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Tis document proposes a control scheme applied to delayed bilateral teleoperation of the forward and turn speed of a biped robot
against asymmetric and time-varying delays. Tis biped robot is modeled as a hybrid dynamic system because it behaves as a
continuous system when the leg moves forward and discrete when the foot touches the ground generating an impulsive response.
It is proposed to vary online the damping according to the time delay present in the communication channel, and the walking
cycle time using an optimization criterion, to decrease the teleoperation system errors. To accomplish this, a three-phase cascade
calibration process is used, and their benefts are evidenced in a comparative simulation study. Te frst phase is an ofine
calibration of the inverse dynamic compensation and also the parameters of the bilateral controller. Te second phase guarantees
the bilateral coordination of the delayed teleoperation system, using the Lyapunov–Krasovskii stability theory, by changing the
leader damping and the equivalent follower damping together. Te third phase assures a stable walk of the hybrid dynamics by
controlling the walking cycle time and the real damping to move the eigenvalues of the Poincaré map, numerically computed, to
stable limit cycles and link this result with an equivalent continuous system to join both phases. Additionally, a fctitious force was
implemented to detect and avoid possible collisions with obstacles. Finally, an intercontinental teleoperation experiment of an
NAO robot via the Internet including force and visual feedback is shown.

1. Introduction

Te teleoperation of robots allows the capacities and skills of
a human operator to be extended and transferred to remote
working environments. In these systems, a human operator
situated at a local site sends control commands from a leader
device to a robot named a follower located in a remote
environment, such as humanoid robots, which are used to
perform dangerous work applied to mining, nuclear plant
inspection, explosives deactivation, defense, rehabilitation,
healthcare, and among others. Te leader and follower are
connected via a communication channel that adds varying
time delays, which cause instability or generally poor per-
formance, resulting in higher coordination errors during the
execution of a task as well as inadequate transparency [1].

Stability is one of the most important properties of bi-
pedal locomotion. “Stable” walking can be defned as any
walking that does not result in a fall. Tis implies that the
defnition of stability should relate to the set of all states that
a bipedal walker can experience and still avoid falling [2].
However, this defnition is difcult to handle in practice, due
to the size of this set and the absence of systematic tools to
synthesize controllers; therefore, another more heuristic but
the more focused defnition of “stable” walking is that of
persisting also in the presence of perturbations, i.e., the
ability of a person, animal or robot to continue the motion
that was planned in the face of the perturbation. Moreover,
that these recovery actions sometimes completely modify the
movement or even the type of movement, e.g., recovering
from a walking perturbation by coming to a complete stop.
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Another way to fundamentally study stability is to look at the
entire motion or at least one whole walking step or double
step at a time and evaluate how small perturbations would
afect this particular motion. Tis approach follows Lya-
punov’s mathematical stability theory and has been fre-
quently used in robotics in the feld of walking (passive [3]-
dynamic [4]). Te concept of Lyapunov stability can be
applied especially to motions, also called limit cycles, and is
therefore very interesting for the study of walking and
running. In this case, the propagation of perturbations over a
walking cycle is typically one step. Te study uses the
Poincaré Map that maps the states at the beginning and at
the end of the cycle. A periodic solution of the dynamic
equations corresponds to a fxed point of the Poincaré map,
as shown in Figure 1.

To realize the combination of bilateral teleoperation with
humanoid robots, the control problem has become more
challenging in the following aspects: the simultaneous sta-
bility of walking, the error between the commands (oper-
ator-robot), the motion of the follower taking into account
time-varying delays, the analysis of how many degrees of
freedom (DOF) should include the haptic device, how the
force feedback should be established, and the hybrid dy-
namics of humanoid robots with nonlinearities and un-
certainties.Te autonomous control of humanoid robots has
been investigated for decades, which mainly includes the
methods based on ZMP (zero moment point) and ap-
proaches based on dynamic walking.

On the other hand, most papers addressed to the tele-
operation of biped or humanoid robots are based on using
motion capture devices in order to map the movements of a
human operator to the robot, as in reference [5], or
employing two traditional joysticks [6]. Te main disad-
vantage of both articles is that the user does not receive any
kind of tactile feedback. For the case of bilateral tele-
operation, which includes force feedback, there are pro-
posals that use haptic devices with low DOF with respect to
the follower DOF and others that use a number of DOF in
the leader as similar as possible to the DOF of the follower.
In general, the last research is focused on the leader me-
chanical custom design, as in [7], where body teleoperation
is used to close the loop by applying force feedback to the
operator’s waist, and [8], whose leader is called TABLIS full-
body exoskeleton cockpit that allows back feed to the human
operator, a sum of many forces, although the inclusion of
more tactile information not necessarily improves the
performance based on metrics for task-oriented human-
robot interaction (HRI). In the strategies using low DOF
haptic devices, we remark [9] where the force feedback is
based on the zero moment point (ZMP) method. Such force
is computed depending on the stability margin, relative to
the support polygon limits. Getting close to the edges of the
feet will decrease stability and the system is more likely to
lose balance. Quantifying this margin represents the basic
principle involved in force feedback generation. On the
other hand [10, 11], we consider dynamic walking with a
force cue based on the coordination error but both use
equivalents followers and controllers that are not formally
defned, lacking thus the explicit link between the stability of

the limit cycle using Poincaré map about the walking and the
stability of the errors of delayed teleoperation system.

Temain weakness found in the state of the art is that the
stability of walking and teleoperation errors considering
hybrid dynamic modeling is not analyzed objectively,
therefore is partially solved as the controller parameters
should be online changed to hold stability. A comparative
table of the contribution of diferent articles and this work is
presented in Figure 2, where it is remarked that the pink
boxes are the approaches that we are going to deal with in the
following article.

Tis research is focused on the bilateral teleoperation of
biped robots, where it is not clear whether, as in the case of
teleoperated manipulators and mobile robots, if the stability
of teleoperated bipedal robots can be ensured by increasing
only the damping of leader and follower. In this document, a
control scheme aimed at the bilateral teleoperation of the
forward and turning speeds of a biped robot represented by a
hybrid dynamic model in the presence of variable time
delays is presented. Te main contribution is the following
statements:

(1) A control scheme designed to assure simultaneous
stability of walking and teleoperation errors con-
sidering the hybrid dynamics of the biped robot as
well as the presence of time-varying delays

(2) Explicit defnition of equivalent follower and
equivalent follower controller, which adds a follower
equivalent damping depending on the time delay and
allows to join the Lyapunov–Krasovskii analysis
applied delayed nonlinear systems with the stability
of a Poincaré map about walking of biped repre-
sented with a hybrid dynamic model

(3) Use of optimization criterion because there are
multiple combinations of real follower damping and
walking cycle time that hold the conditions of
proposed equivalent damping

(4) Calibration process of controller parameters in-
volving how the damping and walking cycle time
should be changed online

Tis article is organized as follows: Section 2 presents the
leader and follower models and the assumptions used in this
document. Section 3 describes the controller for bilateral
teleoperation control and its stability analysis also is dem-
onstrated. Next, Section 4 presents the experimental results
achieved where a human operator located in San Juan-
Argentina drives a humanoid NAO robot located in
Hannover, Germany. Finally, the conclusions are presented
in Section 5.

2. Models

2.1. Leader Model. Te leader device is represented in
Cartesian coordinates as follows:

Mm xm( 􏼁x
..

m + Cm xm, x
.

m( 􏼁x
.

m + gm xm( 􏼁 � fm + fh, (1)

where xm � xmv xmδ􏼂 􏼃
T ∈ Rnm×1 and x

.

m are the position
and velocity of the leader, Mm(xm) ∈ Rnm×nm is the inertia
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matrix, Cm(xm, x
.

m) ∈ Rnm×nm is the matrix representing the
centripetal and coriolis forces, gm(xm) ∈ Rnm is the gravity
vector, fh is the force of the human operator, and fm is the
control action applied to the leader.

2.2. Follower Model. A bipedal robot can be modeled in a
simplifed way in a sagittal plane for straight-line walking
references.Te turn is performed using the hip yaw angles of
the 3D bipedal robot, taking into account the invariance
property against yaw angle rotation [12]. Te presence of
impact of the legs on the environment during the walking
cycle is represented with hybrid models. Tese systems, also
called systems with impulsive efects, are used to represent a

bipedal robot [13, 14], that includes two behaviors: con-
tinuous when the leg moves forward, and discrete when the
foot touches the ground generating impulsive responses
[15].

2.2.1. Continuous Dynamic. Te continuous dynamics of
the bipedal robot between successive impacts presents a total
number of physical actuators equal to nb. Te state of the
bipedal robot is characterized by x � q q

.
􏼂 􏼃

T, where q ∈ Rnb

is the position and q
.
∈ Rnb is the velocity. Using the

Euler–Lagrange equations, the state between impacts is
represented by x

.
� f(x) + g(x)u, as follows:

Periodic Solution
Limit Cycle

Non Periodic
Solution

Cycle time T

X2

X1

t

Figure 1: Poincaré maps.
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exoskeleton

Figure 2: Comparative analysis.

Journal of Robotics 3



f(x) �
q
.

− M− 1
(q)[C(q, q

.
)q

.
+ G(q)]

􏼢 􏼣,

g(x) �
0

M− 1
(q)B(q)

􏼢 􏼣,

(2)

where M(q) ∈ Rnb×nb represents the inertial matrix,
C(q, q

.
) ∈ Rnb×nb is the matrix representing the centripetal and

Coriolis forces, G ∈ Rnb is the gravity vector, B ∈ Rnb×nb is the
input matrix, and u ∈ Rnb is the matrix of control actions. In
addition, the angles are defned as follows:
q � [qp nshqy nshqp nskqp nsaqp shqy shqp skqp sa]T, where
qp nsh is pitch non-stance hip, qp nsk is pitch non-stance knee,
qp nsa is pitch non-stance ankle, qp sh is pitch stance hip, qp sk is
pitch stance knee, qp sa is pitch stance ankle, qy nsh is yaw non-
stance hip, and qy sh is yaw stance hip, as shown in Figure 3.

2.2.2. Domain and Guard. Te domain DH specifes the
allowed system settings based on the height of the non-
stance foot l, measured from a rigid and plain foor, and
indicates that it must be above the ground. Additionally, the
guard SH represents the impact surface. Te domain and
guard are defned in reference [13] as follows:

DH � x ∈ R
2nb : l(q)≥ 0􏽮 􏽯,

SH � x ∈ R
2nb : l(q) � 0 and

zl(q)

zq
q
.
< 0􏼨 􏼩,

(3)

where x ∈ R2nb is the total number of control states given by q
and q

.
and zl(q)/zq is the partial derivative of l with respect to q.

2.2.3. Discrete Dynamic. Te discrete dynamics of the robot
determine how the robot’s speeds changes when the foot hits
the ground, while at the same time switching legs. In par-
ticular, the reset map Δ: SH⟶ DH is given by: Δq which
represents the switching between the legs when going from
“stance” to “no stance” and vice versa after the end of the
double support phase, whereas Δq. determines the variation
in the speed of each joint due to impact, and therefore, Δ is
the vector defned in [13] that links both Δq and Δq. . It is
important to mention that a stable continuous dynamic
between impacts does not guarantee a stable hybrid system.
Hence, it is assumed that there is a dynamic hybrid system
represented as follows [14, 15]:

W �
x
.

� f(x) + g(x)u(x), if x ∈ DH and SH,

x+
� Δ x−

( ), if x− ∈ SH.
􏼨 (4)

2.3. Assumptions, Properties, and Nomenclature. Tis doc-
ument uses the assumptions and properties commonly used
in teleoperation systems as in [16, 17]. Te main assump-
tions are presented, while Table 1 shows the nomenclature
used in this article.

Assumption 1. Te communication channel adds a forward
time delay h1 and a backward time delay h2, such that there
exist positive values h1 and h2 such that 0≤ h1(t)≤ h1 and
0≤ h2(t)≤ h2 for all t [16].

Assumption 2. Te human operator injects a fnite amount
of energy, which is described as follows:

Eh � ϕ − 􏽚
t

0
fT
h _xmdt > 0, (5)

where ϕ> 0 is a positive value [16].

Assumption 3. In the movement of the robot when the
swing leg touches the ground, considering a fat horizontal
surface, there is no bounce or slip of the swing leg [15, 18].

3. Stable Bilateral Controller

Te proposed control scheme is shown in Figure 4 and is
addressed to the bilateral teleoperation of the forward
speed and turning of a biped robot.Tis schematic illustrates
the parts of the proposed control scheme for the delayed
bilateral teleoperation system. Te controller design is ori-
ented to achieve stable hybrid dynamics using Lyapunov-
Krasovskii stability theory and Poincaré Map.Terefore, it is
defned as an equivalent follower based on the stability of
hybrid dynamics and then uses an equivalent follower
controller which puts an equivalent damping. Te injected
leader damping and the equivalent follower damping de-
pend on the time delay. However, the last one cannot be
applied directly but in an indirect way through walking cycle
time and real follower damping.

3.1. Errors. To teleoperate the bipedal robot, an error vector
(for controlling forward speed, gait length, and turning
speed) is defned as e(x): � [ _􏽥y1, 􏽥y2, 􏽥y2

.

, _􏽥y3, 􏽥y4v, 􏽥y4δ]
T,

where their components will be described next.
First, the forward speed error is defned as follows:

_􏽥y1(t) � _y1(t) − vhip(t), (6)

where _y1 is the forward speed reference set as follows:

_y1(t) � kgvxmv t − h1( 􏼁 � vhipref , (7)

where kgv linearly maps the position of the leader to the
forward velocity and xmv is the position of the leader.
Furthermore, vhip is the real speed of the humanoid in the X-
axis obtained by linearization. Te position of the hip de-
pends on the pitch angle of the posture ankle qp sa and the
pitch angle of the posture knee qp sk, and its time derivative
is calculated as in reference [13] as follows:

phip(q) � a1 − qp sa􏼐 􏼑 + a2 − qp sa − qp sk􏼐 􏼑,

vhip �
d
dt

phip(q),

(8)

where phip is the linearization of the X-position of the hip.
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To handle the walking cycle to obtain shorter or larger
gaits, it is necessary to control the error between the ref-
erence values of the joints angles and the real values obtained
by the sensors of the humanoid as a gait length error rep-
resented as follows:

􏽥y2(t) � y2(t) − yr,2(t), (9)

where y2(t) � [qp nsaqp saqp nskqp skqp nshqp sh]T are the
joint angles that defne the gait following the reference.
yr,2(t) � [qp nsarqp sarqp nskrqp skrqp nshrqp shr]

T are the
real joint angles. To obtain the references of stance knee
angle qp sk and stance hip angle qp sh, during a walking cycle
time, a procedure based on the use of Bezier curves is applied
as in reference [10]. Taking into account the percentages of
the single support and double support phases during a
walking cycle, and considering that the legs are symmetrical,
the angles qp nsh and qp nsk are calculated using a phase shift
of the angles qp sh and qpsk

. Te ankle angles for the stance
and non-stance legs are obtained considering that the torso
always stays perpendicular to the ground during the walk.

Considering this, we use formula (15) [13] to fnd the ankle
angles as: qp nsa � − (qp nsh + qp nsk) and qp sa � − (qp sh +

qp sk). Besides, the turning speed error is described as
follows:

_􏽥y3(q) � y
.

3(t) − vδ(t), (10)

where y
.

3 is the turning speed reference and it is given as
follows:

_y3(t) � kgδxmδ t − h1( 􏼁 � vδref, (11)

where kgδ linearly maps the position of the leader to the
turning velocity and xmδ is the position of the leader. In
addition, vδ(t) � f(qy sh, qy nsh) is the actual turn speed of
the humanoid robot, and it is obtained by diferentiating the
turn angle of the robot δ(t). Tis yaw rotation reference does
not afect the control in the sagittal plane due to the in-
variance property as stated in [12], where the within-stride
feedback does not depend on the yaw orientation of the
robot. Te references for the angles (qy sh, qy nsh), depend
on the turn speed reference and are obtained through a

qy_nsh
qp_nsh

qp_nsk

qy_sh

qp_sh

qp_sk

qp_sa l X

Z

x
y

z

qp_sh

phip

qp_sk

qp_saqp_nsa

Figure 3: Joint representation.

Table 1: Nomenclature.

Variable Defnition
kgxm(t − h1) � Forward and turn speeds

vhipref vδref􏽨 􏽩
T

Sent by the operator

zr � 􏽢vhip 􏽢vδ􏽨 􏽩
T Estimated real follower speeds

used in error dynamics

ze � vhipfe vδfe􏽨 􏽩
T Equivalent smoothed speeds

used for force feedback

η � vhip vδ􏽨 􏽩
T It is a vector that represents the linear

and turning speeds of the equivalent follower
_􏽥y1(t) Linear speed error
􏽥y2(t) Joint errors
_􏽥y3(t) Turn speed error
T Walking cycle time
αm Leader damping
σe Equivalent follower damping
σr Real damping of the robot
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sequence illustrated in Figure 5 based on [19]. Te variable φ
is the percentage of the walking cycle that both feet spend in
the ground at the same time (double support) and is set in
practice to get a trade-of between a greater average speed
(lower φ) and a better balance (higher φ). For the humanoid
to turn a given angle, we determine the phases of a single and
double support. Half of the total turn angle is sent to the
hip’s yaw angle of the support leg during the single support
phase. In order to achieve the same turn direction in each
leg, the angles are sent with opposite signs due to the ori-
entation of the motors of each joint. In order to perform a
successful turn, each hip joint performs the turn when its
corresponding leg is used as support. Once the single
support phase ends, the hip joint stops moving so the robot
will not fall. Once a total walking cycle has been performed,
the process starts again until the robot has turned the desired
angle.

Finally, the error component 􏽥y4 is defned by: 􏽥y4 � η −

zr �
􏽥y4v

􏽥y4δ
􏼢 􏼣 �

vhip − 􏽢vhip
vδ − 􏽢vδ

􏼢 􏼣. Where zr � 􏽢vhip 􏽢vδ􏽨 􏽩
T
is the

estimated forward and turn speed and it is found by using
the following linear observer:

_zr � β− 1
r η − zr( 􏼁, (12)

where β− 1
r > 0 is the observer gain.

3.2. Stability of Follower between Impacts

3.2.1. Closed Loop Follower Control. Te continuous part of
the model (4) can be used to represent the auxiliary variable
y(x) through the notation of Lie’s derivative as follows:

y
..

(x) � L
2
fy(x) + LgLfy(x)u(x), (13)

where y(x) is designed to work simultaneously with speed
and position errors as y(x) � 􏽒 _􏽥y1 􏽥y2 􏽒 _􏽥y3 􏽥y4􏽨 􏽩

T
.

Te feedback linearization controller based on reference
[14] is set as follows:

u(x) � LgLfy(x)
+

− L
2
fy(x) − υ(x)􏼐 􏼑, (14)

where LgLfy(x)+ is the corresponding pseudo-inverse matrix.
A disadvantage of formula (14) is that it is based on a perfect
compensation of the robot dynamics. If uncertainties in the
dynamics are considered and it is assumed that the functions
f(x), g(x) of formula (2) are estimated, the controller must be
designed based on the estimated functions 􏽢f(x), 􏽢g(x). Tus,
the law of control (14) is rewritten as follows [20]:

u(x) � L􏽢gL􏽢f
y(x)

+
− L

2
􏽢f
y(x) − υ(x)􏼒 􏼓. (15)

Hence, replacing formula (15) in formula (13), it is
obtained as follows:

qy_nsh

qp_nsh
qp_nsk

qy_sh
qp_sh

xy

zqp_sk

qp_saqp_nsa

Human
Operator

Eq. (5) Leader Controller
Eq. (31)

Optimization Process
Eq. (30)

Equivalent
Follower and

Controller Eq. (29)

Dynamics
Compensation

Eq. (15)

Sensors
IMU

Gyroscope

Reset Map
Δ (x)

Linear βr
observer
Eq. (12)

η

Real Follower
Controller

Eq. (20)-(23)

Reference
Generation

Leader Device
Delay
h1

Filter Eq. (29)
βe

σe

σr

zr

vhipref

vhip
yr,2

y2

T

Delay
h2

fm

Xm

kg

Xm
kgxm (t – h1) = [vhipref vδref]T

vδref

vδ

ze (t – h2)

.

Figure 4: Complete control scheme: leader controller, time delays, and remote site.
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y
..
(x) � − υ(x) − W, (16)

where

W � Δ1 + Δ2υ,

Δ1 � L
2
fy(x) − LgLfy(x) L􏽢gL􏽢f

y(x)􏼒 􏼓
+

L
2
􏽢f
y(x),

Δ2 � − LgLfy(x) L􏽢gL􏽢f
y(x)􏼒 􏼓

+

L
2
􏽢f
y(x) − I.

(17)

To compensate for the uncertainties, a combined con-
troller is applied with υ � υ1 + υ2, where the frst part υ1
allows to follow the reference model considering a perfect

knowledge of inverse dynamics, and the second part υ2
compensates for nonlinear uncertainties W.

From formula (16), the closed-loop dynamics of e is
represented in state space as follows:

e
.

� Fe + υ1 + W, (18)

in which we set υ1 � Ke + Kvfv and υ2 � − 􏽢W. Terefore,
􏽥W � W − 􏽢W � 􏽥wv 0 􏽥wg 􏽥wδ 􏽥w4v 􏽥w4δ􏽨 􏽩. A nonlinear dy-
namics compensation technique such as robust adaptive
control [20–22], neural networks [23], and deep learning,
among others, must be used to estimate 􏽢W, where we as-
sumed that 􏽥W is bounded. As the compensator gets better,
such errors will be lower.

Describing the terms of (18) as follows:

F �

0 0 0 0 0 0

0 0 I 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Kv �

kzv
0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 kzδ
0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K �

− M
− 1

kv 0 0 0
M

− 1σ
βr

0

0 0 0 0 0 0

0 −
1
ε2

−
1
ε

0 0 0

0 0 0 − I
− 1

kδ 0
I

− 1τ
βr

M
− 1

kv 0 0 0 −
1
βr

M
− 1σ + 1􏼐 􏼑 0

0 0 0 I
− 1

kδ 0 −
1
βr

I
− 1τ + 1􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(19)

Journal of Robotics 7



where σ, τ are the real injected damping σr �
σ 0
0 τ􏼢 􏼣, kv, kδ

are the proportional gains ks �
kv 0
0 kδ

􏼢 􏼣, ε> 0 is a control

gain, M is the mass of the reference model, I is the inertia of

the reference model D �
M 0
0 I

􏼢 􏼣, and kz �
kzv

0
0 kzδ

􏼢 􏼣

represents the impedance applied to the virtual force fv
which is computed using the distance and orientation
measured between the robot’s ultrasonic sensors and the
objects close to it. Ten, fv is used to reduce the robot’s
advance speed as it gets near to the obstacle.

Te robot has a fctitious force to avoid independently
obstacles. To detect obstacles, NAO is equipped with two
ultrasonic sensors (or sonars), which allow it to estimate
the distance to obstacles in its environment. Te fctitious
force fv is computed with the distance and orientation
measured between the robot ultrasonic sensors and the
objects close to it (obstacles). Ten, fv is defned
according to its tangential and normal components,
where only the tangential component is going to be used
to reduce the robot’s forward speed, providing the op-
erator the opportunity to apply a turning speed to evade
obstacles.

3.2.2. Stability of Hybrid Dynamics Follower. Solving for-
mula (18) and considering that the reference forward and
turning speeds are kept constant between impacts and
considering a feedforward of the reference, the following
dynamic equations are obtained:

M _vhip � kv
_􏽥y1 − σ _vhipf − kzv

fv − M􏽥wv, (20)

􏽥y2
..

� −
1
ε

􏽥y2
.

−
1
ε2

􏽥y2 + 􏽥wg, (21)

I _vδ � kδ
_􏽥y3 − τ _vδf − kzδ

fv − I􏽥wδ, (22)

􏽥y4
.

�
_􏽥y4v

_􏽥y4δ
􏼢 􏼣 �

M
− 1

kv
_􏽥y1 −

1
βr

M
− 1σ + 1􏼐 􏼑􏽥y4v

I
− 1

kδ
_􏽥y3 −

1
βr

I
− 1τ + 1􏼐 􏼑􏽥y4δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

􏽥w4v

􏽥w4δ
􏼢 􏼣.

(23)

Terefore, from formulas (20)–(23), we infer that
e(x)⟶ 0 considering null both 􏽥W and fv, or in general the
error tends to a ball centered in the origin. In order to
analyze the stability of the hybrid system, these disturbances
and the fctitious force will not be considered, but in ref-
erence [24], the authors studied how bounded perturbations
afect the hybrid stability. Hence, to analyze the stability of
e(x) considering the hybrid dynamics, a Poincaré Map is
used which describes the relationship of the states between
impacts. Te stability of the map determines the stability of
the periodic orbit O. Besides, the exponential stability of a
periodic orbit in a nonlinear system with impulse efects can
be studied by linearizing the Poincaré return map around a
fxed point and evaluating its eigenvalues. Te Poincaré map
is represented as follows:

e[k + 1] � P(e[k]). (24)

So, the fxed point e∗ is locally exponentially stable if and
only if the periodic orbit O is locally exponentially stable,
and this is achieved if the eigenvalue (λi) module of (24) lie
inside the unit circle. Following the procedure of lineari-
zation described in reference [25], it is applied to formula
(24) around the fxed point e∗ ∈ S, we get the following
equation:

ϕ(e[k + 1]) � Aϕ(e[k]), (25)

where ϕ(e[k]) � e[k] − e∗ and A � A0 A1􏼂 A2. . .Ant]nt×nt

is the Jacobian of the Poincaré Map, with i � 1, . . . , nt, nt �

2ny2
+ np, where the states for position and speed of the

vector 􏽥y2 are ny2
, the number of states to be disturbed is np
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and is corresponding to the forward speed error _􏽥y1, turning
speed error _􏽥y3, and the states 􏽥y4v and 􏽥y4δ.

Terefore, the Jacobian is calculated as follows:

Ai �
P e∗( 􏼁 + Δ ei( 􏼁( 􏼁 − P e∗( 􏼁 − Δ ei( 􏼁( 􏼁

2Δ ei( 􏼁
􏼠 􏼡, (26)

where the value of Δ(e) depends on the states:
Δ(x) � Δqi Δ _qi􏼂 􏼃 and another vector is defned as Δp �

Δpvhipi( _qi) Δpvδ i( _qi) Δp􏽥y4vi( _qi) Δp􏽥y4δi( _qi)􏽨 􏽩
np×1. Te

values of Δqi,Δ _qi,Δpvhipi( _qi), Δpvδi( _qi), Δp􏽥y4vi( _qi), and
Δp􏽥y4δ i( _qi) are small perturbations introduced to calculate the
linearized model (26), performing nt evaluations of
P(e∗ ± Δ(ei)) [18]. Linking all parameters that afect the
dynamics of the error within a single vector is obtained as
follows:

ci � Δx Δp D ks βr􏼂 􏼃, (27)

where we set D �
4.5 0
0 1􏼢 􏼣, ks �

1 0
0 1􏼢 􏼣, βr �

0.5 0
0 0.5􏼢 􏼣,

ε � 0.5, vhipref � 5(cm/s), vδref � 4(°/s), Δqi � 1, Δ _qi � 0.375,
and Δpvhipi � 0.7 to numerically evaluate the Poincaré Map
whose linearization is calculated using the fxed point (e∗)
and the parameters shown previously. Tis fxed point cor-
responds to the point where the periodic orbit of the proposed
system intersects the reset surface. Using this fxed point and
taking diferent values of Δp (Δpvhip

depends on the type of
terrain, the mass of the robot, and among others), the walking
cycle time, and the real damping and constant keeping the rest
of parameters of ci, the Jacobian’s eigenvalues of the Poincaré
Map are calculated.

It is possible to get a similar ‖λhybrid‖ by applying dif-
ferent combinations of real follower damping and walking
cycle time, as shown in Figure 6. As the walking cycle time
increases for a given real damping value, the eigenvalues
decrease in magnitude and generate a more stable behavior.
Also, as the walking cycle time decreases and the value Δpvhip

moves away from 1, the real damping should decrease.
Terefore, it is possible to apply a wider range of walking
cycle time and real damping when the discontinuity caused
by the reset map is smaller (Δpvhip

closer to one). Addi-
tionally, it should be noted that more surfaces can be ob-
tained by changing the other parameters of ci like D, βr,
among others.

3.3. Equivalent Follower and Equivalent Follower Controller.
From the equations of the hybrid real follower between
impacts, shown in equations (20) and (22), the following
expression is derived:

D _η � ks kgxm t − h1( 􏼁 − zr􏼐 􏼑 − σr _zr − kzfv − 􏽥wl, (28)

where 􏽥wl � 􏽥wv 􏽥wδ􏼂 􏼃
T is the nonlinear uncertainty that

sustains 􏽥wl ∈L∞ and kg �
kgv 0
0 kgδ

􏼢 􏼣. We defne a linear

continuous time follower named equivalent follower for all t

that has the following constraints: Δp � Δpmin
, σr � σrmin

, ε �

εmin, σe � σemin
, such that the values of βe, Tmin are defned as

follows:

3.3.1. Defnition

Defnition 1. Tmin: � (min(T)/ max
di ,Δp�Δpmin,σr�σrmin ,Tmin,ε�εmin

)

(‖λhybrid‖) � 1

Defnition 2. σrmin
: � (min(σr)/ max

di ,Δp�Δpmin,Tmin,ε�εmin

)

(‖λhybrid‖) � 1

Defnition 3. βe: � (min(βe)/ max
di ,σe�σemin

,βe

)(‖λequivalent‖) � 1

for the nonperturbed discrete-time version of formula (28):

D _η � ks kgxm t − h1( 􏼁 − ze􏼐 􏼑 − σe _ze,

ze � η − βe _ze,
(29)

where λhybrid are the eigenvalues of the hybrid system
computed from the Jacobian’s eigenvalues of the Poincaré
map. λequivaalent are the eigenvalues of the discretized version
of (29), di � D ks βr􏼂 􏼃, σe is the linear damping coefcient
injected by the equivalent follower controller, and ze is the
velocity of the equivalent follower. Te values σrmin

, εmin, σemin
are positive values near to zero while 0<Δpmin < 1 establish
the range of the reset map from Δp � [Δpmin, 1).

Due to the efect caused by the increasing of equivalent
damping (equivalent follower controller), ‖λequivalent‖ de-
creases. It is possible to get a similar ‖λhybri d‖ by applying
diferent combinations of real follower damping and walking
cycle time, as shown in Figure 7. Now, we propose to online
set σr and T through the following optimization criteria,
visually illustrated in Figure 7:

σr, T, ε( 􏼁 � min kσ σr − σe
����

���� + kwtT + kεε􏼐 􏼑such that :

max
ci ,σr ,T,ε

λhybrid
�����

�����􏼒 􏼓 � max
di ,σe h1 ,h2( )

λequivalent
�����

�����􏼒 􏼓,
(30)

where kσ , kwt, kε are the weights of the functional. Tis
optimization cost function aims to fnd a trade-of between a
walking velocity as near as possible to the velocity of the
non-delay case and get the lowest error between the follower
equivalent velocity ze and the follower real velocity zr.

Finally, from Figure 7, it can be seen that σr approaches σe to
ensure stable behavior. Part (a) of Figure 7 shows that if
h↑⇒σe↑ therefore ‖λequivalent‖ decreases. However, without a
proper control ‖λhybrid‖ will be greater than ‖λequivalent‖,
which does not guarantee the stability of the delayed bilateral
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teleoperation system. Part (b) of Figure 7 states that if
h↑⇒σe↑ therefore ‖λequivalent‖ decreases and if h↑⇒T↑∧σr↑
therefore, ‖λhybrid‖ decreases in the same way as the
equivalent, which allows to hold a stable behavior assuring
bounded errors.

3.4. Stable Bilateral Controller. In this work, a P+ d such as
the controller is used to analyze what conditions must be
held to keep the errors ec � kgxm − ze bounded. Te pro-
posed control strategy adds the following force feedback law
for fm:

fm � − km kgxm − ze t − h2( 􏼁􏼐 􏼑 + gm xm( 􏼁 − αm _xm, (31)

where km is a gain matrix, kg linearly maps the leader’s
position to a reference forward and turn speeds, and αm is
the linear damping coefcient injected into the leader. Te
only diference with a traditional P+ d scheme is that the
equivalent follower velocity is used over the real one. Be-
sides, the control actions applied to the real follower are
given by formula (15).

3.5. Stability Analysis. Here, the stability of the proposed
teleoperation system is analyzed and the process of cali-
brating the control parameters is explained. If fm (31) is
included in the leader (1) and with the equivalent robot (29),
the following closed-loop dynamics are obtained:

€xm � M− 1
m − Cm _xm − km kgxm − ze t − h2( 􏼁􏼐 􏼑 − αm _xm + fh􏽨 􏽩, (32)

_η � D− 1 ks kgxm t − h1( 􏼁 − ze􏼐 􏼑 − σe _ze − kzfv − 􏽥wl􏽨 􏽩. (33)

According to formulas (32) and (33), and taking also into
account (5), it can be seen that €xm � 0, _η � 0, if the vector
xt: � _xm ze _ze ec􏼂 􏼃

T remains zero for a sufciently high
time interval, considering fh, fv, and 􏽥wl null and whose
analysis is associated with Lyapunov–Krasovskii’s concept of
stability, where there is a continuous of states that we
represent using integrals with fnite limits.

A positive defnite function V(xt) � V1 + V2 + V3 + V4
is given as follows:

V1 �
1
2
l1 _z

T
e D _ze, (34)

V2 �
1
2
l2 _x

T
mMm xm( 􏼁 _xm + l2Eh, (35)
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Figure 6: Stability surfaces, is visualized as the real damping and walking cycle time change, taking diferent Δp: (a) Δpvhip
� 0.25,

(b) Δpvhip
� 0.5, and (c) Δpvhip

� 0.7.
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V3 �
1
2
l3e

T
c ec +

1
2
l4z

T
e ze, (36)

V4 � l5 􏽚
0

− h2

􏽚
t

t+θ
_ze(ξ)

T _ze(ξ)dξ dθ

+ l6 􏽚
0

− h1

􏽚
t

t+θ
_xm(ξ)

T
_xm(ξ)dξ dθ.

(37)

Following the procedure described in reference [11]
along the trajectories of the closed-loop system, considering
the follower robot, leader dynamics, time delay, and human
operator and environment forces, is bounded by:

_V≤ − λm _x
T
m _xm − λseze

. T
_ze − ρe _ze

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (38)

where

ρe � 􏽥wl + kzfv. (39)

If αm and σe are sufciently high to comply as follows:

λm �
αm
km

− h1 −
h2

4
> 0,

λse �
σe + D
ks

−
1
4
h1 − h2 > 0,

(40)

then, the variables _xm, _ze ∈L∞. If formula (38) is integrated
in time, the following is verifed:

V(t) − V(0)≤ − λm _xm
����

����
2
2 − λse _ze

����
����
2
2 − 􏽚

t

0
_ze(ϵ)

Tρe(ϵ)dϵ.

(41)

3.5.1. Remark. Te term 􏽒
t

0 _ze(ϵ)
Tρe(ϵ)dϵ is bounded since

_xm, _ze ∈L∞ and using the proof of Section 3.3, it is con-
cluded that the estimation errors are limited by 􏽢W ∈L∞.
Terefore, from formula (41), we infer that V(t) will be
bounded for all t, and therefore, _xm, _ze ∈L2 and kgxm −

ze, ze, xm, ∈L∞. If fv, fh, 􏽥el remain zero, and following an
analysis similar to reference [16] based on Barbalat’s Lemma,
it is possible to deduce that _xm and _ze will tend to zero as
t⟶∞.

3.6. Cascade Calibration Process. A three-step calibration
process is used to set the controller parameters, linking the
stability result obtained by using the equivalent follower with
the equivalent follower controller, as well as the relation
between the equivalent dynamics and the hybrid dynamics
as follows:

(i) V.1 Ofine calibration step, the inverse dynamics
compensation is calibrated, including their gains
that depend on the used method, in particular, we
apply an adaptive inverse dynamic compensation
[20]. Furthermore, the reference parameters (D)

and the gains of the bilateral controller (ks, km)
without delay are adjusted while the observer pa-
rameter βr is set empirically. Finally, βe is set based
on Defnition 1.

(ii) V.2 Online step, the leader damping (αm) and
equivalent follower damping (σe) are calculated
from formula (40).

(iii) V.3 Online step, the values of walking cycle time (T)

and real damping (σr) are set through the ex-
pression (30).

||λhybrid|| > ||λequivalent||||e||

Response of the
hybrid system

Response of the
equivalent system

T1 T2 T3 T4 T5 ... Impacts

||λhybrid||= ||λequivalent||||e||

Response of the
hybrid system

Response of the
equivalent system

T1 T2 T3 T4 T5 ... Impacts

Figure 7: Evolution of the behavior of the equivalent follower robot (continuous system) and the humanoid robot (hybrid system).
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4. Simulations Results

Te simulation was performed using MATLAB/Simulink,
where the equations (20)–(23) are simulated using the pa-
rameters set in Section 3.2, and the control parameters are
adjusted following the guidelines given in subsection F of
Section 3. Using those parameters, two kinds of simulations
are performed:

First, with constant parameters, we performed 500
simulations using fxed parameters, with real damping from
0 to 10, and a walking cycle time from 0.5 to 5 seconds,
taking random values under those intervals for 4 diferent
cases of time delays. Keep fxed the frst step and the second
is calculated using formula (40).

Ten, with variable parameters, we performed 500
simulations using real damping and a walking cycle time
according to the proposal (30), for the same 4 diferent cases
of time delays.

Figures 8(a) and 8(b) show that the average coordination
errors decrease when using the proposal that varies the
damping and the walking cycle time (VP scheme),
depending on the time delay, unlike the CP scheme, which
uses a constant value of walk cycle time and damping for all
delays. Terefore, in the obtained fgures, the advantages
achieved by the proposed scheme can be evidenced.

5. Experiments

Tis section presents the experimental results for the
control scheme proposed in Section 3, where the forward
and turn speeds of an NAO humanoid robot are remotely
teleoperated. At the same time, the operator can perceive
force feedback proportional to the coordination error
between the leader and the equivalent follower robot and
receives video feedback in order to drive the robot
through the desired path. A fxed camera was mounted in
the laboratory to take the workspace of the remote robot.
Te image is transmitted to the human operator who

receives such visual feedback through a standard display
while force feedback is felt simultaneously. Te experi-
mental scheme consists of a human operator using a
Novint Falcon device with force feedback in Argentina to
drive an NAO robot located in Germany. Te human
operator must evade the obstacle by left and right sides
alternately for 10 tests. Te parameters are calibrated
following the guidelines given in V.1, V.2, and V.3. Also, a
moving average flter of 1 second is used to estimate the
current time delay as shown in Figure 9 and from then
calculate the walking cycle time and real damping. Next,
lateral stability control is performed to maintain lateral
balance through walking, inducing a lateral oscillation by
using only the roll joints in the hips and ankles [26] and
merging it with the forward movement. A sequence of
images of such a test is presented in Figure 10, while the
video of the whole experiment can be seen at https://
youtu.be/zeAZTzrCks4.

Figures 11(a) and 11(b) show the evolution in time of
the NAO’s forward and turn speeds during the execution
of the test according to the reference values sent by the
human operator. It is important to remark in some time
intervals acts the fctitious force due to the near of ob-
stacles, as shown in the rectangle of Figure 11, rising the
coordination errors in such moments. Force feedback
fm � fmvhip fmδ􏽨 􏽩

T
is also shown, during the time in-

terval (20, 60) seconds, the virtual force acts on the robot
slowing down its speed, which increases the coordination
error. Tus, the force feedback afects the operator’s de-
cision by letting him know, through a force opposite to the
direction of the robot, that a bigger-than-normal syn-
chronism error exists during the experiment, and this
pushes the operator’s hand to a lower forward speed in
order to decrease the error and get to better control of the
robot. Te speed tracking curve of the follower and the
forward speed according to the values received in the
robot, we can see in the following Figure 12. Where it is
shown that the actual robot motion follows the human
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Figure 8: Coordination errors of the teleoperation system (a) for forward speed and (b) for turn speed.
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commands with a bounded error throughout the duration
of the experiment. Te fctitious force acts to avoid col-
lisions at cost of rising the coordination errors. In terms of
stability, the coordination error between the follower and
leader is bounded by the proposed cascade controller.

Finally, Table 2 highlights some important average data
results from obstacle evasion for both left and right, where
it can be remarked that the average delay of the tests is
close to the average transatlantic delay (Buenos Aires-
Munich) of 244ms.
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Figure 9: Total internet time delay (h1 + h2) of the experiment.

Figure 10: Test workspace and task to be performed.
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Figure 11: Coordination error of the forward and turn speed and force feedback: (a) linear velocity command and linear velocity NAO and
(b) turn velocity command and turn velocity NAO.

Linear Velocity Command and Linear Velocity NAO

vhipref (t-h1)
vhip (t)
fv (t)

0

5

10

15

Li
ne

ar
 V

elo
ci

tie
s (

cm
/s

)

20 40 60 80 100 120 140 1600
Time (s)

(a)

Turning Angle Command and Turning Angle NAO 

δref (t-h1)
δ (t)

-20

0

20

40

60

80

100

120

Tu
rn

in
g 

an
gl

es
 (°

)

20 40 60 80 100 120 140 1600
Time (s)

(b)

Figure 12: Forward velocity and Turn angle references generated by the human operator and the signals provided by the humanoid robot:
(a) linear velocity command and linear velocity NAO and (b) turning angle command and turning angle NAO.
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6. Conclusions and Discussion

In this article, a control scheme is presented for the tel-
eoperation of the forward and turning speeds in the
presence of time delays. Te theoretical analysis and the
defnition proposed for the equivalent follower and the
use of an equivalent follower controller allow us to per-
form a complete stability analysis where in contrast to the
mobile robots and manipulators teleoperated cases, as a
result, we obtain that it is not sufcient to increase only
the damping as the time delay rises for holding stability.
For teleoperated biped robots, there are multiple com-
binations of the real follower damping and the walking
cycle time that can be used to assure bounded errors,
whose online values are obtained by means of an opti-
mization criterion that weighs the walking velocity and
the errors between the real follower velocity and the
equivalent follower velocity. It is necessary to emphasize
that, due to the practical limitations of the NAO robot
used in the present work, it becomes difcult to perceive a
clear diference between constant and variable optimi-
zation parameters (damping and walking cycle time). Te
robot has a short walking speed range, where very low
speeds produce falls or loss of balance.

Adequate use of force feedback allows for decreasing
those errors [11, 27]. We point out the work is focused on
reaching a controller to ensure bounded errors despite these
time delays, and not on optimizing the perception level. A
quantitative analysis of the perception of the human op-
erator in front of delays is outside of the scope of this work.
However, the use of equivalent follower velocity in the force
feedback algorithm instead of the real follower velocity
avoids getting worst the level of perception of the human
operator about the robot’s walk, feeling in his hand a
continuous force (avoiding the discontinuities caused by the
impacts) that pushes the human hand towards fewer co-
ordination errors. Finally, it is also important to remark that
although the NAO robot has practical limitations, it was
used to get a simple test, while we point out that the con-
ceptual contributions here presented can be applied to other
bipedal and humanoid robots.
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