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Abstract
In many aspects, elastomers and soft biological tissues exhibit similar mechanical properties such as a pronounced nonlinear 
stress–strain relation and a viscoelastic response to external loads. Consequently, many models use the same rheological 
framework and material functions to capture their behavior. The viscosity function is thereby often assumed to be constant 
and the corresponding free energy function follows that one of the long-term equilibrium response. This work questions this 
assumption and presents a detailed study on non-Newtonian viscosity functions for elastomers and brain tissues. The viscosity 
functions are paired with several commonly used free energy functions and fitted to two different types of elastomers and 
brain tissues in cyclic and relaxation experiments, respectively. Having identified suitable viscosity and free energy functions 
for the different materials, numerical aspects of viscoelasticity are addressed. From the multiplicative decomposition of the 
deformation gradient and ensuring a non-negative dissipation rate, four equivalent viscoelasticity formulations are derived 
that employ different internal variables. Using an implicit exponential map as time integration scheme, the numerical behavior 
of these four formulations are compared among each other and numerically robust candidates are identified. The fitting results 
demonstrate that non-Newtonian viscosity functions significantly enhance the fitting quality. It is shown that the choice of a 
viscosity function is even more important than the choice of a free energy function and the classical neo-Hooke approach is 
often a sufficient choice. Furthermore, the numerical investigations suggest the superiority of two of the four viscoelasticity 
formulations, especially when complex finite element simulations are to be conducted.

1 Introduction

An essential property of rubber materials is their rate and time 
dependent stress response which can be observed in relaxa-
tion, creep as well as cyclic experiments. This characteristic 
is highly non-linear and even more pronounced for filled rub-
bers. In material science and computational mechanics, such 
a behavior is commonly referred to as viscoelasticity and its 
modeling is still object of current research, see for instance 
[1–4]. Due to these hysteretic properties, the scope of engi-
neering applications typically comprises damping, isolating 

and absorbing components especially for vehicles, aseismic 
structures or low-noise machineries.

Soft biological tissues exhibit qualitatively very similar 
properties to rubber materials. For example, soft tissues are 
nearly incompressible, can undergo large deformations and 
show viscoelastic behavior. Moreover, they exhibit precondi-
tioning effects which lead to stress softening and permanent 
set, commonly called Mullins effect for elastomers. There 
are also crucial differences, e.g., many tissues exhibit dif-
ferent behavior in tension and compression what is called 
tension-compression asymmetry. Furthermore, tendons or 
blood vessels are reinforced by fibres in preferred directions 
and, hence, show a strong anisotropy. In contrast, some tis-
sues, mostly non-load-bearing like brain and fat tissue, were 
shown to behave nearly isotropic, cf. Budday et al. [5].

The present paper compares the capability and proper-
ties of existing viscoelasticity models based on experimen-
tal data of rubbers and soft tissues. The similarities in the 
mechanical response of these materials suggest to repro-
duce their behavior using the same material models [6–8]. 
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Specifically brain tissues are considered here due to the 
relevance of their viscoelastic behavior in simulations of 
head injuries like concussion and the existence of suitable 
experimental data sets for several types of brain tissues, e.g., 
Budday et al. [9].

For the comparison, a modeling framework is employed 
that aims to capture specifically viscoelastic material prop-
erties at a minimum level of model complexity. In terms of 
rheological models, it can be represented by a Maxwell ele-
ment and a spring connected in parallel, see Fig. 1, which is 
often referred to as standard solid or Zener model. The Max-
well element itself is a series connection of a spring and a 
dashpot which yields the viscoelastic overstress, whereas the 
spring in parallel generates the long-term stress response. 
Commonly, two approaches exist to model the Maxwell 
element. The first is a convolution approach, i.e., the stress 
differential equation from the small strain theory is adopted. 
The second approach is a multiplicative decomposition of 
the deformation gradient into an elastic and an inelastic part, 
representing the deformation of the spring and the dash-
pot, respectively. As mentioned by Govindjee & Reese [10] 
and to the best of the authors’ knowledge, the convolution 
approach has not been shown to satisfy the second law of 
thermodynamics in a general way. Therefore, the decompo-
sition of the deformation gradient is employed here.1 

The standard solid in Fig. 1 requires four response func-
tions to yield an executable model. The long-term stress 
response is comprised of a deviatoric and a hydrostatic con-
tribution which are derived from the decoupled free energy 
functions Ψeq and Ψvol , respectively. On the other hand, the 
Maxwell element is defined via the free energy function Ψneq 
as well as the viscosity function � . Since the hydrostatic 
stress of rubbers exhibits only negligible viscoelastic prop-
erties [14] and the same is often assumed for brain tissue [8], 
Ψneq contributes to the deviatoric stress only. Thus, the total 
deviatoric stress consists of an equilibrium (index eq ) and a 
non-equilibrium (index neq ) part. If the chosen free energy 
function Ψneq of the Maxwell element leads to a constant 
shear modulus (i.e., neo-Hooke or Mooney-Rivlin model), 
then its behavior is referred to as Hookean viscoelasticity in 
the present paper. Moreover, a constant viscosity � produces 
a so-called Newtonian viscoelasticity.2 Since such simple 
approaches are insufficient to describe the complex behav-
ior of rubbers or brain tissues, many authors proposed more 
sophisticated material functions.

In this work, such advanced approaches are compiled and 
the influence of the viscosity function and the non-equilib-
rium free energy function on the fitting quality is investi-
gated. For a wide applicability, two distinct rubber materials 
(carbon black filled ethylene propylene diene rubber (EPDM) 
& natural rubber (NR)) as well as brain tissues (cortex (C) 
& corpus callosum (CC)) under relaxation as well as cyclic 
loading are considered. In addition, since the derivation of 
the viscoelastic evolution equation yields four equivalent 
formulations with different internal variables, also numeri-
cal tests are conducted. Favorable formulations in terms of 
efficiency and robustness are identified.

The manuscript is organized as follows. Firstly, in Sect. 2, 
the theory of multiplicative viscoelasticity is explained in 
detail and four equivalent formulations of the evolution 
equation are presented. Moreover, the viscosity functions 
described in the literature are summarized. Thereafter, in 
Sects. 3 and 4, the experimental data and the fitting proce-
dure used herein are presented, before the applicability of 
multiplicative viscoelasticity to rubber materials and brain 
tissues is studied in Sects. 5 and 6. Finally, in Sect. 7, the 
numerical behavior of different formulations of viscoelastic 
evolution equations and update schemes is examined. The 
work closes with a summary and outlook in Sect. 8.

Fig. 1  Standard solid (also known as Zener model) being the rheo-
logical representation of the discussed viscoelasticity models

1 Note that alternative approaches which make use of an additive 
decomposition of the rate of deformation tensor [11] or of the stress 
power [12] lead to the identical constitutive equations as the multipli-
cative split of the deformation gradient in case of a Maxwell element 
[, 12, 13].

2 The wording “Hookean viscoelasticity” (or “Newtonian viscoe-
lasticity”) to describe the behavior of a Maxwell element is used 
for brevity herein. More precisely, the spring of a Maxwell element 
exhibits Hookean elasticity (or the dashpot exhibits Newtonian vis-
cosity).
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2  General Considerations

2.1  Basic Kinematics

To describe the deformation of the Maxwell element 
depicted in Fig. 1, the multiplicative decomposition of the 
deformation gradient into an inelastic (index i , dashpot) and 
a subsequent elastic (index e , spring) part

is employed, see for instance Haupt [15]. This approach 
is often referred to as Sidoroff decomposition and has the 
advantage that the intermediate configuration between the 
elastic and inelastic deformation can be interpreted as the 
stress-free state which is instantaneously obtained after 
removal of external loads. Moreover, it is weakly invariant 
under an isochoric change of the reference configuration 
(w-invariant), see Shutov & Ihlemann [16] and Shutov [17]. 
That is, a transformation of the reference configuration can 
be counterbalanced by an appropriate transformation of the 
initial conditions. W-invariance is desirable for example for 
the simulation of multi-stage processes [18] or prestressed 
biological tissues [19].

The deformation gradients’ polar decompositions read

where  R denote rotation and U stretch tensors. The 
corresponding spatial velocity gradients are defined as

which can each be additively decomposed into a symmetric 
and a skew-symmetric part known as rate of deformation 
tensor d and spin tensor w , respectively,

The symmetric and skew-symmetric par ts of a 
tensor are defined as  sym(X) = 1∕2

(
X + XT

)
 and 

skew(X) = 1∕2
(
X − XT

)
 . After some algebra, see for 

example Korelc & Wriggers [20], the identities

(1)F = F
e
⋅ F

i

(2)F = R ⋅ U F
e
= R

e
⋅ U

e
F
i
= R

i
⋅ U

i

(3)l = Ḟ ⋅ F−1 l
e
= Ḟ

e
⋅ F−1

e
l
i
= Ḟ

i
⋅ F−1

i

(4)d = sym(l) d
e
= sym

(
l
e

)
d
i
= sym

(
l
i

)

(5)w = skew(l) w
e
= skew

(
l
e

)
w
i
= skew

(
l
i

)
.

(6)l = l
e
+ L

i
with L

i
= F

e
⋅ l

i
⋅ F−1

e

(7)d = d
e
+ D

i
with D

i
= sym

(
F
e
⋅ l

i
⋅ F−1

e

)

(8)w = w
e
+W

i
with W

i
= skew

(
F
e
⋅ l

i
⋅ F−1

e

)

are obtained. Further kinematic quantities, used in the fol-
lowing discussion, are the left ( b ) and right ( C ) Cauchy-
Green tensors

and their first principal invariants

The deformation measures introduced in Eqs.  (1), (9) 
and (10) can be multiplicatively split into an unimodular 
part X̄ = det−1∕3(X)X and a spherical part det1∕3(X) I with I 
being the identity tensor. This decomposition separates the 
isochoric, volume-preserving distortion from the volumetric 
dilation. The first isochoric principal invariants of the 
Cauchy-Green tensors are denoted by

and the volume change by

Furthermore, the right Cauchy-Green tensors in Eq. (10) and 
the rate of deformation tensors in Eq. (4) are linked by the 
identities

2.2  Thermodynamics

The local, isothermal Clausius-Planck inequality per unit 
reference volume in terms of the Helmholtz free energy is 
given by

with X ∶ Y = tr
(
X ⋅ YT

)
 , see for instance Haupt [15]. 

Basically, this inequality demands that for thermodynamic 
consistency the dissipation rate Dm must be non-negative at 
any deformation state. Dm is equal to the mechanical stress 
power � ∶ d less the change of the free energy Ψ̇ . Herein, � 
denotes the symmetric Kirchhoff stress.

The total free energy of the standard solid in Fig. 1 reads

The scalar state variable Ψ0,max is needed for modeling the 
Mullins effect of rubber materials in Sect. 2.6.1, see also 
Ricker et al. [21] for details, and is omitted for brain tissue 

(9)b = F ⋅ FT b
e
= F

e
⋅ FT

e
b
i
= F

i
⋅ FT

i

(10)C = FT
⋅ F C

e
= FT

e
⋅ F

e
C
i
= FT

i
⋅ F

i

(11)I1 = tr
(
C
)
= tr

(
b
)

I1,e = tr
(
C
e

)
= tr

(
b
e

)
I1,i = tr

(
C
i

)
= tr

(
b
i

)

(12)Ī1 = tr
(
C̄
)
= tr

(
b̄
)

Ī1,e = tr
(
C̄
e

)
= tr

(
b̄
e

)
Ī1,i = tr

(
C̄
i

)
= tr

(
b̄
i

)

(13)J = det(F) =
√
det(C) =

√
det(b) .

(14)
Ċ = 2FT

⋅ d ⋅ F Ċ
e
= 2FT

e
⋅ d

e
⋅ F

e
Ċ
i
= 2FT

i
⋅ d

i
⋅ F

i
.

(15)Dm = � ∶ d − Ψ̇ ≥ 0

(16)Ψ = Ψneq

(
C̄e

)
+ Ψeq

(
C̄,Ψ0,max

)
+ Ψvol(J) .
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models, see Sect. 2.6.2. Applying the chain rule to Ψ̇ with 
Eqs. (7)1 , (14)1 and (14)2  the dissipation rate reads

Following the standard argumentation by Coleman & Noll 
[22], the Kirchhoff stress is obtained as

Tneq , Seq , p denote the non-equilibrium intermediate 
stress, the equilibrium 2nd  Piola-Kirchhoff stress and 
the hydrostatic pressure, respectively. The equivalent 
representation of Eq.  (18) in terms of the 2nd  Piola-
Kirchhoff stress reads

with the volumetric contribution Svol = −p J C−1 and the 
non-equilibrium 2nd Piola-Kirchhoff stress

Applying the stress definition from Eq. (18), the dissipation 
inequality (17) reduces to

Note that Dm,eq in Eq. (25) yields zero for brain tissue as the 
Mullins effect is not taken into account. Due to the symmetry 
of �neq , any skew-symmetric spin can be added to D

i
 without 

affecting the dissipation rate Dm,neq . Thus, Di can be replaced 
by Li so that inequality (26) can be equivalently written as

(17)
D

m
=

(
� − 2F

e
⋅

𝜕Ψneq

𝜕C
e

⋅ FT
e
− 2F ⋅

𝜕Ψeq

𝜕C
⋅ FT −

𝜕Ψvol

𝜕J
J I

)
∶ d

−
𝜕Ψeq

𝜕Ψ0,max

Ψ̇0,max +

(
2F

e
⋅

𝜕Ψneq

𝜕C
e

⋅ FT
e

)
∶ D

i
≥ 0 .

(18)� = �neq + �eq + �vol with

(19)�neq = F
e
⋅ Tneq ⋅ F

T
e

, Tneq = 2
�Ψneq

�C
e

,

(20)�eq = F ⋅ Seq ⋅ F
T , Seq = 2

�Ψeq

�C
,

(21)�vol = −p J I , p = −
�Ψvol

�J
.

(22)S = F−1
⋅ � ⋅ F−T = Sneq + Seq + Svol

(23)Sneq = F−1
⋅ �neq ⋅ F

−T = F−1
i

⋅ Tneq ⋅ F
−T
i

.

(24)Dm = Dm,eq +Dm,neq with

(25)Dm,eq = −
𝜕Ψeq

𝜕Ψ0,max

Ψ̇0,max ≥ 0 ,

(26)Dm,neq = �neq ∶ D
i
≥ 0 .

(27)Dm,neq = �neq ∶ L
i
≥ 0 with L

i
= D

i
+W

i
.

2.3  Viscoelastic Evolution Equation

Material models that account for inelastic material behavior 
typically introduce internal state variables and associated 
evolution equations. For a physically plausible behavior, the 
evolution equations should always ensure a non-negative 
dissipation rate, cf. Eq. (15). In what follows, four equivalent 
viscoelasticity formulations with different internal variables 
are derived which satisfy inequality  (27) by prescribing 
constitutive equations for D

i
 and W

i
 . They are consecutively 

referred to as formulation A to D.
Interpreting Eq. (3)3 as a differential equation

the evolution of the inelastic deformation gradient F
i
 is 

determined by prescribing an inelastic velocity gradient l
i
 

or equivalently  L
i
 , cf. Eq.  (6)2 . To guarantee a non-

negative Dm,neq in Eq. (27), one may define

so that

where ‖X‖ =
√
X ∶ X ≥ 0 denotes the Frobenius norm. 

The viscosity 𝜂 > 0 is associated with the dashpot of the 
Maxwell element and will be discussed in Sect. 2.5. The 
choice W

i
= 0 is made for convenience rather than physically 

motivated. In contrast to non-affine, plastic deformations of 
metals where the spin may be related to the orientation of 
crystal slip systems, the micromechanical interpretation 
of W

i
 for the viscoelastic distortion of filled rubbers or 

biological tissue remains unclear. Note that, in general, the 
constitutive equation (29) does not lead to a rotation-free 
elastic or inelastic deformation, viz., R

e
≠ I and R

i
≠ I . 

A detailed discussion on the rotation of the intermediate 
configuration is given for instance by Boyce et al. [23] or 
Dafalias [24].

Using Eqs. (6)2 and (19)1 , assumption (29) leads to the 
evolution equation of the inelastic deformation gradient

 In the present manuscript, Ψneq is assumed to be an iso-
tropic function of C

e
 , see Sect. 1, and hence �Ψneq∕�Ce

 
and C

e
 commute. Thus,  li is symmetric implying li = di 

and wi = 0 . Furthermore,  Ψneq is assumed to be an 

(28)Ḟ
i
(t) = l

i

(
F
i
, t,…

)
⋅ F

i
(t) with F

i
(0) = I ,

(29)D
i
=

1

2 �
�neq and W

i
= 0

(30)L
i
= D

i
and D

m,neq
=

1

2 �

‖‖‖�neq
‖‖‖
2

(31)

formulation A: Ḟ
i
= l

i
⋅ F

i

with F
i
(t = 0) = I and

l
i
=

1

2 𝜂
Tneq ⋅ Ce

=
1

𝜂

𝜕Ψneq

𝜕C
e

⋅ C
e

⇒ Dm,neq =
1

2 𝜂

(
C
e
⋅ Tneq

)
∶
(
Tneq ⋅ Ce

)
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isochoric function, i.e., Ψneq is a function of the unimodu-
lar part C̄

e
 . Then, Ce ⋅ �Ψneq∕�Ce

 and, hence, l
i
 are trace-

less. This implies a volume-preserving viscoelastic flow, 
viz., det

(
F
i

)
= const. as well as a deviatoric non-equilibrium 

Kirchhoff stress, viz., tr
(
�neq

)
= 0.

Alternatively, one can write Eq.  (31) in terms of L
i
 

and �neq reading

 As it will be shown in Sect. 2.3, contrary to formulation A, 
the corresponding time integrating scheme uses the elastic 
deformation gradient F

e
 as the internal variable.

Since  l
i
= di holds true for isotropic Ψneq , Eqs.  (14)3 

and (23)2 can be employed to rewrite the definition of l
i
 in 

Eq. (31) as

Moreover, to obtain a simplified stress calculation rule, the 
identity

is applied leading to the 2nd Piola-Kirchhoff stress

see for instance Haupt [15]. This is particularly helpful 
in case of invariant-based strain energy functions with 
Ψneq

(
C
e

)
= Ψneq

(
C ⋅ C−1

i

)
 yielding

 Here, C
i
 is used as the internal variable and neither C

e
 

nor the unsymmetric F
i
 , F

e
 are present in the constitutive 

(32)

formulation B: Ḟ
i
= F−1

e
⋅ L

i
⋅ F

with F
e
(t = 0) = F(t = 0) and

L
i
=

1

2 𝜂
�neq =

1

𝜂
F
e
⋅

𝜕Ψneq

𝜕C
e

⋅ FT
e

⇒ D
m,neq

=
1

2 𝜂

‖‖‖�neq
‖‖‖
2

(33)Ċ
i
=

1

𝜂
C ⋅ Sneq ⋅ Ci

.

(34)

Tneq = 2
�Ψneq

(
C
e

)
�C

e

= 2
�Ψneq

(
F−T
i

⋅ C ⋅ F−1
i

)

�
(
F−T
i

⋅ C ⋅ F−1
i

)

= 2F
i
⋅

�Ψneq

(
F−T
i

⋅ C ⋅ F−1
i

)
�C

||||||F
i
=const.

⋅ FT
i

(35)Sneq = 2
�Ψneq

(
F−T
i

⋅ C ⋅ F−1
i

)
�C

||||||F
i
=const.

,

(36)

formulation C: Ċ
i
=

1

𝜂
C ⋅ Sneq ⋅ Ci

with C
i
(t = 0) = I and

Sneq = 2
𝜕Ψneq

(
C ⋅ C

−1
i

)
𝜕C

||||||C
i
=const.

⇒ D
m,neq

=
1

2 𝜂

(
C ⋅ Sneq

)
∶
(
Sneq ⋅ C

)

equations. Moreover, the stress definition in Eq. (36) shows 
that Ψneq is in general not an isotropic function of C and, 
hence, Sneq and C do not commute. That is, the model 
response exhibits anisotropic properties where C−1

i
 acts simi-

larly to the structural tensor of transverse isotropy.
Finally, another representation for isotropic Ψneq in terms 

of b
e
 results from the identity Ċ

i
= −C

i
⋅
(
C−1
i

)⋅
⋅ C

i
 and 

Eq. (23)1 applied to Eq. (33). It reads

with the Lie-derivative

The coaxiality and commutativity of �neq and b
e
 follow from 

the isotropy of the strain energy function. An overview of 
all four formulations and their properties is given in Table 1.

2.4  Time Integration

The implicit exponential map is a first order time 
integration scheme for the differential equations of the form 
Ẋ(t) = f (X, t) ⋅ X(t) assuming  f  to be constant during the 
time increment Δt . For formulation A, Eq. (31), it reads

where F(n)

i
 denotes the inelastic deformation gradient at the 

beginning of the current time increment t(n) . For the sake of 
simplicity, the index (n + 1) referring to quantities at the end 
of the current increment is omitted: t = t(n+1) . The algebraic 
equation (39) has to be solved for F

i
 in each increment. To 

prove the volume-preservation of the exponential map, the 
determinant is applied on both-hand sides of Eq.  (39). 
Employing the identities det(X ⋅ Y) = det(X) det(Y) and 
exp(tr(X)) = det(exp(X)) , it can be shown for isochoric Ψneq 
with tr

(
Tneq ⋅ Ce

)
= 0 , cf. Sect. 2.3, that det

(
F
i

)
= det

(
F
(n)

i

)
 . 

In the present manuscript, the initial condition F(0)

i
= I is 

prescribed so that det
(
F
i

)
= 1∀t.

A p p l y i n g  E q s .   ( 6 )  a n d   ( 1 )  a s  w e l l 
as  exp

(
A−1

⋅ X ⋅ A
)
= A−1

⋅ exp(X) ⋅ A , the integration 
scheme (39) can be equivalently rewritten as

(37)

formulation D: L
(
b
e

)
= −

1

�
�neq ⋅ be

with b
e
(t = 0) = b(t = 0) and

�neq = 2
�Ψneq

�b
e

⋅ b
e

⇒ D
m,neq

=
1

2 �

‖‖‖�neq
‖‖‖
2

(38)
L
(
b
e

)
= F ⋅

(
F−1

⋅ be ⋅ F
−T
)⋅
⋅ FT = ḃ

e
− l ⋅ b

e
− b

e
⋅ lT .

(39)

formulation A: F
i
= exp

(
Δt l

i

)
⋅ F

(n)

i
= exp

(
Δt

2 �
Tneq ⋅ Ce

)
⋅ F

(n)

i
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to be solved for F
e
 . This can be considered as an update 

scheme for  for mula t ion   B,  Eq.   (32) .  Wi th 
1∕det(X) = det

(
X−1

)
 , it is proven to be volume-preserving 

in  t he  same way  as  fo r mula t ion   A,  v iz . , 
det

(
F−1

⋅ F
e

)
= det

((
F−1

)(n)
⋅ F(n)

e

)
.

An update scheme for formulation C in terms of C
i
 can be 

derived by applying the exponential map to Eq. (36), viz.,

with the initial condition C(0)

i
= I . Shutov & Kreißig [28] 

showed that the exponential map is symmetry-preserving 
for differential equations of the form Ẋ(t) = f (X, t) ⋅ X(t) 
with det(X(t = 0)) = 1 if the following conditions are 
fulfilled: tr(f (X, t)) = 0 and (f (X, t))k ⋅ X(t) is symmetric 
for all k = 1, 2, 3,… . Here, the first condition is satisfied 
for isochoric Ψneq since tr

(
Tneq ⋅ Ce

)
= tr

(
C ⋅ Sneq

)
= 0 . 

Besides, this property also proves volume-preservation of 
the update scheme (41). The second condition is satisfied 
for isotropic Ψneq (w.r.t. Ce ) where C

e
⋅ Tneq = Tneq ⋅ Ce

 
y i e l d s  C ⋅ Sneq ⋅ Ci

= C
i
⋅ Sneq ⋅ C  a n d ,  h e n c e , (

C ⋅ Sneq
)k

⋅ C
i
= C

i
⋅
(
Sneq ⋅ C

)k . Note that in comparison 
to Eqs. (39) and (40), the argument of the exponential is 
not symmetric in general resulting in higher computational 
costs.

Furthermore, inverting and forwarding update 
scheme (41) to the current configuration provides a time 
integration scheme for formulation  D, see evolution 
equation (37), reading

with the internal variable b
e
 . Since the operations X−1 and 

F ⋅ X ⋅ FT preserve symmetry, formulation D is a symmetry-
preserving update scheme, too. Moreover, its volume-
p r e s e r v a t i o n  f o l l o w s  f r o m 
det

(
F−1

⋅ b
e
⋅ F−T

)
= det

((
F−1

)(n)
⋅ b(n)

e
⋅
(
F−T

)(n)).
The implicit exponential maps of all four formulations, 

viz.  Eqs. (39)–(42) are iteratively solved applying a New-
ton–Raphson scheme with a line search algorithm such that 
descending Newton steps are ensured. The state variable at 
the beginning of each increment serves as the initial guess 
for the iteration of the updated state variable. The iteration is 

(40)

formulation B: F
e
= exp

(
−Δt L

i

)
⋅ F ⋅

(
F−1
i

)(n)

= exp

(
−
Δt

2 �
�neq

)
⋅ F ⋅

(
F−1
i

)(n)
⏟⏞⏟⏞⏟

(F−1
⋅F

e)
(n)

(41)formulation C: C
i
= exp

(
Δt

�
C ⋅ Sneq

)
⋅ C

(n)

i

(42)

formulation D: b
e
= F ⋅

(
C−1
i

)(n)
⏟⏞⏟⏞⏟

(F−1
⋅b

e
⋅F−T)

(n)

⋅FT
⋅ exp

(
−
Δt

�
�neq

)
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assumed to be converged if the norm of the residual as well 
as the change of the unknown within the current Newton-
step are lower than 10−8.

Remark 1 Preliminary studies for the numerical benchmark 
tests in Sect. 7 showed that two aspects in the definition of 
the residual are advantageous for a fast convergence of the 
Newton–Raphson method: rearranging the update formulae 
such that the inverse of the exponential is present (i.e., a 
negative sign in the exponential’s argument) and the inverse 
of the unknown is avoided. Appropriate definitions of the 
residual (denoted by R

NR
 ) are given in Table 1.

2.5  Viscosity Functions

To fulfill the Clausius-Planck inequality, it is sufficient to 
define a positive viscosity � , see Sect. 2.3. In the following, 
a list of viscosity functions presented in the literature is 
compiled3. Only models which have been proposed for 
rubbers or soft tissues are considered, i.e., approaches 
from fluid rheology or metal creep are beyond the scope 
of this work (although some viscosity functions in the list 
are borrowed from these fields of research). Equivalent 
representations of the employed stress and strain invariants 
for all four formulations A-D are given in Table 2. Material 
parameters are denoted by p, � , � , � , � , �.

• The simplest,  but very common Newtonian 
viscoelasticity with � = const. is usually not the best 
choice to reproduce real material behavior. This approach 
serves as a reference herein. To improve the parameter 
identification procedure, the viscosity is fitted on a 
logarithmic scale, viz., 

This definition with the fitting parameter p leads to a 
fast, reproducible fitting and is applied to all viscosity 
functions below. Note that the units will be omitted in 
the following for the sake of readability.

• A classical approach which is part of several approaches 
below is the Norton-type viscosity [29] with the power 
law 

Herein, ‖X‖ =
√
X ∶ X denotes the Frobenius norm4. 

The sign of the stress exponent � is chosen such that the 
viscosity decreases at large overstresses for positive �
-values. This effect is known as shear thinning or 
pseudoplasticity. A numerical drawback of this viscosity 
function is the behavior ‖‖‖�neq

‖‖‖ → ∞ ⇒ � → 0 . Hence, 
in the exponential map (Sect. 2.4), the term Δt∕� can 
readily produce overflows. To overcome such problems, 
either the parameter range of � must be restricted or 
alternative time integration schemes must be considered. 
However, this issue is beyond the scope of this 
manuscript.

• Haupt & Lion [30] as well as Plagge et al. [2] defined 
an exponentially stress dependent relaxation time in the 
context of convolution models for elastomers. It was 
also used earlier to describe the creep of metal crystals 
[31]. Herein, their approach is applied to a non-constant 
viscosity leading to 

• The hyperbolic sine power law by Garofalo [32] 

(43)� = 10p MPa s .

(44)�
(‖‖‖�neq

‖‖‖
)
= 10p

‖‖‖�neq
‖‖‖
−�

.

(45)�
(‖‖‖�neq

‖‖‖
)
= 10p exp

(
−�

‖‖‖�neq
‖‖‖
)

.

Table 2  Equivalent stress and strain measures (note that for some conversions it was made use of the symmetric and traceless properties stem-
ming from the choice of an isotropic and isochoric free energy function)

Formulation A B C D

Norm of Kirchhoff stress
√(

C
e
⋅ Tneq

)
∶
(
Tneq ⋅ Ce

) ‖‖‖�neq
‖‖‖

√(
C ⋅ Sneq

)
∶
(
Sneq ⋅ C

) ‖‖‖�neq
‖‖‖

Norm of intermediate stress ‖‖‖Tneq
‖‖‖

√(
C
i
⋅ Sneq

)
∶
(
Sneq ⋅ Ci

) ‖‖‖�neq ⋅ b
−1
e

‖‖‖
Trace of Cauchy-Green tensor tr

(
b
i

)
= tr

(
C
i

)
tr
(
C
i

)
tr
(
FT

⋅ b−1
e

⋅ F
)

Norm of Cauchy-Green tensor ‖‖‖b
−1
i

‖‖‖ =
‖‖‖C

−1
i

‖‖‖
‖‖‖C

−1
i

‖‖‖
‖‖‖F

−1
⋅ b

e
⋅ F−T‖‖‖

Equivalent inelastic strain rate �̇�
i

√
2∕3��Di

��
D

i
= F

e
⋅ d

i
⋅ F−1

e

√
1∕6‖F⋅C−1

i
⋅Ċ

i
⋅F−1‖

=
√

1∕6 (C⋅C−1
i
⋅Ċ

i)∶(C
−1
i
⋅Ċ

i
⋅C−1)

√
1∕6��be⋅F−T

⋅Ċ
i
⋅F−1��

=
√
1∕6��L(be)⋅b−1e ��

3 Note that for convenience some authors prescribe the fluid-
ity � = 1∕� (i.e., the reciprocal of the viscosity) or the effective creep 
rate �̇� =

‖‖‖�neq
‖‖‖∕2𝜂 (such that D

i
= �̇� �neq∕

‖‖‖�neq
‖‖‖ ) rather than the vis-

cosity itself.

4 For traceless, symmetric stress measures, the Frobenius norm is 
equivalent to the von Mises stress invariant �vM =

√
3∕2‖�‖.
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 combines the behavior of a power law for small 
arguments and an exponential law for large arguments. 
Hurtado et al. [33] proposed its application to rubber 
materials.

• Lion [26] proposed the viscosity function 

He stated that “for physical reasons, the material 
function � [...] may depend on the arguments Tneq and e

i
 ” 

where e
i
= 1∕2

(
I − b−1

i

)
 is the Almansi strain. However, 

the interpretation of the intermediate stress Tneq remains 
difficult since it is an artificial quantity obtained by a 
pull-back of the overstress �neq (similar to the 2nd Piola-
Kirchhoff stress Sneq ). Moreover, a physically deviatoric 
stress does not lead to a traceless Tneq . Hence, its 
Frobenius norm is not equivalent to the von Mises 
invariant (see footnote 3) such that the meaning of ‖‖‖Tneq

‖‖‖ 
is unclear, too.

• Bergström & Boyce [6] derived from physical 
considerations the four parameter function 

which is multiplicatively comprised of the Norton-
type viscosity, see Eq.  (44), and a strain dependent 
contribution. The sign of the strain exponent  � is 
chosen so that the viscosity increases at large inelastic 
deformations for a positive � . The material parameter � 
is introduced due to “some difficulty in the numerical 
implementation” [6] and fixed to  0.01 for rubber 
materials. However, nearly zero viscosity values are still 
obtained for tr

(
b
i

)
→ 3 and 𝛽 > 1 such that numerical 

issues as discussed for the Norton-type viscosity can be 
aggravated.

• The strain-rate dependent Carreau model 

(46)�
(‖‖‖�neq

‖‖‖
)
= 10p

(
sinh

(
�
‖‖‖�neq

‖‖‖
))−�

(47)�
����Tneq

���,
���b

−1
i

���
�
= 10p exp

⎛
⎜⎜⎜⎝
−�

���Tneq
���

���b
−1
i

���
3

⎞
⎟⎟⎟⎠

.

(48)�
�����neq

���, I1,i
�
= 10p

����neq
���
−�
⎛⎜⎜⎝

�
I1,i

3
− 1 + �

⎞⎟⎟⎠

�

(49)�
���Di

��
�
= 10p

⎛⎜⎜⎜⎝
� +

1 − ��
1 +

�
���Di

��
�2��∕2

⎞⎟⎟⎟⎠

 is originally used to describe the non-Newtonian flow 
of fluids. It is adapted to brain tissue by Bilston et al. 
[34]. Note that the inelastic Di is employed here rather 
than the total rate of deformation tensor d as by Bilston 
et al. [34]. This choice is motivated by Fig. 1 and the 
assumption that the viscosity of the dashpot should only 
be affected by the corresponding inelastic deformation 
and not by the total deformation of the Maxwell 
element.5 The parameter � describes the viscosity at 
large deformation rates relative to small rates, viz., 
� = �

(‖‖Di
‖‖ → ∞

)
∕�

(‖‖Di
‖‖ = 0

)
.

• The Ellis model 

 also originates from the fluid rheology. Hrapko et al. 
[35] employed the Ellis model for the simulation of brain 
tissue.

• Prevost et al. [8] modelled the viscoelastic behavior of 
brain tissue with a modification of Eq. (48) [6]. The 
strain exponent is fixed to � = 2 yielding after some 
rearrangements 

Contrary to Bergström & Boyce [6] and Prevost et al. 
[8], the parameter � is herein not fixed to a pre-specified 
value.

• Hur tado et   a l .  [33]  proposed the general 
form �

(‖‖‖�neq
‖‖‖, tr

(
C
i

)
, �

i

)
 with the equivalent inelastic 

strain �
i
 obtained from �̇�

i
=
√
2∕3��Di

�� and presented the 
formulation 

called “power law strain hardening model”. Note that �
i
 is 

a monotonically increasing variable since �̇�
i
≥ 0 . Hence, 

the viscosity always tends to infinity (for 0 < 𝛽 < 1 ) or 
to zero (for 𝛽 < 0 ). The physical motivation for this 
irreversible, accumulating behavior induced by inelastic 
strain is not specified by Hurtado et al. [33].

• Kumar & Lopez-Pamies [36] proposed a six parameter 
approach for rubbers 

(50)�
(‖‖‖�neq

‖‖‖
)
= 10p

(
� +

1 − �

1 +
(
�
‖‖‖�neq

‖‖‖
)�

)

(51)

�
�����neq

���, I1,i
�
= 10p

����neq
���
−�
⎛⎜⎜⎝
�

⎛⎜⎜⎝

�
I1,i

3
− 1

⎞⎟⎟⎠
+ 1

⎞⎟⎟⎠

2

.

(52)�
(‖‖‖�neq

‖‖‖, �i
)
= 10p

‖‖‖�neq
‖‖‖
−�(

(1 − �)�
i

) �

1−�

(53)

�
�����neq

���, I1,i
�
= 10p

⎛⎜⎜⎜⎝
� +

1 − � + �
��

I1,i

3

��
− 1

�

1 +
�
�
����neq

���
��

⎞⎟⎟⎟⎠
.5 Similar questions arise for the Norton and Ellis model since the 

original formulations are one-dimensional, i.e., they relate the scalar 
shear strain to shear stress. Hence, to generalize these approaches, 
invariants of appropriate stress and deformation measures must be 
chosen.
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 which is an extension of the Ellis model to a strain 
dependency.

• Recently, Dal et al. [3] considered the relaxation kinetics 
of a single polymer chain resulting in 

 Contrary to the other strain dependent viscosity 
functions, this approach employs an elastic invariant 
rather than an inelastic one. Note the similarity of the 
last term to a neo-Hooke free energy, cf. Table 4.

The viscosity functions are summarized in Table  3. 
Approaches requiring additional numerical effort (for 
instance, numerical integration stemming from polymer 
chain statistics [37]) are beyond the scope of this compari-
son. Furthermore, since only decoupled, purely isochoric 

(54)𝜂
(‖‖‖�neq

‖‖‖, Ī1,e
)
= 10p

‖‖‖�neq
‖‖‖
−𝛼

(
Ī1,e

3
− 1

)−1

.

approaches are considered, viscosities depending on the 
hydrostatic presssure6 p [39] or on the volume change J are 
not discussed. 

Summing up, hitherto many stress and strain dependent 
viscosity functions exist but there is no common opinion 
on the exact stress and strain measures to be used, i.e., 
intermediate or Kirchhoff stress and inelastic, elastic, total 
or accumulated strain. However, it can be noticed that in the 
source papers an increasing stress is always assumed to lead 
to a decreasing viscosity which can be motivated by shear 
thinning. Vice versa, increasing inelastic strain is associated 
with an increasing viscosity.

Table 3  Overview of viscosity 
functions (Par. stands for 
number of parameters)

No. Name & literature Viscosity function �∕MPa s & param-
eter bounds

Dependencies

Stress strain Par.

1 Const. viscosity 10p – – 1
2 Power law

Norton [29]
10p

‖‖‖�neq
‖‖‖
−� ‖‖‖�neq

‖‖‖ – 2

3 Exponential law
Schmid & Boas [31]

10p exp
(
−�

‖‖‖�neq
‖‖‖
) ‖‖‖�neq

‖‖‖ – 2

4 Hyperbolic sine power law
Garofalo [32]

10p
(
sinh

(
�
‖‖‖�neq

‖‖‖
))−�

𝛾 > 0

‖‖‖�neq
‖‖‖ – 3

5 Lion [26]
10p exp

�
−�

‖Tneq‖
‖b−1i ‖3

� ‖‖‖Tneq
‖‖‖

‖‖‖b
−1
i

‖‖‖ 2

6 Bergström & Boyce [6]
10p

‖‖‖�neq
‖‖‖
−�
(√

I1,i

3
− 1 + �

)�

� = 0.01 fixed

‖‖‖�neq
‖‖‖ I1,i 3

7 Carreau model
Bilston et al. [34] 10p

�
� +

1−��
1+(�‖Di‖)2��∕2

�

𝛾 > 0 , 𝛿 > 0 , 𝜖 > 0

– ‖‖Di
‖‖ 4

8 Ellis model
Hrapko et al. [35]

10p
�
� +

1−�

1+(�‖�neq‖)�
�

𝛾 > 0 , 𝛿 > 0

‖‖‖�neq
‖‖‖ – 4

9 Prevost et al. [8]
10p

‖‖‖�neq
‖‖‖
−�
(
�

(√
I1,i

3
− 1

)
+ 1

)2

𝛾 > 0

‖‖‖�neq
‖‖‖ I1,i 3

10 Strain hardening power law
Hurtado et al. [33] 10p

‖‖‖�neq
‖‖‖
−�(

(1 − �)�
i

) �

1−�

𝛽 < 1

‖‖‖�neq
‖‖‖ �

i
3

11 Kumar & Lopez-Pamies [36]
10p

�
� +

1−�+�

��
I1,i

3

��

−1

�

1+(�‖�‖)�
�

𝛽 > 0 , 𝛾 > 0 , 𝛿 > 0 , 𝜖 > 0

‖‖‖�neq
‖‖‖ I1,i 6

12 Dal et al. [3]
10p

‖‖‖�neq
‖‖‖
−𝛼( Ī1,e

3
− 1

)−1 ‖‖‖�neq
‖‖‖ Ī1,e 2

6 As shown by for instance by Champagne et  al. [38], rubbers can 
approach the glass transition also due to a large compressive load. 
Thus, a pressure dependent viscosity can be a reasonable modeling 
approach to consider the concomitant change of the viscoelastic prop-
erties in the glassy state.
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2.6  General Form of Material Models

2.6.1  Material Model for Rubbers

For rubber materials, the equilibrium stress is computed 
from a discontinuous Mullins-type damage model defined by

where the variable7 H ∈ [0, 1] indicates whether the 
material undergoes a virgin loading ( H = 1 ) or an un-/
reloading ( H < 1 ). The basic strain energy function Ψ0 
describes the equilibrium virgin state response and the 
state variable Ψ0,max records its maximum value. Evaluating 
Eqs. (20) and (25) provides the relations

This damage model was described by de Souza Neto et al. 
[40] and generalized by Naumann & Ihlemann [41]. Ogden 
& Roxburgh [42] coined the name pseudo-elasticity. See 
Ricker et al. [21] for an overview of suitable approaches 
for H. Here,

(55)

Ψeq =

Ψ0

∫
0

H
(
Ψ̄0,Ψ0,max

)
dΨ̄0 with Ψ0,max = max

t̄∈[0,t]

(
Ψ0(t̄)

)

(56)

�eq = F ⋅ H S0 ⋅ F
T with H =

�Ψeq

�Ψ0

and S0 = 2
�Ψ0

�C
,

(57)Dm,eq = −Ψ̇0,max

Ψ0

∫
0

𝜕H

𝜕Ψ0,max

dΨ̄0 .

(58)H = 1 − r
(
1 − arcoth

(
m
(
Ψ0,max − Ψ0

)
+ coth(1)

))

is chosen with the material parameters  m ∈ (0,∞) 
and r ∈ [0, 1) , see Appendix 2 for the construction of H. 
The basic strain energy function is chosen to be

as proposed by Plagge et  al. [2]. It is called simplified 
extended tube model and provides a good fitting to the virgin 
curve of the tested materials, see Sect. 3, at low number 
of parameters, see also Ricker & Wriggers [43]. G0 > 0 is 
the initial shear modulus and n > 0 is the polymer chain 
extensibility defining a pole at 

(
Ī1 − 3

)
→ n . The volumetric 

response is determined by the assumption of perfect 
incompressibility, see Sect. 4.

For the Maxwell element, all viscosity functions from 
the previous section 2.5 as well as the non-equilibrium 
free energy functions (a)-(e) in Table 4 are fitted to the 
experimental data to identify suitable approaches. The 
neo-Hooke potential is taken as reference free energy 
function. The detailed fitting procedure and the results 
are presented in Sect. 5. Compared to (a), the free energy 
function  (b) introduces one additional parameter to 
generate an upturn of the viscoelastic overstress, i.e., 
an increasing shear modulus. In contrast, free energy 
function  (c) with three parameters has a decreasing 
modulus (if B > 0 ). Approach (d) is identical to the basic 
free energy of the equilibrium spring and exhibits a pole. 
Approach  (e) provides a Mullins-type damage for the 
non-equilibrium spring which is constructed in the same 
manner as the equilibrium free energy in Eq. (55) with H 
as in Eq. (58). Note that free energy function (e) is used 
only for rubber materials and (f) only for brain tissues due 
to the choice for the equilibrium free energy functions.

(59)Ψ0 =
G0

2

Ī1 − 3

1 −
1

n

(
Ī1 − 3

)

Table 4  Overview of free 
energy functions for the non-
equilibrium spring (Par. stands 
for number of parameters)

No. Name, literature & comments Free energy function Ψneq Par.

(a) Neo-Hooke Gneq

2

(
Ī1,e − 3

) 1

(b) Yeoh [44]
(c20,neq = 0 fixed)

c10,neq
(
Ī1,e − 3

)
+ c30,neq

(
Ī1,e − 3

)3 2

(c) Yeoh [45]
(c20,neq = c30,neq = 0 fixed)

c10,neq
(
Ī1,e − 3

)
+

A

B

(
1 − exp

(
−B

(
Ī1,e − 3

))) 3

(d) Plagge et al. [2]
G0,neq

(Ī1,e−3)
1−

1

n
(Ī1,e−3)

2

(e) Neo-Hooke
+ damage

Ψ0,neq =
Gneq

2

(
Ī1,e − 3

)
(cf. Eqs. (55) and (58) for construction of Ψneq)

1
+ 2

(f) Ogden 2𝜇neq

𝛼2
neq

(
tr
(
C̄
𝛼neq∕2

)
− 3

)
2

7 Usually, the virgin state variable is denoted by � . To avoid confu-
sion with the viscosity, H is used here instead.
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2.6.2  Material Model for Brain Tissues

Brain tissue exhibits stress softening similar to the Mullins 
effect of rubber materials as outlined in Sect. 1. Hence, the 
same modeling approach as in Sect. 2.6.2 could be used. 
However, the considered experimental data, see Sect. 3, 
include only one amplitude level for each loading mode 
which in preliminary studies turned out to be insufficient to 
provide reasonable material parameters. Therefore, a purely 
hyperelastic model for the equilibrium response is employed 
and, hence, preconditioning effects are not accounted for. 
The first load cycle of the experimental data is omitted for 
the parameter identification and only considered as loading 
history.

A crucial difference between the behavior of rubbers 
and brain tissues is the pronounced asymmetric tension-
compression stress response of the latter [, 7, 9]. That is, the 
material stiffness under uniaxial compression is much larger 
than under uniaxial tension. This behavior manifests itself 
when fitting a one term Ogden model

or a Mooney-Rivlin model Ψeq = c10
(
Ī1 − 3

)
+ c01

(
Ī2 − 3

)
 

with Ī2 = tr
(
C̄
−1
)
 to tension and compression data. In case 

of rubber materials, 𝛼 > 0 and c10 > c01 can typically be 
observed whereas for soft tissue the opposite behavior is 
present ( 𝛼 < 0 , c10 < c01 ). Furthermore, brain tissues show 
a pronounced strain stiffening, see also Budday et al. [5], 
leading to large absolute values of the Ogden parameter 
(typically, � = −20…− 40 ). It should be noted that such 
large exponents are numerically undesirable. However, the 
Mooney-Rivlin model (and most other free energy functions, 
especially Ī1-Ī2-based approaches) fail to capture properly 
these two effects. Therefore, the Ogden model in Eq. (60) is 
commonly used and also employed here.

The description of the volumetric response bases again on 
the incompressibility assumption. The viscosity functions to 
be investigated are identical to those for rubber materials, cf. 
Table 3. Furthermore, non-equilibrium free energy functions 
(a)-(d) and (f) from Table 4 are considered.

2.6.3  Material Model for Numerical Tests

For numerical tests under realistic conditions, a model setup 
which will be identified to be well-suited for rubber materials 
is chosen, see Sect. 5. The equilibrium free energy is given 
by Eqs. (55), (58) and (59). For the sake of simplicity,

(60)Ψeq =
2𝜇

𝛼2

(
tr
(
C̄
𝛼∕2

)
− 3

)

(61)Ψvol =
K0

2
(J − 1)2

is chosen for the volumetric part leading to a linear p-J-
relation, i.e., to a constant bulk modulus K = �2Ψvol∕�J

2 . 
As viscosity function, the stress and strain dependent 
function according to Eq. (51) is considered [8]. Moreover, 
a neo-Hooke model is chosen for the non-equilibrium stress 
contribution, cf. Table 4. The parameters stem from the 
model calibrations in Sect. 5.

3  Experiments

To find the best viscoelasticity model for rubber materials, 
cyclic, uniaxial tensile tests including relaxation phases and 
several amplitudes were conducted with two industrial com-
pounds, see Figs. 2 and 3. The first compound is a sulfur 
crosslinked, carbon black filled EPDM for sealing appli-
cations which is loaded up to 155 % strain at a strain rate 
of 10 %∕s . Whereas the second one is a sulfur crosslinked, 
carbon black filled NR for vibration isolation with a maxi-
mum load of 210 % strain at 1 %∕s . Note that the latter shows 
a widening of the hysteresis loop at 𝜆 > 2 which is probably 
due to strain-induced crystallization.

For brain tissue, experimental data are taken from Bud-
day et al. [9] where the average material response from 
multiple brain tissue samples was presented. That paper is 
chosen as data source since it presents an extensive data 
base including both cyclic and relaxation experiments in 
multiple deformation modes. The cyclic tests are comprised 
of three displacement-driven, sinusoidal load cycles. The 
amplitudes are � = 0.2 , � = 0.9 and � = 1.1 under simple 
shear, uniaxial compression and uniaxial tension, respec-
tively. See Fig. 4 for the stress-stretch plots and the applied 
frequencies. For the relaxation tests, the tissue is loaded with 
a rate of 100 mm∕min to the above specified amplitudes and 
afterwards the displacement is kept constant for a duration 
of 300 s , see Fig. 5. Relaxation data are only provided for 
compression and shear in the source paper and consequently 
relaxation under tension is not considered herein. Further-
more, data for specimens from multiple brain regions are 
available. In the following, the viscoelastic models are com-
pared using data from the cortex and the corpus callosum 
as they exhibit the stiffest and softest material responses, 
respectively, from all tested brain regions. 

4  Parameter Fitting

To find the best parameter set for each model and mate-
rial, a least square problem is formulated and solved by a 
Trust-Region algorithm. For the rubber materials with uni-
axial tension data, the residual is defined in terms of the 
relative error between the model’s and the experimental 
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1 st Piola-Kirchhoff stress in loading direction. That leads to 
the cost function

m denotes the number of considered experimental 
observations, i.e., load steps. The model’s 1 st Piola-Kirchhoff 
stress P

mod,i
 is obtained from the Kirchhoff stress �

mod
 

divided by the measured stretch �
exp,i

 (formulations A, B, D) 
or from the 2nd Piola-Kirchhoff stress S

mod,i
 multiplied 

by �exp,i (formulation C). The stress is computed from the 
experimental deformation gradient  F

exp,i
 , the state 

variable �
i−1

 at the beginning of the increment and the 
material parameters p

j
 , j = 1… n . � must be replaced by F

i
 , 

F
e
 , C

i
 or b

e
 depending on the considered formulation.

For the brain tissues with multiple test data and 
deformation modes, the cost function reads

where Fk are the contributions from the shear, compression 
and tension experiments. Here, a normalized error is 
employed in the residual for each experiment rather than 
the relative error, viz.,

since the cyclic brain data include stress values close 
or equal to zero where measurement noise would lead to 
arbitrarily large relative errors. The normalization w.r.t. the 
maximum stress of each experiment avoids a bias towards 
experiments with large stress values (typically compression 
experiments for brain tissue, cf. Sect. 3).

For the fitting procedure, perfect incompressibility is 
assumed. Consequently, the components of the 
experimental deformation gradient are constructed from 
det

(
F
exp,i

)
= 1 as

(62)

F
(
p
1
,… , p

n

)
=

1

m

m∑
i=1

(
P
mod,i

− P
exp,i

P
exp,i

)2

→ min

with P
mod,i

=
1

�
exp,i

�
mod

(
F
exp,i

,�
i−1

, p
1
,… , p

n

)

= �
exp,i

S
mod

(
F
exp,i

,�
i−1

, p
1
,… , p

n

)
.

(63)Ftotal =
∑
k

Fk

(64)F =
1

m

m�
i=1

⎛⎜⎜⎝
P
mod,i

− P
exp,i

max
���Pexp,i

���

⎞⎟⎟⎠

2

Moreover, the hydrostatic pressure p in the model is not 
computed from the volumetric free energy but from 
boundary conditions, i.e., the lateral directions are assumed 
to be stress-free.

The Jacobian for the optimization problem is obtained as

Thus, at each time step, the history variables �
i
 as well as 

their derivatives with respect to the material parameters

have to be computed and updated for the next time 
increment. Since �i is computed by a Newton-Raphson 
scheme, see Sect. 2.4, the derivatives ��i∕�pj and ��i∕��i−1 
are implicitly given by differentiating the corresponding 
residual R

NR

(
�
i
,�

i−1
, p

1
,… , p

n

)
= 0 , see Korelc & Wriggers 

[20]  or Mahnken & Stein [46] for details. Seeking for the 
best parameter set, 50 different initial guesses are randomly 
generated for the Trust-Region algorithm based on the Latin 
hypercube sampling, see for instance Ricker et al. [21]

5  Comparison of Viscelasticity Models 
for Rubber Materials

To find the best viscoelasticity model for the tested rubber 
materials, a two-step procedure is applied. First, the non-
equilibrium free energy function is defined as a neo-Hooke 
potential Ψneq = Gneq∕2

(
Ī1,e − 3

)
 and is combined with all 

viscosity functions given in Table 3, see Sect. 5.1 for the 
results. Then, the constant viscosity is chosen and combined 
with the non-equilibrium free energy functions (a)-(e) in 
Table 4, cf. Sect. 5.2 for the outcome. The equilibrium free 
energy function Ψeq given by Eqs. (55), (58) and (59) is 
kept constant during this study. Since preliminary studies 
showed that the model framework with just one Maxwell 
element is insufficient to capture accurately both viscoelas-
tic phenomena, i.e., hysteresis loops and stress relaxation, 
this procedure is done twice for each material. On the one 
hand, the models are fitted only to the cyclic data, i.e., the 

(65)

tension/compression:
�
F
exp,i

�
=

⎡
⎢⎢⎢⎢⎣

�
exp,i

0 0

0 1∕
�

�
exp,i

0

0 0 1∕
�

�
exp,i

⎤⎥⎥⎥⎥⎦

simple shear:
�
F
exp,i

�
=

⎡⎢⎢⎣

1 s
exp,i

0

0 1 0

0 0 1

⎤⎥⎥⎦
.

(66)J
ij
=

dS
mod,i

dp
j

=
�S

mod,i

�p
j

+
�S

mod,i

��
i−1

∶
d�

i−1

dp
j

.

(67)
d�

i

dp
j

=
��

i

�p
j

+
��

i

��
i−1

∶
d�

i−1

dp
j

,
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non-transparent lines in Figs. 2 and 3. On the other hand, 
only the relaxation data are considered, i.e., the transpar-
ent lines. This manuscript sticks to a single Maxwell ele-
ment because multiple Maxwell elements would lead to an 
unmanageable number of combinations of free energy and 
viscosity functions with hardly foreseeable interdependen-
cies. Moreover, separated fittings to cyclic and relaxation 
data allow to identify appropriate response functions for 
each viscoelastic effect and to interpret the role of the mate-
rial parameters. The results can then be employed to con-
struct more sophisticated material models with two or even 
more Maxwell elements capturing complex load scenarios.

The range of feasible parameter values for the fitting 
procedure is chosen as generous as possible without 
violating the second law of thermodynamics, see Sect. 2.2. 
That is, 𝜂 > 0 must be satisfied to ensure a non-negative 

dissipation rate of the dashpot. For instance, the stress 
and strain exponents � and � in the viscosity functions are 
allowed to be positive as well as negative. In some cases, 
that is more generous than originally proposed by the 
authors, e.g., Bergström & Boyce [47] limited � ∈ [0, 1] 
for viscosity function 6 because of the micro-mechanically 
motivated background based on the reptational dynamics of 
polymer chains. Moreover, very large exponents can cause 
numerically impracticable model behavior. However, finding 
appropriate parameter limits for each viscosity function and 
free energy function is not reasonable for a large number of 
models. In addition, the parameters can be very different for 
rubbers and soft tissues and promising models can readily 
be overlooked due to too strong constraints. Thus, for the 
sake of a fair comparison, only strictly necessary parameter 
bounds are applied, see Table 3.

Fig. 2  Experimental data of the EPDM compound (transparent and non-transparent lines highlight the relaxation and cyclic data, respectively; to 
anonymize the experimental data, the stress values are normalized)
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5.1  Comparison of Viscosity Functions

Seeking for the best viscosity function, each approach from 
Table 3 is combined with a neo-Hooke non-equilibrium 
free energy for the Maxwell element. The equilibrium free 
energy is described in Sect. 2.6.1. The fitting results for 
cyclic and relaxation data of both rubber materials are visu-
alized in Fig. 6.

The reference model 1 in this comparison employs a 
single, constant viscosity. This assumption clearly leads to 
the poorest outcome for both rubber materials and loading 
modes. Its stress response is depicted in Figs. 25 and 26 
in Appendix 5 and reveals an insufficient reproduction of 
the material behavior. In contrast, viscosity function 11 by 
Kumar & Lopez-Pamies [36] ranks first in nearly all cases. 

However, this approach requires six parameters whereas 
all others need four parameters at most. As a consequence, 
some parameters cannot be uniquely identified with the 
given data, especially for the NR compound. That is, a lot 
of variation in the optimized parameters can be observed 
between different initial guesses although the cost function 
value is nearly identical. This problem becomes also 
apparent in high parameter correlations, especially between 
the stress exponent � and the stress scaling factor � (as well 
as between � and �).

Promising alternatives are the viscosity functions 5 by 
Lion [26], 6 by Bergström & Boyce [6] and 9 by Prevost 
et al. [8] which require just two or three parameters. All these 
top ranked models have in common a stress dependency as 
well as a strain dependency on Ī1,i . In contrast, approach 12 

Fig. 3  Experimental data of the NR compound (transparent and non-transparent lines highlight the relaxation and cyclic data, respectively; to 
anonymize the experimental data, the stress values are normalized)
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by Dal et  al. [3] employing  Ī1,e in a neo-Hooke-like 
contribution (cf. Sect. 2.5) provides similar results as the 
purely stress dependent viscosity functions 2-4 and 8. Their 
stress dependency can notably improve the calibration on the 
relaxation data but not on the cyclic data. The dependency 
on the accumulated viscous strain �

i
 of viscosity function 10 

appears to be helpful particularly for the fitting to the 
relaxation behavior of the EPDM compound. Interestingly, 
only for these data, the parameter � was optimized to a 
negative value, i.e., the viscosity increases ( � → ∞ for 

�̇�i → ∞ , cf. Sect. 2.5) whereas the viscosity tends to zero for 
the EPDM cyclic data and both NR data sets. Furthermore, 
the strain rate dependency of the Carreau model 7 does not 
seem to be advantageous for rubber materials.

Viscosity function  4 by Lion [26] with only two 
parameters differs from the other approaches in terms of 
the employed stress and strain measure ‖T‖ and ‖b−1

i
‖ , 

cf.  Table  3. Its convincing performance for the NR 
compound and for the cyclic behavior of the EPDM 
compound reveals that these are suitable measures to capture 
the viscoelastic behavior despite the missing physical 
interpretability of Tneq , cf. Sect. 2.5. However, the model is 
not among the most promising ones for the EPDM relaxation 
data. A reason might be the fixed ratio between the stress and 
strain measure, viz., ‖T‖ ∕‖b−1

i
‖3 . This is in contrast to the 

other top-performing viscosity functions 6, 9 and 11, where 
the stress and strain dependency can be adjusted separately. 
These three models show a comparatively weak strain 
dependency for the EPDM relaxation data, e.g., model 9 
has a small � - and a large �-value, see Table 5.

In addition to the non-Newtonian approaches with one 
Maxwell-element, a parallel connection of 13 Maxwell 
elements with constant shear moduli and viscosities is 
considered in the comparison, see approach  13 named 
relaxation time spectrum in Fig. 6. Employing the implicit 
but iterative-free time integration scheme by Shutov et al. 
[48] yields a numerically efficient implementation, see 
Appendix 4 for details. For the NR relaxation data, the 
relaxation time spectrum achieves a small improvement 
compared to a single Maxwell element whereas the EPDM 
relaxation data benefit considerably from multiple Maxwell 
elements. The fittings to the cyclic data do not show a 
notable improvement due to the constant strain rate in the 

Fig. 4  Cyclic data of brain tissue (transparent and non-transpar-
ent lines highlight the first and the remaining cycles, respectively; 
dashed, dash-dotted and dotted lines denote shear, compression and 

tension load; blue and orange lines stand for data from the cortex and 
the corpus callosum)

Fig. 5  Relaxation data of brain tissue (dashed and dash-dotted lines 
denote shear and compression load, respectively; blue and orange 
lines stand for data from the cortex and the corpus callosum)
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experiments which activates primarily only one Maxwell 
element.

Figures 7, 8, 9 and 10 depict the experimental data and 
the stress response of the top ranked model 9 plotted against 
time and stretch for both materials and both loading modes. 
Table 5 shows the corresponding parameters. The figures 
illustrate the following general statements which hold true 
for all viscosity functions in this study: 

1. One single Maxwell element is not sufficient to 
accurately capture both viscoelastic effects, i.e., 
hysteresis loops and relaxation. Figures  7a and 8b 
show the poor prediction for the non-fitted data 
range (transparent lines) of the EPDM compound (or 
Figs. 9a and 10b of the NR compound). Moreover, the 
parameters of the Maxwell element p, � , � are very 
different for both loading modes of the same material 
whereas the parameters of the equilibrium contribution 
are very similar (except for the damage parameters m 
and r of the EPDM compound).

2. The lower turning points of the hysteresis loops can 
often be fitted much better than the upper turning points, 
cf. Figs. 7b and 9b. This behavior can be changed to 
some extent by employing an absolute error in the cost 
function which gives more weight to the large strain 
regime, see also remark 4.

3. For some models, the stress or strain exponents are fitted 
to large values, e.g., � in the power law ‖‖‖�neq

‖‖‖
−�

 . This 
can lead to kinks at turning points in the stress–strain 
plot. � = 6 in Table 5 is barely acceptable.

4. All models struggle to predict large changes in stress 
after a relaxation phase, see for instance the time ranges 
77… 82 min and 83… 88 min in Fig. 10a.

5. For certain parameter sets, the models can be highly 
sensitive to noise in the input strain data, e.g., see the 
second and third relaxation phase in Fig. 8a. This is 
due to the equilibrium spring rather than the Maxwell 
element. More specific, the steep slope at the upper 
turning points in Fig. 8b leads to the sensitive behavior 
and is caused by the large damage parameter m.

6. A visual inspection of the stress–strain curves of the cal-
ibrated model is always recommended. That is, the stress 
response in other deformation modes (e.g., simple shear, 
compression, biaxial tension), with different experimen-
tal protocols (e.g., cyclic, relaxation, creep), beyond the 
experimental strain range and with different strain rates 
should be checked for plausibility. Such predictability is 
of particular importance for three-dimensional simula-
tions with arbitrary deformation states. For instance, in 
Fig. 8b, the large overstresses at the lower turning points 
and the steep stress upturn at the upper turning points 

of the re- and unloading curves do not reflect the real 
material behavior.

   

5.2  Comparison of Non‑equilibrium Free Energy 
Functions

After the identification of promising viscosity functions in 
the previous section, a study on suitable free energy func-
tions for the non-equilibrium spring is conducted. The model 
setup is comprised of the equilibrium free energy accord-
ing to Sect. 2.6.1 and a dashpot with a constant viscosity. 
The non-equilibrium free energy functions (a)-(e) given in 
Table 4 are investigated. The neo-Hooke model (a) with a 
constant shear modulus serves again as a reference. The 
results are presented in Fig. 11.

It can be noted that the non-Hookean viscoelasticity 
does not lead to an improved model calibration for the 
cyclic data of both materials. Moreover, the EPDM 
relaxation data benefit only from approach (c) by Yeoh 
[45]. In contrast, the relaxation behavior of the NR 
compound gains from all non-Hookean free energy 
functions. Concluding, the non-Newtonian approaches 
with a constant shear modulus (see previous section) are 
in general much more advantageous than a non-Hookean 
Maxwell element with a constant viscosity.

Free energy function (c) ranks first for the relaxation 
data of both materials and reduces the RMSE by 23 % 
and 15 % compared to the neo-Hooke spring. Its unique 
feature is its decreasing shear modulus. However, the vis-
ual inspection of the stress relaxation curves revealed a 
slightly concave shape for some relaxation phases, e.g., 
between 34 min and 38 min in Fig. 12. This is contrary 

Fig. 6  Fitting results for the rubber compounds
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to the experimental findings which always show convex 
(downward  or upward ) relaxation curves.

Remark 2 The parameter fittings for the rubber materials 
were rerun with the viscoelastic models employing the 
reverse order in the multiplicative split F = F

i
⋅ F

e
 , see 

Appendix 3. The optimized parameters and the goodness of 
fit did not notably change.

Remark 3 The study on suitable non-equilibrium free energy 
functions was repeated with viscosity function 9 by Prev-
ost et al. [8] (i.e., a non-Newtonian viscoelasticity) rather 
than a constant viscosity. In this case, the improvements in 
comparison to the neo-Hooke potential (also combined with 
viscosity 9) were even smaller (3 % at most).

Remark 4 Furthermore, the model calibrations were redone 
with an absolute error in the cost function instead of a rela-
tive error. In this case, the stress and strain exponents in the 
viscosity functions tended to larger and hence numerically 
undesirable values, see also statement 3 in Sect. 5.1. Moreo-
ver, the cyclic data slightly benefited from a non-constant 
shear modulus when employing an absolute error, contrary 
to Fig. 11. However, the general tendencies and the ranking 
orders remained largely unchanged.

6  Comparison of Viscelasticity Models 
for Brain Tissues

The procedure for comparing the viscosity and the non-equi-
librium free energy functions for brain tissue is similar to 
that for rubber in the previous section 5. That is, the viscos-
ity functions from Table 3 are combined with the neo-Hooke 
potential and fitted to the experimental data. Subsequently, 
the non-equilibrium free energy functions (a)-(d) & (f) from 
Table 4 coupled with a constant viscosity are calibrated on 
the data. In both studies, the equilibrium stress is obtained 
from an Ogden model and parameter bounds are prescribed 
only to guarantee a positive dissipation rate, i.e., a positive 
viscosity. These bounds are presented in Table 3. Moreover, 
the cyclic data and the relaxation data are fitted separately 

as a single Maxwell element is not sufficient to capture both 
phenomena simultaneously, see also the model calibrations 
by Budday et al. [9].

6.1  Comparison of Viscosity Functions

The results obtained with a neo-Hooke non-equilibrium 
spring and different viscosity functions are depicted in 
Fig. 13. Some conclusions similar to those for the rubber 
materials can be drawn. For instance, a constant viscosity 
provides the worst results and is not sufficient to reasonably 
capture the viscoelastic effects, see Figs. 27, 28 and 29 in 
Appendix 6. Moreover, the Careau model 7 depending on 
the strain rate ‖‖Di

‖‖ provides only little improvement. The 
best results are obtained with the overparameterized viscos-
ity function 11 [36].

In comparison to rubber materials, there are also some 
significant differences. Most of the models are suitable to 
notably improve the fit to the relaxation data of both brain 
tissues. The numerous good fits are possibly due to 
relaxation experiments with a single strain amplitude. 
Accordingly, tests with more strain amplitudes could refine 
this benchmark. Looking for the most promising candidate 
for relaxation, one approach is to be highlighted. The Ellis 
model 8 provides sound results, see Fig. 16, and reproducible 
parameters with different initial guesses. The cost function 
is reduced by 95 % (corpus callosum) and 54 % (cortex) 
compared to a constant viscosity. Interestingly, the �
- p a r a m e t e r  w h i c h  d e f i n e s  t h e  r a t i o 
�
(‖‖‖�neq

‖‖‖ → ∞
)
∕�

(‖‖‖�neq
‖‖‖ = 0

)
 is fitted for both tissues to 

zero, being the lower parameter bound. Therefore, to reduce 
the number of fitting parameters, � = 0 can be fixed such that 
a reduced version

with only three parameters is obtained.
Looking at the fits to cyclic data, only viscosity 

functions  6 [6] and  11 [36] perform well. This can be 
explained by the strain and stress exponents which are both 

(68)
�
(‖‖‖�neq

‖‖‖
)
=

10p

1 +
(
�
‖‖‖�neq

‖‖‖
)�

Table 5  Parameters obtained from fitting with viscosity function 9 by Prevost et al. [8] and a neo-Hooke free energy for the non-equilibrium 
spring (to anonymize the experimental data, the parameters are modified to match the normalized stress data in Figs. 2 and 3)

Compound, loading Parameters

G0 = 1∕n = m = r = Gneq = p = � = � =

EPDM, cyclic 0.2800 0.0211 11.5197 0.8115 2.7839 − 4.2550 1.6097 34.4871
EPDM, relaxation 0.2382 0.0331 260.5939 0.6202 0.2952 − 8.4163 6.0140 6.9848
NR, cyclic 0.1663 0.0302 10.6445 0.6482 2.1040 − 0.6140 0.0146 8.7806
NR, relaxation 0.1583 0.0080 8.1655 0.6314 0.2310 −8.5640 4.7276 52.5965
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fitting parameters. In contrast, the other strain dependent 
viscosity functions 5, 9 and 12 prescribe a fixed strain 
exponent of 3, 2 and −1 , respectively. Thus, how a change 
in stress and strain leads to an increase or decrease of the 
viscosity, is not adjustable. This effect becomes even more 
apparent when the well performing viscosity function 6 is 
compared to 9. The latter is derived from the former, see 
Sect. 2.5. While model 6 fixes the strain scaling factor � , 
model 9 keeps the strain exponent � constant, leading to 
quite different results. Note that fitting both the exponent and 

scaling factor, like in model 11, typically results in a large 
correlation between these parameters.

Contrary to approach  11, viscosity function  6 [6] 
generates reproducible, less correlated parameters and 
is hence considered as a more suitable function to model 
the cyclic data of brain tissues. It reduces the cost function 
by 21 % (cortex) and 26 % (corpus callosum). The model 
stresses are illustrated in Fig.  14 for the cortex and in 
Fig.  15 for the corpus callosum. Looking into details, 
two critical aspects should be mentioned. Firstly, for the 

Fig. 7  Stress response with viscosity function 9 by Prevost et al. [8] and a neo-Hooke non-equilibrium free energy function fitted to the cyclic 
data of the EPDM compound: (a)stress vs. time, (b) stress vs. stretch for the cyclic data
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corpus callosum tissue, the viscosity function 6 generates 
a disputable kink at P = 0 in the stress-stretch curves for 
the tension and compression data, see Fig. 15b. This is due 
to the strong tension-compression asymmetry and the very 
large overstress at � = 1 in the compression test which is 
even larger than the maximum stress of the tensile test. 
However, none of the models can capture this material 
behavior reasonably. Secondly, viscosity function 6 yields 
an unexpected kink for the cortex tissue at the upper turning 

point during the preconditioning cycle, see Fig. 14a. Indeed, 
the preconditioning data are not considered for fitting, but 
they reveal the limited predictability.

Concluding, using a non-Newtonian viscosity function 
for modeling brain tissues significantly enhances the fitting 
quality both for relaxation and cyclic loading modes. The 
cyclic data are best approximated when the viscosity func-
tion holds a strain and stress exponent as fitting parameter.

Fig. 8  Stress response with viscosity function 9 by Prevost et al. [8] and a neo-Hooke non-equilibrium free energy function fitted to the relaxa-
tion data of the EPDM compound: (a)  stress vs. time, (b)  stress vs. stretch for the cyclic data
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6.2  Comparison of Non‑equilibrium Free Energy 
Functions

To identify suitable non-Hookean viscoelasticity models for 
brain tissues, the non-equilibrium free energy functions (a)-
(d) & (f) from Table 4 are combined with a constant viscos-
ity. The results are depicted in Fig. 17.

For the relaxation data, the largest improvements in 
the cost function compared to the neo-Hooke free energy 
are 25 % (for the cortex tissue with free energy func-
tion (c)) and 28 % (for the corpus callosum tissue with 

Ogden model (f), cf. Fig. 18). In contrast, the fit to the 
cyclic data of the cortex and corpus callosum gains at 
most by 12 % and 4 % , respectively, using free energy 
function (f) and (b). These findings promote similar con-
clusions as for the rubber materials. First of all, the effect 
of a non-Newtonian approach is much larger than of a 
non-Hookean approach, cf. Sect. 6.1. Moreover, the effect 
of the latter is more pronounced for relaxation data than 
for cyclic data. Furthermore, the simplified extended tube 
model (d) is again not a reasonable choice for any data set.

(a)

(b)

Fig. 9  Stress response with viscosity function 9 by Prevost et al. [8] and a neo-Hooke non-equilibrium free energy function fitted to the cyclic 
data of the NR compound: (a) stress vs. time, (b)  stress vs. stretch for the cyclic data
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Remark 5 The study was redone employing viscosity func-
tion 6 [6] for the cyclic data and 8 (Ellis model) for the 
relaxation data. In this case, the improvements in compari-
son to the neo-Hooke potential (also combined with viscos-
ity function 6 and 8, respectively) were even smaller. See 
also remark 3.

7  Comparison of Viscoelasticity 
Formulations

To identify the numerically most robust and fastest vis-
coelasticity formulation, the model versions A-D were 
implemented in the updated Lagrange framework of the 
commercial finite element software MSC Marc via the 
HypEla2 subroutine. Details on the HypEla2 subroutine 

Fig. 10  Stress response with viscosity function 9 by Prevost et al. [8] and a neo-Hooke non-equilibrium free energy function fitted to the relaxa-
tion data of the NR compound: (a) stress vs. time, (b) stress vs. stretch for the cyclic data
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are given in Appendix 1. The programming was done 
with the Mathematica Add-On AceGen [20] allowing an 
automated code generation from the symbolic Wolfram 
language such that identical conditions and analytical 
material tangents are used for all formulations. The com-
putation of the matrix exponential according to Hudo-
bivnik & Korelc [49] is employed. For all numerical tests, 
the model definition from Sect. 2.6.3 was used.

In theory, formulations C and D are preferable in terms 
of numerical efficiency because their update schemes with 

the symmetric state variables C
i
 and b

e
 lead to a nonlinear 

system of only six equations, see discussion in Sect. 2.4. 
Moreover, in case of formulation C, the material tangent 
for an implicit finite element implementation can be com-
puted more efficiently in terms of C instead of the unsym-
metric F . However, the matrix exponential has to be 
applied to the unsymmetric argument Δt∕� C ⋅ S

neq
 result-

ing in higher computational costs. See Table 1 for an over-
view of these properties. The following investigations 
show which formulations indeed perform well in terms of 
number of iterations and robustness.

Firstly, a cylindrical geometry is simulated, see 
Fig. 19a. The aspect ratio h∕d = 1∕4 is taken from Shutov 
et al. [48]. A cyclic, both-sided shear test with a strain rate 
of 10 %∕s and amplitudes of 60 % nominal strain according 
to Fig. 19b is simulated. Subsequently, a cyclic tension-
compression load is applied with a strain rate of 10 %∕s and 
+30 %/−10 % strain amplitudes. Making use of the symme-
try, one half of the geometry is meshed with 540 H1P0 ele-
ments. Moreover, three temporal discretizations are tested 
with 160, 320 and 640 increments for the shear as well as 
tension/compression load with a simulation time of 120 s 
and 40 s , respectively. No automatic incrementation (cut-
backs or adaptive time stepping) is allowed for the sake of 
equal conditions. The material parameters optimized for 
NR cyclic data are used, see Table 5.

It is observed that all formulations yield the same 
global response for each temporal discretization, prov-
ing their equivalence. Furthermore, the total number of 
global iterations (i.e., to find the nodal unknowns of the 
assembled system) is nearly identical for all formulations. 
In contrast, the number of local iterations (i.e., to find 
the updated state variable at the integration points) dif-
fers significantly, see Fig. 20. Formulation D needs the 
lowest number of iterations, closely followed by B. On 
the other hand, formulation A and C are far behind with 

Fig. 11  Fitting results for the rubber compounds with non-Hookean 
viscoelasticity: free energy functions from Table 4 combined with a 
constant viscosity

Fig. 12  Stress response with 
a constant viscosity and the 
non-equilibrium free energy 
function (c) [45] fitted to the 
relaxation data of the EPDM 
compound
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almost 40 % and 50 % more iterations for the largest time 
step size. For the smallest time steps, these differences are 
less pronounced but still around 20 %.

The well performing formulations B and D have in 
common that they use elastic state variables F

e
 and b

e
 . In 

contrast, the choice of using either a deformation gradient 

(A & B) or an Cauchy-Green tensor (C & D) as the state 
variable is of lower importance. These observations are 
probably due to smaller changes in the elastic deformation 
than in the inelastic deformation, viz., the non-equilibrium 
spring is stiffer than the dashpot. Thus, the initial guess for 
an iteration in formulation B or D is more likely closer to 

Fig. 13  Fitting results for brain 
tissues (C and CC stand for 
cortex and corpus callosum)

Fig. 14  Stress response with viscosity function 6 [6] and a neo-Hooke non-equilibrium free energy function fitted to the cyclic data of the cortex 
tissue: (a) shear load and (b) tension as well as compression load (transparent lines denote the first cycle which is not considered for fitting)
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the solution and, hence, less iterations are needed. Note 
that a generalization of these conclusions must be made 
carefully as the model behavior is material parameter 
dependent. However, since realistic material parameters 
are chosen, this outcome has a practical relevance.

For a second numerical study, a twisted beam with a 
quadratic cross-section a2 and a length � = 5a is simulated. 
An increasing amplitude up to 540◦ with a constant fre-
quency is applied, see Fig. 21. A mesh of 2 × 2 × 14 = 56 
H1P0 elements and a time stepping with 160, 320 and 640 
increments are considered. The material parameters identi-
fied for EPDM cyclic data are used, see Table 5.

The global response is depicted in Fig. 22 showing that 
the maximum applicable twist depends on the formulation 
and the time step size. This ranking is consistent with the 
previous results of the sheared cylinder. That is, a robust 
behavior is observed with formulations D and B and poor 
results are obtained with formulations A and C. Interestingly, 
the former two fail to converge near the turning points, i.e., 
when changing from loading to unloading whereas the latter 
two struggle near the unloaded state, i.e., when crossing zero 
load.

Remark 6 The numerical tests were additionally conducted 
with a constant viscosity instead of the viscosity function 9 
by Prevost et al. [8]. This much simpler material model 
showed similar results for all formulations.

Remark 7 The numerical studies were also carried out with 
viscoelastic models employing the reverse order in the mul-
tiplicative split F = F

i
⋅ F

e
 , see Eqs. (84) and (85) in Appen-

dix 3. The global reaction forces and torques changed only 
slightly but the numerical behavior was poor. That is, they 
failed to simulate the sheared cylinder in Fig. 19 even with a 
constant viscosity and the smallest time step size. Moreover, 
for the twisted beam in Fig. 21, the maximum applicable 
twist was less than for formulation C.

Remark 8 In addition, the update scheme by Shutov et al. 
[48] based on formulation C, see Eq. 91 in Appendix 4, was 
tested with viscosity function 9 and a constant shear modu-
lus. The global responses for all three time step sizes in both 
numerical tests were quasi-identical to the exponential maps. 
The performance of the scheme was good, similar to formu-
lation B and D. For the sheared cylinder, the number of local 
iterations were 3… 6 % larger than for formulation D, cf. 
Fig. 20. For the twisted beam, it failed at the same amplitude 
as formulation B and D, cf. Fig. 22.

8  Conclusion

The applicability of non-Newtonian and non-Hookean vis-
coelasticity to the simulation of rubber materials as well 
as brain tissue under large deformations was analyzed. For 
this purpose, the modeling framework of a standard solid 

Fig. 15  Stress response with viscosity function  6 [6] and a neo-
Hooke non-equilibrium free energy function fitted to the cyclic data 
of the corpus callosum tissue: (a) shear load and (b) tension as well 

as compression load (transparent lines denote the first cycle which is 
not considered for fitting)
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based on the multiplicative decomposition of the deforma-
tion gradient into an inelastic and an elastic part was derived. 
As time integration scheme for the evolution equation, an 

exponential map was applied. On the one hand, the fitting 
quality of twelve viscosity functions as well as five free 
energy functions for the non-equilibrium spring were stud-
ied for two rubber compounds and two brain tissues. On 
the other hand, the numerical properties of four equivalent 
formulations of this framework were tested to identify the 
most robust and fastest implementation.

For the tested rubber materials, the studies revealed that 
the use of non-Newtonian viscosities is beneficial compared 
to the use of a constant viscosity. Moreover, these viscosity 
functions also outperform a generalized Maxwell element 
which is often used in the literature. The stress as well as 
strain dependent viscosity functions by Prevost et al. [8], 
Bergström & Boyce [6] and Lion [26] were identified as 
a good compromise between fitting capability and model 
complexity in terms of number of parameters. That is, they 
reproduce well both viscoelastic phenomenons, i.e., hyster-
esis loops and stress relaxation, and the optimized parame-
ters are reproducible with different initial guesses. The study 
of different free energy functions for the non-equilibrium 
spring showed only small improvements compared to a neo-
Hooke approach. In addition, some free energy functions 
provided physically doubtful behavior, i.e., a concave instead 
of a convex shaped stress-time curve during a relaxation 
phase.

Some conclusions for the rubber materials also apply 
for brain tissue. For instance, a non-Newtonian mod-
eling has a larger impact on the fitting results than a 
non-Hookean approach and a strain dependent viscosity 

Fig. 16  Stress response with viscosity function 8 (Ellis model) and a neo-Hooke non-equilibrium free energy function fitted to the relaxation 
data of the (a) cortex tissue and (b) corpus callosum tissue

Fig. 17  Fitting results for brain tissues with non-Hookean viscoelas-
ticity: free energy functions from Table 4 combined with a constant 
viscosity
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function is important to capture particularly the cyclic 
behavior. For brain tissue, the Ellis model (with � = 0 
fixed) and the viscosity function by Bergström & Boyce 
[6] are the most promising candidates for relaxation and 
cyclic data, respectively.

The study on the numerical properties showed that 
the viscoelasticity formulations which employ the elas-
tic deformation gradient or the elastic left Cauchy-Green 
tensor as internal state variable allow large mesh distor-
tions and need few local iterations. The former of these 

two formulation has the advantage that it is applicable 
to anisotropic free energy functions but it needs slightly 
more iterations and uses an unsymmetric state variable.

For future works there are some interesting aspects 
which were beyond the scope of the present manuscript. 
On the one hand, experiments with multiple strain rates 
should be conducted to test the range of the models’ valid-
ity and predictability. For rubber materials, experiments 
under pure shear or equibiaxial tension can be of interest to 
investigate the effect of Ī2-dependent free energy functions. 

Fig. 18  Stress response with a constant viscosity and the non-equilibrium free energy function (f) (one-term Ogden model) fitted to the relaxa-
tion data of the (a) cortex tissue and (b) corpus callosum tissue

Fig. 19  Sheared and tensioned/compressed cylinder as benchmark problem: (a) geometry with h∕d = 1∕4 and boundary conditions, (b) applied 
load
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On the other hand, it can be worth to add plastic behav-
ior to the model framework since a permanent set can be 
observed for rubber and soft tissue. In the current model 

framework, these effects are also treated by the viscoelastic 
modeling. Moreover, the framework should be extended 
by one or more additional Maxwell elements such that 
both the cyclic as well as relaxation behavior are captured 

Fig. 20  Results of the benchmark from Fig. 19: number of local iterations summed up over all integration points and time increments

Fig. 21  Twisted beam as benchmark problem: (a)  geometry with �∕a = 5∕1 and boundary conditions, (b)  applied load
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simultaneously. For this purpose, the findings of this paper 
are a useful basis for the design of a sophisticated model.

Appendix 1

Implementation of Material Models in MSC Marc 
via the HypEla2 Subroutine

The commercial finite element software MSC Marc provides 
a total Lagrange (TL) as well as an updated Lagrange (UL) 
framework for large strain simulations. When implementing 
user-defined material models via the HypEla2 subroutine, the 
variable iupdat is passed in to indicate which formulation is 
chosen, see Table 6 for an overview of relevant input variables. 
In both cases, the deformation gradient and the temperature at 
the beginning and at the end of the current time increment are 
available. Moreover, the state variables at the beginning of the 
increment are provided. The user must return the stress at the end 
of the increment, the material tangent as well as the change of 
the state variables. In case of the TL framework, the 2nd Piola-
Kirchhoff stress S and the TL tangent � = 2 dS∕dC are required. 
For updated Lagrange simulations, the Cauchy stress � = 1∕J � 
and the consistent UL tangent with Jaumann correction denoted 
by ℂ must be returned, see Table 7 for an overview of required 
output variables. A detailed derivation of the tangents is given 
by Ihlemann [50] and summarized by Ji et al. [51], see their 

Eq. (40). Note that MSC Marc employs the Voigt notation for 
the stress and tangent with the storage order xx, yy, zz, xy, yz, zx.

Special considerations are needed when nearly incom-
pressible materials like rubbers or soft tissues are simu-
lated since MSC Marc makes use of Herrmann elements to 
overcome volumetric locking. In the following, additional 
programming aspects within the HypEla2 subroutine are 
briefly explained in terms of the TL framework (see Table 7 
for the corresponding UL formulation). Assuming a decou-
pled isochoric-volumetric stress response, a pressure-like 
primary unknown p∗ (with lowered shape function order) 
and a corresponding constraint equation g(J, �, p∗) = 0 are 
introduced where J and � are the volume change and abso-
lute temperature, respectively. Rather than defining p∗ to be 
equal to the hydrostatic pressure p obtained from the con-
stitutive equations, it is reasonable to demand that p∗ = p∕f  
with a correction function  f (J, �) , see Landgraf [52]. Thus, 
the constraint may be written as

(69)
g(J, �, p∗) =

J 2
�

K0

(
p

f (J, �)
− p∗

)
= 0 with

p = −
�Ψ

vol

(
J
m

)
�J

= −
1

J�

�Ψ
vol

(
J
m

)
�J

m

.

Fig. 22  Results of the benchmark from Fig. 21: robustness of the viscoelastic models (the square, circle, cross and star mark the last increment 
before failure for each formulation; formulation C fails for the coarsest discretization at the first increment so that the cross is missing in (a))
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For the sake of completeness, the treatment of isotropic 
thermal expansion is included here with the thermal8 and 
mechanical volume change J

�
 and J

m
= J∕J

�
 . Moreover,

denotes the initial bulk modulus. The presented definition 
of p∗ leads to the modified 2nd Piola-Kirchhoff stress

with Siso and Svol = −f p∗ J C−1 being the isochoric and volu-
metric stress contribution.

(70)K0 = lim
J,J

𝜗
→1

𝜕2Ψ
vol

(
J
m

)
𝜕J2

> 0

(71)S = S
iso

− f p∗ J C−1

The motivation for the correction function f stems from 
the additionally required linearizations 2 dg∕dC , dg∕dp∗ and 
dS∕dp∗ which have to be returned together with � via the array

cf. Table 7. f is needed to ensure a numerically more efficient, 
symmetric tangent matrix, viz., 2 dg∕dC = dS∕dp∗ . With 
Eqs. (69) and (71) the requirement �g∕�J J C−1 = f J C−1 is 
obtained, yielding the differential equation �g∕�J = f  to be 
solved for the correction function f. Note that the solution 
depends on the chosen volumetric free energy Ψvol

(
J
m

)
 . To 

(72)

Table 6  Overview of 
variables passed into the MSC 
Marc subroutine HypEla2 
(Fortran notation is used; 
n=ndi+nshear denotes the 
number of Voigt components; 
entry n+1 is required for 
Herrmann elements)

HypEla2-variable Required
common block

Meaning

cptim creeps Time at the beginning of the increment t(n)

timinc creeps Time increment Δt = t − t(n)

ffn(1:3,1:3) Deformation gradient at the beginning of the increment F(n)

ffn1(1:3,1:3) Deformation gradient at the end of the increment F
t(1) Temperature at the beginning of the increment �(n)

dt(1) Temperature increment Δ�
t(2:) State variables at the beginning of the increment
e(n+1) Primary unknown p∗(n) at the beginning of the increment
de(n+1) Increment of primary unknown Δp∗

ndi, nshear Number of diagonal and shear entries, resp.
lovl concom Indicates which variables must be returned, cf. Table 7
if iupdat==1 concom Updated Lagrange formulation must be used
if lclass(2)>0 (or 
ngens>n)

Herrmann formulation must be used

Table 7  Overview of 
required output of the MSC 
Marc subroutine HypEla2 
for the total and updated 
Lagrange framework with 
Herrmann elements for nearly 
incompressible material 
behavior and thermal expansion 
(Fortran notation is used; 
n=ndi+nshear denotes the 
number of Voigt components; 
entry n+1 is required for 
Herrmann elements)

Model formulation →
HypEla2 variable ↓

Total Lagrange (iupdat==0)
S vs. C/F

Updated Lagrange (iupdat==1)
� vs. b/F

s(1:n) S = S
iso

− f p∗ J C−1

= F−1
⋅ � ⋅ F−T

1∕J � = 1∕J �
iso

− f p∗ I

= 1∕J F ⋅ S ⋅ FT

g(1:n) dS∕d�Δ� 1∕J d�∕d�Δ�

d(1:n,1:n) � = 2 dS∕dC

= (dS∕dF)T34 ⋅ F−T

= 2 �−1 ∶
(
sym34(d�∕db ⋅ b) − � ⊙ I

)
∶ �

−T

ℂ = 2∕J sym34(d�∕db ⋅ b)

= 1∕J sym34

(
d�∕dF ⋅ FT

)
= 2∕J

(
� ∶ dS∕dC ∶ �

T + � ⊙ I
)

s(n+1) g 1∕J g

g(n+1) dg∕d�Δ� 1∕J dg∕d�Δ�

d(n+1,1:n)
=d(1:n,n+1)

2 dg∕dC

= dS∕dp∗ = f J C−1

2∕J dg∕db ⋅ b

= 1∕J d�∕dp∗ = f I

d(n+1,n+1) dg∕dp∗ 1∕J dg∕dp∗

dt(2:) difference between state variables at the end and beginning of the increment
To be returned if 
lovl==6:

else if lovl==4:

s(1:n+1), dt(2:)
g(1:n+1), d(1:n+1,1:n+1)

s(1:n+1), dt(2:)
s(1:n+1), g(1:n+1), 
d(1:n+1,1:n+1)

8 The thermal volume change may be defined as 
J
�
= exp3(�Δ�) ≈ (1 + �Δ�)3 with the coefficient of linear thermal 

expansion � , cf. Lu and Pister [53].
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ensure that  f = 1 and p = p∗ holds true in case of a constant 
bulk modulus with Ψvol = K0∕2

(
Jm − 1

)2 , cf. Eq. (61), the 
factor J 2

�
∕K0 was added in Eq. (69). Unfortunately, for some 

volumetric free energy functions, the solution for f leads to 
an indeterminate or non-continuously differentiable behavior 
for J, J

�
→ 1 requiring additional numerical treatment. On 

the other hand, Table 8 shows the correction functions of 
non-critical Ψvol.

The required output of HypEla2 subroutines for 
Herrmann elements is summarized in Table 7. In addition, 
conversions from the TL to the UL framework and vice versa 
are provided, see also Ihlemann [50]. The operators �T34 
and sym34(�) in the table denote the transposition and the 
symmetrization of the third and fourth indices, viz.

The operator ⊙ produces a fourth order tensor

which exhibits minor symmetries allowing a representation 
in Voigt notation. Applying this operator to the deformation 
gradient and its inverse/transposed provides

with a simplified calculation

Appendix 2

Mullins‑Type Damage

As outlined in Sect. 2.6.1, the equilibrium free energy func-
tion with discontinuous damage is obtained from the scalar 
function H

(
Ψ0,Ψ0,max

)
 where Ψ0 describes the virgin load 

response and Ψ0,max is its current maximum value. This sec-
tion summarizes how to construct such a function and pro-
vides a small comparison of feasible approaches.

Ricker et al. [21] identified two generic classes used in the 
existing literature, namely H

(
Ψ0∕Ψ0,max

)
 and H

(
Ψ0,max − Ψ0

)
 . 

The drawback of the former class is its behavior when going 
back to the unloaded configuration with Ψ0 = 0 , for instance 
in a cyclic shear or tensile test with increasing amplitudes. 

(73)

� = �
T34 → �ijkl = �ijlk

� = sym34(�) =

1

2

(
� +�

T34
)

→ �ijkl =
1

2

(
�ijkl +�ijlk

)
.

(74)

ℤ = (X ⊙ Y)

→ ℤijkl = ℤklij =
1

4

(
Xil Ykj + Xjl Yki + Xik Ylj + Xjk Yli

)

(75)
� =

(
F⊙ FT

)
�
T =

(
FT ⊙ F

)

�
−1 =

(
F−1 ⊙ F−T

)
�
−T =

(
F−T ⊙ F−1

)

(76)�ijkl =
1

2

(
Fjl Fik + Fjk Fil

)
.

In this load scenario, the material stiffness is independent of 
the maximum load since H

(
Ψ0∕Ψ0,max

)
 is then independent 

of Ψ0,max . This behavior is contrary to experimental findings 
where the stiffness at the unloaded configuration progressively 
reduces for higher amplitudes, cf. Fig.  2. Therefore, the 
latter class of functions H

(
Ψ0,max − Ψ0

)
 is considered here. 

For readability, the definition x = Ψ0,max − Ψ0 holds for 
the following discussion. Constructing such a function, the 
following two requirements have to be fulfilled:

• H(x) ∶ [0,∞) → [0, 1]

• H(0) = 1

For thermodynamic consistency, the requirement

• H�(x) ≤ 0 (monotonically decreasing)

is sufficient, cf. Eq. (25). For a finite material tangent and 
robust numerics, it is reasonable to demand

• finite values for H�(x) (particularly at x = 0)9

Finally, some requirements are added for a convenient 
handling:

• the H-function employs two parameters m > 0 and 
1 > r > 0 , of which the former scales the argument, viz., 
H(mx) and the latter defines the lower limit as 
lim
x→∞

H(x) = 1 − r

• the curvature does not change ( H��(x) > 0 , i.e., strict 
convexity)

• a closed-form representation of Ψeq given by Eq. (55) in 
terms of elementary functions exists

Such functions can be constructed for instance from the con-
vex branch of a sigmoid function. A list of suitable H-func-
tions is compiled in Table 9. They are plotted in Fig. 23a with 
r = 1 (leading to lim

x→∞
H(x) = 0 ). Moreover, m is chosen such 

that H�(0) = 1 , i.e., all approaches show the same initial slope.

The results for the EPDM compound are summarized in 
Fig. 24a and sorted by the cost function value. Apparently, a 
good fitting result correlates with a steep slope of the H-function 
at x = 0 and a slow convergence for x → ∞ in Fig. 23b. An 
exception is the 1∕ 3

√
x-approach that exhibits the steepest initial 

slope and convergences slowly but does not rank among the 
top candidates. The fitted stress-stretch curves of the 1∕

√
x -, 

9 Ricker et al. [21] observed that H-functions with an infinitely steep 
slope at x = 0 yield good fitting results. However, to avoid numeri-
cally undesirable behavior, such approaches are excluded.
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arcoth - and erf-approach and the cyclic data of the EPDM com-
pound are depicted in Fig. 24b. The former two models provide a 
sound fit to the un- and reload curves, particularly near the turn-
ing points. At the upper turning point, they generate a steeper 
slope than the erf-approach, what is caused by the steeper ini-
tial slope of the H-function. At the lower turning point, the erf
-function yields the same stress response for the third and fourth 
amplitude. This is due to its fast convergence, cf. Fig. 23b, and 
does not agree with the experimental observation. The other two 
approaches can qualitatively capture the real material behavior. 
Comparing the 1∕

√
x - to the arcoth-approach, the former shows 

a slightly better fit to the virgin curve whereas their remaining 
stress-stretch curves are nearly identical. However, an underesti-
mation of the virgin curve is acceptable to some extent since the 
viscoelasticity model will generate some additional overstress.

Remark 9 The fitting was also conducted with the cyclic 
data of the NR compound. The ranking order was the same 
as in Figs. 24a.

Appendix 3

Split of the Deformation Gradient with Reverse 
Order

The deformation gradient can alternatively be split into

which is reverse to Eq. (1), see for instance Lubarda [61] or 
Bahreman et al. [62]. Then, the split of the velocity gradi-
ent reads

(77)F = F
i
⋅ F

e

(78)l = l
i
+ L

e
with L

e
= F

i
⋅ l

e
⋅ F−1

i
.

The 2nd Piola-Kirchhoff stress and the Kirchhoff stress are 
obtained as

yielding the dissipation rate

A positive Dm,neq is ensured by the evolution equation

(79)Sneq = Tneq ⋅ Ce
⋅ C−1 with Tneq = 2

�Ψneq

�C
e

,

(80)�neq = F ⋅ Sneq ⋅ F
T = F ⋅ Tneq ⋅ Ce

⋅ F−1

(81)Dm,neq = �neq ∶ l
i
≥ 0 with l

i
= d

i
+ w

i
.

Table 8  Volumetric free energy functions and their correction func-
tions for an implementation in the HypEla2 subroutine for Herrmann 
elements (the column “Phys.” indicates whether the free energy func-
tion fulfills the requirements for a physically plausible behavior given 

by Doll & Schweizerhof [54]; note that the free energy function no. 4 
covers the special cases � = 4 [55] and � = 5 [56])

No. Literature Ψvol f Phys.

1 Const. bulk modulus K0

2

(
Jm − 1

) 1 No

2 Simo et al. [57] K0

2
ln2

(
Jm

) 1

Jm

No

3 MSC Software Corp.[58] 9

2
K0

(
J
1∕3
m − 1

)2 1

J
2∕3
m

No

4 Doll & Schweizerhof [54]/Hartmann 
& Neff [56]

K0

2 �2

(
J
�
m + J

−�
m − 2

)
 , � ≥ 2

J
�
m+1

2 J
(�∕2)+1
m

Yes

5 Bischoff et al. [59] K0

�2

(
cosh

(
�
(
Jm − 1

))
− 1

)
 , 𝛽 > 0 cosh

(
�

2

(
Jm − 1

)) No

Table 9  Possible H-functions for the discontinuous damage 
model (the 1∕x -, 1∕

√
x - and 1∕ 3

√
x-approach are special cases of 

1 − r

(
1 − 1∕

(
1 + (mx)1∕k

))
k ; see Dorfmann and Ogden [60] for the 

tanh-approach and Ogden and Roxburgh [42] for the erf-approach)

Name H =

exp 1 − r(1 − exp(−mx))

1∕x 1 − r
(
1 −

1

1+mx

)

1∕
√
x

1 − r
�
1 −

1

1+
√
mx

�2

1∕ 3
√
x

1 − r
�
1 −

1

1+ 3
√
mx

�3

erf 1 − r erf(mx)

arctan 1 − r
2

�
arctan(mx)

tanh 1 − r tanh(mx)

coth 1 − r(2 − coth(mx + arcoth(2)))

arcoth 1 − r(1 − arcoth(mx + coth(1)))

csch 1 − r(1 − csch(mx + arcsch(1)))

arcsch 1 − r(1 − arcsch(mx + csch(1)))



2920 A. Ricker et al.

1 3

or with L
i
= F−1

i
⋅ l

i
⋅ F

i
 equivalently by

(82)

Ḟ
i
= l

i
⋅ F

i
with F

i
(t = 0) = I and

l
i
=

1

2 𝜂
�neq =

1

2 𝜂
F ⋅ Tneq ⋅ Ce

⋅ F−1

⇒ Dm,neq =
1

2 𝜂

‖‖‖�neq
‖‖‖
2

(83)
L
i
=

1

2 �
F
e
⋅ Tneq ⋅ F

T
e
=

1

2 �
F
e
⋅ Tneq ⋅ Ce

⋅ F−1
e

⇒ Dm,neq =
1

2 �

(
C
e
⋅ Tneq

)
∶
(
Tneq ⋅ Ce

)
.

Applying the exponential map to Eq. (82) yields an update 
scheme in terms of F

i

which can be rearranged to obtain an update formula in 
terms of F

e
 corresponding to Eq. (83)

(84)F
i
= exp

(
Δt l

i

)
⋅ F

(n)

i
= exp

(
Δt

2 �
�neq

)
⋅ F

(n)

i

(85)F
e
=
(
F−1
i

)(n)
⋅ F ⋅ exp

(
−
Δt

2 �
Tneq ⋅ Ce

)
.

Fig. 23  H-functions from Table 9: (a)  normalized such that H(x → ∞) = 0 , H�(x = 0) = 1 and (b)  with fitted parameters

Fig. 24  Fitting results with the H-functions from Table 9 for the cyclic data of the EPDM compound: (a)  ranking and (b)  stress-stretch plot of 
the two top-ranked as well as the reference model ( erf)
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Analyzing the equations above, following statements can be 
made. For the reverse order multiplicative split, ...

• an isotropic Ψneq leads to the coaxiality Sneq‖C since 
Sneq ⋅ C = 2

�Ψneq

�C
e

⋅ C
e
 , see Eq. (79).

• the intermediate configuration does not provide a direct 
physical interpretation.

• the evolution equation in terms of  C
i
 reading 

Ċ
i
=

1

𝜂
F
e
⋅ Tneq ⋅ F

T
e
⋅ C

i
 cannot be used since applica-

tion of Eq. (34) does not eliminate the unknown defor-
mation gradients Fe and Fi.

• the mechanical dissipation in Eq. (81) and the result-
ing evolution equation (82) in terms of l

i
 allow a direct 

physical interpretation contrary to Eq. (27) where the 
artificial intermediate quantity L

i
 appears.

Appendix 4

Generalized Maxwell Element with Relaxation Time 
Spectrum

The viscoelastic behavior of rubber materials is oftentimes 
modeled using a generalized Maxwell element (i.e., several 
Maxwell elements connected in parallel) with a discrete 
spectrum of constant relaxation times. To avoid the high 
computational effort of several exponential mappings, the 
time stepping method by Shutov et al. [48] is employed. It 
is an implicit time integration scheme based on a backward 
Euler method applied to formulation C and is an iterative-
free update formula in case of a constant relaxation time. Its 
derivation is recapped in the following.

With the derivatives of Ī1,e = tr
(
C̄
e

)
= tr

(
C̄ ⋅ C̄

−1

i

)
 and 

Ī2,e = tr
(
C̄
−1

e

)
= tr

(
C̄
i
⋅ C̄

−1
)
 given by

the overstress of formulation  C for an isochoric non-
equilibrium free energy function reads

If the free energy function is only Ī1,e-dependent, the stress 
reduces to

(86)

𝜕Ī1,e

𝜕C

|||||C
i
=const.

= C−1
⋅ dev

(
C̄ ⋅ C̄

−1

i

)
and

𝜕Ī2,e

𝜕C

|||||C
i
=const.

= −C−1
⋅ dev

(
C̄
i
⋅ C̄

−1
)

(87)

Sneq = 2
𝜕Ψneq

𝜕C

|||||C
i
=const.

= 2C−1
⋅ dev

(
𝜕Ψneq

𝜕Ī1,e
C̄ ⋅ C−1

i
−

𝜕Ψneq

𝜕Ī2,e
C
i
⋅ C̄

−1

)
.

and the evolution equation is obtained as

where � = �∕
(
2Ψ�

neq

)
 denotes the relaxation time. The 

Euler backward method provides the implicit, symmetry-
preserving time integration scheme in terms of C

i

However, in general, it is not a volume-preserving time 
stepping method. To overcome this drawback, Shutov 
et al. [48] applied unimodularization to the right-hand side 
of Eq. (90). With the property aX = X̄ for any non-zero, 
real scalar a and non-singular tensor X , the update formula 
simplifies to

which is volume-preserving and, in addition, iterative-free 
for �,Ψ�

neq
= const. Further numerically efficient update 

schemes are presented by Shutov [13] (for a Mooney-Rivlin 
strain energy function at the cost of a tensor square root) and 
Landgraf et al. [63] (for general Ī1-dependent strain energy 
functions at the cost of a scalar equation to be iteratively 
solved).

For the comparison in Secs. 5.1 and 6.1, 13 Maxwell ele-
ments in parallel are considered with 26 material parame-
ters: 13  relaxation times  �k  and 13  shear mod-
uli Gneq,k = 2Ψ�

neq,k
 . To minimize the number of fitting 

parameters and their correlations, the relaxation times are 
spaced equidistantly on a logarithmic scale, viz.,

with the fitting parameters lg
(
�1
)
 and Δlg(�) . The distri-

bution of the shear moduli is approximated by the normal 
distribution

introducing four parameters a, b, � , � . Thus, in total, only 
six fitting parameters are needed instead of 24. Since only a 
small range of the full relaxation time spectrum plays a role 
in the given experiments, the function is further reduced by 
setting Δlg(�) = 1∕2 and � = −6 and b = 0 such that

(88)Sneq = 2Ψ�
neq

C−1
⋅ dev

(
C̄ ⋅ C−1

i

)

(89)Ċ
i
=

1

𝜂
C ⋅ Sneq ⋅ Ci

=
1

𝜏
dev

(
C̄ ⋅ C

−1
i

)
⋅ C

i
with Ci(t = 0) = I

(90)C
i
=

(
1 +

Δt

𝜏

tr
(
C̄ ⋅ C−1

i

)
3

)−1(
Δt

𝜏
C̄ + C

(n)

i

)
.

(91)C
i
=

Δt

𝜏
C̄ + C

(n)

i

(92)lg
(
�k
)
= lg

(
�1
)
+ (k − 1)Δlg(�)

(93)
Gk = a exp

(
−�

(
lg
(
�k
)
− �

)2)
+ b with lg

(
�k
) ≥ �
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Finally, only three fitting parameters lg
(
�1
)
 , a, � remain.

(94)

lg
(
�k
)
= lg

(
�1
)
+

1

2
(k − 1) with lg

(
�1
) ≥ −6 and

Gk = a exp
(
−�

(
lg
(
�k
)
+ 6

)2)
for k = 1… 13 .

5 Fitting Results of the Reference Model 
for Rubber

Fig. 25  Stress response with a constant viscosity function and a neo-Hooke non-equilibrium free energy function for the EPDM compound: (a)  
stress vs. time when fitted to the relaxation data, (b) stress vs. stretch when fitted to the cyclic data
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Fig. 26  Stress response with a constant viscosity function and a neo-Hooke non-equilibrium free energy function for the NR compound: (a)  
stress vs. time when fitted to the relaxation data, (b)  stress vs. stretch when fitted to the cyclic data
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Fig. 27  Stress response with a constant viscosity function and a neo-
Hooke non-equilibrium free energy function fitted to the cyclic data 
the cortex tissue: (a)  shear load and (b) tension as well as compres-

sion load (transparent lines denote the first cycle which is not consid-
ered for fitting)

Fig. 28  Stress response with a constant viscosity function and a neo-
Hooke non-equilibrium free energy function fitted to the cyclic data 
the corpus callosum tissue: (a) shear load and (b) tension as well as 

compression load (transparent lines denote the first cycle which is not 
considered for fitting)

Appendix 6

Fitting Results of the Reference Model for Brain 
Tissue
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