
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Adhisantoso et al. BMC Bioinformatics (2023) 24:121
https://doi.org/10.1186/s12859-023-05240-0

BMC Bioinformatics

GVC: efficient random access compression
for gene sequence variations
Yeremia Gunawan Adhisantoso1*, Jan Voges1, Christian Rohlfing2, Viktor Tunev2, Jens‑Rainer Ohm2 and
Jörn Ostermann1 

Abstract 

Background:  In recent years, advances in high-throughput sequencing technolo‑
gies have enabled the use of genomic information in many fields, such as precision
medicine, oncology, and food quality control. The amount of genomic data being
generated is growing rapidly and is expected to soon surpass the amount of video
data. The majority of sequencing experiments, such as genome-wide association stud‑
ies, have the goal of identifying variations in the gene sequence to better understand
phenotypic variations. We present a novel approach for compressing gene sequence
variations with random access capability: the Genomic Variant Codec (GVC). We use
techniques such as binarization, joint row- and column-wise sorting of blocks of varia‑
tions, as well as the image compression standard JBIG for efficient entropy coding.

Results:  Our results show that GVC provides the best trade-off between compression
and random access compared to the state of the art: it reduces the genotype infor‑
mation size from 758 GiB down to 890 MiB on the publicly available 1000 Genomes
Project (phase 3) data, which is 21% less than the state of the art in random-access
capable methods.

Conclusions:  By providing the best results in terms of combined random access and
compression, GVC facilitates the efficient storage of large collections of gene sequence
variations. In particular, the random access capability of GVC enables seamless remote
data access and application integration. The software is open source and available at
https://​github.​com/​sXper​fect/​gvc/.

Keywords:  Variants, VCF, Compression, Random access

Introduction
In the course of the last decades, the cost of genome sequencing has dropped signifi-
cantly, to less than USD 1000, enabling the use of genomic information in many fields,
such as precision medicine, oncology, and food quality control. This led to an explosion
in data generation, with the volume of data generated annually soon surpassing that of
other big data domains such as video and astronomy [1].

A major focus of genetic research is the analysis of gene sequence variations. In fact,
the discovery of gene sequence variations among large populations of related samples

*Correspondence:
adhisant@tnt.uni-hannover.de

1 Institut für
Informationsverarbeitung
and L3S Research Center, Leibniz
University Hannover, Hannover,
Germany
2 Institut für Nachrichtentechnik,
RWTH Aachen University,
Aachen, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05240-0&domain=pdf
https://github.com/sXperfect/gvc/

Page 2 of 13Adhisantoso et al. BMC Bioinformatics (2023) 24:121

is one of the main applications of next- and third-generation sequencing technologies.
Genetic variations can be classified into: (i) single-nucleotide polymorphisms (SNPs);
(ii) insertions and deletions (indels); (iii) (large) structural variants (SV). Such gene
sequence variations (or “variants”) are commonly stored in the text-based variant call
format (VCF) [2].

A VCF file consists of two main parts: the header and the actual variant records. Each
variant record is stored on a single line and separated into multiple annotations, which
can be either site-level or sample-level.

Regarding the site-level annotations, the first eight columns (CHROM, POS, ID, REF,
ALT, QUAL, FILTER, INFO) represent the properties observed at the variant site. When
multiple samples are represented in a VCF file, some of the site-level annotations rep-
resent a summary or average of the values obtained for that site from different samples.
The following site-level annotations are relevant in the scope of our work: CHROM—the
contig (usually a chromosome) on which the variant occurs; POS—the 1-based genomic
coordinate on the contig of the variant (note that for deletions the position given is
the base preceding the event); REF—the reference allele; ALT—the alternative allele(s)
observed in a sample, or a set of samples (note that REF and ALT are given on the for-
ward strand, for insertions, the ALT allele includes the inserted sequence as well as the
base preceding the insertion, for deletions, the ALT allele is the base before the dele-
tion). Sample-level annotations are contained in the 9th column (FORMAT) and in the
sample columns (10th and beyond). Sample-level annotations are tag-value pairs. The
tags are recorded in the FORMAT field. The values are recorded in the corresponding
order in each sample column.

Our work focuses on the sample-level annotation with the GT tag. Its value indicates
the genotype of a sample at a variant site. For a diploid organism, the value indicates
the two alleles carried by the sample, encoded by a 0 for the REF allele, 1 for the first
ALT allele, 2 for the second ALT allele, and so on. In addition, phasing information is
incorporated to each genotype value: “/” for unphased genotype and “|” for phased geno-
type. For example, if there is a single ALT allele (which is by far the most common case),
the value will be either: 0/0—the sample is homozygous reference; 0/1—the sample is
heterozygous, carrying one copy each of the REF and ALT alleles; 1/1—the sample is
homozygous alternate.

For non-diploids, the same pattern applies; in the haploid case, there will be just a sin-
gle number; for polyploids, there will be more, e.g., 4 numbers for a tetraploid organism.

In summary, VCF files contain the actual variant information together with a consid-
erable amount of metadata pertaining to the variant calling process. The metadata is pri-
marily used to filter out irrelevant variants. Once the variants are filtered, the genotype
and phasing information associated with each sample generally becomes the primary
information for further downstream analyses.

In this paper, we introduce a novel approach for compressing gene sequence varia-
tions with random access capability: the Genomic Variant Codec (GVC). We compare
our approach with three existing approaches: GTRAC [3], GTC [4], and GTShark [5].
GTRAC, introduced in 2016, is based on a customized Lempel-Ziv compressor [6]. In
2018, Danek et al. introduced column-wise sorting (i.e., a permutation of haplotypes)
in GTC to minimize the number of differences between adjacent samples. They use a

Page 3 of 13Adhisantoso et al. BMC Bioinformatics (2023) 24:121 	

combination of techniques such as run-length encoding, Lempel-Ziv representation,
and Huffman coding for compression. Both GTRAC and GTC offer random access
capability. GTShark, proposed by Deorowicz et al. in 2019, achieves higher compression
using a combination of generalized version of positional Burrows-Wheeler transform
(PBWT) [7] called gPBWT [8] and a range coder [9] with special contextual modeling.
The Burrow-Wheeler transform (BWT) rearranges the symbols by permuting the order
of the characters based on their lexicographic order. This results in runs of similar char-
acters. In comparison, both PBWT and gPBWT permute the rows based on the previ-
ous rows. This maximizes the compression efficiency because the genotypes of adjacent
locations or positions tend to be highly correlated. Range coding is an entropy coding
method that works by dividing a large range of integers, representing an interval [0, 1).
The range is divided into sub-ranges whose sizes are proportional to the probability of
the symbol they represent. The input symbol is then mapped to an interval, in which the
corresponding probability lies.

Since the goal of GTShark is to maximize compression, the intermediate sample per-
mutations are not stored and thus random access is not supported. However, in princi-
ple, the concept of GTShark does not prohibit implementing random access.

Methods
We propose a new tool called Genomic Variant Codec (GVC) for the compression of
gene sequence variations. GVC comprises transformations and entropy coding steps
depicted in Fig. 1.

In our proposed approach, the genotypes are extracted from a VCF file and divided
into blocks. Each block G represents genotypes of all samples in a certain range of loci in
a chromosome (or across multiple chromosomes). Splitting into blocks allows for non-
sequential access and parallel processing. Each block is then further divided into two
different matrices: the allele matrix A and the phasing matrix P . The phasing matrix is a
binary matrix while the allele matrix is an integer matrix.

We propose two alternative binarization approaches to decompose the allele matrix
into a binary representation: bit plane binarization and row binarization. These steps
allow for variable bit-lengths for integer values. The choice between bit plane binariza-
tion and row binarization depends on the properties of the data. Bit plane binarization
yields bit planes Bq that can be concatenated into a single binary matrix C . Alternatively,
row binarization yields only a single binary matrix.

Subsequently, optionally, the row- and column-wise sorting is applied to binary matri-
ces. The motivation behind the sorting process is to maximize the average run-length of

G Splitting

P

Binarization
A

/
B/C
Q/1

Sorting

P

Entropy
Coding

Bitstream

P

Fig. 1  Block diagram of the proposed encoding process. The genotype matrix G is processed by a series of
transformations: splitting, binarization, and optionally sorting. At the end of the process, entropy coding is
applied

Page 4 of 13Adhisantoso et al. BMC Bioinformatics (2023) 24:121

zeros and ones in both directions, which then facilitates more efficient entropy coding.
We use the Hamming distance to measure the similarity between adjacent rows and col-
umns. At the end of the process, each binary matrix is entropy-encoded. In our experi-
ments, we used an implementation of the JBIG standard, which specifies bi-level image
compression [10]. Note that, in principle, any other entropy codec could be used for this
purpose. In the following sections, we explain the four stages of GVC—splitting, binari-
zation, sorting, and entropy coding—in more detail.

Splitting

In the first step, the genotypes are extracted from a VCF file and divided into blocks.
We also refer to each block as a genotype matrix G . The genotype matrix is then further
decomposed into an allele matrix and a phasing matrix as shown in Fig. 2a. Given m
variant records, each containing GT annotations for n p-ploid samples, the allele matrix
A can be formulated as follows:

with ai,j,k ∈ N ∪ {0} . Phasing information such as unphased (“/”) and phased (“|”) is
stored in the phasing matrix P as values 0 and 1, respectively. The phasing matrix P can
be formulated as follows:

with pi,j ∈ {0, 1}.
Below are m = 2 example variant records, each containing GT annotations for n = 2

samples named S1 and S2:

(1)A:=

a0,0,0, . . . , a0,0,(p−1) . . . a0,(n−1),0, . . . , a0,(n−1),(p−1)

...
. . .

...
a(m−1),0,0, . . . , a(m−1),0,(p−1) . . . a(m−1),(n−1),0, . . . , a(m−1),(n−1),(p−1)

,

(2)P :=







p0,0 . . . p0,(n−1)

...
. . .

...
p(m−1),0 . . . p(m−1),(n−1)







CHROM POS REF ALT FORMAT S1 S2
1 1 A G GT 0|2 2/0
1 10 C A GT 1/0 0|0.

0 2 2 0

1 0 0 0

A

0 1

1 0

P

(a) Splitting

0 0 0 0

1 0 0 0

B0

0 1 1 0

0 0 0 0

B1

(b) Bit plane binarization

0 0 0 0

0 1 1 0

1 0 0 0

C

(c) Row bina-
rization

Fig. 2  Example for G =
0 | 2 2/0

1/0 0 | 0
 . Bit plane binarization yields two bit planes representing the most

significant bit and the less significant bit of A . Row binarization generates only three binary rows because the
first row of A requires two bits and the second row of A requires only one bit

Page 5 of 13Adhisantoso et al. BMC Bioinformatics (2023) 24:121 	

The corresponding m× n genotype matrix G is then split into allele matrix A and phas-
ing matrix B as follows:

In the special case that all genotypes are either phased or unphased, it is not necessary to
encode and transmit the phasing matrix P . Instead, the information (that all genotypes
are (un)phased) can be signaled with a flag. In some cases, allele values may be missing,
indicated by a dot (“.”) in the VCF file, or the ploidy may vary along the rows. To han-
dle missing values, we replace the dots with a special integer value. If the ploidy varies
within a block, the genotypes are padded with another special integer value so that the
ploidy is uniform within a block.

Binarization

In the next step, the allele matrix A is binarized. We propose two alternative binariza-
tion approaches: bit plane binarization (an example is shown in Fig. 2b) and a binariza-
tion using a technique we call “row binarization” (an example is shown in Fig. 2c).

In the bit plane binarization, each value ai,j,k of the allele matrix A is expressed as a
set of binary numbers. All q-th significant bits are then aggregated as a bit plane Bq . The
number of bit planes Q is computed based on the maximum value in the allele matrix A:

The allele values ai,j,k are expressed as binary numbers using exactly Q bits per value and
the bit plane binarization yields Q bit planes. The q-th bit plane Bq is the concatenation
of the q-th least significant bit of each allele value, with q ∈ {0, · · · , (Q − 1)} . Optionally,
bit planes can be concatenated either row-wise or column-wise.

In the row binarization, each row is decomposed into multiple binary rows as follows.
Each row i contains allele values ai,j,k with the corresponding maximum allele value being
denoted as amax

i  . Given a maximum allele value amax
i  , we can compute the number of bits

required to represent the row (using a naïve binary encoding) as R =
⌈

log2
(

amax
i + 1

)⌉

 .
The number of required bits R is equal to the number of resulting binary rows. The r-th
binary row contains the r-th least significant bit of allele values of the respective row. At
the end of the process, all of the resulting binary rows are concatenated row-wise, which
yields a single binary matrix. Note that the reconstruction of the allele matrix A from
this binary matrix is possible because the maximum allele value amax

i can be computed
based on the number of alleles in the ALT column of the original VCF file. Within GVC,
this information is communicated to the decoder as side information.

Both bit plane and row binarization have their own advantages and disadvantages. The
binarization can be chosen based on the number of alternate alleles of each row within a
block. Bit plane binarization is most advantageous when the number of alternate alleles
is constant. In such a case, row binarization generates a larger matrix because the num-
ber of bits of each row must be preserved, even if the number of alternate alleles is con-
stant. In contrast, row binarization is advantageous when the number of alternate alleles
within a block is not constant. For real-world data, we recommend row binarization over

G =

(

0|2 2/0
1/0 0|0

)

split
−−→ A =

(

0 2 2 0
1 0 0 0

)

, P =

(

0 1
1 0

)

.

(3)Q =

⌈

log2

(

max
∀i,j,k

{

ai,j,k
}

+ 1

)⌉

.

Page 6 of 13Adhisantoso et al. BMC Bioinformatics (2023) 24:121

bit plane binarization as the default binarization because of the variable number of alter-
nate alleles.

Sorting

In previous works such as GTC [4], the sorting of haplotype matrix columns was pro-
posed to improve the performance of subsequent entropy coding schemes. In addition
to column-wise sorting, here we propose row-wise sorting. Preliminary experiments
showed that subsequent entropy coding schemes yield smaller bitstreams when rows
are sorted in particular ways. One possible reason lies in the fact that if some samples
belong to a group of similar individuals, then the variants found on these samples are
expected to be similar. By sorting in both directions, run lengths can be maximized,
which presumably also facilitates a more efficient entropy coding. Note that sort indices
must be transmitted to reconstruct the original row order.

As an example, consider the following allele matrix A:

Let us assume that swapping the rows lets a subsequent entropy coding scheme yield a
smaller bitstream. The sorted allele matrix Ã is then as follows:

To reconstruct the allele matrix A at the decoder, the sort row indices ã = (1 0)T must
be transmitted.

Before the sorting process, a cost matrix C based on the Hamming distance [11] is
computed for each pair of rows or columns depending on the sorting direction. The
Hamming distance of a pair of rows or columns is the number of positions where
the corresponding values differ. The entry of the cost matrix cij at row i and column j
describes the Hamming distance between the i-th and j-th rows for row sorting and i-th
and j-th columns for column sorting. The main diagonal of the cost matrix is zero.

The time complexity of computing the cost matrix is quadratic with regard to the block
size and the number of samples. To alleviate this limitation, we can also split the geno-
types into blocks in the column direction. This reduces the sorting cost and the decoding
time. However, this comes at the expense of compression performance.

Note that any other suitable cost function could be used instead (of course, it should
ideally be chosen to match the chosen entropy coding method). At the end of the sort-
ing process, the order of rows and/or columns, respectively, which provides the lowest
total cost, is selected. This selection process can be regarded as equivalent to solving the
traveling salesman problem, which we solve using a nearest neighbor heuristic. Other
methods of solving this problem, such as the Lin-Kernighan heuristic [12], could be
employed to achieve a potentially better compression at the expense of encoding time.

Entropy coding

The results of the transformations, i.e., binarizations and sorting procedures, are binary
matrices Bq , C , P which we interpret as binary images. Any method that can efficiently

A =

(

0 2 2 0
1 0 0 0

)

.

Ã =

(

1 0 0 0
0 2 2 0

)

.

Page 7 of 13Adhisantoso et al. BMC Bioinformatics (2023) 24:121 	

encode binary images losslessly can be utilized for entropy coding, such as binary arith-
metic coding. Even better compression performance can be achieved by estimating the
source statistics, e.g. using context modeling, which estimates the probability of a cur-
rent symbol depending on previous symbols. For GVC, we choose an encoder compliant
to the JBIG standard (ISO/IEC 11544 [10]). JBIG specifies the lossless compression of
bi-level images.1 It takes advantage of the spatial correlation of bi-level pixels for efficient
compression. The length of the context model in JBIG varies between in total of 10 to
12 neighboring values in both row and column directions, depending on the selected
context mode. In combination with the sorting, we maximize the similarity between the
adjacent columns or rows of the binary matrices. This generally enables JBIG to infer
better context models, thus increasing the overall compression efficiency.

Results
For our simulations, we used data from phase 3 of the 1000 Genomes Project [14]. The
data set consists of 22 VCF files with a total size of 770 GiB. The genotype information
occupies the largest share of 758 GiB.

We can configure GVC with several parameters: the binarization can be either bit
plane binarization or row binarization; the sorting can be disabled, configured for
rows or columns only, or enabled for both rows and columns. We set the block size to
2504 variant records based on empirical experiment. Since we sort both rows and col-
umns, we seek a well-balanced trade-off between the compression improved by the sort-
ing and the overhead induced by transmitting sorting indices. Thus, by assuming that
at each variant site there are roughly three alternate alleles, we compute the block size
of 2504 by multiplying the number of samples (2504) by the ploidy (2) divided by the
average number of bits required to represent each value (2). Also, we fixed the following
encoder parameters: the sorting algorithm (nearest neighbor), the sorting metric (Ham-
ming distance), and the compressor (JBIG). In total we ended up with 12 configurations
for GVC: 2+ 1 binarizations (bit plane with and without concatenation, and row bina-
rization) × 4 sorting schemes (none, col, row, both). These configurations and their cor-
responding identifiers are listed in Table 1.

To evaluate the impact of both the binarization and sorting methods on the overall
compression performance of GVC, we compute the average compression ratio, which

Table 1  GVC configurations

ID Binarization Sorting ID Binarization Sorting

0 Bit plane (concat.) None 6 Bit plane Row

1 Bit plane (concat.) Col 7 Bit plane Both

2 Bit plane (concat.) Row 8 Row None

3 Bit plane (concat.) Both 9 Row Col

4 Bit plane None 10 Row Row

5 Bit plane Col 11 Row Both

1  Please note that we did not favor JBIG’s successor, JBIG2 (ISO/IEC 14492 [13]), since it does not noticeably increase
the performance of lossless compression for this kind of data.

Page 8 of 13Adhisantoso et al. BMC Bioinformatics (2023) 24:121

is computed by dividing the original file size by the compressed file size. We compute
the average over all chromosomes for each GVC configuration. Figure 3 shows the
corresponding results.

Configuration 11 (row binarization in combination with sorting of both columns
and rows) outperforms all other configurations. Note that the average compression
ratio is greatly improved by enabling sorting. Especially in the case of row binariza-
tion, enabling sorting both row- and column-wise yields the best results. Without
concatenation, the bit plane transformation yields multiple bit planes that are sorted
independently. This results in a larger overhead due to storing the corresponding sort
indices.

When bit plane binarization is selected as the binarization scheme, sorting columns
performs slightly better than sorting both columns and rows. This is because bit plane
binarization creates a new bit plane even if only one row (corresponding to a single
variant site) requires additional bits to correctly represent the allele value. In such
case, the number of rows becomes greater than the number of columns; this renders
the row sorting inefficient as the overhead induced by sorting indices overcomes the
increase in compression. For the row binarization, the number of generated binary
rows is less compared to the rows generated by the bit plane binarization. The result-
ing binary matrix will have a greater number of columns compared to the number
of rows. Thus, sorting in column direction induces a greater overhead, resulting in a
worse compression ratio.

We also evaluated the effect of the block size on the compression performance of
GVC. We compressed the chromosome 22 file with all the configurations that are
listed in Table 1 and five different block sizes: 512, 1024, 1536, 2048, and 2504. The
result is shown in Fig. 4. As expected, increasing the block size increases the com-
pression ratio. There are however two expections: for configuration IDs 2 and 10,

Fig. 3  Average compression ratio (averaged over all chromosomes) achieved by each GVC configuration.
The colors indicate the employed binarization: orange—bit plane binarization (concatenated), blue—bit
plane binarization, green—row binarization. The patterns indicate the employed sorting: no pattern—no
sorting, vertical lines—column sorting, horizontal lines—row sorting, both horizontal and vertical lines—
sorting in both directions

Page 9 of 13Adhisantoso et al. BMC Bioinformatics (2023) 24:121 	

increasing the block size beyond 2048 leads to a degradation in compression ratio.
This is because in these cases the larger number of row sort indices generates an over-
head that is not remedied by the gains achieved through the larger block size.

Finally, we compare GVC to its competitors GTRAC, GTC, and GTShark. All simu-
lations were performed on a Linux platform with an Intel(R) Core(TM) i9-9900K CPU,
running at 5 GHz, and a solid state drive. For GTRAC, GTC, and GTShark, we used
their default parameters; for GVC we used configuration 11 because it yields the best
compression ratio. Figure 5 shows the compressed size in MiB for each chromosome
for GVC, GTRAC, and GTC.

Fig. 4  Compression ratio achieved by each GVC configuration with different block sizes. For all
configurations with the sorting enabled, increasing the block size increases the compression ratio

Fig. 5  Comparison of GVC to the state-of-the-art methods GTC [4], GTRAC [3], and GTShark [5] with respect
to compressed size

Page 10 of 13Adhisantoso et al. BMC Bioinformatics (2023) 24:121

With respect to random access, we only compare GVC to GTRAC and GTC, since
GTShark does not provide random access functionality. In the case of GTRAC, we were
unable to query, i.e., decode, the tested dataset. We refer to the random access time, or
query time, as the total time it takes a method to access arbitrary elements in the com-
pressed data. This is done by partially decoding and inverse-transforming the payloads
given a query. We analyze the time complexity by varying the number of samples and the
number of variants.

First, we compare the query time on all samples and different range sizes of the
random access. We refer to this type of query as a range query. For a range query,
we decode the genotypes of all samples in a region. Three values specify a region: a
chromosome, a start position, and an end position. We refer to the difference between
the start and end positions as the range size. Because variants do not occur at every
locus, the number of variant sites (i.e., rows) is always smaller or equal than the range
size. As presented in Fig. 6, GTC performs about 10x and 2x faster than GVC for
smaller and larger range sizes, respectively.

Figure 7 shows the result of the second experiment, where we queried variant sites
within a range of 1e7 bp while varying the number of samples. GVC’s JBIG-based
decoder decodes whole blocks even if the query requires one variant site or sample,
but the inverse transformation is performed only on the queried variant sites or sam-
ples. This results in a higher run time overhead for smaller range sizes. For larger
range sizes, the complexity of the entropy decoder and the transformation dominate
the run time.

To better explain this, suppose we have a genotype matrix A where the number
of alternate alleles is one. The matrix is then transformed using bit plane binariza-
tion and sorted in the row direction. The bit plane binarization yields only one binary
matrix because the largest value of the genotype matrix is one. A user requests geno-
type information for all samples on chromosome 2 at loci 1000–1100. GVC then per-
forms the random access process shown in Fig. 8. An entire block needs to be entropy

Fig. 6  Comparison of random access time between GTC [4] and GVC with respect to the range size

Page 11 of 13Adhisantoso et al. BMC Bioinformatics (2023) 24:121 	

decoded (the one with block ID 1), although only a small range (chr2:1000–1100) was
requested, and although it even only contains a single variant site (1038).

We believe that random access times below 0.5 s are not noticeable. Note that GVC
is mostly written in Python (except for JBIG and the transformation steps which are
written in C), whereas GTC is written entirely in C, introducing some overhead to
GVC with regard to the run time. This is a subject for further improvements in the
future.

Finally, to summarize the results, Table 2 shows the compressed sizes and random
access times. The absolute compressed size is given for each method as the sum of the
results obtained for each chromosome, as shown in Fig. 5. To evaluate the random

Fig. 7  Comparison of random access time between GTC [4] and GVC with respect to the number of samples

Fig. 8  An example of a random access process on compressed genotypes where the number of alternate
alleles is one and the blocks are transformed using bit plane binarization and sorted in row direction. A
user needs the genotypes of all samples on chromosome 2 at loci 1000 through 1100, represented by
“chr2:1000-1100”. First, GVC finds the blocks containing the required genotype information using a block
lookup process. The bitstreams of the selected block, in this case the block with ID 1, are then decoded,
yielding the sort indices ã and the binary matrix B . Using the position information of each variant site, GVC
selects certain rows or columns of the binary matrix B and based on the sort index ã . Finally, the selected
rows and columns of the binary matrix B are then inverse transformed to return the genotypes of all samples
at loci 1000 through 1100

Page 12 of 13Adhisantoso et al. BMC Bioinformatics (2023) 24:121

access capability, we calculated the area under the curve shown in Fig. 7. In summary,
GVC offers a very good trade-off between GTShark and GTC: GVC achieves slightly
worse compression results than GTShark while providing random access functional-
ity. GVC outperforms GTC in terms of compression, but gives similar random access
times for range-based access and slightly worse for sample-based access.

Conclusion
We present a novel approach for compressing gene sequence variations: the Genomic
Variant Codec (GVC). Better compression is achieved by using techniques such as joint
row- and column-wise sorting of blocks of variations and by using the existing image
compression standard JBIG for efficient entropy coding. At the same time, GVC allows
non-sequential data retrieval by splitting the data into blocks. To find row and column
orders that are beneficial in terms of entropy coding, we solved a problem analogous to
the traveling salesman problem by using the nearest neighbor algorithm. Other solvers
such as the Lin-Kernighan heuristic [12] could be employed to achieve a potentially bet-
ter compression at the expense of encoding time.

GVC meets the state of the art in terms of compression ratio: our results show that
GVC reduces the genotype information size from 758 GiB down to 897 MiB on the
publicly available 1000 Genomes Project (phase 3) data, outperforming its competi-
tor GTC, which is only able to reduce the raw data size to 1136 MiB. Note, however,
that GTC offers slightly faster random access. With respect to GTShark, GVC does not
match its compression performance, but provides, in contrast, random access capability
that makes GVC applicable in real-world scenarios. In summary, GVC provides a new
solution in the compression-feature space by offering excellent compression combined
with random access functionality. GVC could be adapted for other integral sample-level
annotations such as the per-allele read depth, alternate allele counts, or quality metrics.

Abbreviations
SNP	� Single-nucleotide polymorphism
indels	� Insertions and deletions
VCF	� Variant call format
GTRAC​	� GenoType Random Access Compressor
GTC​	� GenoType Compressor
GVC	� Genomic variant codec

Table 2  Summary of the state-of-the-art comparison with respect to both compressed size and
random access time

∗ Random access is not implemented. † Similar to what the authors of GTC report, we were not able to evaluate GTRAC on
the present dataset

Method Compressed size [MiB] Random
access area
[Mbp s]

GVC 897 311

GTC​ 1136 256

GTRAC​ 2986 N/A†

GTShark 587 N/A∗

Page 13 of 13Adhisantoso et al. BMC Bioinformatics (2023) 24:121 	

Acknowledgements
Not applicable.

Author contributions
YGA: developed the bit plane binarization, introduced JBIG as the entropy codec. JV: initiated the study, proposed the
row-wise sorting. CR and VT: developed the row binarization. JRO and JO: supervised the project. All authors read and
approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work is supported by Leibniz University Hannover,
L3S Research Center, and RWTH Aachen University.

Availability of data and materials
The 1000 genome project dataset is available at www.​inter​natio​nalge​nome.​org/​data/ or http://​ftp.​1000g​enomes.​ebi.​ac.​
uk/​vol1/​ftp/​relea​se/​20130​502/.

Code availability
GVC is open source and available at https://​github.​com/​sXper​fect/​gvc/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
JV, CR, VT, YGA, and JO have filed the patent application DE102021100199A1, which covers parts of the methods pre‑
sented in the manuscript.

Received: 16 November 2022 Accepted: 20 March 2023

References
	1.	 Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE. Big data:

astronomical or genomical? PLoS Biol. 2015;13(7):1002195.
	2.	 Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, et al.

The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8.
	3.	 Tatwawadi K, Hernaez M, Ochoa I, Weissman T. GTRAC: fast retrieval from compressed collections of genomic vari‑

ants. Bioinformatics. 2016;32(17):479–86.
	4.	 Danek A, Deorowicz S. GTC: how to maintain huge genotype collections in a compressed form. Bioinformatics.

2018;34(11):1834–40.
	5.	 Deorowicz S, Danek A. Gtshark: genotype compression in large projects. Bioinformatics. 2019;35(22):4791–3.
	6.	 Ziv J, Lempel A. A universal algorithm for sequential data compression. IEEE Trans Inf Theory. 1977;23(3):337–43.
	7.	 Durbin R. Efficient haplotype matching and storage using the positional burrows-wheeler transform (pbwt). Bioin‑

formatics. 2014;30(9):1266–72.
	8.	 Deorowicz S, Walczyszyn J, Debudaj-Grabysz A. Comsa: compression of protein multiple sequence alignment files.

Bioinformatics. 2019;35(2):227–34.
	9.	 Martin GNN. Range encoding: an algorithm for removing redundancy from a digitised message. In: Proceedings of

institution of electronic and radio engineers international conference on video and data recording, vol. 2. 1979.
	10.	 Information technology-Coded representation of picture and audio information-Progressive bi-level image com‑

pression. Standard. Geneva, CH: International Organization for Standardization; 1993.
	11.	 Hamming RW. Error detecting and error correcting codes. Bell Syst Tech J. 1950;29(2):147–60.
	12.	 Helsgaun K. An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur J Oper Res.

2000;126(1):106–30.
	13.	 Information technology-Lossy/lossless coding of bi-level images. Standard. Geneva, CH: International Organization

for Standardization; 2019.
	14.	 The 1000 Genomes Project Consortium. A map of human genome variation from population scale sequencing.

Nature. 2010;467(7319):1061–73.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://www.internationalgenome.org/data/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://github.com/sXperfect/gvc/

	GVC: efficient random access compression for gene sequence variations
	Abstract
	Background:
	Results:
	Conclusions:

	Introduction
	Methods
	Splitting
	Binarization
	Sorting
	Entropy coding

	Results
	Conclusion
	Acknowledgements
	References

