
Citation: Feizi, M.; Raoofian Naeeni,

M.; Flury, J. Antarctic Time-Variable

Regional Gravity Field Model

Derived from Satellite Line-of-Sight

Gravity Differences and Spherical

Cap Harmonic Analysis. Remote Sens.

2023, 15, 2815. https://doi.org/

10.3390/rs15112815

Academic Editor: Giuseppe Casula

Received: 5 April 2023

Revised: 20 May 2023

Accepted: 24 May 2023

Published: 29 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Antarctic Time-Variable Regional Gravity Field Model Derived
from Satellite Line-of-Sight Gravity Differences and Spherical
Cap Harmonic Analysis
Mohsen Feizi 1,2,*, Mehdi Raoofian Naeeni 1,3 and Jakob Flury 2

1 Faculty of Geodesy and Geomatics Engineering, Department of Geodesy, K. N. Toosi University of
Technology, Tehran 19967-15433, Iran

2 Institut für Erdmessung, Leibniz Universität Hannover, 30167 Hannover, Germany
3 School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
* Correspondence: mohsen.feizi@stud.uni-hannover.de or mfeizi@mail.kntu.ac.ir

Abstract: This study focuses on the development of a time-variable regional geo-potential model for
Antarctica using the spherical cap harmonic analysis (SCHA) basis functions. The model is derived
from line-of-sight gravity difference (LGD) measurements obtained from the GRACE-Follow-On
(GFO) mission. The solution of a Laplace equation for the boundary values over a spherical cap is
used to expand the geo-potential coefficients in terms of Legendre functions with a real degree and
integer order suitable for regional modelling, which is used to constrain the geo-potential coefficients
using LGD measurements. To validate the performance of the SCHA, it is first utilized with LGD
data derived from a L2 JPL (Level 2 product of the Jet Propulsion Laboratory). The obtained LGD
data are used to compute the local geo-potential model up to Kmax = 20, corresponding to the SH
degree and order up to 60. The comparison of the radial gravity on the Earth’s surface map across
Antarctica with the corresponding radial gravity components of the L2 JPL is carried out using local
geo-potential coefficients. The results of this comparison provide evidence that these basis functions
for Kmax = 20 are valid across the entirety of Antarctica. Subsequently, the analysis proceeds using
LGD data obtained from the Level 1B product of GFO by transforming these LGD data into the SCHA
coordinate system and applying them to constrain the SCHA harmonic coefficients up to Kmax = 20.
In this case, several independent LGD profiles along the trajectories of the satellites are devised to
verify the accuracy of the local model. These LGD profiles are not employed in the inverse problem of
determining harmonic coefficients. The results indicate that using regional harmonic basis functions,
specifically spherical cap harmonic analysis (SCHA) functions, leads to a close estimation of LGD
compared to the L2 JPL. The regional harmonic basis function exhibits a root mean square error
(RMSE) of 3.71 × 10−4 mGal. This represents a substantial improvement over the RMSE of the L2 JPL,
which is 6.36 × 10−4 mGal. Thus, it can be concluded that the use of local geo-potential coefficients
obtained from SCHA is a reliable method for extracting nearly the full gravitational signal within a
spherical cap region, after validation of this method. The SCHA model provides significant realistic
information as it addresses the mass gain and loss across various regions in Antarctica.

Keywords: LGD; SCHA; time-variable gravity model; GFO; L2 JPL

1. Introduction

Monthly mean time-variable gravity model or mascon solutions are difficult to use
to fully exploit the gravitational signal, particularly in higher frequency domains. These
higher frequency domains could be used to investigate geophysical processes with much
shorter timescales, such as tsunamis [1]. Therefore, the gravity signal content in satellite
observations has not yet been fully exploited in all frequency domains. One of the primary
causes of information loss is the use of a global basis function, the spherical harmonics
(SH), to describe gravity fields derived from satellite data; due to the inability to completely
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exploit the gravitational signal, especially in higher frequency domains, Earth time-variable
gravity field modelling with SH is not effective in regional applications [1]. Furthermore,
Earth scientists frequently study and interpret phenomena based on the specific regional
extent. As a result, one of the primary concerns among them has always been achieving
a time-variable geo-potential model in a specific temporal and spatial domain to better
interpret and analyze geophysical phenomena.

The accurate estimation of Earth gravity variation in a specific temporal and spatial
domain is essential for Earth scientists to better interpret and analyze geophysical phenom-
ena, especially for processes such as glacial isostatic adjustment, hydrological processes,
and the dynamics of the Earth’s crust and mantle. Therefore, while the use of spherical
harmonics to model gravity fields derived from satellite data has been successful in many
applications, alternative techniques are necessary for regional applications to better capture
the local details of the gravity field and achieve a more accurate representation of mass
variations in specific domains.

It is impressive to see how satellite gravity systems have been utilized in recent years
to estimate regional gravitational field models. The research can be categorized based on
the type of satellite gravity systems used, including GRACE, Champ, and GOCE.

• GRACE (Gravity Recovery and Climate Experiment) was a joint mission between
NASA and the German Aerospace Center. It consisted of two satellites in a polar orbit
that provided highly accurate measurements of the Earth’s gravity field. Research
such as [2–6] used GRACE data to estimate regional gravitational field models.

• Champ (Challenging Minisatellite Payload) was a German satellite that operated
between 2000 and 2010. It also provided highly accurate gravity measurements and
has been utilized by research such as [7] to estimate regional gravitational field models.

• GOCE (Gravity field and steady-state Ocean Circulation Explorer) was a European
Space Agency mission that operated from 2009 to 2013. It was designed specifically
for gravity measurements and provided highly accurate data. Research such as [8–11]
used GOCE data to estimate regional gravitational field models.

It is also noteworthy to mention Eicker (2008), who worked on all satellite gravity data
for regional satellite gravity modelling [1].

On 22 May 2018, the Gravity Recovery and Climate Experiment Follow-On (GFO)
mission was launched. It is equipped with the laser ranging interferometer (LRI) as a
technology demonstration for future gravity mapping missions. Like the microwave
instrument (MWI), the LRI is utilized to measure fluctuations in the separation between
the spacecraft. However, the LRI has the potential to significantly enhance the precision
of range fluctuation measurements by a factor of at least 10. The resultant improvement
in precision is expected to enable the detection of smaller-scale gravitational differences
that were previously beyond the capabilities of existing technologies. Consequently, since
2018, there has been increased attention from the scientific community on the GFO mission
as a valuable source of satellite observations [12]. Moreover, inter-satellite range residuals
represent instantaneous gravitational changes produced by mass change occurring at or
beneath the Earth’s surface. The along-orbit analysis is particularly ideal for investigating
high-frequency mass variations [13]. In this respect, [13] developed a transfer function
based on correlation-admittance spectral analysis of range acceleration. The LRI1B data
provide the range acceleration, which is the second time derivative between the GFO
spacecraft. The resulting transfer function is applied directly to determine the LGD time
series. This allows accurate LGD determination with an error of 0.15 × 10−4 mGal [14].
Ref. [12] presented a novel method of using GRACE data to discover geophysical mass
changes in terms of LGD that are not directly detectable by monthly Level 2 or mascon
solutions. [13] calculated instantaneous LGD using low latency (1–3 days) to demonstrate
the possibility of identifying water storage change as fast as feasible with only a few days
of la. [14] demonstrated the sensitivity of LGD LRI observations to detect high-frequency
oceanic mass variability in the Argentine Basin and the Gulf of Carpentaria as well as
sub-monthly variations in surface (river) water in the Amazon Basin [14].
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As a case study, Antarctica is an essential region for time-variable local gravity field
analysis due to the harsh conditions throughout most of Antarctica and also due to its
suffering in terrestrial gravity data from significant gaps in coverage. It is worth mentioning
that there is some research to provide an accurate local time-variable geo-potential model
over Antarctica. To this end, [15] provided a regional geoid for East Antarctica’s Dronning
Maud Land, and [16] presented a time-variable gravity model in East Antarctica using
least-squares collocation (LSC). Ref. [17] focused on regional geoid improvement based
on heterogeneous gravity data over Antarctica, and [18] used aerial gravity to estimate
the geoid model for the area surrounding Lake Vostok, Antarctica. Ref. [19] utilized
ground-based data and supplemented existing high-resolution global gravity field models
to provide high-resolution regional gravity field model over Antarctica, and [20] introduced
a new degree-2190 global gravity model (GGM) that enhanced the spatial resolution of the
gravity field over the entire continental Antarctica to a 10 km spatial scale for the first time.

In this study, for the calculation of the time-variable local geo-potential model, we
defined Antarctica as a critical case study and used LGD data from the GFO mission
obtained by the method of [13], due to the enhanced precision of the ranging measurement
system and an accurate LGD determination technique. To do so, we used the solution of
the Laplace equation for the boundary values over a spherical cap, including the expansion
in terms of Legendre functions with real degree and integer order appropriate for regional
modelling. We further developed the solution to include the expansion formula for LGD
and used it to constrain the geo-potential coefficients using LGD measurements. We first
utilized the LGD data derived from the monthly GFO Level 2 JPL model referenced to the
GGM05C model. We utilized these LGD data to compute the local geo-potential model
to validate SCHA’s performance in modelling regional gravity fields over Antarctica. To
do so, we carried out the comparison of the radial gravity on the Earth’s surface across
Antarctica with the corresponding radial gravity components of the L2 JPL of GFO using
local geo-potential coefficients. Subsequently, we proceeded with the analysis using LGD
data obtained from GFO Level 1b products, by properly transforming them into a SCHA
coordinate system and applying them to constrain SCHA harmonic coefficients up to
degree 20. In this case, we devised several independent LGD profiles across the trajectories
of the satellites as checkpoints to verify the precision of the local model. The checkpoints
data were not employed in the inverse problem of determining harmonic coefficients.
In the final stage of this investigation, we analyzed the performance of the SCHA local
geo-potential model for representing the time-variable gravity field with higher spatial
and spectral resolution. We calculated the geo-potential coefficients for different degrees of
harmonics over Antarctica using LGD data obtained from Level 1B GRACE product data.
Specifically, we conducted an evaluation of the radial components of local gravity models.
We employed a spherical cap harmonic basis function and tested different values of Kmax,
specifically 20, 30, 40, and 50. The evaluation was performed on a grid coordinate system
with the Earth’s surface radial coordinate over Antarctica, with a capsize = 30◦. This analysis
provided insights into the effectiveness of the SCHA model in capturing the complexity of
the time-variable gravity field with higher accuracy.

2. Spherical Cap Harmonics Analysis

The Earth’s gravity field is not uniform, and it varies in space and time due to differ-
ences in the distribution of mass within and on the surface of the Earth. Therefore, scientists,
to increase their knowledge about the Earth’s gravity field and mass variation, applied
some mathematical techniques. Spherical cap harmonic analysis (SCHA) is a mathematical
technique widely used to precisely estimate the Earth’s magnetic field [21–36]. Therefore,
the solution of the Laplace equation for the boundary value problem over the spherical cap
can be expressed as follows [37]:

V(r, θ, λ) =
∞

∑
m=0

∞

∑
k=m

R(
R
r
)nk(m)+1×{amkcos(mλ) + bmksin(mλ)} × Pm

nk(m)(cosθ) (1)
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in which Pm
nk(m)

(cosθ) is the Legendre function of real degree and integer order, amk and
bmk are SCH coefficients, and nk(m) is the degree of spherical cap harmonic. Moreover, the
spherical cap coordinate system is the usual spherical or polar coordinate system, except
that the colatitude must be less than the half-angle of the spherical cap (θ0). (See Figure 1.)

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 19 
 

 

2. Spherical Cap Harmonics Analysis 
The Earth’s gravity field is not uniform, and it varies in space and time due to differ-

ences in the distribution of mass within and on the surface of the Earth. Therefore, scien-
tists, to increase their knowledge about the Earth’s gravity field and mass variation, ap-
plied some mathematical techniques. Spherical cap harmonic analysis (SCHA) is a math-
ematical technique widely used to precisely estimate the Earth’s magnetic field [21–36]. 
Therefore, the solution of the Laplace equation for the boundary value problem over the 
spherical cap can be expressed as follows [37]: 

𝑉(𝑟, 𝜃, 𝜆) = 𝑅(𝑅𝑟) ( ) × {𝑎 cos(𝑚𝜆) + 𝑏 sin(𝑚𝜆)} × 𝑃 ( )(cos𝜃) (1)

in which 𝑃 ( )(cos𝜃) is the Legendre function of real degree and integer order, 𝑎  and 𝑏  are SCH coefficients, and 𝑛 (𝑚) is the degree of spherical cap harmonic. Moreover, 
the spherical cap coordinate system is the usual spherical or polar coordinate system, except 
that the colatitude must be less than the half-angle of the spherical cap (𝜃 ). (See Figure 1.) 

 
Figure 1. Spherical cap coordinate system [38]. 

In the basis functions proposed by [37], the solution of the Laplace equation should 
be applied to the spherical cap’s boundary conditions. The first boundary condition (as 
Equations (2) and (3)) is assured of the periodicity and the continuity of the potential in 
the longitude component along the polar spherical caps [37]. 𝑉 (𝑟, 𝜃, 𝜆) = 𝑉 (𝑟, 𝜃, 𝜆 + 2𝜋) (2)

𝜕𝑉 (𝑟, 𝜃, 𝜆)𝜕𝜆 = 𝜕𝑉 (𝑟, 𝜃, 𝜆 + 2𝜋)𝜕𝜆  (3)

The second boundary condition, the regularity at the cap’s pole θ = 0, is satisfied by 
using associated Legendre functions of the first kind and excluding those of the second 
kind [37]. 𝜕𝑉 (𝑟, 0, 𝜆)𝜕𝜃 = 0 (4)

𝑉 (𝑟, 0, 𝜆) = 0 (5)

Figure 1. Spherical cap coordinate system [38].

In the basis functions proposed by [37], the solution of the Laplace equation should
be applied to the spherical cap’s boundary conditions. The first boundary condition (as
Equations (2) and (3)) is assured of the periodicity and the continuity of the potential in the
longitude component along the polar spherical caps [37].

Vm
n (r, θ, λ) = Vm

n (r, θ, λ + 2π) (2)

∂Vm
n (r, θ, λ)

∂λ
=

∂Vm
n (r, θ, λ + 2π)

∂λ
(3)

The second boundary condition, the regularity at the cap’s pole θ = 0, is satisfied by
using associated Legendre functions of the first kind and excluding those of the second
kind [37].

∂Vm
n (r, 0, λ)

∂θ
= 0 (4)

Vm
n (r, 0, λ) = 0 (5)

To obtain a unique solution, a proper boundary condition should be imposed at the
edge of the spherical cap, namely at θ = θ0 [37]:

V(r, θ0, λ) = f (r, λ) (6)

∂V(r, θ0, λ)

∂θ
= g(r, λ) (7)

where f (r, λ) and g(r, λ) are arbitrary functions. Therefore, both V(r, θ0, λ) and its deriva-
tive ( ∂V(r,θ0,λ)

∂θ ) must be arbitrary at θ = θ0. In [37], it is shown that this boundary condition
is met by choosing nk(m) such that [37]:

∂Pm
nk(m)

(cosθ)

∂θ

∣∣∣∣∣
θ0

= 0, f or : k−m = even (8)
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Pm
nk(m)(cosθ0) = 0, f or : k−m = odd (9)

After [37] the degree notation nk(m) instead of n is used to indicate that the degrees
are calculated for a specific order (m) and index (k).

Similar to the global spherical harmonic expansion, the wavelength (Λ) of the SCHA
technique can be approximately computed with the index k as follows [39].

Λ ≈ 4θ0/k (10)

The series-like Equation (1) is usually truncated at Kmax, which defines the spatial
resolution (half of the minimum wavelength) of the geo-potential field model as [39]:

Λmin/2 ≈ 2θ0/Kmax (11)

3. Line-of-Sight Gravity Difference (LGD)

The inter-satellite range and its variation can measure the magnitude of gravity differ-
ence between two satellites (A and B) projected along the line of sight (LOS). The following
is a definition of the LGD [40], (see Figure 2).
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According to Figure 2, the acceleration value along the line of sight between the two
satellites can be displayed as follows:

gLOS
AB =

..
ρ− 1

ρ

(∣∣ .
rAB
∣∣ − .

ρ
2
)

(12)

where ρ,
.
ρ, and

..
ρ are the range, the range-rate, and the range acceleration obtained from the

LRI system, respectively. Additionally,
.
rAB is the difference between the velocity vectors

of the two satellites. LGD also can be defined in terms of gravity difference between two
satellites as follows [4,14]:

gLOS
AB = (gECEF

B − gECEF
A ) · eAB (13)

where gECEF
B , gECEF

A are the gravity vector in the Earth-Centered Earth-Fixed (ECEF) co-
ordinate system derived from the GRACE D and GRACE C satellites, inner product is
denoted by “.”, and eAB is the LOS unit vector given in the ECEF coordinate system by
eAB = (rB − rA)/|rB − rA| with rA and rB denoting the ECEF position vectors of GFO
satellites. The gravity vector, g, in the spherical cap coordinate system is presented by the
following equation [14,37,41]:
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→
g =

 gθ

gλ

gr

 =


∂V(r,θ,λ)

r∂θ
∂V(r,θ,λ)
rsinθ∂λ

∂V(r,θ,λ)
∂r

 = GM
R2 ×

Kmax
∑

k=0

k
∑

m=0
( R

r )
nk+2{akmcos(mλ) + bkmsin(mλ)} ×

∂Pnk(m)(cosθ)

∂θ

1
sinθ

Kmax
∑

k=0

k
∑

m=0
m( R

r )
nk+2{bkmcos(mλ)− akmsin(mλ)}×Pnk(m)(cosθ)

Kmax
∑

k=0

k
∑

m=0
−(nk + 1)( R

r )
nk+2{akmcos(mλ) + bkmsin(mλ)} × Pnk(m)(cosθ)



(14)

where gθ , gλ, and gr are the components of gravity vector in the SCHA coordinate system.
The base vector (eθ, eλ, er) in the SCHA system is related to the base vector in the ECEF
coordinate system (ex, ey, ez) using the following relation [41].

er = sinθcosλex + sinθsinλey + cosθez
eθ = −cosθcosλex − cosθsinλey + sinθez
eλ = sinλex − cosλey

(15)

Figure 3 shows the relation between the base vector (eθ, eλ, er) and (ex, ey, ez).
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Figure 3. Relation between the base vector in the SCHA coordinate system and the base vector in
the spherical coordinate [41]. P0(ΦP0 , ΛP0 ) is the position of the new pole in a geocentric coordinate
system, and Q is a position of an arbitrary point which is defined in the spherical cap coordinate
system parameters Q(θ, λ).

Equation (15) can be used to obtain the unit inter-satellite LOS vector, bSCHA in the
spherical cap coordinate system, as below.

bSCHA = bθeθ + bλeλ + brer (16)

in which bθ, bλ, and br are the components of bSCHA in the SCHA coordinate system. Con-
sidering Equations (14)–(16) and the LOS gravitational differential operator, the following
equation is established [42].

δgLOS
12 = δ[∇V] · bSCHA = δ[gθbθ + gλbλ + grbr] (17)
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where δ denotes the difference between the same function at two distinct locations (θ1, λ1, r1)
and (θ2, λ2, r2). Equation (17) describes a linear relationship between the LGD data and the
unknown parameters (SCHA coefficients) as follows:

l + v = Ax (18)

where l is the vector of observations, x the vector of the unknown parameters, A is the
design matrix, and v is the vector of random errors of observations.

Equation (18) can be solved by the conventional least-square inversion. Since the local
gravity field modelling is often an ill-posed problem characterized by the instability of
the normal equation matrix, some regularization methods should be used to tackle the
ill-conditioning nature of the normal equations [42]. In this case the solution is sought in
such a way that the following objective function is minimized.

Φ(x) = ‖Ax− l‖+ α2‖x‖ (19)

The core idea of all regularization methods is based on the compromise between the
norm of the solution ‖x‖, and the norm of the corresponding residual, ‖Ax− l‖, using the
optimum regularization parameter. In Equation (19), α is a regularization parameter.

There are numerous methods for determining the regularization parameter. In these
approaches, the regularization term can be obtained as a trade-off between the model’s
complexity (the norm of the solution) and the fit to the training data (the norm of the
residual). The balance between these two norms, however, is not the only significant
idea of regularization. One way of choosing the regularization parameter is the L-curve
method. If xα is the solution of the Tikhonov problem, Equation (19), then the curve
(‖Ax− l‖;‖x‖) typically has a rough “L” shape, see Figure 4. Heuristically, the value for the
regularization parameter corresponding to the corner of this “L” has been proposed as a
good regularization parameter because it balances model fidelity (minimizing the residual)
and regularizing the solution (minimizing the regularization term).

Another way of choosing the regularization parameter is Morozov’s discrepancy
principle [15]. Here, the regularization parameter is chosen as in Equation (20).

‖Axα − l‖ = ηε (20)

where ‖e‖ = ε is the size of the error and a tolerance value. The idea behind this choice is
that finding a solution 1 ≤ η with a lower residual can only lead to overfitting. Similar to the
L-curve, we can look at the curve (α;‖Axα − l‖), which we will refer to as the discrepancy
curve or D-curve, see Figure 4 [43,44].

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 4. Sketch of the L-curve method (left) and Morozov’s method (right) [44]. 

In this study, based on the study by [41], we chose the L-curve method as the regu-
larization parameter determination method in the inverse problem in the gravity field. 
Therefore, considering Equation (19), and minimizing it in a least-square manner, one 
may find, 𝐱(𝛼) = (𝐀 𝐀 + 𝛼 𝐈) 𝐀 𝐥 (21)

𝐯(𝛼) = 𝐥 − 𝐀 𝐱 = 𝐥 − (𝐀 𝐀 + 𝛼 𝐈) 𝐀 𝐥 (22)

Thus, both 𝐱(𝛼) and 𝐯(𝛼) are functions of the regularization parameter (𝛼). The L-
curve is a parametric curve (𝐿𝑜𝑔‖𝐱(𝛼)‖ , 𝐿𝑜𝑔‖𝐯(𝛼)‖), which is parameterized by the reg-
ularization parameter. Furthermore, the optimum value of  (𝛼) is a point at which the 
curvature of the L-curve is at maximum [44]. 

4. Numerical Analysis 
4.1. The Study Area 

In this part, the gravity field modelling over Antarctica is discussed as a case study. 
The study area is located between 90S-60S latitude (degrees) and 180E-180W longitude 
(degrees). The local coordinate system used in this study is the spherical cap coordinate 
system, which has a capsize = 30 degrees and a center placed at 90S and 0E of latitude and 
longitude, respectively. The chosen spherical cap completely encircles the whole of Ant-
arctica (see Figure 5). 

Figure 4. Sketch of the L-curve method (left) and Morozov’s method (right) [44].

In this study, based on the study by [41], we chose the L-curve method as the reg-
ularization parameter determination method in the inverse problem in the gravity field.
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Therefore, considering Equation (19), and minimizing it in a least-square manner, one
may find,

x̂(α) = (ATA + α2I)−1ATl (21)

v̂(α) = l−ATx̂ = l− (ATA + α2I)−1ATl (22)

Thus, both x̂(α) and v̂(α) are functions of the regularization parameter (α). The
L-curve is a parametric curve (Log‖x̂(α)‖, Log‖v̂(α)‖), which is parameterized by the
regularization parameter. Furthermore, the optimum value of (α) is a point at which the
curvature of the L-curve is at maximum [44].

4. Numerical Analysis
4.1. The Study Area

In this part, the gravity field modelling over Antarctica is discussed as a case study.
The study area is located between 90S-60S latitude (degrees) and 180E-180W longitude
(degrees). The local coordinate system used in this study is the spherical cap coordinate
system, which has a capsize = 30 degrees and a center placed at 90S and 0E of latitude
and longitude, respectively. The chosen spherical cap completely encircles the whole of
Antarctica (see Figure 5).
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For a spherical cap located at an arbitrary region of the Earth’s surface, like this study,
which is located between 90S 60S latitude (degrees) and 180E 180W longitude (degrees),
the new coordinate system should be defined by the position of the new pole (center of
the region) the prime meridian which simultaneously passes through the North Pole, new
pole, and the South Pole as [13]:

cos(θ) = sin(ΦP0)sin(ΦQ) + cos(ΦP0)cos(ΦQ)cos(ΛQ −ΛP0) (23)

tan(λ) =
cos(ΦQ)sin(ΛQ −ΛP0)

sin(ΛP0)sin(ΦQ)− sin(ΦP0)cos(ΦQ)cos(ΛQ −ΛP0)
(24)

In Equations (23) and (24), (ΦP0 = −90, ΛP0 = 0) are the latitude and longitude of the
new pole in a geocentric coordinate system, and (ΦQ, ΛQ) are the latitude and longitude
of arbitrary points in a geocentric coordinate system, which we decide to convert into
spherical cap coordinate system parameters (θ, λ).
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4.2. Antarctic Time-Variable Regional Gravity Field Model

This study presents the construction and validation of an Antarctic time-variable
regional gravity field model based on spherical cap harmonic analysis (SCHA) and using
LGD data. In this study, we utilized three scenarios to assess the performance of the
regional basis function (SCHA), which represented the gravity field data from the GFO
satellite mission.

• In the first scenario, we first use the LGD data obtained from L2 JPL, and then we apply
the SCHA basis function with capsize = 30◦ and Kmax = 20. It corresponds to degree 60
in spherical harmonic and captures the majority of the time-variable gravity signal
acquired during the GFO mission. This study discovers that by utilizing regional
geo-potential coefficients, the radial component of the Earth’s gravitational field on
the surface can be precisely determined, supporting the reliability of the regional
harmonic basis functions in the study region.

• In the second scenario, after validation in the first scenario, the SCHA model is used
to generate a local geo-potential model using LGD data from GFO Level 1B product
to demonstrate the effectiveness of the regional harmonic basis function (SCHA) in
providing more information about the gravity field of Antarctica, particularly in time-
variable gravity fields. Moreover, we analyze the time-variable local geo-potential
model using various degrees of harmonics. We calculate geo-potential coefficients of
SCHA for different degrees of harmonics over Antarctica using LGD data to evaluate
the performance of each degree in estimating the time-variable gravity field.

Diagrams of both scenarios are provided in Figure 6 to aid comprehension of this
paper’s methodology.
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4.2.1. First Scenario: Antarctic Time-Variable Regional Gravity Field Model Using LGD
Data Obtained from the L2 JPL

In the first scenario, we first use the LGD data obtained from the L2 JPL as input data in
the inverse problem. L2 JPL with a spatial resolution of 300–500 km is commonly employed
to monitor and investigate mass changes inside and outside the Earth [45]. Therefore, we
first compute LGD data by the L2 JPL in January 2019 for degrees and orders ranging from
2 to 60. The time series of LGD data is referenced to the GGM05C model. We then use these
data to calculate regional harmonic coefficients over the entire region of Antarctica using
the SCHA basis function with capsize = 30◦ and Kmax = 20.

For further analysis, we produce radial gravity components on the Earth’s surface
using our regional harmonic coefficients based on the third relationship in Equation (14).
To represent the performance of the local gravity model, we compared the LGD data and
the radial gravity map generated by the SCHA model with the LGD data and the radial
gravity map generated by the L2 JPL model. The results of these comparisons are shown in
Figure 7.
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To assess the precision of the SCHA model, we use some control profiles. These
control profiles consist of LGD data on the trajectory of the GFO satellites over Antarctica.
Moreover, these control profiles are not used in the inverse problem and are solely intended
as control profiles (see Figure 8).
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The differences between the LGD values obtained from the SCHA model and the L2
JPL are evaluated using the RMSE and mean values, which are calculated along the control
profile using Equations (25) and (26).

RMSE =

√
∑N

i=1
(

LGDSCHA − LGDObs
)2

N
(25)

Mean =
∑N

i=1

∣∣∣LGDSCHA − LGDObs
∣∣∣

N
(26)

where N represents the number of observations, LGDSCHA represents the LGD data ob-
tained from the SCHA coefficients along the control profile, and LGDObs represents the
LGD data obtained from the L2 JPL along the control profile.

The RMSE and the mean value of the difference between the radial component ob-
tained from the SCHA model and the radial component from the GFO Level 2 model on
the Earth’s surface are computed using (27) and (28).

RMSE o f gr =

√
∑N

i=1
(

gSCHA
r − gObs

r
)2

N
(27)

Mean o f gr =
∑N

i=1

∣∣∣(gSCHA
r − gObs

r

)∣∣∣
N

(28)

Finally, the numerical results of this scenario are presented in the following table.
Based on our analysis, the results of the first scenario show that regional harmonic

basis functions can precisely estimate the radial component of the Earth’s gravity field on
the Earth’s surface. The comparison of the SCHA model with the L2 JPL using the RMSE
and mean parameter demonstrated the effectiveness of the SCHA method in accurately
modelling time-variable gravity fields over Antarctica. These findings provide evidence
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for the reliability of the regional harmonic basis functions in the study area, as shown in
Table 1 and the right panel of Figure 9.

Table 1. RMSE and the mean value (mGal) of differences of LGD and the radial component between
SCHA model and GFO Level 2.

RMSE Mean Kmax

LGD 1.5735 × 10−6 8.0426 × 10−7
20Radial component 4.0089 × 10−4 2.0707 × 10−4
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4.2.2. Second Scenario: Antarctic Time-Variable Regional Gravity Field Model Using LGD
Data from GFO Level 1B Data

After validation of the SCHA basis function using a time-variable regional gravity
field model over Antarctica in the first scenario, in the second scenario, we now use these
functions to produce a local geo-potential model with LGD data obtained from GFO’s Level
1B product over Antarctica. The computation of LGD data requires the dynamic orbits of
GFO; Ghobadi-Far et al. (2018) computed dynamic orbits of GFO applied to both static
gravity fields and time-variable gravity fields. They utilized five different datasets (listed
in Table 2) to conduct these computations.

Datasets #1, #2, and #3 are 10-day simulations of GRACE-like orbits at initial altitudes
of 500, 400, and 300 km, respectively. They used different orbital altitudes to simulate the
orbital decay of GRACE from ~500 km in 2002 to ~350 km in 2017. In addition, they used
different filters to smooth GRACE gravity field solutions to simulate their true fields. Data
sets #4 and #5 utilized reference orbits computed using GEODYN software in the course of
processing GRACE data for producing NASA Goddard Space Flight Center (GSFC) mascon
solutions.
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Table 2. Description of five different GRACE synthetic datasets used in producing the LGD data.

Data Set Reference Field True Field Filter Altitude Length

1 ITG GRACE 2010 (d/o 60) CSR-R05b August 2002 (d/o 60) DDK6 500 10 days
2 ITG GRACE 2010 (d/o 60) CSR-R05 August 2002 (d/o 60) DDK4 400 10 days
3 ITG GRACE 2010 (d/o 60) CSR-R05 August 2002 (d/o 60) DDK2 300 10 days

4
Static gravity and better-known

geophysical signals such as ocean
tide as for March 2004

NASA GSFC mascon March 2004 (d/o 90) - 487 1 month

5
Static gravity and better-known

geophysical signals such as ocean
tide for March 2016

NASA GSFC mascon March 2016 (d/o 90) - 377 1 month

The LGD measurements are referenced to the GGM05C model. The excellent accuracy
of these data allows for more information to be acquired in time-variable gravity field
analysis [46].

In January 2019, 248,582 observations of the LGD data obtained from GFO Level
1b LRI observations are used in the construction of a local geo-potential model over
Antarctica in the spherical cap coordinate system with a maximum degree of 20, denoted as
Kmax = 20 (441 number of unknown parameter; according to Equations (10) and (27) the
spatial resolution of the SCHA technique in this area would be Λmin = 2× 30/20 = 3◦ =
333 km spatial resolution) and a cap size of 30.

Additionally, LGD data obtained from GFO’s L2 JPL in January 2019 are also calculated
for comparison. To assess the performance of the SCHA model, numerical analysis is
performed by calculating the RMSE and mean values of the difference between the LGD
obtained from the SCHA model and the LGD obtained from GFO’s L2 JPL model. These
values are compared to the LGD data obtained from GFO’s Level 1B product on the control
profile. The results of this analysis are presented in Table 3, providing a quantitative
evaluation of the performance of the SCHA model in comparison to GFO’s L2 JPL. Overall,
this analysis demonstrates the effectiveness of the SCHA model in accurately modelling
the time-variable gravity field over Antarctica.

Table 3. RMSE and mean values (mGal) of differences of LGD obtained from geo-potential models
(SCHA model GFO Level 2) and that obtained from GFO Level 1B on the control profile.

Method RMSE Mean Kmax(SCHA)/n(SH)

SCHA 3.7133 × 10−4 2.2307 × 10−4 20
L2 6.3598 × 10−4 −2.9193 × 10−5 60

Based on the numerical results, the RMSE value of the SCHA model is 3.7133 × 10−9,
while the RMSE value of GFO’s L2 JPL is 6.3598× 10−9. Specifically, the RMSE of the L2 JPL
is approximately twice that of the SCHA model, demonstrating the superior performance
of the SCHA model at the same wavelength to estimate LGD data over Antarctica.

To further validate the effectiveness of the SCHA method, the local harmonic coef-
ficients obtained from the technique were used to calculate the radial component of the
gravity field over Antarctica, with a Kmax = 20. Additionally, LGD data obtained from
GFO’s L2 JPL in January 2019 were also calculated to serve as a comparison. The variation
of the gravity field was then depicted using these data.

To better comprehend the effectiveness of the SCHA model, a comparison was made
with the radial gravity components of the GFO Level 2 model on the grid data (r = R) in
Figure 9.

By comparing the results of the SCHA model with those of the GFO Level 2 model,
we were able to determine that the SCHA method provides a more precise estimate of the
radial component of the gravity field on the surface of Antarctica; therefore, it could be
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concluded that the regional harmonic basis function (SCHA) provides more information
about the gravity field of Antarctica, particularly in time-variable gravity fields.

The next stage of our investigation involves examining the time-variable local geo-
potential model with different degrees of harmonics. We calculate the geo-potential co-
efficients of SCHA with Kmax equal to 20, 30, 40, and 50 over Antarctica using LGD data
obtained from Level 1B GRACE-FO product data. Next, we use these coefficients to calcu-
late LGD data on the control profiles for each degree of harmonics. The LGD data obtained
from the SCHA model is compared with the LGD data obtained from the L2 JPL model.
To do so, we choose the corresponding degree of harmonic, which means that for SCHA
with Kmax = 20, we use the L2 JPL with n = 60, which has the same wavelength (~300 km),
and for Kmax = 30 (222 km), 40 (160 km), 50 (132 km) we use n = 96 (~222 km) as the degree
harmonic that has near wavelength to the SCHA models. Therefore, we analyze our local
model compared to the L2 JPL model with the corresponding degree of harmonic in terms
of wavelength.

This comparison allows us to evaluate the effectiveness of our SCHA method in
accurately modelling time-variable gravity fields over Antarctica using different degrees of
harmonics. The results of this comparison are presented in Figure 10.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 19 
 

 

obtained from Level 1B GRACE-FO product data. Next, we use these coefficients to cal-
culate LGD data on the control profiles for each degree of harmonics. The LGD data ob-
tained from the SCHA model is compared with the LGD data obtained from the L2 JPL 
model. To do so, we choose the corresponding degree of harmonic, which means that for 
SCHA with Kmax = 20, we use the L2 JPL with n = 60, which has the same wavelength (~300 
km), and for Kmax = 30 (222 km), 40 (160 km), 50 (132 km) we use n = 96 (~222 km) as the 
degree harmonic that has near wavelength to the SCHA models. Therefore, we analyze 
our local model compared to the L2 JPL model with the corresponding degree of harmonic 
in terms of wavelength. 

This comparison allows us to evaluate the effectiveness of our SCHA method in ac-
curately modelling time-variable gravity fields over Antarctica using different degrees of 
harmonics. The results of this comparison are presented in Figure 10. 

 
Figure 10. A comparison of the SCHA model (red), the L2 model (green), and the LGD data (blue) 
for various degrees of the SCHA and L2 JPL and GOCO06S models (n = 300) (pink). 

As can be seen from Figure 10, the local SCHA model closely estimates LGD data. 
Furthermore, it is observed that the estimation of the SCHA model improves as the degree 
of harmonic increases. This indicates that higher degrees of harmonics lead to better esti-
mation and capture more detailed information about the time-variable gravity fields over 
Antarctica. Another point in Figure 10 is that by increasing the degree of harmonic from 
60 to 96 in the L2 JPL model, we do not ever see significant improvement in the estimation 
of LGD data over Antarctica. In addition, we employ a static gravity model such as 

Figure 10. A comparison of the SCHA model (red), the L2 model (green), and the LGD data (blue)
for various degrees of the SCHA and L2 JPL and GOCO06S models (n = 300) (pink).

As can be seen from Figure 10, the local SCHA model closely estimates LGD data.
Furthermore, it is observed that the estimation of the SCHA model improves as the degree
of harmonic increases. This indicates that higher degrees of harmonics lead to better
estimation and capture more detailed information about the time-variable gravity fields
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over Antarctica. Another point in Figure 10 is that by increasing the degree of harmonic
from 60 to 96 in the L2 JPL model, we do not ever see significant improvement in the
estimation of LGD data over Antarctica. In addition, we employ a static gravity model
such as GOCO06S (the model) to demonstrate our model’s ability in high degree and order
(Kmax = 50). As can be observed, there is stronger correlation in the variations of GOCO06S
and SCHA (Kmax = 50) in the control profile than in the L2 JPL model.

The final step of the investigation involves evaluating the performance of the local
geo-potential model (SCHA) in representing the radial gravity component of the time-
variable gravity field with different spatial resolutions and Kmax = 20, 30, 40, and 50. To
achieve this, the radial component of the local gravity model on the grid coordinates with
the Earth’s surface radial coordinate over Antarctica with capsize = 30◦ is calculated using
SCHA coefficients with the different Kmax. The result of this calculation is presented in
Figure 11.
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Based on Figure 11, it can be seen that by increasing the number of Kmax in the SCHA
model, more detail in the radial components of the local gravity model emerges. However,
by increasing the number of Kmax, yellow strips appear. The reason for an increase in
the yellow strips primarily relates to the spatial resolution of the SCHA model and the
overfitting problem. In our solution, the spatial resolution of two SCHA models with
Kmax = 40 and 50 and capsize = 30◦ are 166 km and 133 km, respectively, which are far away
from the standard resolution of the GFO model. Therefore, we conclude that yellow strips
are defined as fake signals. Moreover, the SCHA model provided realistic information about
mass gain in the north of Antarctica, particularly across Dronning Maud Land and Enderby
Land. These mass redistributions are insignificant in the L2 JPL result. Additionally,
it revealed mass loss across Totten Glacier and Ninnis Glacier in East Antarctica and
the Amundsen Sea Sector in West Antarctica [47,48]. These findings demonstrate the
potential of the SCHA model to enhance our understanding of time-variable gravity fields
over Antarctica.

5. Conclusions

In this study, a new parameterization based on spherical cap harmonic (SCHA) func-
tions is used to model gravitational potential in a spherical cap region. We begin by defining
the normal equation using the LOS gravitational differential operator in a spherical cap
harmonic function. The geo-potential coefficients are obtained by solving the inverse
problem. To evaluate the local geo-potential model, we utilized the control profile of LGD
data, which is not employed in the inverse problem. On the control profile of LGD data, the
radial gravity component derived from the local gravity model is compared to the radial
gravity component of GFO Level 2 for additional validation. Therefore, the radial gravity
component of the local geo-potential model provides a reasonably accurate estimate of the
radial component of L2 JPL at the Earth’s surface. Moreover, this study involves analyzing
a time-variable local geo-potential model using real LGD data with different degrees of
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harmonics to show the ability of SCHA in the estimation of time-variable gravity fields
over Antarctica. The result shows that the high degree and order of SCHA has a high ability
for precise estimation of LGD data, but because of the overfitting problem, the appropriate
Kmax can be obtained as a trade-off between providing precise estimation of LGD data and
preventing the overfitting problem.

This approach provides a few advantages of efficiency and flexibility. (1) The nearly
identical potential field based on spherical harmonic (SH) functions can be expressed with
substantially fewer parameters regarding SCHA functions. As a result, our local models
have substantially better RMSE than existing L2 JPL, with an error of 3 × 10−4 mGal
in measurement. (2) The region-specific constraints can be implemented. (3) Temporal
resolution of the gravity recovery can be flexible and adjusted depending on the satellite
coverage. (4) The SCHA model provides realistic information as it addresses mass gain and
loss across various regions in Antarctica. Overall, this research highlights the potential of
SCHA in accurately modelling the Earth’s gravity field and enhancing our comprehension
of time-variable gravity fields over Antarctica.
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