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Abstract The vibration and acoustic behavior of elec-
tricmachines is an important aspect of the design pro-
cess. A crucial part of the modeling is the correct pre-
diction of the stator’s vibration behavior, character-
ized by the stator’s eigenfrequencies and eigenmodes.
For this purpose, a calculation approach called the an-
alytical beam element model (ABM) was presented in
a previous paper [18], where Euler–Bernoulli beams
were used to describe the vibration behavior of the
stator. The ABM introduced offers an alternative to
the finite element (FE) method and to classical analyt-
ical models. In this paper, the model is examined and
extended further. Different approaches conceived to
better describe the influence of the stator yoke’s thick-
ness by using Timoshenko beams and a multi-layer
discretization are presented and discussed. Further-
more, a new feature that considers the lever arm effect
of the stator teeth with respect to the yoke is intro-
duced. The results are compared to FE calculations
and measurements. Lastly, the improved ABM is used
to calculate the vibration behavior of four stators with
outer diameters ranging from 160mm to 7m. The re-
sults are compared to FE results to prove the accuracy
of the ABM.
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Das Analytische Balkenelement-Modell: ein
neuer Ansatz zur Berechnung des
Schwingungsverhaltens elektrischer Maschinen

Zusammenfassung Die Berechnung des Schwin-
gungsverhaltens elektrischer Maschinen ist ein wich-
tiger Bestandteil bei der Dimensionierung elektrischer
Maschinen. Die schnelle und genaue Berechnung des
mechanischen Schwingungsverhaltens, das durch die
Eigenfrequenzen und -formen des Ständers bestimmt
wird, stellt dabei eine Herausforderung dar. In dieser
Arbeit wird ein neuer Berechnungsansatz vorgestellt,
der auf einem analytischen Balkenelement beruht,
und eine Alternative zu der Finite-Elemente-Methode
(FEM) und den konventionellen analytischen Berech-
nungsansätzen ist. Das Analytische Balkenelement-
Modell (ABM) wurde bereits in [18] eingeführt und
anhand einer Beispielmaschine validiert. In dieser
Arbeit wird das ABM weiter untersucht, erweitert und
modifiziert. Der Einfluss der Ständerjochhöhe auf
die Eigenfrequenzen und -formen wird modelliert.
Dafür werden zwei unterschiedliche Balkenelement-
Modelle, der Euler-Bernoulli-Balken und der Timo-
shenko-Balken, verwendet, und der Ständer wird mit
mehreren Lagen von Balkenelementen modelliert.
Zusätzlich wird die Verbindung der Zähne zum Stän-
derjoch untersucht. Eine Koordinatentransformation
wird verwendet, um die Hebelwirkung der Ständer-
zähne auf das Ständerjoch zu berücksichtigen. Das
modifizierte ABM wird anhand von Messungen und
FE-Berechnungen der Beispielmaschine aus [18] vali-
diert. Darüber hinaus wird das ABM verwendet, um
das Schwingungsverhalten von vier unterschiedlichen
Statoren mit Außendurchmessern von 160mm bis 7m
zu bestimmen. Die Ergebnisse werdenmit FE-Berech-
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nungen verglichen, um die allgemeine Gültigkeit des
ABM nachzuweisen.

Schlüsselwörter Elektrische Maschinen · Finite-
Elemente-Methode · Magnetische Kerne ·
Numerische Berechnung · Analytische Berechnung ·
Stator · Schwingungen · Eigenfrequenzen ·
Eigenformen · Balkenelement

Nomenclature
A Cross-sectional area
A Assembly matrix
D Damping matrix
D i Inner yoke diameter
Do Outer yoke diameter
E Young’s modulus
f Frequency
�F Force vector
hy Yoke height
ht Tooth height
htt Tooth tip height
I Moment of inertia
K Stiffness matrix
k Order of force wave
l Element length
ls Stator length
M Mass matrix
m Number of elements per tooth
N1 Number of stator slots
n Number of yoke elements per slot pitch
q Number of degrees of freedom
r Order of eigenmode
t Time
T Number of stator teeth
u Displacement in direction x or t
v Displacement in direction y or r
wt Tooth width
wtt Tooth tip width
wso Slot opening width
�x Node displacement vector
α Angle between adjacent elements
γ′ Mechanical angle
ρ Mass density
φ Bending angle
θ Angle between coordinate systems
�Ψ Eigenvector
ω Angular frequency

1 Introduction

To determine the acoustic and vibration behavior of
electric machines, the exciting magnetic forces in the
air gap and the structural dynamic behavior of the
machine must be calculated [1–4]. The forces in the
air gap of the machine �F (γ′, t) can be converted into
force waves �Fk (ω) with the order k describing the
shape of the force wave. If the frequency and shape
of a force wave coincide with an eigenmode and an
eigenfrequency of the electric machine’s sound rad-

iating parts, loud acoustic noise is emitted into the
surroundings. Thus, the correct calculation in two do-
mains, electromagnetic and structural dynamics, are
important.

The vibration behavior of electric machines is char-
acterized by the eigenfrequencies and eigenmodes of
the sound radiating parts. The radiating parts are the
stator, including the winding, and the housing. To
calculate the vibration behavior, different approaches
can be found in literature. Jordan and Frohne cal-
culate the eigenfrequencies and eigenmodes using an
analytical model based on a simplified circular ring
of the machine’s stator [1, 5]. The stator teeth and
the winding are considered as additional mass. This
model is expanded in the axial direction by Gieras [6].
In [7, 8], Verma and Girgis present a model that is
based on the energy method. Another calculation ap-
proach is the finite-element (FE) method. The geom-
etry is discretized into small elements for which the
equations of motion are solved. The FE method al-
lows the definition of different components, such as
the winding and the housing, using different mate-
rial models [9–13]. Due to its high accuracy, the FE
method is widely used to calculate the vibration be-
havior of electric machines [3, 10–12, 14–17].

The analytical models and the FE method have cer-
tain advantages and disadvantages. The analytical
models can be implemented easily, need low com-
putational resources and provide fast results. How-
ever, the models only provide valid results if certain
boundary conditions are fulfilled: the ratio

hy

Do
of the

yoke height hy to the outer diameter Do must be small
and the tooth eigenfrequencies must be significantly
higher than the yoke eigenfrequencies. Furthermore,
it is impracticable or at least difficult to include differ-
ent components such as winding, teeth and housing
in the model. The FE models can consider different
geometries and components and can give more ac-
curate results. However, they require high computa-
tional resources, a long modeling time and typically
a software license.

To provide a fast and accurate calculation model
that combines the advantages of the analytical models
and the FE method, the so-called analytical beam el-
ement model (ABM) is introduced in [18]. The model
is based on an Euler-Bernoulli beam element model
that consists of two nodes, each with three degrees of
freedom. The beams are used to build up a 2D model
of the stator, including the stator yoke and teeth. The
system’s equation is derived from the beam element
equations and is solved to determine the eigenfre-
quencies and eigenmodes. In [18], the ABM is vali-
dated using measurement results from the stator of
a high-speed electric machine.

The goal of this work is to examine and extend the
ABM further and to apply the model to machines of
different sizes for validation. First, the basic approach
of the ABM is summarized in Sect. 2. Then, differ-
ent new approaches to the consideration of the sta-
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Fig. 1 Steps used to build up the analytical beam element model (ABM)

tor yoke’s thickness are discussed in Sect. 3. These
are the Timoshenko beam formulation, the multi-layer
discretization of the yoke and a new feature which
considers the lever arm effect of the stator teeth with
respect to the yoke’s intermediate surface, which are
introduced in this paper. The results are compared to
measurements and FE simulations in Sect. 4. In or-
der to prove the general applicability of the ABM, the
vibration behavior of four different stators with outer
diameters ranging from 160mm to 7m are calculated.
The results from these machines are compared to FE
simulations in Sect. 5.

2 Analytical Beam Element Model — Basic
Approach

In this section, the ABM is briefly introduced. A de-
tailed description can be found in [18]. The individual
steps employed to build the ABM are shown in Fig. 1
and described in the Sects. 2.2 to 2.5. First, the basic
equation and the solution of a multi-mass oscillator
are described in Sect. 2.1. Based on the basic ap-
proach of the ABM, the new modeling approaches are
introduced.

2.1 Basic Equation of a Multi-Mass Oscillator

The stator of an electric machine can be described
by a multi-mass oscillator. This is a multi-degree-of-
freedom (DOF) system without gyroscopic effects that
can be generally described by

M
d2�x(t)

dt2
+D

d�x(t)

dt
+K�x(t)=�F , (1)

where M, D and K are the mass, damping and stiffness
matrices, respectively. �F is the vector of the applied
forces and �x is the vector of displacements for each
DOF.

The system can be decomposed and diagonalized

in terms of its eigenvectors
−→
Ψr , also known as its

eigenmodes, and the corresponding eigenfrequencies

f0,r . The eigenfrequencies ω0,r = 2π f0,r are calculated
by solving

det(−ω2
0M+K)= 0, (2)

which will provide q solutions for a system with q
DOFs. r is the order of the eigenmodes. In case of
a cylindrical structure such as the stator of an elec-
tric machine, the order r represents the number of
maxima or minima around the circumference.

The eigenvectors
−→
Ψr are determined by replacing

each of the q obtained eigenfrequencies in (1), rewrit-
ten in the frequency domain with no damping and
no external forces. The base transformation or modal
matrix Ψ is then defined as the matrix formed by the
q eigenvectors placed in its columns

Ψ= [
−→
Ψ1,

−→
Ψ2. . .

−→
Ψq ]. (3)

The relationship between the vectors �x (in the orig-
inal base) and �X (in the transformed base) is given
by

�x =Ψ�X . (4)

Since the eigenvectors provide only the directions
of the new vector base, they can be arbitrarily scaled.
Typically, the mass matrix is used for the scaling, giv-
ing the relations

ΨTMΨ= I=diag(1) (5)

ΨTKΨ=ω2
0 =diag(ω2

0,r ) (6)

ΨTDΨ=D′ =diag(2drω0,r ) (7)

where r = 1...q. In (7), it is assumed that the damp-
ing matrix can be approximated as a linear combina-
tion of the mass and stiffness matrices, and dr is the
modal damping factor for eigenmode r . As a result,

292 The analytical beam element model: novel approach for fast calculation of vibrations in electric machines K



Originalarbeit

the decoupled system equations in the transformed
base become

(−ω2I+ jωD′ +ω2
0)�X (ω)=ΨT�F (ω). (8)

Using this equation, the vibration response �x to
a force excitation �F of the system can be calculated.
This procedure forms the basis of the vibration and
acoustic analysis. The purpose of the ABM is to de-
scribe the mass and stiffness matrices and to calculate
the eigenfrequencies and eigenmodes.

2.2 Euler-Bernoulli Beam Element

In the basic approach introduced in [18], the Eu-
ler–Bernoulli beam element, as represented in Fig. 1a,
is used to discretize the stator of an electric machine
and to generate the mass and stiffness matrices.

The stiffness matrix Ke for such a beam element
with three DOFs per node is

Ke =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA
l 0 0 −EA

l 0 0
0 12E I

l3
6E I
l2

0 −12E I
l3

6E I
l2

0 6E I
l2

4E I
l 0 −6E I

l2
2E I
l

−EA
l 0 0 EA

l 0 0
0 −12E I

l3
−6E I

l2
0 12E I

l3
−6E I

l2

0 6E I
l2

2E I
l 0 −6E I

l2
4E I
l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

E is the material’s Young’s modulus, l is the beam ele-
ment length, A is the cross-sectional area and I is the
moment of inertia of the beam [19]. Shear strains are
neglected in this formulation. Similarly, the element’s
mass matrix Me is defined as

Me = ρAl

420

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

140 0 0 70 0 0
0 156 22l 0 54 −13l
0 22l 4l2 0 13l −3l2
70 0 0 140 0 0
0 54 13l 0 156 −22l
0 −13l −3l2 0 −22l 4l2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10)

where ρ is the beam material’s mass density [19]. The
mass and stiffness matrices are defined by considering
the node DOFs shown in Fig. 1a as a vector written in
the sequence [uA,vA,φA,uB ,vB ,φB ]T .

2.3 Representation of the Stator Geometry with
Beam Elements

The cross-sectional area of the elements in the yoke
corresponds to the stator’s axial length ls multiplied by
the yoke height hy. The cross-section of the elements
which represent the teeth is assumed to be constant
and is defined by the stator’s axial length and the aver-
age width of the teeth. In case the teeth have tips with
a larger width, the tip’s additional mass is accounted

for by increasing the mass density of the last element
of each tooth.

Initially, the elements are not connected to each
other. This way, the free element equations, using
their own local coordinate systems, can be written by
replicating the single-element mass and stiffness ma-
trices on the diagonal of a global matrix. This proce-
dure produces the stiffness matrix Kraw and the mass
matrix Mraw [18].

2.4 Coordinate Transformation

The next step is to connect the beam elements to each
other. This is achieved by means of defined mas-
ter nodes named P11. . . PTn and Q11. . .QTm, which
use a cylindrical coordinate system and correlate with
the beam nodes A, B, C, and D, as illustrated in Fig. 1c.
The relation between an arbitrary element node EN in
its local coordinate system and a corresponding mas-
ter node MN in cylindrical coordinates is

⎡
⎢⎣
uEN

vEN
φEN

⎤
⎥⎦

︸ ︷︷ ︸
�xEN

=

⎡
⎢⎣
−sinθ cosθ 0
cosθ sinθ 0
0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
H(θ)

⎡
⎢⎣
uMN

vMN

φMN

⎤
⎥⎦

︸ ︷︷ ︸
�xMN

. (11)

θ is the angle between the r and y axes of the cylin-
drical and local coordinate systems. Based on the
trigonometric relations shown in Fig. 1c, the trans-
formation matrices are calculated as

HA =H
(α
2

)
; HB =H

(
−α

2

)
; HC =HD =H

(π
2

)
(12)

for nodes A, B, C, and D, respectively. The angle α

is the angle between adjacent elements in the stator
yoke.

2.5 Stator Geometry with Master Nodes

Based on this, a complete nodal transformation from
ABCD (element nodes) to PQ (master nodes) is per-
formed by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�xA11
�xB11
�xA12
�xB12
...

�xC11
�xD11
�xC12
�xD12

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�xABCD

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HA 0 .. . 0 . . .

0 HB
... HA

HB
. . .

HC

HD

HC

0 HD
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�xP11
�xP12
�xP13

...

�xQ11
�xQ12

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�xPQ

(13)
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Fig. 2 Beam element behavior in deformation. a Euler-
Bernoulli beam, b Timoshenko beam

A is the assembly matrix obtained by combining the
previously defined transformation matrices HA, HB,
HC and HD, surrounded by zeros. The final system
stiffness matrix KA and mass matrix MA of the con-
nected beams become

KA =AT ·Kraw ·A, (14)

and

MA =AT ·Mraw ·A. (15)

These two matrices are used for calculating the sta-
tor eigenmodes and eigenfrequencies according to the
procedure described in Sect. 2.1.

3 Different Modeling Approaches

Different approaches are investigated for taking into
account the effect of the stator yoke’s thickness on the
eigenmodes and eigenfrequencies. These approaches
use the Timoshenko beam element or the multi-layer
structure which are presented and compared in the
following subsections. Furthermore, a translation
transformation is introduced to consider the lever
arm effect of the stator teeth on the yoke’s intermedi-
ate surface.

3.1 Timoshenko Beam

The first approach involves to replace the Euler-
Bernoulli beam element used in [18] with the Ti-
moshenko beam element. The Euler-Bernoulli beam
element assumes that the beam cross-section remains
perpendicular to the beam’s intermediate axis when
deformed. This assumption neglects the shear defor-
mations and is typically suitable for problems where
the beam thickness is relatively small compared to its
length. The Timoshenko formulation allows the beam
cross-section to rotate with respect to the intermedi-
ate axis and, therefore, takes into account possible
shear deformations. This allows the method to ac-
count for the natural tendency of the cross-section to
rotate back to its initial position, relieving the inter-
nal stresses and making the Timoshenko formulation
suitable for moderately thick beams. Fig. 2 illustrates
the assumptions made using the two formulations
discussed.

Fig. 3 Representation of the multi-layer structure of the
beam elements in the stator yoke

Fig. 4 Modeling of the connection of the stator teeth and the
stator yoke

According to the Timoshenko formulation, the mass
matrix

Me =Mtrans+Mrot (16)
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can be written as the sum of the translational mass
Mtrans and the rotational mass Mrot. Together with the
corresponding stiffness mass Ke they are [19]

Mtrans = ρAl

210(1+γ)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

70(1+γ)2 0 0 35(1+γ)2 0 0
0 (70γ2+147γ+78) (35γ2+77γ+44) l4 0 (35γ2+63γ+27) −(35γ2+63γ+26) l4
0 (35γ2+77γ+44) l4 (7γ2+14γ+8) l

2

4 0 (35γ2+63γ+26) l4 −(7γ2+14γ+6) l
2

4
35(1+γ)2 0 0 70(1+γ)2 0 0

0 (35γ2+63γ+27) (35γ2+63γ+26) l4 0 (70γ2+147γ+78) −(35γ2+77γ+44) l4
0 −(35γ2+63γ+26) l4 −(7γ2+14γ+6) l

2

4 0 −(35γ2+77γ+44) l4 (7γ2+14γ+8) l
2

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(17)

Mrot =
ρI

30(1+γ)2l

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 36 −(15γ−3)l 0 −36 −(15γ−3)l
0 −(15γ−3)l (10γ2+5γ+4)l2 0 (15γ−3)l (5γ2−5γ−1)l2

0 0 0 0 0 0
0 −36 (15γ−3)l 0 36 (15γ−3)l
0 −(15γ−3)l (5γ2−5γ−1)l2 0 (15γ−3)l (10γ2+5γ+4)l2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(18)

and

Ke =C ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Al2

I (1+γ) 0 0 − Al2

I (1+γ) 0 0
0 12 6l 0 −12 6l
0 6l (4+γ)l2 0 −6l (2−γ)l2

− Al2

I (1+γ) 0 0 Al2

I (1+γ) 0 0
0 −12 −6l 0 12 −6l
0 6l (2−γ)l2 0 −6l (4+γ)l2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(19)

C and γ are defined by

C = EI

(1+γ)l3
and γ= 12

l2

(
EI

κGA

)
. (20)

κ is the shear correction factor used to consider the
non-uniform shear distributions. It is typically as-
sumed to be 5/6 [19]. G is the shear modulus. Under
the assumption that the material is isotropic, this can
be calculated as [20]

G = E

2(1+μ)
. (21)

μ is the Poisson’s ratio. When considering an isotropic
material, the material is defined if two of the three
quantities E , G and μ are known. It is worth not-
ing that (9) and (10) from the investigation of the Eu-
ler-Bernoulli beam correspond to a particular case of
the Timoshenko beam in which the shear modulus G
tends to infinity.

3.2 Multi-Layer Structure

Another possible approach to considering the stator
yoke’s thickness accurately is to discretize the yoke
with multiple Euler-Bernoulli beam element layers, as
represented in Fig. 3. The layers are connected to each

other by vertical beam elements with a cross-section
dependent on the number of elements around the cir-
cumference and a length dependent on the number
of layers. It is worth noting that the vertical elements’
masses would overlap with that of the yoke elements,
since they occupy the same volume. Therefore, the
mass density of all the vertical elements in the yoke
is set to zero, so that they act solely as an ideal elastic
connection between the layers.

This approach also requires an extension of the as-
sembly matrix A defined in (13) to consider the con-
nection of the newly introduced beams. The exten-
sions are made following the same principle as pre-
sented in Sect. 2.2.

3.3 Tooth Connection Modeling

Since the beam elements representing the stator yoke
correspond to the yoke’s intermediate surface, a di-
rect connection between the tooth base and the yoke
nodes would produce a partial overlap of the tooth
and yoke beam elements. Taking the yoke height as

hy, the overlapping height is
hy

2 as illustrated in Fig. 4.
Evidently, this fact becomes more relevant for the case
of a thick stator yoke.
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In this work, an additional translational transfor-
mation of the master nodes P is considered as means
to connect the nodes of the tooth bases to the yoke.
This translation corresponds to the lever arm effect of
the yoke cross-section modeled as a rigid body when
it rotates. For an arbitrary translation of (Δx, Δy) ap-
plied to a point P ′ with respect to the point P , the
transformation matrix T(Δx,Δy) can be defined as

⎡
⎢⎣
uP ′

vP ′

φP ′

⎤
⎥⎦

︸ ︷︷ ︸
�xP ′

=

⎡
⎢⎣
1 0 −Δy

0 1 Δx

0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
T(Δx ,Δy)

⎡
⎢⎣
uP

vP
φP

⎤
⎥⎦

︸ ︷︷ ︸
�xP

. (22)

In combination with the rotation matrix presented
in (11), a generalized coordinate transformation in-
cluding translations and rotation effects can be de-
fined as the multiplication H(θ)·T(Δx,Δy). For the con-
nection of the nodes in the tooth base to the yoke, for
instance, the transformation matrix is calculated us-
ing θ = π

2 , Δx = 0 and Δy = −hy

2 . Such complete trans-
formation can be considered when generating the as-
sembly matrix A, as explained in (13), so that the lever
arm effect of the tooth base with respect to the yoke’s
intermediate surface can be taken into account.

4 Comparison of the Modeling Approaches

For a comparison of the modeling approaches de-
scribed in Sect. 3, the stator S1 shown in Table 1 will
be used. At first, only the stator yoke without the teeth
is analyzed. This allows the evaluation of the differ-
ent methods for considering the yoke height without
the effect of the teeth. Then, the complete model with
the teeth is calculated using the ABM and is compared
with measurements and FE simulations. The results
of the FE simulations and the measurements have al-
ready been presented in [10, 21].

4.1 Stator Yoke

Table 2 summarizes the results of the ABM with the
Euler-Bernoulli (EB) beam, the Timoshenko (TS) beam
and the multi-layer (ML) approach to modeling the
stator yoke. 120 elements are considered around the
circumference for all the ABM models and the multi-
layer model is calculated with two layers. The results
are compared to the FE simulation results and the
deviations fΔ,r,EB/TS/ML = f0,r,EB/TS/ML− f0,r,FE

f0,r,FE
between the

individual approaches (EB/TS/ML) and the FE model
are determined.

It can be seen that the model with the Euler-
Bernoulli beam element produces the highest devi-
ations fΔ,r when compared to the FE model. This is
due to the fact that the shear strains are neglected in
this method, which is appropriate for slender beams
but becomes less accurate when the thickness of the
beam increases in relation to its length. The ratio of

the yoke height hy to the mean stator diameter Do

is 0.103 for the stator S1. In this case, the results
calculated using the Timoshenko beam element and
the multi-layer approach are more accurate. Although
these two aforementioned methods present similar
deviations for the case studied ( fΔ,r = 0.02%.. .4.88%),
the Timoshenko approach is the one which offers
more advantages. One is that it requires less elements
than the multi-layer approach, since only one layer
is necessary. Another is that the effect of the shear
strain is intrinsically considered in the constituent
equations of the Timoshenko beam, whereas, in the
multi-layer approach, this is accounted for by means
of the virtual vertical beams connecting the layers. As
a consequence, the stiffness for shear displacements
between the layers becomes dependent on the num-
ber of elements in the system in such a way that an
excessive number of elements (with consequently very
thin vertical beams) would produce a model which
underestimates the shear stiffness. Accordingly, the
multi-layer approach leads to different results for
different numbers of vertical beam elements.

4.2 Stator Yoke with Teeth

In Table 3, the results for the stator with teeth are sum-
marized and compared to measurements and results
of the FE simulations. In this case, only the ABM with
the Timoshenko beam element is considered since, as

Table 1 Data concerning the stator S1
Geometric data Material data

Stator length ls 110mm Mass density 7400 kg
m3

Outer diameter Do 160mm Young’s modulus 190GPa

Inner diameter D i 82mm Poisson’s ratio 0.3

Number of slots N1 24

Tooth width wt 4.7mm

Tooth height ht 22.5mm

Tooth tip width wtt 8.92mm

Tooth tip height htt 2mm Picture of stator S1

Table 2 Calculated eigenfrequencies of the stator yoke
using the Euler beam element, Timoshenko beam element
and multi-layer approach compared to FE calculations
Eigenpairs r = 2 r = 3 r = 4 r = 0 r = 5

f0,r,FE in Hz 1952 5319 9721 11 293 14 890

f0,r,EB in Hz 1991 5623 10 771 11 241 17 407

fΔ,r,EB in % +2.0 +0.13 +10.8 −0.45 +16.9
f0,r,TS in Hz 1953 5367 9924 11 241 15 396

fΔ,r,TS in % +0.05 +0.90 +2.09 −0.46 +3.40
f0,r,ML in Hz 1909 5128 9280 11 295 14 162

fΔ,r,ML in % −2.20 −3.59 −4.54 +0.02 −4.88
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discussed in Sect. 4.1, this produces better results for
the modeling of the stator yoke’s thickness. The ABMs
are composed of 120 elements in the yoke and 5 ele-
ments per tooth. Two variants of the Timoshenko ap-
proach are compared: one including the effect of the
lever arm discussed in Sect. 3.3 (TS,LA) and another
one neglecting this effect (TS).

Furthermore, the results are compared to the FE
model and to results of an experimental modal anal-
ysis. The experimental modal analysis is performed
by means of an instrumented hammer and one ac-
celerometer installed in the back of the yoke. De-
tails concerning the test procedure and the results ob-
tained can be found in the related papers [10, 21].

The deviations fΔ,r shown in Table 3 are calculated
with respect to the measured values. An exception is
made for the eigenmode r = 5, which could not be
identified in the measurements due to its high fre-
quency (see [10, 21]). In this case, the deviations
marked with an asterisk (*) are calculated with respect
to the FE model.

In general, it can be seen that the calculated eigen-
frequencies show a good agreement with the measure-
ments, with a maximum absolute deviation of 7.43%.
Nevertheless, the deviations are generally lower when
the lever arm effect discussed in Sect. 4.1 is taken into
account. This becomes more evident for the mode
r = 4, where large deflections of the teeth are present,
as can be seen in Table 5. The absolute deviation de-
creases from 7.43% to 4.06% when the lever arm effect
is considered.

5 Vibration Behavior of Different Stator
Geometries

In this section, the ABM is used to calculate the vi-
bration behavior of four different stators. The stators
are shown in Table 4 together with their geometric
and material data. The outer diameter of the stators
ranges from Do = 160mm to Do = 7m and the number
of teeth ranges from N1 = 24 to N1 = 480.

The stator S1 has already been introduced in Sect. 4
and is used in a high-speed electricmachine for a trac-
tion application [22]. Stators S2, S3 and S4 are taken
from real applications. The stator S2 is derived from
a conventional electric machine for a traction appli-

Table 3 Calculated eigenfrequencies of the stator using
the Timoshenko beam element and lever arm approach
compared to FE calculations and measurement results
Eigenpairs r = 2 r = 3 r = 0 r = 4 r = 5

f0,r,meas in Hz 1639 4048 9571 10 101 n.a.

f0,r,FE in Hz 1638 4061 9511 10 081 13 952

fΔ,r,FE in % −0.06 +0.32 −0.63 −0.2 n.a.

f0,r,TS in Hz 1612 4185 9568 9351 13 589

fΔ,r,TS in % −1.65 3.38 −0.03 −7.43 −2.60∗
f0,r,TS,LA in Hz 1568 3935 9568 9691 13 621

fΔ,r,TS,LA in % −4.33 −2.79 −0.03 −4.06 −2.37∗

cation. The stator S3 is derived from a prototype hy-
drogenerator and the stator S4 from a real operational
hydrogenerator.

The vibration behavior of the four stators is cal-
culated using 2D FE models. The material data in
Table 4 is used for the simulations. The results of the
FE calculations are used as a reference for the results
calculated with the improved ABM using the Timo-
shenko beam element, including the lever arm effect
of the teeth relative to the yoke. The eigenmodes �Ψr ,
the eigenfrequencies f0,r and their deviations fΔ,r are
given in Table 5.

5.1 Stator S1

The eigenfrequencies of the eigenmodes r = 2, r = 3,
r = 0, r = 4 and r = 5 of stator S1 are shown in Table 5.
As discussed in Sect. 4, the deviations are lower than
5%. The eigenmodes calculated using the ABM show
a good accordance with the eigenmodes calculated
using the FE model. Beside the eigenmode r = 0, the
deviations fΔ,r between the ABM and the FE model
are negative, indicating that the ABM is tendentially
less stiff than the FE model in this case.

5.2 Stator S2

Due to the larger size of stator S2, its eigenfrequencies
are reduced in comparison to stator S1. According to
the conclusions of Jordan [1], the bending eigenmodes
r = 2, r = 3, r = 4, r = 5 of the stator are reduced more
sharply than the eigenmode r = 0 due to the increased
size of the machine. The deviations fΔ,r between the
calculated eigenfrequencies of the ABM and the FE
models are lower than 2%, except for eigenmode r = 5.
For the eigenmode r = 5, the deviation is around 6%.
The calculated eigenmodes show a good accordance.
For the stator S2, the deviations between the ABM and
the FE model are both negative or positive.

5.3 Stator S3

The eigenmodes and eigenfrequencies of stator S3
show a good accordance between the ABM and the
FE model. The deviations between the eigenfrequen-
cies fΔ,r are lower than 3% (see Table 5). It is striking
that the deviations are all negative. In comparison to
stators S1 and S2, the eigenfrequencies are lower due
to the larger size of the stator.

5.4 Stator S4

The calculated eigenmodes and eigenfrequencies of
stator S4 confirm the results so far. The deviations
between the ABM and FE model fΔ,r are lower than
1.5%. Accordingly, it can be concluded that the ABM
and the FE model show a very high accordance. As
with the stator S3, the deviations fΔ,r are all negative
(see Table 5).
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Table 4 Geometric and material data concerning the four stators
Stator S1 S2 S3 S4

Geometric data

Stator length l 110mm 220mm 330mm 1300mm

Outer diameter Do 160mm 230mm 1600mm 7000mm

Inner diameter D i 82mm 145mm 1292mm 6280mm

Number of slots N1 24 48 108 480

Tooth width htw 4.7mm 5mm 25mm 26mm

Tooth height htw 22.5mm 24mm 77mm 180mm

Slot opening width hth 2mm 2mm 12mm 15mm

Tooth tip width httw 8.92mm 7.49mm – –

Tooth tip height htth 2mm 1mm – –

Ratio
hy

Do
0.103 0.08 0.048 0.026

Material data

Mass density ρ 7400 kg
m3

Young’s modulus E 190GPa

Poisson’s ratio μ 0.3

The comparison of the four stators’ vibration be-
havior using the ABM and the FE model proves that
the ABM is capable of correctly predicting the vibra-
tion behavior of electric machines with outer diame-
ters from Do = 160mm to Do = 7m. Despite the eigen-
frequency fr=5 of stator S2, the deviation fΔ,r is lower
than 5%, indicating a good agreement between the
ABM and the respective FE model.

The deviations between the ABM and the FE model
are mainly negative. This indicates that the ABM tends
to be less stiff than the FE method. Furthermore, it
is noteworthy that the deviation fΔ,r decreases with
increasing size of the machine. To analyze this, the

mean deviation f Δ =
∑rmax

rmin
| fΔ,r |

nr
is calculated.

The ratio
hy

Do
between the yoke height and the outer

diameter decreases with increasing size as well (see
Table 4). Accordingly, the influence of the shear strain
in the stator yoke is higher for machines with a high
ratio of

hy

Do
. The shear strain is only approximated by

the Timoshenko beam element and is better described
by the FE models. Thus, the deviations between the
FEM and ABM decrease with increasing size of the
stators S1 to S4. These observations can also be made
when calculating the vibration behavior using the an-
alytical model of Jordan [1]. This analytical model
is not capable of correctly calculating the vibration
behavior of small machines with a high ratio of

hy

Do
.

For machines with a small ratio of
hy

Do
, the analytical

model leads to better results. Accordingly, the correct

description of the stator yoke’s vibration behavior is
the major challenge in the calculation of the vibration
behavior for machines with a high ratio of

hy

Do
. It can

be concluded that the approach presented, using the
Timoshenko beam element model, is capable of calcu-
lating the vibration behavior of machines of different
sizes, taking into account the vibration behavior of the
stator yoke.

6 Conclusion

In this paper, the ABM originally presented in [18] is
examined and expanded further. Different modeling
approaches are investigated to enhance the calcula-
tion accuracy of the ABM and the model is applied to
machines of different sizes for validation.

One major challenge is the correct description of
the stator yoke’s thickness and its influence on the vi-
bration behavior. To consider this effect in the ABM,
two different approaches are compared in this work:
the use of the Timoshenko beam element and the
modeling of the stator using a multi-layer structure.
Furthermore, the model is enhanced by adding a fea-
ture which considers the lever arm effect of the stator
teeth with respect to the yoke’s intermediate surface.

When comparing the results of the ABM with FE
and measurement results, it can be concluded that
the use of the Timoshenko beam element is the best
means to consider the stator yoke’s thickness. The
modeling approach using a multi-layer structure does
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Table 5 Eigenfrequencies of the ABM compared to the FE models
Eigenpairs S1 S2

r = 2 r = 3 r = 0 r = 4 r = 5 f Δ r = 2 r = 3 r = 4 r = 5 r = 0 f Δ

�Ψr,FE

f0,r,FE in Hz 1638 4061 9511 10 081 13 952 812 2143 3666 4808 6238

�Ψr,ABM

f0,r,ABM in Hz 1568 3935 9568 9691 13 621 798 2123 3718 5100 6259

fΔ,r in % −4.27 −3.10 +0.60 −3.87 −2.37 2.84 −1.72 −0.93 +1.42 +6.07 −1.11 2.25

S3 S4

r = 2 r = 3 r = 4 r = 5 r = 0 f Δ r = 2 r = 3 r = 4 r = 5 r = 0 f Δ

�Ψr,FE

f0,r,FE in Hz 66.1 182.7 341.9 536.8 848.4 7.7 21.5 40.9 65.6 188.1

�Ψr,ABM

f0,r,ABM in Hz 64.4 178.4 334.8 527.8 846.4 7.6 21.3 40.5 65.0 188.0

fΔ,r in % −2.57 −2.35 −2.08 −1.68 −0.24 1.75 −1.3 −0.93 −0.98 −0.91 −0.11 0.85

not lead to convincing results, since the model ac-
curacy depends on the number of vertical beam ele-
ments used. Additionally, the feature which considers
the lever arm effect of the stator teeth increases the
calculation accuracy yet further.

In order to validate themethod presented for a large
range of applications, the improved ABM, using the
Timoshenko beam element and considering the lever
arm effect, is used to calculate the vibration behavior
of four stator cores of different sizes. The results are
compared to FE results and show a high accordance.
The deviation of the eigenfrequencies is mostly less
than 5%. It is noteworthy that the deviation between
the ABM and FE even decreases with increasing size
of the machines. For the stator S4, the deviation of
the eigenfrequencies is even lower than 1.5%.

Overall, the measures presented in this work im-
prove the calculation quality of the ABM further and
enable it to calculate the vibration behavior of ma-
chines of different sizes.

The ABM can be used in combination with calcu-
lated electromagnetic forces to predict the machine’s
vibration during operation. Furthermore, the model
has the potential to be extended to include the wind-
ing and the stator’s frame or housing, and also to be
expanded in the axial direction, allowing it to consider
axial eigenmodes.

Funding Open Access funding enabled and organized by
Projekt DEAL.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
anymedium or format, as long as you give appropriate credit

to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article
are included in the article’sCreativeCommons licence, unless
indicated otherwise in a credit line to thematerial. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds thepermitteduse, youwill need to obtain permission
directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. JordanH(1950)DergeräuscharmeElektromotor. Girardet,
Essen

2. Braunisch D, Ponick B, Bramerdorfer G (2013) Combined
analytical–numerical noise calculation of electrical ma-
chines considering nonsinusoidal mode shapes. IEEE
TransMagn49(4):1407–1415

3. Vip S-A, Hollmann J, Ponick B (2019) Nvh-simulation of
salient-pole synchronous machines for traction applica-
tions. In: Proceedings 2019 International Aegean Con-
ference on Electrical Machines and Power Electronics
(ACEMP) & 2019 International Conference on Optimiza-
tionofElectricalandElectronicEquipment(OPTIM). IEEE,
Piscataway,pp246–253

4. Hofmann A, Qi F, Lange T, de Doncker RW (2014) The
breathingmode-shape0: Is it themainacoustic issue in the
pmsms of today’s electric vehicles? In: 17th International
Conference on Electrical Machines and Systems (ICEMS).
IEEE,Piscataway,pp3067–3073

5. FrohneH(1959)Über die primäre Bestimmungsgrößen der
Lautstärke bei Asynchronmaschinen. Dissertation thesis,
TechnischeHochschuleHannover,Hannover

6. Gieras JF, WangC, Lai JC (2006)Noise of polyphase electric
motors, volume 129 of Electrical and computer enginee-
ring. CRC/Taylor&Francis,BocaRaton

K The analytical beam element model: novel approach for fast calculation of vibrations in electric machines 299

http://creativecommons.org/licenses/by/4.0/


Originalarbeit

7. Verma SP, Girgis RS (1973) Resonance frequencies of elec-
trical machine stators having encased construction, part
i: Derivation of the general frequency equation. IEEE
Transactions on Power Apparatus and Systems, PAS-92(5),
pp1577–1585

8. Girgis RS, Vermas SP (1981)Method for accurate determi-
nation of resonant frequencies and vibration behaviour of
stators of electrical machines. IEEE Proc B Electr Power
Appl128(1):1–11

9. Schwarzer M (2017) Structural Dynamic Modeling and
Simulation of Acoustic Sound Emissions of Electric Trac-
tion Motors. Dissertation thesis, Technische Universität
Darmstadt,Darmstadt

10. GerlachME,BenderTN,PonickB(2022) Influenceof round
wire winding and insulation on the vibration behavior of
electric machines. In: 2022 International Symposium
on Power Electronics, Electrical Drives, Automation and
Motion(SPEEDAM). IEEE,Piscataway,pp7–13

11. GerlachME,Weber S, Ponick B (2022) Influence of hairpin
windingandinsulationonthevibrationbehaviorofelectric
machines. In: 2022 International Conference on Electrical
Machines(ICEM). IEEE,Piscataway,pp635–641

12. GerlachME,Weber S, PonickB (2022) Influenceof concen-
trated winding and insulation on the vibration behavior of
electric machines. In: 2022 International Conference on
Electrical Machines and Systems (ICEMS). IEEE, Piscat-
away

13. Wegerhoff M, Drichel P, Back B, Schelenz R, Jacobs G
(2015) Method for determination of transversely isotropic
material parameters for the model of a laminated stator
with windings. In: 22nd international congress on sound
andvibrationFlorence,pp1–8

14. Wang K, Wang X (2017) The modal analysis of the stator
of the interior permanentmagnet synchronousmotor. In:
2017 IEEE Transportation Electrification Conference and
Expo,Asia-Pacific(ITECAsia-Pacific). IEEE,Piscataway,pp
1–6

15. deBarrosA,Galai A, EbrahimiA, SchwarzB (2021) Practical
modal analysis of a prototyped hydrogenerator. Vibration
4(4):853–864

16. Mair M, Weilharter B, Rainer S, Ellermann K, Bíró O
(2013) Numerical and experimental investigation of the
structural characteristics of stator core stacks. Compel
32(5):1643–1664

17. Tang Z, Pillay P, Omekanda AM, Li C, Cetinkaya C (2004)
Young’s modulus for laminated machine structures with
particular reference to switched reluctance motor vibra-
tions. IEEETransonIndApplicat40(3):748–754

18. Allan de Barros MEG, Xang H, Langfermann M, Ponick B,
Ebrahimi A (2022) Calculation of electric machines vibra-
tion using an analytical beam element model. In: 2022
International Conference on Electrical Machines (ICEM).
IEEE,Piscataway,pp2200–2206

19. Buntara SG (2018) An isogeometric approach to beam
structures. Springer,BerlinHeidelberg

20. Gottstein G (2014) Materialwissenschaft und Werk-
stofftechnik: PhysikalischeGrundlagen, 4thedn. Springer-
Lehrbuch. SpringerVieweg,Berlin

21. GerlachME,PonickB(2020) Influenceof thestatorwinding
and forming of the end winding on the vibration behavior
of electric machine’s stator core. In: Proceedings 2020
International Conference on Electrical Machines (ICEM).
IEEE,Piscataway,pp1171–1177

22. Gerlach ME, Zajonc M, Ponick B (2021) Mechanical stress
and deformation in the rotors of a high-speed pmsm and
im. EIElektrotechInformationstech138(2):96–109

Publisher’sNote SpringerNature remainsneutralwith regard
to jurisdictional claims in published maps and institutional
affiliations.

Martin Gerlach, was born in
Hannover, Germany, in 1992.
In 2017, he graduated with
a Master of Science in electri-
cal engineering at the RWTH
Aachen University. After com-
pleting his studies, he started
working as a research associate
at the Institute for Drive Sys-
tems and Power Electronics,
Leibniz University Hannover
in December 2017. His main
research is in the fields of vi-
bration and acoustics of electric
machines and the mechani-

cal design and prediction of high speed electric rotors.

AllandeBarros, wasborninOs-
asco, Brazil, in1992. Hereceived
the B.Sc. and M.Sc. degrees
from the Polytechnic School of
University of São Paulo, Brazil,
in2014and2019, respectively, in
the field electrical engineering.
He worked from 2012 to 2020 in
the electromagnetic design de-
partment forhydrogeneratorsat
VoithHydro inBrazil. Currently,
he works as a research associate
at the Institute forDriveSystems
andPowerElectronicsofLeibniz
University Hannover, Germany.

His research interests relate to the computational analysis of
electrical machines, including finite-element and analytic-
modelingtechniques.

Xudong Huang, was born in
Jiangsu, China, in 1994. In
2015, he graduated with a Bach-
elor of Science in mechatronic
engineering from Changshu In-
stitute of Technology in Jiangsu
Province, China. In 2017,
he graduated with a Bachelor
of Engineering from Diploma
Hochschule Nordhessen, Ger-
many,andin2021,hecompleted
his Master of Science inmecha-
tronic engineering at Leibniz
UniversityHannover.

300 The analytical beam element model: novel approach for fast calculation of vibrations in electric machines K



Originalarbeit

Markus Langfermann, was
born in Wildeshausen, Ger-
many, in 1996. In 2022 he grad-
uated with a Master of Science
in industrial engineering from
Leibniz University Hannover,
where he already finished his
BachelorofSciencein2018.

Bernd Ponick, was born in
Großburgwedel, Germany, in
1964. He received his Dipl.-
Ing. degree in electrical power
engineering from theUniversity
ofHannover in 1990 andhisDr.-
Ing. degree for a thesis on elec-
trical machines in 1994. After
9 years with the Large Drives
Division of Siemens as design
engineer for largevariablespeed
motors, head of electrical de-
sign and Technical Director of
SiemensDynamowerkBerlin,he
is since 2003 full professor for

electrical machines and drive systems at Leibniz University
Hannover. His main research activities are calculation and
simulation methods for electrical machines, prediction of
and measures against important parasitic effects such as
magneticnoise,additional lossesorbearingcurrents,andnew
applications for electricmachines, e.g. for electric andhybrid
vehiclesor foraviation.

Amir Ebrahimi, received the
B.Sc. degree from Shiraz Uni-
versity in 2006, theM.Sc. degree
in electrical engineering from
the Iran University of Science
andTechnology in 2008, and the
Ph.D. degree in electrical engi-
neering from the University of
Stuttgart, Germany. From 2013
to 2017, he was with the Fraun-
hofer Institute for Manufactur-
ing Engineering and Automa-
tion, Stuttgart. SinceNovember
2017, he has been a Professor
in Electrical Machines with the

InstituteforDriveSystemsandPowerElectronics,LeibnizUni-
versity Hannover. His research interests include the analytic
and numerical calculation of transient processes in electrical
machines,particularly inlargehydroandwindgenerators.

K The analytical beam element model: novel approach for fast calculation of vibrations in electric machines 301


	The analytical beam element model: novel approach for fast calculation of vibrations in electric machines
	Abstract
	Zusammenfassung
	Introduction
	Analytical Beam Element Model — Basic Approach
	Basic Equation of a Multi-Mass Oscillator
	Euler-Bernoulli Beam Element
	Representation of the Stator Geometry with Beam Elements
	Coordinate Transformation
	Stator Geometry with Master Nodes

	Different Modeling Approaches
	Timoshenko Beam
	Multi-Layer Structure
	Tooth Connection Modeling

	Comparison of the Modeling Approaches
	Stator Yoke
	Stator Yoke with Teeth

	Vibration Behavior of Different Stator Geometries
	Stator S1
	Stator S2
	Stator S3
	Stator S4

	Conclusion
	References


