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1 Introduction

Adaptive finite element/boundary element procedures provide an efficient and extensively investigated tool
for the numerical solution of uniformly elliptic interface problems in computational mechanics [18, 27]. In
recent years, strongly nonlinear materials with an unbounded relationship between stress and strain have
been of interest, from nonlinear diffusion and image processing, porous media and filtration to the modelling
of glaciers and non-Newtonian fluids, such as in Herschel-Bulkley models [2-4, 17, 26]. Mathematically, the
p-Laplacian or related nonlinear Lamé operators provide examples of simple model problems, for which the
relation between stress and strain follows a power law; more realistic examples include Carreau-type laws [6].
Variational inequalities arise from the boundary conditions and at interfaces, from simplified friction laws, or
from total variation regularization in mathematical imaging [1, 11, 15, 22]

This article provides the theoretical framework for the adaptive coupling of finite element and boundary
elements for such materials in a surrounding linearly elastic medium.

At the interface, transmission conditions correspond to a continuous deformation and continuous normal
stresses. Contact conditions like friction and nonpenetration [23] allow for sliding and the opening of gaps
between the materials. They significantly complicate the numerical analysis and computations as they give
rise to a variational inequality with a closed, convex set K of admissible test and trial functions and a non-
differentiable functional for the frictional energy. The challenges of the contact constraints do not only involve
the formulation, but also affect the convergence of numerical methods: typically, the solution is of reduced reg-
ularity at the interface between contact and non-contact. As the location of the interface is a priori unknown,
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special meshes like geometrically graded ones cannot be used to resolve the singularity. A posteriori error
estimates and the resulting adaptive mesh refinement procedures give rise to efficient numerical methods.

1.1 Formulation of the Problem

Let Q c R", n = 2 or 3, be a bounded Lipschitz domain, Q¢ = R™ \ Qits complement. For p € (1, co), we look for
a solution (u, uc) € (WLP(Q))" x (W (Q¢)" of

loc

—divA'(e(uw)) =f inQ, (11a)

—uAu; — (A +p)graddivu, =0  in QF, (1.1b)
Al(e(w)v-Tiu. =ty onaQ, (1.1c)
U—Uc=Uy only. (1.1d)

Here p > 0, A > —u, &;(u) = %(axi Uj + 0x;u;), and A LP(Q)® R;’;I{{ - LY (Q)® RQ;‘I{} describes the nonlinear
material in Q, e.g. A'(x) = |x|P~2x for p-Laplacian-like materials or A'(x) = (|x|1=6(1 + |x|2))P2x for Carreau
laws, § € [0, 1].

The interface 0Q = T; U Ts, I; # 0, is decomposed into open subsets, with v the unit outer normal. Further,
Ty denotes the natural conormal derivative 2ud, + Av div + pv x curl.

The transmission conditions on I'; are complemented by contact conditions on I's, given in terms of the
normal and tangential components of u, u, = v- u and u; = u - u,v, and the stress, ,(u) = ~vA'(e(u))v and
or(u) = —A’(e(u))v — on(u)v, respectively, as well as the friction threshold 0 < F € L°(T),

on(u) <0, Uon+Ucn—Un <0, on(W)(Uon+Uen—Un) =0,

locl <F, oW (uo, + Ue,e = Ut) + FlUo,e + Ue,e — Uel = 0.
Finally, u. is required to satisfy a radiation condition. In two dimensions (n = 2), this is given by
uc(x), graduc(x) = O(x|™") as|x| — oo,
while in three dimensions (n = 3), it takes the form
u(x) = O(IxI™h, gradux) = O(Ix|?) as|x| - oo.
The data are required to belong to the following spaces:
Fe@ @), upe(W22Q)", toe (W 220Q)", 0<F e L®Ts).

In Theorem 1, we show that problem (1.1) admits a unique weak solution (u, u.) € WP(Q)" x Wllo’cZ Q4™ for
the material laws of interest in this article, equations (3.1)-(3.2) below, provided that for n = 2 the compatibility
condition jg fej + (to, ej) =0 (j =1, 2) holds. Here, eq, e, is the standard basis of RZ,

To solve problem (1.1) numerically, we first use the Poincaré—Steklov operator S for the Lamé equation in Q¢
to reduce the exterior problem to Q. A conforming Galerkin approximation is used to discretize the resulting

domain/boundary variational inequality in a suitable Banach space.

1.2 Main Results

We identify a suitable functional analytic framework for the numerical analysis of finite element/boundary
element methods for (1.1). In particular, we obtain a priori and a posteriori error estimates for Galerkin approx-
imations to the equivalent boundary/domain variational inequality. The a posteriori estimate complements
recent estimates obtained for mixed finite element formulations of friction problems in linear elasticity and
gives rise to adaptive mesh refinement procedures.
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The analysis of the strongly nonlinear problem (1.1) poses analytical difficulties, especially for the range
p € (1, 2) of relevance to applications. In this case, the bilinear form on dQ for the boundary element method
fails to be continuous in natural function spaces related to the nonlinear operator in Q.

A key technical insight concerns the role of the Banach space

XP = {(u, v) € (WEP(Q)" x (WP (Ts)" : ulag + v € W2(0Q)"},

where r = min{p, 2}. The space X? is motivated by Costabel’s analysis of layer potentials in [10], but we provide
a direct approach.

We especially focus on the well-posedness and a sharp error analysis of the friction problem when p € (1, 2).
As a key result, Theorem 4 gives a sharp a posteriori estimate for the error of Galerkin approximations to the
variational inequality. It complements recent results for mixed finite element formulations of friction problems
[19, 21, 24] and is new even in the elliptic case.

Theorem 4 still involves the uncomputable exact operator S. In Theorem 5, we obtain a computable a poste-
riori error estimate involving the layer potential operators, in a nontrivial extension of the proof of Theorem 4.

The existence of a unique XP-solution is shown in Theorem 1, and Theorem 3 gives an a priori estimate
for Galerkin approximations. As an example of the added difficulty when p € (1, 2), the variational inequal-
ity no longer splits into an equality on Q and an inequality on 0%, unless the artificial regularity assumption
Ulse € Wi2(9Q)? is imposed.

The mathematical differences between p < 2 and p > 2 are not artificial. They reflect the different physical
behavior: while pseudoplastic materials like ice or molasses (p < 2) get stiffer and stiffer under a smaller stress,
possibly infinitely so, the opposite happens in the dilatant case like a thick emulsion of sand and water (p > 2).
For scalar problems, our previous work [14] obtained weaker estimates for the p-Laplacian contact problem
in the technically easier case p > 2, as well as for interface problems involving the double-well potential [13].
Fast stabilized hp boundary element methods for contact are developed in [5]. For linear and nonlinear elliptic
problems, coupled finite and boundary elements have long been studied; see e.g. [9, 25].

Notation. In this article, C denotes a positive constant which may take different values from line to line. We
write f < g if there exists a constant C > 0 with f < Cg.

2 Preliminaries

2.1 Sobolev Spaces

Let Q be a bounded, open subset of R" with Lipschitz boundary 8. Set p’ = 1% whenever p € (1, co). We will
also denote r = min{p, 2} and q = max{p, 2}.
Before analyzing a variational formulation of (1.1), we recall some properties of LP-Sobolev spaces on Q.

Definition 1. We define the following properties.

(@) The Sobolev spaces W(If)’f (Q), k € Ny, are the completion of C?;’)(Q) with respect to the norm

Nullwree) = lullip = lullp + Y 16" ullp.
lyl=k
The second term in the norm will be denoted by |ulwx»(q) = [tlk,p. Let
-k, ! _ ' k,
Wy P (@) = (WHP(Q) and  WP'(Q) = (Wy(Q)'.

b) Wi P(dQ) denotes the space of traces of W'P(Q)-functions on the boundary. It coincides with the

Besov space Bpl, ;,% (0Q) as obtained by real interpolation of Sobolev spaces [28, 29], and one may define
WHP(0Q) = By, ,(0Q) for s € (-1,1).
(c) For Lipschitz I'y c 0Q open, we define the subspace of supported distributions

WSP(Tg) = {u € WHP(9Q) : supp u c T}
and the space of extensible distributions W5P(I'g) = WSP(8Q)/W*P(dQ \ T) with the quotient norm.
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Remark. Note the following.

(a) (WsP(0Q))' = W’s’p/(aQ) and W52(8Q) = H5(0Q).

() WS%(Q) — WSP(Q) and |lullwsr(g) < lullwszg) forl < p < 2.

(c) The Poincaré-Steklov operator S of the Lamé operator on Q€ is continuous between (W‘”%’Z(GQ))" and
(WO 22(0Q)", g € (-1, }).

(d) Points (a) to (c) imply that the quadratic form (Su, u) associated to S is well-defined on (wi- 5P (@)™ if
p > 2.1f 0Q is smooth, S is an elliptic pseudodifferential operator on 2 of order 1, and the form (Su, u) is
unbounded for p < 2.

Parts (a) and (b) of this remark are well-known properties of Sobolev spaces [28, 29]. Part (c) follows from [10].

2.2 Boundary Integral Operators

We recall the fundamental solutions for the Lamé operator,

_ A+3u ot A+p x=)x-Ty .,
G(x,y)—4ﬂm+2u){1og(|x Y b oinge,
_ A+3u 1 A+p (x=y)x-yT N
G(X’y)_Sﬂy(A+2y){|x—y| +/1+3y Ix -y } n R

see [20, (2.2.2)]. They allow to define layer potentials on dQ associated to the Lamé problem,

V() = 2 J G, X') p(x') dx,

0Q

Kp(x) =2 j [T5,G06 X)) dx,
oQ

K B(x) = 2 J T2 G(x, X)o(x') dx',
0Q

Wo(x) = -2T; [ [T GO, XD ¢(x') dx’.
o

These operators extend from C*°(9Q)" to a bounded map (3,\3 j\g,) on the Sobolev space W%’Z(GQ)” X W‘%’Z(GQ)".

If n =3 or if the capacity of 0Q is less than 1 (which can always be achieved by scaling), V and W are
selfadjoint operators on W-22(9Q)", V is positive and W non-negative. The Steklov—Poincaré operator for the
exterior Lamé problem can be expressed in terms of the layer potentials as

S= %(w + (1=K -%K)): W2AeQ)" c W 22(8Q)" —» W 22(3Q)"
and defines a positive and selfadjoint operator. It satisfies
Tyuclog = =S(Uclag) 21

for every solution u. of the Lamé equation in Q¢ which satisfies the decay condition from Section 1.1 at infinity.
Therefore, S gives rise to a coercive and symmetric bilinear form (Su, u) on W%’Z(BQ)”.

2.3 Korn’s Inequality

Existence of a unique solution to (1.1) will be shown using Korn’s inequality and coercivity.

Proposition 1. Assume Q c R" is abounded Lipschitz domain, Ty ¢ 8Q has positive (n — 1)-dimensional measure,
and p € (1, 00). Then there is a constant C > 0 such that

lulwir@) < CUle@)lizoi@) + lulrliiry)  for allu e (WHP(Q)".

The proof follows the argument in the scalar case from [14, Proposition 2], using Korn’s inequality instead of the
scalar Poincaré-Friedrichs inequality.
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3 Analysis of the Boundary/Domain Formulation

For r = min{p, 2}, we consider the space
XP = {(u,v) € (WP(@Q)" x (WP (T)" : ulag + v € WEE(0Q)")
equipped with the norm

lu, viixe = llullwee@) + NUIga-Lrr, + Ulag + Ulwizee)-

Note that X? = (WLP(Q))" x (W%’Z(I‘s))” when p > 2 so that we recover a vector-valued variant of the Banach
spaces considered in [14].

Lemma1. (X?,|-llx») is a Banach space, and ||u, Ulx» = lullwir(q) + lulag + Vllwiz2aq) defines an equivalent
normon XP.

Proof. Ttisreadily verified that || - | x» defines a norm on X?. To show completeness, let (u;, v;) € X be a Cauchy
sequence. Then (u;, v;) converges to a limit (u, v) in the Banach space WLP(Q)" x Wlf%’r(I‘s)". Also, ujlag + vj
converges to a limit w in W%’Z(GQ)”. However, the continuity of the trace operator assures that u;lspo — ulsq in
W1-7P(8Q)". Therefore in W1~7P(3Q)", hence also in W1~+7(3Q)", Ujlag + vj converges both to ulsg + v and
to w. This means that u|sg + v =w ¢ W%’Z(OQ)", or (u,v) € XP.

To see the equivalence of norms, note that |u, v|x» < ||u, vllx». On the other hand, the continuous inclusion
of W22(3Q) into W1-+7(3Q), of W1-5P(3Q) into W1-77(dQ), and the continuity of the trace operator from
WLP(Q) to W15 (9Q) imply

lu, vlixe < ullwiry + lltloallwi-troe) + lulag + Vlwi-tr@ag) + lulog + Vw2 ag)

< ullwregy + luloellw- a0 + llulag + vl +llulag + Vllwizag)

1o
wz2(0Q)

< lullwre@) + llulae + vl , = |u, vlxe.

17(a0)
The assertion follows. O

Recall the function A’: LP(Q) ® ]RQYXT{{ - LY (Q)® IRQ;H’{ in the interior problem of (1.1). We assume that A’
defines a bounded, continuous and uniformly monotone operator so that, in particular, for p € (1, 2),

(A' () = A' ), X = y) 2 (IXlr(@) + Y lLo@)? 2% = YlIF o)
A'00 - A'Y), 2) < Ix - Y1 12lr -
When p € [2, 00), we require
(A0 -A' W), x=y) 2 Ix =yl
(A'(x) - A'(y), 2) < (IXlleee) + YllEo@)P 21X = Yllo@llzlize ().

(B

(3.2)

These assumptions are satisfied by materials of p-Laplacian-type [16].
The variational formulation of the contact problem (1.1) will be stated with the help of the functional
1

J(w, v) = (A(e(w)), e(w)) + E(S(ulasz +0), Ulaq + V) — L(u, )
on X?. Here, A is related to A’ by D, (A(e(u)), (u)) = (A’ (e(u)), €(v)), where D, denotes the Fréchet derivative
in direction v. Specifically, A(x) = %|x|p‘2x when A’(x) = |x|P~%x. Further, v = up + uc - u,

j(v) = J?Ivtl, and L(u,v)= qu + (to + Sug, Ulag + V).

T Q

This paper investigates the numerical approximation of the following nonsmooth variational problem over the
closed convex subset

K ={(u,v) e X? : vy < 0andif n = 2, then (Sej, ulao + v — ug) = 0forj =1,2} c XP.
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Find (i1, ) € K such that
J(i, 0) + j(0) = (.fr};i)relkj(u’ ) +j(v). (3.3)

Note that j is Lipschitz, but not differentiable.
Analogous to [14], one observes that problem (3.3) is equivalent to contact problem (1.1). The existence of
a unique solution to the latter is therefore a consequence of the following theorem.

Theorem 1. The following statements hold.
(@) Contact problem (1.1) is equivalent to problem (3.3).
(b) There exists a unique minimizer (i, 0) € K in problem (3.3).

The crucial ingredient in the proof is the following monotonicity estimate.
Lemma 2. The operator D] given by the variation of ] is uniformly monotone on XP. Let
r=min{p,2}, q=max{p,2} and C>0.
Then, for every (us, 1), (ug, U2) € XP with |lu1, v1llxer(q), Uz, Vz2llxr(q) < C, there holds
luz = u, vz = V1§ <c (A'(e(z)) - A (e(w1)), e(uz) — e(ur))
+(S((uz — u1)lag + V2 — V1), (Uz — U1)lag + U2 — V1)
<c lluz — u1, vz = V1.
Proof. The upper bound is a consequence of estimates (3.1), (3.2) for the nonlinear operator and the boundedness
of S from W%’Z(ag)" to W-%’Z(asz)". For p > 2, we refer to [14, Lemma 3] for the proof of an analogous lower
estimate in a scalar p-Laplacian problem.
When p < 2, the monotonicity of A’ and the coercivity of S imply
(A"(e(ug)) — A'(e(u1)), £(uz) — e(uy)) + (S((Uz — U1)lag + V2 — V1), (Uz — U1)lag + U2 — V1)
2 lle(uz - u1)||€p(g) +I(uz = u1)lag + V2 — Ul"%/v%i(ag)
2 lle(uz = u1)lfpq) + Iz — Us)log + V2 - U1||%,%,2(rs) +luz = w1,
2
+[(uz — u1)log + V2 — V1l 1250,
2 lle(uz ~ uDlfpg) + Sl(uz ~ un)log + V2 = Vil g pp) + 12 = Uil 1 or,,
2
+[(uz — ur)log + V2 = Villy12(50) (34)
In the last inequality, we use the continuous inclusion Wz-2(T's) ¢ W'~5?(Ts). Korn’s inequality, Proposition 1,
implies
”8(1’[2 - ul)"%p(g) + ” us — ul"%/v%,za‘t) 2 "u2 - "%/VLP(Q)' (3.5
Further, note, from the triangle inequality, the convexity of x + x? as well as the continuity of the trace map
from WLP(Q) to W1-5:P(T),
2
lva - v1llﬁ~,1,%,p(rs) < (I(uz = un)lr, + vz = Villin-3 oy + 1z = W)l -3 0 (ry))

< 2|(ug = uy)lr, + U2 - + 2|lup -

2
tllys-poqr,
+2C" Uz = Wil - (3.6)

2
Villpaoqr,)

2
< 2l (uz = ud)lr, + V2 = Vil 1,p,

The asserted estimate follows from (3.4), (3.5) and (3.6), after choosing § > 0 in (3.4) sufficiently small.
Uniform monotonicity on all of X? is shown similarly, but for large [le(uz — u1)llzr(q), the exponent 2 in the
lower bound has to be replaced by p. O

Proof (of Theorem 1). By definition of J, we may choose an infimizing sequence (u;, v;) € K. Coercivity and the
continuity of L imply that

00 > mjaXJ(uj, Uj) 2 lle(uj)liceep + lujloa + v;llﬁ,%,z(ag) +j(vy) + L(uj, vj)

2 .
2 lle(uplize@p + lujloa + Vjlly 1290y +7(V)) = Cliu, Vjllxe.
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Therefore, there exists C’ < co such that [lu;, vjllx» < C" and |[ujlag + Ujllw}2ag) < C'. As the ball of radius 2¢’
in X is weakly sequentially compact, (u;, v;) converges weakly to an element (i1, 0) € XP after passing to a sub-
sequence. Similarly, extracting another subsequence if necessary, we may assume that also uj|so + v; converges
weakly to w € W%’Z(GQ). Since vj = (ujlag + Uj) — Ujlag and W%’Z(OQ) C Wl—%’l’(asz), the uniqueness of limits
in Wl—%’!’(agz) assures U = W — 1l|5q. As K is closed, we deduce that (i1, 0) e Kn X'.

To show that J(i1, 0) = inf J, it suffices to prove

J(@, 0) < lim J(uj, vj) = i?(f].
j—oo

Note that both u — (A(e(u)), &(w)) and w — (Sw, w) are weakly lower semicontinuous on wbhp(Q), W%’Z(OQ),
respectively, so that
(A(e(w), e(t)) < lig(i)glf(A(e(uj)), e(u))),

(SW, l/T/) < hminf(S(u]‘|ag + Uj), u]'|ag + Uj).
Jj—o00

As the inclusion of W72 (T) into L1(Ts) is compact, vj — U in LY(T's). Hence j(0) = limj_q, j(v;). Finally,
L(1, 0) = lim;_,, L(uj, vj) because L is a continuous linear functional on X. We conclude

lim J(uj, vj) = lim inf(A(e(u;)), £(uj)) + iminf(S(ujlaq + Vj), Ujlag + vj) + lim j(v;) - lim L(uj, vj)

> (A(e(m), () + (Sw, w) + j(0) - L(11, D)
= (A(e(), e()) + (S(ltlog + D), Ulog + ) +j(0) - L(1, 0) = J(&, D).

Since (uj, v;) was an infimizing sequence, (i1, 0) is a minimum of /.
Concerning uniqueness, let (i1, U1), (éig, U2) € K be two distinct minimizers of J. As a sum of convex sum-
mands, J is convex and therefore must be constant on the line segment

{(l1 + t(lz - Uy), 01 + (D2 — 01) : t € [0,1])}

in XP. Thus
(DJ(liy, U2) — DJ(Ul1, 01), (2 — U1, U2 — 01)) =0,

or for our particular J,
0 = (A'(e(l1)) - A'(e(iln)), &(tz) — (1)) + (S((iz — 1) lag + U2 — 01), ({2 — U1)|ag + U2 — 01).

The conclusion follows from Lemma 2. O

4 Discretization and A Priori Error Analysis

For simplicity, we assume that Q is a polygonal domain (if n = 2) or a polyhedral domain (if n = 3).

Let {Tn}ner be a regular triangulation of Q into disjoint open regular triangles (n = 2) or tetrahedra (n = 3)
T'such that Q = Ures, T.Each element has at most one edge or face, respectively, on 9%, and the closures of any
two of them share at most a single vertex, edge or face. Let hy denote the diameter of T € T, and p7 the diameter
of thelargest inscribed ball. We assume that 1 < maxreq, Z—; < Rindependentof h and that h = maxrcg, hr. The
set of edges and faces of the triangles and tetrahedra, respectively, in T is denoted by &j. Associated to T is
the space W}l’p (Q) ¢ WLP(Q) of functions whose restrictions to every T € Ty are linlear.

The boundary 0Q is triangulated by {l € £, : | c dQ}. For r = min{p, 2}, W}l_?’r(aﬂ) denotes the corre-
sponding space of continuous, piecewise linear functions, and W}l_%’r(l“s) the subspace of those supported on I's.

Finally, W,;%’Z(asz) C W‘%’Z(GQ) is the space of piecewise constant functions, and
X0 = WHP(Q) x WiHT(8Q) ¢ XP.

We denote the canonical inclusion maps by in: W3P(Q) — WHP(Q), ji: W};%J(rs) < WI-HI(T) and
kn: W;3(0Q) — W-12(3Q).
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The discrete problem involves the discretized functional

1
Jn(un, vp) = (A(e(up)), e(up)) + E(Sh(uhlagz + Up), Uplag + Up) — Lp(up, Up)

on XZ. Here

1
Sh = E(W +(1- K’)kh(k;'\?kh)_lk;(l - fK)) and Lp(up,vp) = quh + (to + Spuo, Un|ag + Un).
Q

The approximate Steklov—Poincaré operator Sy, is coercive uniformlyin h, i.e. (Spup, up) > 015||uh||%/v%,2 Q) with
ags independent of h, provided h is sufficiently small [27]. Therefore, as in the previous section, we obtain the
following result.

Theorem 2. The discrete minimization problem

Jn(@n, 0n) +j(On) = min  Ju(un, va) +j(0n) 4.1
(uh,vh)eKﬂXh

admits a unique minimizer.

Our Galerkin method for the numerical approximation relies on an equivalent reformulation of the continuous
and discretized minimization problems (3.3), (4.1) as variational inequalities: find (i, 0) € K such that

(A'(e(@)), e(u — 1)) + (S(ilag + ), (U — W|ag + U — D) +j(v) - j(D) > L(u - i, v - D) 4.2)

for all (u,v) € K.
The discretized variant reads as follows: find (iip, 0p) € KN X ﬁ such that

(A'(e(@n)), e(up — tn)) + (Sn(lnlag + On), (Un — Un)lag + Un — On) +j(Ur) = j(0n) = Lp(up — tip, v — On) (4.3)

for all (up, vp) € Kn Xﬁ.
As these variational inequalities are equivalent to the minimization problems (3.3), (4.1), Theorems 1 and 2
assure that they admit unique solutions.

Theorem 3. Let (il, D) € K the solution to the variational inequality (4.2) and (i, Up) € K N Xﬁ the solution to the
discretization (4.3).
(@) The following a priori estimate holds with q = max{p, 2}:

1@ - dn, 0~ Onllfy < Inf  {le(@ - up)llzri) + 1@ - un)lag + 0 - vrllwi2aa) + 10 — vrllLir,)}
(un,vp)eKNX}

+ disty-3.2(a0) (V11 = K)(@ + 0 — uo), W; 22(9Q))%.

b Ifoe W2A(To)", e.g. for p > 2 or I's = 0, the estimate can be improved to

. N N L q . N B N ~ 2 N
4 —an,0-Onllgy s inf e = un)lpy gy + 1@ - un)log + 0 = Unlly,1 250y + 10 = UnlLiry}
(uh,vh)eKﬂXh

+ disty-} 200) (V11 = K) (@ + 0 - ug), W;72(0Q))*.
Here § = 3% for p < 2, while f = p' = ;& forp > 2.
Proof. Adding the continuous variational inequality (4.2) with (u, v) = (iip, Up) and the discrete variational
inequality (4.3), we see that
0 < (A'(e(m)), e(in) — €()) + (Silag + ), (g — W)log + Op — D)
+j(0n) — j(0) - L(tp — 11, Op — D)
+ (A (e(@tn)), €(un) — €(itn)) + (Sn(@nlog + On), (Un — Un)lag + Un — Un)

+j(Un) = j(On) = Lpn(up — tp, Up — Op).
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Hence
(A'(e(@) - A(e(@n)), e(i1) - &(@n)) + (S((iL - Tn)|ag + 0 — On), (i - Uin)|aq + 0 — On)
< (A'(e(@) - A'(e(in)), e(i1) - (itn)) + (S((@ — @n)lag + 0 — On), (& - Un)lag + 0 — On)
+ (A" (e()), e(itn) - (@) + (S(illag + D), (U — W)lag + On — D)
+J(0n) = j(0) = L(itp - 4, Op - 0)
+ (A'(e(@n)), e(un) - £(@n)) + (S(lnlag + On), (Un — Un)lag + U — Op)
+J(vn) = j(On) = Ln(un = Up, Up — On)
= (A"(e(ttn)), e(un) - e(@)) + (S(Unlag + On), (un — Wlag + v — )
+Jj(vn) = j(0) = L(up — &, vp = 0) = (Lp — L)(up — n, Up — On)
+{(Sh = S)(@nlag + On), (Un — Un)lag + Un — On)
= (A'(e(@) - A'(e(@n)), e(i1) - e(un)) + (S((@ - Un)lag + 0 — On), (& — un)lag + 0 - Ux)
+ (A" (e(), e(up) - £(@)) + (S(illag + V), (U - W)lag + U — 0) — L(up — &, vy - 0)
+j(vn) —j(0) = (Ln — L)(un — tn, Un — On)
+{(Sh = S)(@nlag + On), (Un — Un)lag + Up — On). (4.4)
Let p < 2. To bound (A’(e(it)) — A’ (e(itp)), e(it) — (up)), we use estimate (3.1) and Young’s inequality for any
6 > 0 as follows:
(A'(e(@)) — A" (e(@n), &(L — up)) < le(@ — ap)l5p g lE( ~ un)lize(e)
< 67 el — i)lEgy + 5 T e — un)l g,
On the other hand, for p > 2, the upper bound (3.2) yields
(A"(e()) — A" (e(@tn)), e(it — up)) < lle(i - n)llLr (@)l — up)lze(e)
< 8lle(@ — i)l gy + 877 (@~ un)lp -
As for the second term, we use the boundedness of S from W%’Z(GQ)” to W-%’Z(asz)" to estimate
(S((t = ttp)log + U — On), (U — Un)lag + U — Un)
< (@ - an)lag + 0 = Onllwiza) (@ - un)lag + 0 — Unllwizag)
< 8@ — @n)log + 0~ Only1.2a0) + 6 1@~ un)log + 0 = Vnllly 12 (00)-

Without further assumptions on 0, using the Cauchy-Schwarz inequality, we estimate the second line of (4.4)
by a multiple of

le(un — Wlire@) + I(un — Wlog + Vr — D) llwi2ag)-
For part (b), where U € W2:2(Ts), one may use the variational inequality for an improved estimate: substituting
(u, v) = (up, 0) and (u, v) = (2u — up, V) into the variational inequality on X?, we obtain
(A'(e(W)), e(up) — e()) + (S(ilag + D), (up — Wlag) = L(up - 1, 0).
With this, the second line of (4.4) reduces to (S(il|ag + 0), Up — D) + L(0, 0 — vp), i.e.to
—(to — Sitlag + 0 — Uo), vp — 0) = —(A"(e(@)) - v, Up = 0) < [Fllzeowy) Um0 = Unllziry)-
Here we have used (2.1) with u.|sq = Ul|ag + U — Ug, as well as the transmission condition in (1.1c) on Q. For the
third line of (4.4),
0w =J(©) = [ Fond = 190D < [ Fone = 00D < 1T one - el
T Ts
Finally, the last line of (4.4) simplifies as follows:
— (Lp = L)(up — tp, vp = 0p) + {(Sp — S)(tinlog + On), (Up — Up)log + Un — Op)

= ((Sh = S)(Unlag + On — ug), (up — Up)lag + Vn — Op)
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< 87M(Sh = S)(@nlao + On = U0y 1.2ag) + IR = Gn)log + U = Onlliy 1250
< 87M(Sh = S)(@nlag + On = Uo)ly-1290)

Ao S 2
+6[(f - tp)laa + 0 — Onllys

-~ A2
+ 6”(“}! - u)laQ + Up — U"W 3:2(Q)"

12(0Q)

The term involving Sj, — S is known to be bounded by (see [8])

1

disty-} 200 (V11 - K)(@ + 0 - up), W; 22(09))°.

To sum up, for general 0, we obtain, for a = p%l, B= ﬁ (p<2)ora=p,B=p' (p=2)andq=max{p,2},

(A(e(@) - A'(e(@in)), (@) - £(@n)) + (S(@ - Tn)lag + O = On), (il - iip)laq + O - Op)
< 8%e( — )l fp g + 81~ Wn)log + 0 — OnlZ, 100, + 8 PlEC ~ Ui,

+lle(un — Wlre() + 1(un — Wlag + Vr — D) lwizag)

TN ~ 2 - ~
+ 671 - un)lag + U = Unllyy 1 290y + I0R = Dllzary) + 6ll(un — Wlag + Un

2
Q) = Ol 290)

+ 87 distyy-12a0) (V1 = K@ + 0 - uy), W,;%’Z(BQ))Z.

The lowest exponents dominate.
When 0 € W%’Z(Fs)", the estimates for (4.4) yield

(A'(e()) - A" (e(@n)), £(@) — &(@n)) + (S((@ - ip)|ag + O — Op), (it — Up)lag + U — On)
< 8%e(t — )l fp g + SN~ Wn)log + D — OnlZ, 3200y + 8 PlEC ~ Ui,
+ 8@~ up)lag + 0 = Vnl3y 1250, + 108 = Dllziry) + Sl (un = Wlag + v = 0l51.2 50,
+ 8 disty-12(90) (V11 - K)(@ + 0 - ug), W; 22(9Q))%.
Note that, as in Lemma 2, the monotonicity of A’ and the coercivity of S allow to bound the left-hand side

from below by [l(i - @n)lIf, gy + (@ - in)lag + 0 — Onll%12a0)-
Choosing 6 > 0 sufficiently small, the claimed estimates follow. O

Remark. Theorem 3 proves convergence of the proposed FE-BE coupling procedure for quasi-uniform grid
refinements. However, generic weak solutions to the contact problem (1.1) only belong to X? and not to any
higher-order Sobolev space. Therefore, the convergence can be arbitrarily slow as the grid size h tends to 0.

5 A Posteriori Analysis I

In this section, we establish an a posteriori error estimate for the Galerkin solutions obtained from the varia-
tional inequality (4.3). A refinement of the argument, given in Section 6, will lead to a fully computable upper
bound for the error in Theorem 5.

Theorem 4. Let r = min{p, 2} and q = max{p, 2}. Let (i, U) € K be the solution to the variational inequality (4.2)
and (ip, 0p) e KNX Z the solution to the discretization (4.3). The following a posteriori estimate holds:

S ' . - o _ N VA
I = an, 0 - Oxli%y < (ng Ry If + div A (@), ) + (EZQ hellA' (@I, ) )
C C

+ llto + Sn(uo — @nlao + On) = A" E@RIVIy1-17 50

+ j{?mm + OO + j(onmh)ﬁh,n»
T Ts
10 @) -1 oy + 1@ = Pl )

+ 1Sk = $)(@nlae + 0 = w01y, -

7
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For the proof of Theorem 4, we consider the variational inequality (4.3) for v, = Uy, and with uy — up and
up — 2Up — up, respectively. Problem (4.3) then splits into an interior equation and an inequality on the bound-
ary: for all (up, vp) € Kn x?,

(A'(e(@n)), e(un)y + (Sn(inlag + On), Unlag) = quh + (to + ShlUo, Un) = Ln(up, 0),
Q 5.1)
(Sn(tinlag + On), Up — On) + j(vn) — j(On) = (to + Suo, Up — Op) = Lp(0, vp — Op).
For the continuous inequality, we only get a weaker assertion because u|sq + U needs to be in W%’Z(asz). Choos-
ingu=1u+uUp—up =0+ 0y — vy for any (up, vp) € Xﬁ with v, < 0 + 0y transforms (4.2) into the estimate
(A"(e(W)), e(up — Up)) + (S(ilag + D), (up — Un)log + Ux — Un)
< J(0 + Op - vp) = j(0) + L(up — Up, Up = Op). (5.2)
In combination with the following coercivity estimate, we may start to derive an a posteriori estimate:
le(@ — @)}y q) + 1@ — n)log + 0 = Onliy1 2 g,
< (A (e(@) - A'(e(@tn)), el — up)) + (A" (e(i1)) — A’ (e(@tn)), €(un — Up))
+(S((@ ~ tp)lag + U — 0p), (U~ up)log + 0 — Up)
+(S((t - tp)loq + 0 — Op), (up — Un)lag + Up — Un). (5.3)
We consider the second and fourth term on the right-hand side of (5.3),
(A"(e(10)), e(up — Un)) — (A’ (e(@r)), e(up — Up))
+(S(ltlag + D), (Up — Un)log + Up — Op) — (S(lnlag + On), (Up — Un)log + Un — Un).
Applying the equality in (5.1) to
(A" (e(@n)), e(up — Up)) + (S(inlog + On), (Un — Un)lag + Un — Up)
and inequality (5.2) to
(A"(e(i0)), e(up — n)) + (S(lag + ), (up — Un)lag + Un — Or),
we estimate their sum by
— Lp(up — U, 0) + j(O + Op — vp) — j(D) + L(up — Up, Uy — Op)
— (Sn(Unlag + On), vn = On) + ((Sn = S)(Tnlag + Un), (Up — Up)lag + U — Op).
For the terms
(A"(e(W)), el - up)) + (S(itlag + V), (@l — up)lag + 0 — vn),
we use the variational inequality (4.2) with (u, v) = (up, vy) to conclude from (5.3) the following:
le(@ — @)}y g, + 1@ = an)lag + 0 = Onliy 1290,
< L(11 - up, 0 — vp) +j(vp) - j(0) — (A'(e(in)), €(it - up))
—(S(ttnlog + On), (U~ up)lag + U — vp) — (Sp(Unlae + Un), Un — Un)
— Lp(up — Up, 0) + j(O + Op — vp) — j(0) + L(up — Up, Uy — Op)
+{(Sh = S)(Unlag + On), (up — tn)lag + Up — Op)
= [ = un) + Cto + S, (@ = wndlon + 0 = o) + (0 + 61 - VW) + (V1) - 2i(0)
& —(A'(e(itn)), e(it — un)) = (Sn(lnlag + On), (& - un)lag + 0 — Un)
— (Sn(ttnlog + Un), n — On) = ((Sn = S)uo, (Un — Un)lag) + (to + Sug, Up — Up)
+{(Sn = S)(@nlag + Un), (&t — Un)log + 0 — Un)
= Jf(ﬁ —up) +j(0 + Op — vp) + j(vn) - 2j(0) - (A" (e(@tn)), £(it — up))
@ +(to - Sn(liplog + Un — Ug), (& — up)lag + 0 — Op)

+ {(Sn — S)(Unlag + On — Up), (U — Up)log + U — Dp).
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Integrating by parts, we obtain

j i~ wn) — (A (e(@tn)), (il — up)) = j(f + div A’ (e(@n))(@ - up)

? oy j[A’(s(ah))vJ(a — up)lag — (A" (e(@)V, (@ - up)log) so.
ECQE

The first term is estimated as usual for up = iy + (U — i) using the Holder inequality and the properties of
the interpolation operator I, (see e.g. [7]),

!

. . N PN ' . . ' 1p
j(f + div A (e(@n))) (@ - up) < |12 - uhqu,p(g)(TZQ Ry If + div A (@I, )
Q C

with p’ = P7. Similarly,

Y [ eI - unlao < 1 - anlwioer( Y hella'E@nwitly )"

L'
EcQ E EcQ

It remains to consider the boundary contributions. To do so, recall the strong formulation of the contact condi-
tions in terms of o, (u) and g(u) on I's. In terms of v = uy + u, — u, they are written as

on(u) <0, vR<0, op(wWv,=0,
loc(w)| < F,  a(w)ve + Flue| = 0.
Then, substituting vy = 0y, we obtain
J® + 80 - v) = 8) = [ F164 = ~(0e(@, 80) = ~(o(®), 0).
T

Also,
J(0n) — (A" (e(@R)V, Br) < j{:ﬂw + 0O + j(on(ah)ﬁh,n)+.
Ts Ts

Together, the terms

J(0 -+ O — vR) + j(vR) — 2i(D) — (A" (@)Y, (@ - up)lag)ag

= j(0) +j(On) — (A" (e(@)V, On)ag — (A" @)V, (@ — up)lag + O — On - D)ag

are hence dominated by
(o(@), D) + j{fﬂﬁh,A + 0u() el + j(on(ah)ﬁh,n)+ (A @)V, (i~ un)log + O — O — B)ag

Ts Ts

- j{'ﬂah,A + 0u(ln)On ) + j(on<ah>ﬁh,n>+ (A @)V, (@ - up)lag + O — Bn)ag + (0(1) — o(in), 0).
T Ts

We split the o-term into tangential and normal parts
(a(it) — o(itp), 0) = (on(@t) — on(lip), Un) + (0¢(@t) — 0¢(lin), O¢).
Using the contact conditions (g, (i), 0,) = 0 and v, < 0, we estimate the normal part as follows (' = rTrl):

(on(i1) = n(Up), On) < —(0on(lln), Un) < —(0n(ln)+, On) < ||Un(ah)+||W-1+%W'(rs)||ﬁn||W1*%vr(rs)-

For the tangential contribution, involving the Tresca friction, we find it convenient to write g;(i1) = —{F with
|¢] <1and |v¢| = {v¢. Then
(0¢(@) = ¢ (in), Oe) = =({F, O¢) = (0¢(Un), U¢) = —(F, [0¢]) — (T¢(tn), Ur)
< ((oe(@n)l = )+, 10:)) < Moe(@n)l = Fsllw-1+1 @ N0ellyin-trr,)

< loe(@n)l = Hellw-rtr @plOcllin-trr,)-
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We conclude
le(@ - @n)llfyq) + 1@ = @)oo + 0 = Onllfy12i90

L ! . N ! 1/p
<l - @nllwiro)( Y. REIf + divA @l )
TcQ

R R R ! 1/p
+ 1= nlwiroy( Y. hellA' €@V, ;)
EcQ

!

!

N j{fﬂah,A + Ou() D) + j(on(ah)oh,n)+
Ty Ts

!
+ llto + Sn(uo — @nlag + 0n) = A" (€@VITy1-11 (50,
+ lon (@) llpt. ) + 1@ = Pallypsebr )

+ {(Sn — S)(Unlag + On — up), (U — n)log + U — Op).

The assertion of Theorem 4 follows.

6 A Posteriori Analysis II

Note that the final term in the a posteriori estimate in Theorem 4 is not computable, and practical computations
will directly formulate the operator S in terms of the layer potentials V, W, K, X' (or equivalently, the Calderén
projector). The main result of this section is an a posteriori error estimate, which contains only computable
terms on the right-hand side. This is achieved by expressing the bilinear form directly in terms of the layer
potentials, rather than S, and deducing coercivity of the bilinear form from the coercivity properties of V and W.
We consider the space
Y? = XP x W 24(9Q)",

equipped with the norm

lu, v, Pllyr = lullwiee) + 1VIw-p oy + 1Ulog + Viwizoe) + 19llw-120)-

From Lemma 1, we conclude that (Y?, | - [ly») is @ Banach space and
lu, v, dlyr = ullwree) + lluloe + Vw2 + 1Pllw-1209)
an equivalent norm on Y?. We consider the discretization in finite-dimensional subspaces
_1 n
Y = X} x W, 2%(9Q)
of Y?. The following theorem will be obtained.

Theorem 5. Let r = min{p, 2} and q = max{p, 2}. Let (ii, 0, ¢) € Y be the solution to the variational inequality
(6.2) and (i, On, ¢n) € KN Y}’lJ the solution of its discretization. Then, with F(a) = |A' (a)|"/?|a|~"/2a, the following
a posteriori estimate holds:

>6I'/P’

I~ i, 0~ 0n, ¢~ Guly < (Y HEIF+ divA’(e(ah»ni;,(T) + Y ReNFE@R)I,

TcQ EcQ
+ lito = W(@nlag + On = o) = (X' = D — A" (€@)IVI§y-1. 50,

+1Vn + (1= K)(@nlog + On = U0}y 120,

" J{fﬂﬁh,d + ou(ln)Ond) + j(an<ah>oh,n>+
Ts Ts

+ @)+ lw-1+1r" @) + (T @R) = Fsllw-1+1 )
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The proof of Theorem 5relies on a coercivity estimate, which we now establish. We use a theoretical stabilization
asin [12]:let rq, ..., rp be a basis of the space of rigid body motions, and consider their orthogonal projections
&, ..., &ponto L%(8Q). The arguments in [12, Lemma 4 and Proposition 5] show that |u, v, ¢|y» is equivalent to
the norm

D
|, v, §l5s s = €@, q) + (W(Ulag + V), Ulag + V) + ($, V) + Y (&, (1 = K)(ulog + V) + VO[> (61)
j=1
On Y?, we have the following equivalent formulation of the contact problem (1.1): find
@, 0,4) € K' = (KN XP) x W 22(9Q)"
such that, for all (u, v, ¢) € K',
(A'(e(@)), eW)) + (W(illag + 0) + (K" - 1)9, ulag) = jfu + (to + Wuo, u),

Q
(W(ilag + 0) + (X' = 1), v - B) +j(v) - j(D) = (to + Wug, v - D),

(6,V9 + (1 - K)(illag + ) = (¢, (1 - K)uo).

The latter can be written as

B, 0, g;u— 1, v -0, ¢ — @) +j(v) - j(0) = Au -, v -0, — @) (6.2)
for all (u, v, ¢) € K', with

B(u,v, ¢; 1,0, 9) = (A’ (e(w)), &(@)) + (W(ulag + V) + (X' - 1)@, iilag + 0) + (@, V¢ + (1 — K)(ulog + L)),
A, v, 9) = (t0 + Waa,ulag + ) + [ fu+ (9, (1 - Koua).
Q
The discretized problem is obtained by restricting to Y,’:, and we denote its solution by (iix, Ox, ¢). We also
consider a stabilized problem that, for all (up, vy, ¢r) € K' n Yﬁ ,
B(ils,n, Os n, s, Un — Us py U — Os hy n — Ps p) + j(0n) = j(Ds,n) = Aup — tis p, Un = Os.n, S — Bs,1),

where

D
B(u, v, ¢; 11,0, 9) = B, v, ¢; 4, 0, §) + Y (&, Vo + (1 - K)(ulag + 0)) (&, VP + (1 - K)({loq + 1)),

r
D ]

A(u, v, ) = Au, v, ) + Y (&, (1 - K)uo) (&, Vo + (1 - K)(ulag + V),
j=1

respectively. Because the variational inequality (6.2) is an equality in ¢, as in [12, Proposition 3], the solution
to the stabilized and nonstabilized problems coincide, (iip, Op, (i)h) = (Us,n, Us,h, (f)s,h). However, the stabilized
variational inequality is coercive in the stabilized norm (6.1),

le(@ — an) iy gy + (W@~ @n)lag + O — On), (@ — @n)lag + O — On)

D
+ (V@ - Gn), &= dn) + Y 1(&j, (1 = K)((@L - @n)lag + 0 — On) + V(P — fn)) I

j=1
< (A'(e() - A" (e(in)), e(@ - 1ip))
+ (W((@ — Gip)lag + 0 — 0p) + (K" = 1)(@ - ¢n), (@ — Un)lag + 0 — Op)
+{(1 = JO)((iL - Un)lag + 0 — On) + V(D — dn), & — dn)
D
+ Y 1, (1= K)((@ - tp)lag + 0 — 0n) + V(P - dn))I*.
j=1

The key estimate for B is given by the following lemma.
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Lemma 3. Forall (i1, 0, d}), (U,v,¢) € YP = XP x W‘%’Z(OQ)2 such that ||le(@) |y (@), le(Wlrr @) < C, we have
le(it = w12 q) + 1= Wlag + 0 = VIZ1 200, + 10~ O3 3200,
<c B(@,0,¢;0—u,0-v,n) - B(u,v,¢;i-u,0-v,n),
where2n = ¢ — ¢ + V1(1 - K)((@l - u)lag + U - V).
Proof. This follows from the identity
B(a,l‘),gﬁ;a—u,ﬁ—v,n)—B(u,v,q&;a—u,ﬁ—v,q)
= (A'(e(@) - A'(e(w)), e(@) - e(w)) + %(W((ﬂ —Wlag + 0 =), (@l - Wlg + 0 - V)
+ (S~ Wlao + D~ V), (2~ Wlao + 0~ 0) + 2 (VP - 6),6 - 9).
Also, R
Inllw-1200) < o — dllw-12a0) + (T — Wlag + U — Vllwi2ag)- O

Combining the above results with the estimates from Section 5, we now prove the a posteriori error estimate
stated at the beginning of this section.

Proof of Theorem 5. We use the estimate from Lemma 3 with (u, v, @) = (ip, Op, ¢3h),
I~ dn, 0= On, ¢ = Py < le(@ - nlgpq) + 1@ = n)log + 0 = Onlifyy2ia0) + 19 = Pullly 1250,
<c B(@i, 0, §; it - tin, 0 — On, 1) = B(dAn, On, Gn; & — dn, 0 = On, 1),
where 21 = ¢ — ¢p + V11 — K)((@t - @ip)|sq + O — Op). Using first the variational inequality (6.2) and then its
discretization to estimate the right-hand side, we obtain
|t — i, © - On, @ — Prllfp < A~ dn, O = On, 0) +j(On) - j(0)
— B(iln, On, §n; @ — tp, 0 — Op, )
< A(e—en, €—én,n—nn)+j(0On+€n) —j(0)
— B(iin, On, Pn; € — en, & — &, 1 — Nn)
for all (ep, €x, nn) € Y,’:. Here we have set e = il — liy and € = U — Op,. The definitions of B and A imply
I~ din, O - On, § - Pl
< | fre = en + (to + Wuo, (e - enllon + &~ &) + <1 = . (1 - X))
Q . . . .
+ [ Flonc+ and - [ Fone+ 2

Ts Ts
—(A(e(lin)), e(e — en)) — (W(Tnlag + On) + (K" = 1)n, (e — en)lag + & — én)

{0 = Nn, Von + (1 = K)(@nlag + On))-

Now one may proceed as in the proof of Theorem 4 to obtain the a posteriori error estimate in Theorem 5. [
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