ð24Þ

and we define the weight wðf; P; γÞ as

wðf; P; γÞ≡ 2½1þ PðfÞ�½1þ PðfÞ − γðfÞ2PðfÞ�
½1þ PðfÞ�2 − PðfÞ2γðfÞ2 ; ð25Þ

“tr” means take the trace of a matrix. When there is no
confusion noise, i.e., PðfÞ ¼ 0, then Eq. (24) is 2; this is
equivalent to the quadrature summation rule.
In order to more easily compare the information from the

ASD ratio plots, we replace PðfÞ ≈ ½Rtot
detðfÞ�2 − 1, where

Rtot
detðfÞ is the ASD ratio of total noise to that of the

instrumental noise. Here we use “≈” also for the ignorance
of the phase. In Figs. 3 and 4 we see that the maximum of
Rtot
detðfÞ is around 1.30 (1.12) for the CE (ET) upper rate

case, and around 1.10 (1.06) for the CE (ET) median rate
case. We plot the weight wðf; P; γÞ in Eq. (25) as the upper
plot in Fig. 7, the lower one is the weight wðf; P; γÞ divided
by 1þ PðfÞ, which is equivalent to σ22β (with the confusion
noise) divided by σ21β (without the confusion noise). The
upper plot shows the network SNR loss only caused by the
noises’ correlation, the lower one also includes the loss
from the biased PSD in the single detector case.
For E1, E2, and E3 in ET, jγðfÞj is around 0.375 when f

below 100 Hz [57], combined with the maximum ASD

ratio mentioned above, we use triangles to mark the most
extreme weights of ET in Fig. 7. We can see that the
quadrature summation rule of network SNR is still valid for
ET in both rate cases. As for CE, although the final sites of
two CE detectors have not yet been selected, if we assume
they have the same position and orientation as the current
two Advanced LIGO detectors, we can use the jγðfÞj from
[138], where the jγðfÞj can be around 0.8 at 15 Hz. The
weight wðf; P; γÞ might be reduced to around 1.8 (1.6) at
most for median (upper) rate case. For the wðf; P; γÞ=ð1þ
PÞ of CE, it can be around 1.5 (1.0) at the most for median
(upper) rate case.
If a signal has a low detector-frame total mass (such as a

nearby BNS signal), then it will cross a wide range of
frequencies; after the integration in Eq. (24), the final ratio
should still be very close to 2. However, for a signal with a

FIG. 7. The upper plot shows the value of the weight wðf; P; γÞ
defined in Eq. (25), the lower one is the weight wðf; P; γÞ divided
by 1þ PðfÞ. [For their specific meaning, see the text after
Eq. (24)]. The jγj is the absolute value of the overlap reduction
function (ORF) between two GW detectors. The Rtot

det is the ASD
ratio between the total noise and the instrumental noise; note that
PðfÞ ≈ ½Rtot

detðfÞ�2 − 1, which is the PSD ratio between the
confusion noise and the instrumental noise. When the weight
wðf; P; γÞ is very close or equal to 2, that means the quadrature
summation rule of network SNR [Eq. (15)] is still valid. We use
circles (triangles) to mark the most extreme weights of CE (ET)
network for the median rate case (solid) and upper rate case
(hollow). These maximum Rtot

det values are selected from the
median and upper merger rate cases in Figs. 3 and 4, then we use
the corresponding frequency to select jγj.
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very high detector-frame total mass (such as the high
redshift signal or the IMBH signal), the frequency range
within the detector is very narrow, then the network SNR
loss due to the correlated confusion noise will not be
negligible. But in general, we can still assume the quad-
rature summation rule of network SNR is approximately
true for two CE detectors, especially so if mitigation is
applied as described in the next section.

IV. SUBTRACTION OF BINARY NEUTRON
STAR SIGNALS

As shown in Sec. III, the large population of overlapping
signals will have a negative impact on the sensitivity of the
3G ground-based GW detectors; this is primarily due to
biases in the estimation of the PSD. One straightforward
method to reduce the impact is to subtract the known
signals from the data. It can be seen from Sec. III A that
BNS signals have the greatest impact on 3G detectors,
so for simplicity, in this section, we will focus on the
impact of a BNS-only population. Here we choose to do
only a single-detector search and subtraction, which is
conservative if multiple detectors are operating in a net-
work, however, it demonstrates the worst scenario that only
a single highly sensitive detector is operating.
Previous papers have used similar operations in the

detection of the cosmological stochastic GW background.
For example, [140,141] discuss how to reduce the BNS
foreground signals from the Big Bang Observer (BBO)
data, and then use the “residual noise projection”method to
further reduce the residual noise in the previous subtraction
step, making it possible to detect the cosmological sto-
chastic GW background through the standard cross-
correlation method. There are also related studies on signal
subtraction to detect the cosmological stochastic GW
background of the 3G ground-based GW detectors, such
as [142,143]. According to Sec. III, signal subtraction may
also be required for more typical CBC searches. As a first
step, we test a straightforward signal subtraction method
that can be performed without detailed knowledge of the
foreground signal population and estimates of their source
parameters.
In Sec. III, we described the basic principle of matched

filtering. When conducting a search, while we may maxi-
mize over the extrinsic parameters analytically as men-
tioned in Sec. III, to maximize over the intrinsic parameters,
a bank of waveform templates is used which is designed to
cover the target parameter space of the analysis [54]. The
goal is to find a set of discrete lattice points in the intrinsic
parameter space such that any point in this parameter space
matches a template in the bank with a degree higher than a
certain threshold (usually the minimal match is 0.97). This
ensures that the number of missed signals due to the bank’s
discreteness can be minimized. At present, the methods of
generating template banks can be divided into the stochas-
tic [144–148], geometric [149–151], and hybrid [152–155].

In this paper, we use PyCBC’s stochastic method used in
the 4-OGC search [7]. Since the low-frequency cutoff of
ET and CE will be as low as 2 Hz and 5 Hz, therefore, the
BNS signal will last for hours or even days in the frequency
band of the detector [44]. For the signal subtraction, we
choose to generate a template bank starting only from
10 Hz, where the signals will be shorter than an hour. It
would be expected that this initial analysis would be
followed by a deep analysis after the initial subtraction
has been performed. We use IMRPhenomD to generate the
template bank, the reference frequency fref and low-
frequency cutoff fmin are both 10 Hz, and the sampling
rate fs is 4096 Hz. We consider the case of no spin, so the
intrinsic parameter is the detector-frame total mass
and mass ratio. According to the simulation in Secs. II A
and III A, 3G detectors might detect the BNS from high
redshift, so the detector-frame total mass might be several
tens of times solar masses. For bank generation, we choose
½2.4; 60�M⊙ as the detector-frame total mass range, and
[1, 1.636] as the mass ratio range. The lower bound of the
total mass is consistent with the two lowest detector-frame
mass NSs in our population simulation, and the upper
bound of total mass covers BNS from high redshift. The
upper bound on mass ratio is calculated by the lowest and
highest mass NS from our population model. Two template
banks (with a minimal match of 0.97) are generated using
the design sensitivities of ET and CE, requiring 95652 and
152537 templates for CE and ET, respectively.
We analyze mock data containing only BNS signals but

otherwise following Sec. II. There are two sets of data for
CE, corresponding to the median local merger rate dataset
and the upper local merger rate dataset. Similarly, there are
also two datasets for ET.We divide each dataset into several
1-hour data segments with 50% overlap, and use the Welch
method to estimate the PSD of the first data segment for
matched filtering. For each template, we calculate the
corresponding SNR time series and record the filter’s
value, time, and template parameters for each SNR sample
that exceeds jρj ¼ 6. After the entire template bank is
searched, we need to cluster the triggers because the SNR
time series peak of the trigger itself has a width (as can be
seen from Fig. 6), and different templates generate triggers
for the same injected signal. We apply a sliding time
window of 1 s and select the trigger with the largest jρj
within this window. For this study, we neglect triggers that
correspond to signals (from 10 Hz) which are only partially
within the dataset.
The number of false alarms caused by the detector’s

stationary and Gaussian noise is related to the number of
templates Nt in the template bank (strictly, we should use
the number of effective templates, because some templates
in the stochastic bank are redundant), the sampling rate fs,
the data duration T, and the SNR search threshold ρth, then
the number of false alarms can be roughly estimated
by NtfsTe−ρ

2
th=2.
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In our search, at the SNR threshold of 6, most of the
triggers are false alarms, however, we find that at a
threshold of 7, the triggers are mostly true alarms, this
behavior is also predicted by the equation in the last
paragraph. At a threshold of 7 and for CE’s median local
merger rate BNS dataset, the number of true alarms is about
40% of the total injected signals. For CE’s upper local
merger rate BNS dataset, the number of true alarms is about
33% of all injections. In contrast, for the two BNS datasets
of ET (strictly speaking, we just use the E1 detector, not
include E2 and E3), the corresponding numbers are just
around 3%, because the majority of injected signals for ET
have the optimal SNR lower than 7, note that the fmin used
in our search also limits the capability of ET.
To illustrate the parameter accuracy of these true alarms

(parameters obtained by the matched filtering can be
regarded as point estimates of true parameters), we show
the accuracy of the detector-frame chirp mass and the
merger time in Fig. 8,M0 and t0 are the true detector-frame
chirp mass and true merger time of the injected signal,
respectively, while Mm and tm are the point estimates
obtained by the matched filtering. When we compare
triggers and injections, we consider the detector-frame
chirp mass and the merger time to be the same up to
one decimal place as true alarms. We use the cumulative
distribution function (CDF) to show the bias of these point
estimates. More than 90% of true alarms in all datasets have
a deviation of chirp mass smaller than 0.1% and a deviation
of merger time smaller than 0.005 s. For the CE upper rate
case, it has a longer tail to larger deviations, this is caused
by the possibly very close signals [72–77] or the mis-
association issue, sometimes there might be more than one
trigger that meets our true alarm criteria (within 0.1 s and
0.1M⊙) when compared with injections, so we might
choose a nearby but wrong injection.
For each identified candidate trigger, we rescale the

corresponding template according to the trigger’s complex
SNR, to reconstruct an estimate of the injected signal. If we
express the complex SNRwe obtained through the matched
filtering as jρmjeiφm and the template associated with the
trigger is hþ, we get the rescaled template with the
following formula

ĥðt;ΘmÞ ¼
jρmj
σ

1
2

fImin

Z
fmax

fIImin

h̃þ;fIImin
ðf;ΘmÞei½2πfðtþtmÞþφm�df;

ð26Þ

here Θm means all the intrinsic parameters measured by
matched filtering. The fImin is the fmin used in the matched

filteringsearch, inourcase, it is10Hz.Theσ
1
2

fImin
is theoptimal

SNR of the trigger’s template used in matched filtering. The
fIImin is the fmin used to generate the signal in datasets and
subtraction, in our case, 5 Hz for CE and 2 Hz for ET.

We sequentially subtract the rescaled template ĥðt;ΘmÞ
corresponding to all triggers from the dataset. As men-
tioned before, the number of false alarms is related to the
threshold jρthj. If the threshold is too low (so the match
between the template and data is not good enough, the SNR
is just contributed by a small portion of the template), it
means that we are almost injecting the antiphased wave-
form of false alarms that were not originally in the dataset,
which will increase the deviation of the PSD instead. So in
order to examine the effect of different thresholds on the
signal subtraction, we select jρthj ∈ f7; 8; 9; 10g to filter
triggers, if the threshold is 6, we find that too many false
alarms will make the deviation higher than the case without
subtraction, so we do not show the results with a threshold
of 6. The ASD ratios after the signal subtraction are shown
in Fig. 9, we do not show the results for jρthj ¼ 8 to make
the plot clearer, because they are just between results of
7 and 9. For CE’s median local merger rate dataset, the
maximum deviation before subtraction reaches 2%–3%.
After subtraction by different thresholds, the maximum
deviation is reduced. The results of different thresholds are

FIG. 8. The parameter accuracy of the detector-frame chirp
mass and coalescence time recovered by the simplified single-
detector matched filtering search. The upper plot shows the
cumulative distribution function for deviation of the detector-
frame chirp mass of all true alarms in each dataset. The bottom
plot shows the accuracy of coalescence time. More than 90% of
true alarms in each dataset has a deviation of detector-frame chirp
mass smaller than 0.1% and a deviation of merger time smaller
than 0.005 s. Note that E1 means the first subdetector in ET.
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generally similar, but it can still be seen that the lower the
threshold, the better the subtraction; the deviation of the
PSD is nearly eliminated if using a single-detector SNR
threshold of 7. For the CE upper local merger rate dataset,
the maximum deviation before subtraction is about 15%.
After subtracting triggers with jρthj above 10, it is signifi-
cantly reduced to 6%. It can be seen that the deviation of
PSD mainly comes from high SNR signals (jρj above 10).
Similar to the median rate dataset, as the threshold
decreases, the ASD ratio reduces overall, and the best
result is the red line. For the ET median rate cases, the bias
(about 1%–2%) is around 7 Hz, and the signal subtraction
cannot reduce the ASD bias. For the ET upper rate cases,
the results are similar to median rate cases, but with a
higher bias peak of around 7 Hz.
In order to understand the results of signal subtraction,

we also show the results obtained by excluding all signals
with the optimal SNR higher than 7 in the corresponding
dataset, which we can regard as an “optimal subtraction”
when jρthj ¼ 7, because these results are not affected by

false alarms, and there is no residual noise caused by
template parameters’ deviation. For the results of the CE
median rate, the achieved subtraction and the optimal
subtraction are consistent above 10 Hz, and in the
5–10 Hz interval, however, the subtraction is marginally
worse than the optimal reference, this is because we just
extrapolating the waveform to this frequency range [see
Eq. (26)], that means much larger mismatch and residual
noise here. For the CE upper rate results, similarly, in the
frequency range above 10 Hz, there is an agreement
between our subtraction and the optimal reference, how-
ever, in the 5–10 Hz interval, no significant subtraction is
observed. For the ET median (upper) rate cases, all results
are very similar to the optimal reference, which means the
remaining bias is mainly due to signals with the optimal
SNR lower than 7.
To quantitatively study the improvement in detection

ability brought by the straightforward signal subtraction,
we calculate the optimal SNR loss (assuming the optimal
orientation) of equal mass CBC signals with different

FIG. 9. The ratio of the ASD after signal subtraction at different SNR thresholds to the detector noise ASD for CE (upper panels) and
E1 (lower panels) and both the median (left panels) and upper merger rate scenarios (right panels). The blue lines represent the ASD
deviation before the signal subtraction. The orange, green, and red lines represent the results after subtracting the rescaled trigger
waveforms with SNR thresholds of 10, 9, and 7, respectively. The gray lines represent the optimal subtraction of all signals with an
optimal SNR greater than 7. For CE, the deviations peak around 15 Hz, our best subtraction results can almost achieve the optimal
results above 10 Hz. For E1, the deviations peak around 7 Hz, we cannot achieve better ASD by using the current subtraction method,
because most signals are below the SNR threshold 7.
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detector-frame total mass under different ASDs, as shown
in Fig. 10. It can be seen that the overall effect of confusion
noise on ET is lower than CE. Even for the upper rate total
ASD, the observed SNR loss in ET is around 4%. For the
median rate total ASD, the overall loss is lower than 2.5%.
In contrast, the loss of CE’s upper rate total ASD is around
12%. For a signal with a total detector-frame mass of
1000M⊙, the loss will even reach 18%, and for the median
rate total ASD, the loss is also around 5%. For CE, we show
the results before and after BNS signal subtraction
(jρthj ¼ 7), for the median rate BNS ASD, after signal
subtraction, the overall loss can be reduced from 1.2% to
around 0.2%. For the upper rate BNS ASD, the loss can be
greatly reduced from around 8% to 2%. These results are
consistent with Fig. 5. For ET, it can be seen from Fig. 9
that very few BNS signals can be detected and subtracted
from only ET’s subdetector E1. Even for the upper rate
BNS ASD, the loss of ET is below 5% for most sources.
Here we discuss if we can further improve the signal

subtraction results. As we have mentioned before, the
residual noise and the SNR threshold (or false alarms) limit
the capability of signal subtraction. First, let us discuss the
origin of the subtraction residual. If we regard the template
bank as a template manifold [135], the parameters of
the real signal are located in hðt;ΘÞ in the manifold
if there is no systematic error in the waveform modeling.
Due to the existence of the detector noise n, the total
signal s measured by the detector (here we ignore over-
lapping signals for simplicity) will be located outside the
template manifold. Using the entire template bank to
perform matched filtering on the data s is equivalent to
finding the closest point ĥðt;ΘmÞ to s in the template

manifold, so the vector between point s and point ĥðt;ΘmÞ
should be perpendicular to the tangent plane at ĥðt;ΘmÞ
in the manifold (see Fig. 1 in [135]). In fact, the inner
product (8) can be regarded as the projection of a on b,
then we have

hs− ĥðt;ΘmÞj∂Θm
ĥðt;ΘmÞi

¼ hn⊥þnk þhðt;ΘÞ− ĥðt;ΘmÞj∂Θm
ĥðt;ΘmÞi

¼ hn⊥þnk− ðĥðt;ΘmÞ−hðt;ΘÞÞj∂Θm
ĥðt;ΘmÞi¼ 0;

ð27Þ

among them −rðtÞ ¼ ĥðt;ΘmÞ − hðt;ΘÞ is the residual
noise (with the opposite sign). Here we decompose the
detector noise n into n⊥ and nk, which are the perpendicular
and parallel components at the point ĥðt;ΘmÞ, respectively.
As we can see here, hn⊥j∂Θm

ĥðt;ΘmÞi should be 0, so

nk ¼ ĥðt;ΘmÞ − hðt;ΘÞ ¼ −rðtÞ, whichmeans the residual
noise is caused by the parallel component of detector noise
n at the point ĥðt;ΘmÞ. The residual noise can be further
reduced by the residual noise projection method after the
first-stage signal subtraction [140,141]. This follow-up
method is based on the Fisher information matrix (FIM)
and the signal manifold [135], which requires the signal to
have a sufficiently high SNR, that is, satisfying the linear
signal approximation (LSA) [156], which is not valid for
many low SNR signals in our simulations. As we can see in
Fig. 9, above 10 Hz, even without this follow-up step, the
ASD biases are alreadyminimal for 3G detectors. However,
it might be worth investigating if we can further remove

FIG. 10. The optimal SNR loss as a function of total detector-frame masses. The left plot shows the loss when accounting for all source
types, while the right plot shows the results before and after the signal subtraction, but for data including only BNS signals. In general,
the larger the detector-frame total mass (less than 1000–2000M⊙), the higher the SNR loss, then it drops quickly to almost zero; for
1000–2000M⊙ systems, the majority of the signal is contained within the most biased frequency ranges. The SNR loss peaks at higher
masses for ET than CE because the PSD bias is shifted to lower frequencies. By comparing the left and right plots, it can be seen that the
main cause of SNR loss is the ASD deviation caused by BNS signals. The SNR loss in CE caused by confusion noise is more significant
than in ET due to its higher BNS sensitivity.
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some part of the residual noise below 10 Hz by using a
similar second-stage method (without lowering the fmin ¼
10 Hz in our bank generation and search); for the SNR
threshold or false alarms, according to the results from
Sec. III C, the quadrature summation rule of the network
SNR still approximately holds for the 3G network, so we
can utilize multiple detectors to increase the total SNR and
lower the SNR threshold in each detector, that meanswe can
detect and subtract more signals. Also, we can use the
coincidence test of the arrival time and the consistent test of
the template’s parameters between different detectors, to
reduce the number of false alarms [55].

V. CONCLUSIONS

In this paper, we simulated the time-domain strain data
of the 3G ground-based GW detectors CE and ET based on
the latest GWTC-3 population results (see Figs. 1 and 2).
Due to the improved low-frequency sensitivity and much
higher detection rate of the 3G ground-based GW detectors,
GW signals will overlap each other, forming confusion
noise. Since the matched filter is the optimal linear filter
only under stationary and Gaussian noise, the addition of
the correlated non-Gaussian confusion noise (see Fig. 6)
might have an impact on the performance of matched
filtering-based searches. We quantitatively investigated the
factors that might affect the performance of matched
filtering, such as the deviation caused by confusion noise
to the ASD, the deviation caused by cross-terms in the inner
product, and the correlation of confusion noise among the
detector network, which might break the standard quad-
rature summation rule of the network SNR.
We found that the most significant impact from con-

fusion noise on matched filtering comes from biases in PSD
or ASD estimation (see Figs. 3 and 4). We used the horizon
distance (redshift) for different sources to measure the loss
caused by the biased ASD (see Fig. 5). For ET, the
confusion noise made by median (upper) local merger rate
estimates of CBC sources will reduce the horizon redshift
by up to 8 (21)%. For CE, the deviation of the ASD is much
larger; the horizon redshift can be reduced by 15 (38) % for
the median (upper) merger rate scenarios. A portion of PBH
and Pop III sources from redshift higher than 20 may be
missed if the impact of confusion noise is left unmitigated;
these GW sources are important scientific targets for future
3G detectors [157]. In addition, subsolar compact binaries
and high-redshift BNSs will also be affected. The pop-
ulation of sources whose total source-frame mass is higher
than 100M⊙ will still be fully detected but with reduced
SNR for nearby signals.
In addition to a biased ASD, the presence of a foreground

population of signals could directly contribute to the
matched filter if there is an overlap between sources. As
expected, we found that confusion noise has different
properties than the detector’s stationary and Gaussian noise
(see Fig. 6), but in general its contribution to the SNR is

significantly smaller than the instrumental noise. If the
merger times of adjacent CBC signals are close enough,
however, the contribution of cross terms between sources
can no longer be ignored; the effect on parameter estima-
tion has been studied in numerous works [72–77].
We also investigated the SNR loss caused by the noises’

correlation in 3G detector networks. We adopted the
method from [137] and used the effective number of
detectors as a function of the overlap reduction function
and ASD ratio to quantify this loss. Combined with the
results of our biased ASD, we found that the quadrature
summation rule of the network SNR is still approximately
valid for ET, but might be modified for high detector-frame
mass signals for a network of two CE detectors (see Fig. 7).
In order to reduce the influence of confusion noise on

the ASD, we tested a straightforward single-detector
signal subtraction (see Fig. 9) that can be implemented
at a minimal computational cost relative to a full search.
We examined our method with different SNR thresholds
for BNS datasets with different local merger rates. BNS
signals are the main contributor to the confusion noise,
especially for upper local merger rate cases, and it is
straightforward to extend our method to NSBH cases. For
CE, when the SNR threshold is 7, we obtained nearly
optimal subtraction results, almost back to the instru-
mental noise level. Since the vast majority of signals in
E1 are lower than our minimum threshold, the current
signal subtraction results of ET are not ideal; the null
stream method of ET is needed as a supplement to our
method [57,71]. For CE, our method can limit the SNR
loss to 0.2% (median BNS rate) and 2% (upper BNS rate)
in general (see Fig. 10). Our demonstrated signal sub-
traction procedure can be used as a first-stage foreground
cleaning, allowing for more sophisticated follow-up
stages. Our results show that this straightforward sin-
gle-detector implementation is sufficient to enable the
archival detection of typical binary mergers. For the early
warning of mergers with 3G detectors [158], we might
expect more significant biases for high-redshift mergers,
however, expect the detection of nearby, optically bright,
sources would not be significantly impacted.
Our current signal extrapolation and subtraction method

has several constraints: (1) if the threshold of SNR is too
low, there will be a large number of false alarms. Since
there must be some signals below the SNR threshold,
this will limit our method’s capability, and (2) the fmin
used in the bank generation and signal search will affect
the extrapolation accuracy of the rescaled template at
frequencies lower than fmin, thereby the residual noise
lower than fmin after the subtraction is larger. Because the
template bank is generated above fmin, the max mismatch
of the bank (3%) is only valid above this frequency, lower
frequencies need a denser template bank at an increased
computational cost. One may further lower the SNR
threshold by using observations in a detector network;
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multiple detectors increase the total network SNR and
allow for coincidence tests to reduce the contamination
from false positives. It may also be worth investigating how
to combine the residual noise projection method of
[140,141] to further reduce the subtraction residual.

The code used in this research is public at [159]. Our
code is based on the PyCBC [55], PYTHON [160], NumPy

[161], SymPy [162], SciPy [163], and MATPLOTLIB [164].
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Ohme, G. Pratten, and M. Pürrer, Simple Model of
Complete Precessing Black-Hole-Binary Gravitational
Waveforms, Phys. Rev. Lett. 113, 151101 (2014).

[120] G. Pratten et al., Computationally efficient models
for the dominant and subdominant harmonic modes of
precessing binary black holes, Phys. Rev. D 103, 104056
(2021).

[121] A. Buonanno and T. Damour, Transition from inspiral to
plunge in binary black hole coalescences, Phys. Rev. D 62,
064015 (2000).

[122] S. Ossokine et al., Multipolar effective-one-body
waveforms for precessing binary black holes: Con-
struction and validation, Phys. Rev. D 102, 044055
(2020).

[123] S. E. Field, C. R. Galley, J. S. Hesthaven, J. Kaye, and M.
Tiglio, Fast Prediction and Evaluation of Gravitational
Waveforms Using Surrogate Models, Phys. Rev. X 4,
031006 (2014).

[124] N. E. M. Rifat, S. E. Field, G. Khanna, and V. Varma,
Surrogate model for gravitational wave signals from
comparable and large-mass-ratio black hole binaries, Phys.
Rev. D 101, 081502 (2020).

[125] M. Maggiore, Gravitational Waves. Vol. 1: Theory and
Experiments, Oxford Master Series in Physics (Oxford
University Press, New York, 2007).

[126] H.-Y. Chen, D. E. Holz, J. Miller, M. Evans, S. Vitale, and
J. Creighton, Distance measures in gravitational-wave
astrophysics and cosmology, Classical Quantum Gravity
38, 055010 (2021).

[127] P. Welch, The use of fast Fourier transform for the
estimation of power spectra: A method based on time
averaging over short, modified periodograms, IEEE Trans.
Audio Electroacoust. 15, 70 (1967).

[128] K. Chatziioannou and W.M. Farr, Inferring the maximum
and minimum mass of merging neutron stars with gravi-
tational waves, Phys. Rev. D 102, 064063 (2020).

[129] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Search for Subsolar Mass Ultracompact Binaries in
Advanced LIGO’s Second Observing Run, Phys. Rev.
Lett. 123, 161102 (2019).

[130] A. H. Nitz and Y.-F. Wang, Search for Gravitational Waves
from the Coalescence of Subsolar-Mass Binaries in the
First Half of Advanced LIGO and Virgo’s Third Observing
Run, Phys. Rev. Lett. 127, 151101 (2021).

SHICHAO WU and ALEXANDER H. NITZ PHYS. REV. D 107, 063022 (2023)

063022-20

https://doi.org/10.1088/0004-637X/759/1/52
https://dcc.ligo.org/LIGO-G2102458/public
https://dcc.ligo.org/LIGO-G2102458/public
https://dcc.ligo.org/LIGO-G2102458/public
https://dcc.ligo.org/LIGO-G2102458/public
https://doi.org/10.1103/PhysRevD.105.084040
https://doi.org/10.1103/PhysRevD.105.084040
https://doi.org/10.1103/PhysRevLett.120.161102
https://doi.org/10.3847/1538-4357/ac19a7
https://doi.org/10.1103/PhysRevD.101.124059
https://doi.org/10.1103/PhysRevD.102.043023
https://doi.org/10.1103/PhysRevD.102.043023
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.80.084043
https://doi.org/10.1103/PhysRevD.100.044003
https://doi.org/10.1103/PhysRevD.100.044003
https://doi.org/10.1103/PhysRevD.100.104029
https://doi.org/10.1103/PhysRevD.100.104029
https://arXiv.org/abs/2205.09112
https://arXiv.org/abs/2205.09979
https://doi.org/10.1051/epjconf/201818202003
https://doi.org/10.1051/epjconf/201818202003
https://doi.org/10.7935/GT1W-FZ16
https://doi.org/10.7935/GT1W-FZ16
https://doi.org/10.1103/PhysRevD.97.064031
https://arXiv.org/abs/2202.11048
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/9781108933445
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevD.103.104056
https://doi.org/10.1103/PhysRevD.103.104056
https://doi.org/10.1103/PhysRevD.62.064015
https://doi.org/10.1103/PhysRevD.62.064015
https://doi.org/10.1103/PhysRevD.102.044055
https://doi.org/10.1103/PhysRevD.102.044055
https://doi.org/10.1103/PhysRevX.4.031006
https://doi.org/10.1103/PhysRevX.4.031006
https://doi.org/10.1103/PhysRevD.101.081502
https://doi.org/10.1103/PhysRevD.101.081502
https://doi.org/10.1088/1361-6382/abd594
https://doi.org/10.1088/1361-6382/abd594
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1103/PhysRevD.102.064063
https://doi.org/10.1103/PhysRevLett.123.161102
https://doi.org/10.1103/PhysRevLett.123.161102
https://doi.org/10.1103/PhysRevLett.127.151101


[131] S. M. Koushiappas and A. Loeb, Maximum Redshift of
Gravitational Wave Merger Events, Phys. Rev. Lett. 119,
221104 (2017).

[132] K. K. Y. Ng, S. Vitale, W.M. Farr, and C. L. Rodriguez,
Probing multiple populations of compact binaries with
third-generation gravitational-wave detectors, Astrophys.
J. Lett. 913, L5 (2021).

[133] M. Martinelli, F. Scarcella, N. B. Hogg, B. J. Kavanagh, D.
Gaggero, and P. Fleury, Dancing in the dark: Detecting a
population of distant primordial black holes, J. Cosmol.
Astropart. Phys. 08 (2022) 006.

[134] K. K. Y. Ng, G. Franciolini, E. Berti, P. Pani, A. Riotto, and
S. Vitale, Constraining high-redshift stellar-mass primordial
black holes with next-generation ground-based gravita-
tional-wave detectors, Astrophys. J. Lett. 933, L41 (2022).

[135] C. Cutler and E. E. Flanagan, Gravitational waves from
merging compact binaries: How accurately can one extract
the binary’s parameters from the inspiral wave form?,
Phys. Rev. D 49, 2658 (1994).

[136] L. S. Finn, Aperture synthesis for gravitational wave data
analysis: Deterministic sources, Phys. Rev. D 63, 102001
(2001).

[137] N. Seto, Correlation of gravitational wave background
noises and statistical loss for angular averaged sensitivity
curves, Phys. Rev. D 104, 063025 (2021).

[138] N. V. Fotopoulos (LIGO Scientific Collaboration), Search-
ing for stochastic gravitational-wave background with the
co-located LIGO interferometers, J. Phys. Conf. Ser. 122,
012032 (2008).

[139] J. Aasi et al. (LIGO Scientific and Virgo Collaborations),
Searching for stochastic gravitational waves using data
from the two colocated LIGO Hanford detectors, Phys.
Rev. D 91, 022003 (2015).

[140] C. Cutler and J. Harms, BBO and the neutron-star-binary
subtraction problem, Phys. Rev. D 73, 042001 (2006).

[141] J. Harms, C. Mahrdt, M. Otto, and M. Priess, Subtraction-
noise projection in gravitational-wave detector networks,
Phys. Rev. D 77, 123010 (2008).

[142] A. Sharma and J. Harms, Searching for cosmological
gravitational-wave backgrounds with third-generation de-
tectors in the presence of an astrophysical foreground,
Phys. Rev. D 102, 063009 (2020).

[143] S. Sachdev, T. Regimbau, and B. S. Sathyaprakash, Sub-
tracting compact binary foreground sources to reveal
primordial gravitational-wave backgrounds, Phys. Rev.
D 102, 024051 (2020).

[144] S. Babak, Building a stochastic template bank for detecting
massive black hole binaries, Classical Quantum Gravity
25, 195011 (2008).

[145] C. Messenger, R. Prix, and M. A. Papa, Random template
banks and relaxed lattice coverings, Phys. Rev. D 79,
104017 (2009).

[146] I. W. Harry, B. Allen, and B. S. Sathyaprakash, A Sto-
chastic template placement algorithm for gravitational
wave data analysis, Phys. Rev. D 80, 104014 (2009).

[147] G. M. Manca and M. Vallisneri, Cover art: Issues in the
metric-guided and metric-less placement of random and
stochastic template banks, Phys. Rev. D 81, 024004 (2010).

[148] B. Allen, Performance of random template banks, Phys.
Rev. D 105, 102003 (2022).

[149] B. J. Owen, Search templates for gravitational waves from
inspiraling binaries: Choice of template spacing, Phys.
Rev. D 53, 6749 (1996).

[150] T. Cokelaer, Gravitational waves from inspiralling com-
pact binaries: Hexagonal template placement and its
efficiency in detecting physical signals, Phys. Rev. D
76, 102004 (2007).

[151] J. Roulet, L. Dai, T. Venumadhav, B. Zackay, and M.
Zaldarriaga, Template bank for compact binary coalescence
searches in gravitational wave data: A general geometric
placement algorithm, Phys. Rev. D 99, 123022 (2019).

[152] S. Roy, A. S. Sengupta, and P. Ajith, Effectual template
banks for upcoming compact binary searches in Advanced-
LIGO and Virgo data, Phys. Rev. D 99, 024048 (2019).

[153] T. Dal Canton and I. W. Harry, Designing a template bank
to observe compact binary coalescences in Advanced
LIGO’s second observing run, arXiv:1705.01845.

[154] S. Roy, A. S. Sengupta, and N. Thakor, Hybrid geometric-
random template-placement algorithm for gravitational
wave searches from compact binary coalescences, Phys.
Rev. D 95, 104045 (2017).

[155] A. Coogan, T. D. P. Edwards, H. S. Chia, R. N. George, K.
Freese, C. Messick, C. N. Setzer, C. Weniger, and A.
Zimmerman, Efficient template bank generation with
differentiable waveforms, Phys. Rev. D 106, 122001
(2022).

[156] L. S. Finn, Detection, measurement and gravitational
radiation, Phys. Rev. D 46, 5236 (1992).

[157] M. Evans, R. X. Adhikari, C. Afle, S. W. Ballmer, S.
Biscoveanu, S. Borhanian, D. A. Brown, Y. Chen, R.
Eisenstein, A. Gruson et al., A horizon study for cosmic
explorer: Science, observatories, and community, arXiv:
2109.09882.

[158] A. H. Nitz and T. Dal Canton, Pre-merger localization of
compact-binary mergers with third-generation observato-
ries, Astrophys. J. Lett. 917, L27 (2021).

[159] W. Shichao, confusion-noise-3g, version: v1.1.0 (2023),
10.5281/zenodo.7876821.

[160] G. Van Rossum and F. L. Drake Jr, PYTHON Tutorial
(Centrum voor Wiskunde en Informatica Amsterdam,
The Netherlands, 1995), Vol. 620.

[161] C. R. Harris et al., Array programming with NumPy, Nature
(London) 585, 357 (2020).

[162] A. Meurer et al., SymPy: Symbolic computing in PYTHON,
PeerJ Comput. Sci. 3, e103 (2017).

[163] P. Virtanen et al., SciPy 1.0–Fundamental algorithms for
scientific computing in PYTHON, Nat. Methods 17, 261
(2020).

[164] J. D. Hunter, MATPLOTLIB: A 2d graphics environment,
Comput. Sci. Eng. 9, 90 (2007).

Correction: The first inline equation in the fourth para-
graph in Sec. III C contained an error and has been fixed.
Related changes were needed to Fig. 7 and the fifth and
sixth paragraphs in Sec. III C. The source in Ref. [159]
contained an error and has been replaced.

MOCK DATA STUDY FOR NEXT-GENERATION GROUND-BASED … PHYS. REV. D 107, 063022 (2023)

063022-21

https://doi.org/10.1103/PhysRevLett.119.221104
https://doi.org/10.1103/PhysRevLett.119.221104
https://doi.org/10.3847/2041-8213/abf8be
https://doi.org/10.3847/2041-8213/abf8be
https://doi.org/10.1088/1475-7516/2022/08/006
https://doi.org/10.1088/1475-7516/2022/08/006
https://doi.org/10.3847/2041-8213/ac7aae
https://doi.org/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/PhysRevD.63.102001
https://doi.org/10.1103/PhysRevD.63.102001
https://doi.org/10.1103/PhysRevD.104.063025
https://doi.org/10.1088/1742-6596/122/1/012032
https://doi.org/10.1088/1742-6596/122/1/012032
https://doi.org/10.1103/PhysRevD.91.022003
https://doi.org/10.1103/PhysRevD.91.022003
https://doi.org/10.1103/PhysRevD.73.042001
https://doi.org/10.1103/PhysRevD.77.123010
https://doi.org/10.1103/PhysRevD.102.063009
https://doi.org/10.1103/PhysRevD.102.024051
https://doi.org/10.1103/PhysRevD.102.024051
https://doi.org/10.1088/0264-9381/25/19/195011
https://doi.org/10.1088/0264-9381/25/19/195011
https://doi.org/10.1103/PhysRevD.79.104017
https://doi.org/10.1103/PhysRevD.79.104017
https://doi.org/10.1103/PhysRevD.80.104014
https://doi.org/10.1103/PhysRevD.81.024004
https://doi.org/10.1103/PhysRevD.105.102003
https://doi.org/10.1103/PhysRevD.105.102003
https://doi.org/10.1103/PhysRevD.53.6749
https://doi.org/10.1103/PhysRevD.53.6749
https://doi.org/10.1103/PhysRevD.76.102004
https://doi.org/10.1103/PhysRevD.76.102004
https://doi.org/10.1103/PhysRevD.99.123022
https://doi.org/10.1103/PhysRevD.99.024048
https://arXiv.org/abs/1705.01845
https://doi.org/10.1103/PhysRevD.95.104045
https://doi.org/10.1103/PhysRevD.95.104045
https://doi.org/10.1103/PhysRevD.106.122001
https://doi.org/10.1103/PhysRevD.106.122001
https://doi.org/10.1103/PhysRevD.46.5236
https://arXiv.org/abs/2109.09882
https://arXiv.org/abs/2109.09882
https://doi.org/10.3847/2041-8213/ac1a75
https://doi.org/10.5281/zenodo.7876821
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55

