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Many-body bound states and induced
interactions of charged impurities in a
bosonic bath

Grigory E. Astrakharchik 1,2,3 , Luis A. Peña Ardila 4 ,
Krzysztof Jachymski5 & Antonio Negretti6

Induced interactions and bound states of charge carriers immersed in a
quantum medium are crucial for the investigation of quantum transport.
Ultracold atom-ion systems can provide a convenient platform for studying
this problem. Here, we investigate the static properties of one and two ionic
impurities in a bosonic bath using quantumMonte Carlomethods.We identify
three bipolaronic regimes dependingon the strengthof the atom-ionpotential
and the number of its two-body bound states: a perturbative regime resem-
bling the situation of a pair of neutral impurities, a non-perturbative regime
that loses the quasi-particle character of the former, and a many-body bound
state regime that can arise only in the presence of a bound state in the two-
body potential. We further reveal strong bath-induced interactions between
the two ionic polarons. Our findings show that numerical simulations are
indispensable for describing highly correlated impurity models.

Compound systems consisting of impurities immersed in a quantum
medium are of fundamental importance in quantum many-body phy-
sics. A few relevant examples in the solid-state realm are the Kondo
effect1, transport of heavy impurities in a Fermi liquid2, and pair
formation3,4. Dressing the impurity particle with the low-energy exci-
tations of the medium can lead to the emergence of a quasi-particle
called the polaron. Its physical realization in ultracold atomic setups
offers a unique opportunity to dynamically control the system’s
parameters, such as the interaction strength5–8. Atom-ion quantum
systems9–11 hold the promise to study polaron physics in the so-called
strong-coupling limit12, owing to the long-ranged character of the two-
body impurity-bath interaction. Furthermore, ionic impurities are an
excellent platform for studying transport phenomena, as the charge
can be easily detected and dragged with an external electric field13. In
contrast to the neutral case, exotic transport properties due to mac-
roscopic atomic dressing of the ion can be expected14. Other quantum
ion-atom-based simulation ideas include, e.g., the formation of lattice

bipolarons with low effective mass15 and ion-induced interactions in
Tomonaga-Luttinger liquids16. Furthermore, such setups can be rele-
vant in the context of quantumsimulation15,17,18, quantum transport19–22,
as well as applications in quantum information processing23,24 and
thermometry25. A few experimental groups have recently attained the
ultracold collisional regime in radio-frequency traps26,27. Alternatively,
ions can be created in an ultracold gas by ionization of selected atoms
from the bath28,29.

Since the first observation of a single ion in a radio-frequency
trap30, trapped ions have proven to be an excellent testbed to verify
predictions of quantum theory as, e.g., quantum jumps31,32 and the
Zeno effect33, but also to trigger various fields of research and tech-
nology such as atomic clocks, quantum computation and
simulation34–37. Nowadays, tens of ions can be isolated and individually
manipulated to implement quantumcomputing schemes and simulate
spinmodels38. Quantum circuits based on one- and two-qubit gates are
routinely accomplished in laboratories39–41. Ion logic gates usually
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require the ions to be sufficiently cold vibrationally. With the increas-
ing complexity of the algorithms and thereby the number of required
gates, this condition becomes harder tomeet as the ionswill inevitably
beheatedby the applied laser pulses. A possible solution to this issue is
to use another quantum system as a coolant such that the ions are kept
sufficiently cold to ensure fault tolerance. Atom-ion quantummixtures
are a prominent candidate here since ultracold gases easily reach sub-
μK temperatures. Theoretical studies have shown that cooling of ions
to the s-wave regime in the presence of micromotion can be made
efficient by choosing a large ion-to-atom mass ratio42–44. Such studies,
however, do not take into account the possibility of the formation of
many-body bound states45–48, whose occurrence substantially affects
the properties of the mixture.

In our previous study47, we investigated the polaronic properties
of a single ion immersed in a bosonic bath, identifying different
regimes depending upon the presence of a two-body atom-ion bound
state: a polaronic branch when it is absent, and a many-body bound-
state (MBBS) branch when a two-body bound state is supported. The
first regime is well described by a particle dressed by the low-energy
excitations of the gas. Instead, the MBBS branch is characterized by
clustering of atoms around the ion leading to a large effective mass,
proportional to the number of bound bosons. The identified polaronic
states cannot be described by the conventional Fröhlich
paradigm12,49,50, Bogolyubov theory51–53, as well as field theoretical
methods48,54, since the system properties rely not only on the scatter-
ing length and the effective range of the two-body atom-ion interac-
tion, but alsoon its long-range tail. Note that even for a neutral polaron
beyond-Bogolyubov density modulation can be substantial55.

Furthermore, the formation of aMBBS renders highly inhomogeneous
the bath density in the vicinity of the ion.We have refined the previous
models of ion-atom MBBS based on mean-field approach14,45.

In this work, we investigate the ground state properties of two
ions in a bosonic bath utilizing quantum Monte Carlo techniques. A
timely question is to explore mediated interactions between the
impurities and understand to what extent analytical approaches
effectively describe them. The interaction between quasi-particles is
not only crucial for conventional and high-Tc superconductivity3,56, but
it is also instrumental for developing quantum technologies with
compound atom-ion systems such as quantum sensors25,57,58 and
hybrid interfaces for information processing23,24.

Results
Depending on the details of the two-body atom-ion interaction, we
identify three following regimes, illustrated pictorially in Fig. 1:
(i) a perturbative (weak-coupling) regime;
(ii) a non-perturbative (strong-coupling) regime;
(iii) a many-body bound state regime.

The weak-coupling regime, namely Fig. 1(a), corresponds to the
scenario in which the ion-induced density perturbation of the bath is
small compared to the bath density at large distances from the ions,
and therefore it can be treated perturbatively. In this case, we compare
our many-body simulations for the induced interactions with the
analytical results of ref. 54, and find a qualitatively similar behavior.
However, for other parameters of the two-body potential (see Fig. 2),
we find large densitymodulations in the neighborhoodof the ion(s), as
depicted illustratively in Fig. 1(b) and given quantitatively in right

Fig. 1 | Pictorial representation of the three identified regimes of the ionic
bipolaron consisting of two ions—cyan spheres labeledwith “+” surroundedby
a gray larger sphere representing the typical rangeR⋆—and a density of weakly
interacting condensed bosons. The inset in each regime displays the atoms' dis-
tribution in the neighborhood of the ions. a Illustrates the weakly-interacting
regime (i), where the local density modulation is small, thus permitting a quasi-

particle description. bDisplays the regime (ii) with strong interaction having a hard
core part. In this case, close to the ions the bath density vanishes. c Illustrates the
regime (iii) in which the atom-ion interaction supports a two-body bound state
(depicted by the wiggly red lines) participating in the formation of a many-body
bound state. In this scenario, the bathdensity around the ion is stronglymodifiedas
many bosons are trapped in the vicinity of the ions.
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panels of Fig. 3. We refer to this situation as the non-perturbative
regime (ii). The analytic theory assumes the validity of the Bogolyubov
approximation for the condensate andneglects the contributionof the
ion-atom bound states, taking into account only the exchange of
phonons, such that it cannot be applied in this scenario. Finally, in
regime (iii) the situation changes drastically because of the appearance
of a two-body bound state in the atom-ion potential. Here, a so-called
many-body bound state with hundreds of atoms is formed, a pecu-
liarity of the compound atom-ion system. When two such ionic
polarons are present, the nature of their interaction changes sub-
stantially. In Fig. 1(c) we show the situation pictorially. Close to the ion,
a low density region is created in the gas, while a cluster of bosonic
atoms surrounds it with a peak in the bath density linked to the size of
the molecular compound is formed. The scenario resembles the
situation of “snowballs” in helium59. In contrast to regimes (i) and (ii),
the two-body atom-ion correlation function is highly non-monotonic
with a peak value at some critical ion-ion separation, Rc. A kink in the
bath-induced interaction between the two polarons appears at this
critical distance. Interestingly, below Rc the interaction increases
enormously, that is, tens of times the energy scale of the atom-ion
polarization potential (see, e.g., Fig. 3(k)). This behavior highlights the
non-power-law character of the induced interaction at a short range.

Model system
The compound atom-ion system consisting of N atoms and NI pinned
impurities is described by the following many-body Hamiltonian

Ĥ =
XN
n= 1

�
_2∇2

rn

2m
+
XNI

j = 1

V aiðrn � RjÞ
" #

+
XN
n<j

V aaðrn � rjÞ: ð1Þ

We assume that atoms obey Bose-Einstein statistics while statistics of
impurities is not important if they are not allowed tomove. (Hereafter,
we denote the ion’s characteristics such as position and mass with
capital Latin letters, while for atom ones we use small Latin letters.
Furthermore, the bold symbol refers to three-dimensional vectors and
cursive ones to their respective norms.). The first term represents the
kinetic energy of the bosonic atoms of mass m, whereas Vaa(rn − rj)

denotes the repulsive short-range atom-atom potential. The second
term in Eq. (1) describes the two-body atom-ion polarization potential,
which possesses a long-range tail:

lim
r!1

V aiðrÞ�!� C4

r4
: ð2Þ

It is characterized by the length R? = 2mrC4=_
2

� �1=2
and energy scales

E? = _2=½2mr R
?ð Þ2�, where mr =mM/(m +M) is the reduced atom-ion

mass. As an example, for the pair 23Na/174Yb+ we have R⋆ ≃ 129.85 nm
and E⋆ ≃ kB × 0.71 μK (kB is the Boltzmann constant). For an atomic
density n = 6 × 1013cm−3, the mean inter-particle distance scales as n−1/

3≃ 2R⋆, whereas the gas healing length ξ = 8πnabb

� ��1=2 ’ 4R? with
abb being the three-dimensional s-waveboson-boson scattering length,
set by the gas parameter na3

bb = 10
�6. As these lengths are all

comparable, there is no separation of scales, and therefore short-
range pseudopotentials cannot be used to replace the polarization
potential, thus requiring the theory to take into account the atom-ion
interaction potential explicitly. We model this interaction by the
regularized potential43

Vr
aiðrÞ= � C4

r2 � c2

r2 + c2
1

b2 + r2
� �2 , ð3Þ

with b, c being regularization parameters that set the scattering
length and the number of bound states in the system. This choice of
interaction potential has the benefit of retaining the long-range tail
while also having a hardcore part and a simple form convenient for
numerical and analytical calculations. As we are aiming for comput-
ing the ground state of the system, we choose to work in the range of
parameters where the potential supports at most one bound state.
This usually requires choosing rather large values of either the b or c
parameter as compared to R⋆. In the following, we assume that the
ions are static, i.e., they act as scattering centers for the bosons, and
their separation is given by ∣R1 −R2∣ = R. Such a scenario is realized
when heavy ions confined in a linear Paul trap are in interaction with
light atoms. We can therefore omit the direct Coulomb interaction
between themaswell as their trapping potential. In a radio-frequency
trap, the equilibrium separation between the closest ions along the
crystal axis, say the x-axis, is approximately given by R ’ αNI

‘ with
ℓ3 = e2/(4πϵ0Mν2) and αNI

being a numerical factor that depends on
the number of ions NI

60. For large NI, it can be approximated as
αNI

= 2:018=N0:559
I . Specifically, for two ions, we have R≃ 1.26ℓ. For

R = 1 μm and two 174Yb+ ions a trap frequency of ν = 2π ⋅ 6 MHz is
required, while for 20 ions with approximately the same separation
ν = 2π ⋅ 1 MHz is needed. Note that related studies discussed the band
structure of a single atom in a potential landscape generated by a
chain of static ions61–63.

It is anticipated that the pinning of the impurities enhances the
sharpness of density perturbations as compared to the situation in
which the impurities are mobile. For example, this is known from the
problem of an impenetrable one-dimensional gas in the presence of
an impurity which is either mobile or pinned. The impurity profile
shows Friedel oscillations in both cases, although the amplitude of
the oscillations is larger in the pinned case64. Qualitatively, this can be
understood in terms of a stronger interference pattern when an
incident particle is bounced back from a non-moving impurity as
compared to the situation in which the impurity can move.

Analytical expressions
In ref. 54, the regularized potential (3) has been utilized to predict
induced ion-ion interactions. There, the impurity-bath interaction in

Fig. 2 |Atom-ion interactionpotentialsused in themany-body simulations.Red
solid line, A — weakly-attractive model potential with no hard core; green dashed
line, B— potential with a small negative scattering length leading to the absence of
atom-ion bound states (aai = −0.01R⋆); blue dash-dot line, C— potential with a large
negative scattering length (aai = −0.1R⋆) leading to the absence of an atom-ion
bound state; magenta dash-dot-dot line, D — potential with a positive scattering
length leading to the presence of an atom-ion bound state aai =R⋆.
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Fig. 3 | Polaron-polaron interactions and pair correlations functions. Induced
polaron-polaron interactions (left panels) and single polaron density profiles (right
panels), which for a static ion are directly reflected by the ion-atom correlation
function g2(r), as a function of their separation. Panels show the results (a,b) in the
weakly interacting regime; c,d For b = 1, c =0; e,f For hard-sphere interactions; g,h
In the strongly-interacting regime; i,j At unitarity; k,l In theMBBS regime. Symbols:

results of QMC calculation, black dash-dotted line: polaron chemical potential,
black dash-dot-dotted lines: two polaron chemical potentials, blue long-dashed
line, Yukawa potential (6) applicable at intermediate distances; green short-dashed
line, Casimir potential (5) applicable at large distances. The blue arrows point to the
location of the peak in the density.

Article https://doi.org/10.1038/s41467-023-37153-0

Nature Communications |         (2023) 14:1647 4



second quantization is described by

V ibðRÞ=
X
k,q

Vqĉ
y
k+qĉk 1 + e�iq�R� �

, ð4Þ

where R denotes the separation among the two ions, Vq is the Fourier
transform of the atom-ion potential, ĉyk (ĉk) denotes the creation
(annihilation) operator of a boson with momentum k. The theory
implicitly assumes that the boson-boson interaction is sufficiently
weak to make the Bogolyubov theory applicable, i.e., na3

bb≪1 every-
where with n being the local gas density. The induced interaction
between ions Vind(R) is obtained by calculating the energy shift due to
their presence in the bath.

For large distances, i.e., R≫ b, c, ξ, it has been shown that

V indðRÞ= � π
4

1
abbb

b2 + 2bc� c2

b + cð Þ2
1
R

� �4

, ð5Þ

where the length and energy units of R⋆, E⋆ have been used. The
interaction (5) has the same dependence on the distance as the atom-
ion polarization potential (2), but with varying sign which can be
tuned by choosing proper combinations of the parameters b and c.
Due to its long-range power-law decay, we will refer to it as Casimir
interaction. Instead, in the short distance limit, namely when
b, c≪ R ≤ ξ, the bath-induced interaction becomes (again using R⋆,
E⋆ units)

V indðRÞ= � π3

2
n

1

b2

b2 + c2
� �2

b2 � c2
� �2 exp �4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πnabb

p
R

� �
, ð6Þ

which has the form of a Yukawa interaction that is also obtained for
neutral impurities in a condensate65,66.

Weak coupling regime
Theweakcoupling regime is commonly associatedwith small values of
the scattering length as compared to the inter-particle distance. This
typically corresponds to a situation inwhich the energy shifts are small
and the impurities only slightly distort the shape of the host gas. An
important feature of our treatment of the ion impurity is that even for
small values of the scattering length, there is an impenetrable wall in
the atom-ion potential located at a relatively large distance ~R⋆, as
depicted in Fig. 2. Thus, even though the energy shift might be small,
the bath density remains strongly perturbed. This feature has strong
consequences for the induced interaction between two polarons.

Figure 3 (a) shows the QMC prediction for the polaron-polaron
induced interaction obtained for a small value of the atom-ion scat-
tering length aai = −0.01R⋆, modelled by the potential with parameters
equal to C4 = E⋆R⋆4, b =0.0023R⋆, c = 1.115R⋆ – see also curve (B) in
Fig. 2. Note that our choice of parameters in this case is rather
unphysical, as it leads to a hardwall at distances R ~R⋆, but it highlights
the role of the details of the regularization. In this case the energy scale
of the induced interaction is set by the energy shift of a single impurity
(i.e., polaron chemical potential μ) and the spatial scale is set by the
atom-ion potential range R⋆. While the induced interaction Vind(r) itself
is rather weak, perturbative expressions ((5)–(6)) cannot be applied to
this case. Mathematically, the amplitude of the Casimir potential for
small values of b diverges as Vind(r)/E⋆∝ R⋆/b ≈ 4.3 × 102 and for the
Yukawa potential as V indðrÞ=E? / R?=b

� �2
≈ 1:9× 105. As a result, the

predictions of perturbative expressions would fall out of scale. The
physical reason for the failure of the perturbative theory is that the
density profile [see Fig. 3(b)] is completely voided at short distances,
where the interaction potential is described by a hard wall (see the
blowup of Vai(r) in Fig. 2). This violates the perturbative assumption
used to derive the induced interactions between polarons.

In order to test the correctness of the analytic expressions for
induced polaron-polaron interactions in the perturbative regime such
that assumptions of both methods match each other, we perform
calculations for the following parameter of the model atom-ion
potential (3), C4 = E⋆R⋆4, b = R⋆, c =0. While such a choice of para-
meters leads to no hard-core part of the interaction, the resulting
potential (depicted by the curve (A) in Fig. 2) is not perturbing the bath
of atoms too strongly, and therefore the weakly-interacting polaron
regime is realized. Figure 3(c,d) shows the induced polaron-polaron
interactions in the perturbative regime and the polarondensity profile.
A reasonable agreementwith the analytical predictions is found for the
induced interactions. Namely, for large distances, r ≳ ξ, the decay is
compatible with a slow power-law characteristic of the Casimir effect.
Instead, at shorter distances,R⋆≪ r≲ ξ, there is a qualitative agreement
in the shape similar to the fast-decaying Yukawa one typical to Bogo-
lyubov theory. Still, there remains a quantitative difference with the
perturbative expressions.

It is instructive to study how the bipolaron density profile
depends on the distancebetween impurities. In the bipolaron case, the
density profile no longer has a spherical symmetry of the single
polaron [Fig. 3(d)]. For convenience, we project the atom density onto
a single line connecting the two impurities in the bipolaron case and an
arbitrary line passing through the impurity in the single polaron case.
This results in the density profiles natom(x), which depend on one
coordinate (denoted by x) as shown in Fig. 4 for characteristic dis-
tances between the two ion impurities. The actual amplitude of
natom(x) depends on the integration volume and hence arbitrary units
are used on the vertical axis.

In the case of a single impurity, shown in Fig. 4(a), there is a mild
density increase around the vicinity of the polaron. Its shape can be
well fitted with a Gaussian-like profile. Panels Fig. 4(b,c,d) report the
bipolaron density profile for three different separations between the
impurities: r =0, 2R⋆, 5R⋆, and show the density profile of two non-
interacting polarons separated by r. The bipolaron density profile
recovers the density of two non-interacting polarons placed at large
separation. This conclusion agrees with Bogolyubov’s theory in which
the induced interaction is small for distances large compared to the
healing length, r≫ ξ. On the other hand, an enhancement in the density
is visible for smaller and comparable distances, elucidating the
attractive character of the induced interactions between polarons. For
r =0 the density profile is a single pinned impurity having twice a
stronger interaction strength.

Hard-sphere impurity
In order to investigate further the role of the excluded region in the
atom-ion interaction potential, i.e., in the region of the barrier, we
perform simulations by considering a hard-sphere potential defined as
Vai = +∞ for ∣r∣ < aai and zerootherwise. The atom-ion s-wave scattering
length aai is then given by the size of the hard sphere. The QMC results
are shown in Fig. 3(e,f). The polaron density depicted in Fig. 3(e) is
completely depleted for distances r <R⋆. This fact has several impor-
tant consequences: first, for zero separation between two hard
spheres, the excluded volume remains exactly the same as for a single
impurity and two overlapping hard spheres, and the system energy
matches with E(N, 2) = E(N, 1). This allows us to find the value of the
induced interactions within the Born-Oppenheimer approximation for
zero separation as Vind(r =0) = E(N, 2) − E(N, 0) − 2μ = − μ. Second, the
amplitudeof the inducedpolaron-polaron interaction is knownexactly
and it is given by the polaron chemical potential in that case. Within
perturbation theory, the bipolaron shift energy would be equal to two
polaron shift energies, while for hard spheres, both shifts are equal.
The bipolaron energy E(N, 2) − E(N, 0) is a continuous function, which
goes from μ at r = 0 to 2μ at r≫ ξ, as shown in Fig. 3(e).

Typical bipolaron density profiles are presented in Fig. 5. The
repulsive hard-sphere potential leads to a depletion of the density
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around the impurity. Let us note that for the hard-core potential, it
holds 2VHS(r) =VHS(r), that is, the potential experienced by the bath is
the same for both a single impurity and two impurities separated by
zero distance. As a consequence, the polaron density profile [Fig. 5(a)]
is exactly the same as the bipolaron density profile for r = 0 [Fig. 5(b)].
To a certain extent, this is the least perturbative case since the atom
density is totally voided around the impurities. Notwithstanding, for a
large separation r between the impurities, the atom density is roughly
equal to the densities of two independent polarons, signaling that the
induced interactions are weak for such values of r.

Strong-coupling regime
A characteristic feature of ionic impurities is the possibility of realizing
the strongly-interacting regime. Here we consider a large value of the
atom-ion scattering length as well as a situation in which the atom-ion
interaction does not support a bound state so that the scattering
length is negative. A characteristic example of the (induced) polaron-
polaron interaction potential in this regime is displayed in Fig. 3(g). A
qualitative difference with respect to the previous two regimes (i.e.,
weak interaction and hard-spheres) is that the polaron density profile
is no longer monotonous as it acquires a peak at a distance set by the
potential range R⋆, see Fig. 3(h). The voiding of the single polaron
density profile at short distances is due to the hard wall short-range
repulsive part present in the potential and this feature is shared with
the density profile obtained for hard sphere impurity, Fig. 5. Instead,
the peak is formed only for atom-ion potential and only for strong
interactions, caused by the long-range attractive part of the potential.

Unlike the neutral polarons, the induced interactionpotential also
displays a non-monotonousbehavior. Notably, thepositionof thepeak
in Vind(r) coincides with the position of the peak in the density profile.
We elaborate on this effect in the following paragraphs, where it is
muchmore evident. Note that the strong-coupling regime differs from
the previous two scenarios by a larger energy shift.

Unitary limit
The most strongly-interacting regime associated with s-wave scatter-
ing is theunitary limit inwhich the atom-ion scattering lengthdiverges,
aai→∞. Analytically, such a regime is challenging due to the absence of
a small parameter. Thus, it is instructive to study the ion bipolaron at
unitarity. Figure 3(i,j) show the results obtained for unitary interac-
tions. Already at the level of the single polaron case, atoms create a
many-body bound state around the impurity as signaled by the pre-
sence of a very high peak in the density profile, see Fig. 3(j). The
characteristic length at which the maximum appears in the polaron
density profile is set by R⋆, and the induced ion-ion interactions have a
spatial feature at that point, see Fig. 3(i). The bipolaron energy
becomes an order of magnitude larger manifesting the formation of a
deeply bound state which can be already understood at the single
atom level. Moreover, for large distances between the impurities
resonantly interacting with the host bath, a bound state has vanishing
energy. For short separations, the potential landscape drawn by the
two ions has an amplitude that is twice larger, leading to a formation of
an atom-ion-ion bound state. Adding other atoms populates this
bound state further, lowering the energy.

Fig. 4 | Bipolaron density profiles at weak coupling. Density profiles projected
onto a line denoted by the x-axis connecting two impurities in the regime of weak
interactions (arbitrary units). Symbols: Blue squares denote the results of QMC
calculations, while the solid line is a fit to the defect in the projected atom density
natoms(x) = 1 + fpol(x) with f polðxÞ=Δn+A exp½� r=σ

� �p�, where Δn,A, σ, p are fitting

parameters. a Single ion (polaron) density profile used to obtain the fit fpol(x).
b–d Two ions (bipolaron) density profile for distances between them equal to
0, 2R⋆, 5R⋆ as compared to the prediction for two non-interacting polarons located
at the same ion positions.
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Many-body bound state regime
The situation in which an ion impurity differs the most from neutral
polarons is characterized by the formation of many-body bound
states. Such a regime is reached when the two-body atom-ion pro-
blem supports a bound state. The properties of the system are
dominated by the presence of a many-body bound state which
acquires a large population (hundreds of atoms). On the single
impurity level, this ismanifested by the correlation function reaching
higher values than the equilibrium gas density [see Fig. 3(l)]. The
energy shift for the two ions becomes significantly larger than in all
previously considered regimes, exceeding the bare sum of two single
polaron shifts multiple times as depicted in Fig. 3(k). Moreover, in
this regime, the cloud distortion impacts the shape of the induced
interaction as well. At the point of maximal density, marked by the
blue arrow in Fig. 3(k,l), the energy shift features a kink and stops
growing rapidly with increasing separation. We interpret this effect
as follows: at short distances, the two ions attract many bosons,
leading to sizeable binding energy. The impurities effectively coop-
erate between them. Namely, the distance between the charges is
increased and the local atomic density around them grows, still
trapping atomsmore strongly than a single ionwould be able to. This
is responsible for bending the curve in the vicinity of the blue arrow,
which shows the maximum of the correlation function. The effect
gets weaker at larger separations as the correlation function for a
single impurity drops back to lower values, and thereby the mutual
response between the impurities in attracting the bosons is inhibited.

The projected density profiles in theMBBS regime are reported in
Fig. 6. The polaron density becomes large, differently from the weakly

interacting regime presented in Fig. 4. Even though the Bogolyubov
theory no longer describes the induced interaction potential, the
bipolaron density corresponds to the one of non-interacting impu-
ritieswhen thedistancebetween them is large compared to thehealing
length, similarly to the weakly interacting regime. Instead, for small
separations, the role of the induced interaction becomes crucial, as it is
manifested by significant differences in the density profile between
interacting and non-interacting cases.

Summarizing the results,wenotice that in all the caseswe studied,
regardless of the scattering length value, the induced interaction turns
out to be attractive. We found that the induced interactions are con-
sistent with a power-law Casimir decay and the magnitude of interac-
tions strongly depends on the presence of the two-body bound state.

Discussion
Our results are directly connected with the physical system consisting
of a chain of trapped ions immersed in a bosonic gas. The energy
spectrum of such a chain, described by phonon modes, depends on
the relation between the ion separation and the Coulomb interaction.
The precise knowledge of phonon frequencies is crucial e.g., for
implementing quantum gates. When the size of the quantum circuit
grows, even small shifts such as those coming from interaction with
the background gas can lead to sizable errors. Observing such shift is
also a straightforward way to study the induced interactions. Let us
then estimate its typical magnitude in an experimentally relevant
situation.

For mean ion separation d ~ 1 μm (d≃ 13R⋆ assuming Yb+-Li), the
Coulomb repulsion energy between two ions is EC≃ kB × 16.73 K, or

Fig. 5 | Bipolaron density profiles for a hard sphere potential. Density profiles
projected onto a line denoted by x-axis connecting two impurities for hard spheres
(arbitrary units). Symbols: Blue squares denote the results of QMC calculations,
while the solid line is a fit to the defect in the projected atom density
natoms(x) = 1 + fpol(x) with f polðxÞ=Δn+A exp½� r=σ

� �2�, where Δn, A, and σ are

fitting parameters. The dashed lines represent the estimation of the density of non-
interacting polarons, 1 + fpol(x + r/2) + fpol(x − r/2). a Single ion (polaron) density
profile used to obtain the fit fpol(x). b–d Two-ion (bipolaron) density profile for the
distance between ions equal to 0, 2R⋆, 5R⋆ as compared to the prediction for two
non-interacting polarons located at the ion positions.
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2.3 × 106 E⋆. However, the phononmode frequencies in the trap do not
depend on it directly, but rather on the second derivative of the total
interaction potential calculated at equilibrium60. The lowest mode
always corresponds to the center of mass motion in the trap and is
unaffected by the interactions, but the second one can be tuned60. The
correction is obtained simply by adding the second derivative of the
induced interaction at equilibrium distance to the contribution of the
Coulomb interaction. For the ion separationmentioned above and our
gas parameter of 10−6, we obtain relative change of the order of 10−4

regardless of the regularized potential parameters. Note that the
apparent giant enhancement of the shift close to unitarity predicted in
ref. 54 is not reproduced in our treatment, as the unitary case is not
found to be dominated by the large scattering length, but rather the
characteristic interaction range. Moreover, ref. 54 uses four orders of
magnitude smaller gas parameter. This enhances the gas compressi-
bility and consequently the induced interaction, but alsomakes the gas
more prone to large density modulations such as MBBS formation
which is not included in the analytic formulas.

Furthermore, three-body losses will strongly limit the observa-
bility of the ionic bipolarons. The expected ion lifetime due to three-
body recombination in typical experimental settings is in the milli-
second range unless one works with very dilute gases for which the
time needed to form the (bi)polaron would be longer. However, few-
body scattering calculations may in the future unravel the parameter
regimes in which three-body losses are minimized.

The presence of ionic polarons can also be detected by in situ
imaging of the gas. Finding a significant increase in ion-atom correla-
tion functions as well as in the atomic density indicates the buildup of
the many-body bound state. The quest for observing the induced

interactions is more subtle, as typically the direct Coulomb repulsion
would be too strong to allow for the formation of bipolaronic bound
states or scattering resonances. However, in this case, the study of
atomic density looks promising. One couldmeasure e.g., the deviation
of the density profile from the double Gaussian peak describing
separated noninteracting ionic polarons.

Finally, wenote that our results are also relevant for other systems
with long-ranged interactions competing with the length scales of the
mediumwhere the direct interaction potentialmay notbedominating,
such as Rydberg-dressed mixtures.

In conclusion, we have demonstrated that impurities strongly
interacting with the host medium not only experience an effective
interaction that can lead to the formation of bipolaronic states, but
also dramatically modify the gas properties. Because of the strong
modification of the gas density profile around the ion(s), perturbative
methods based ondressing the cloudwith Bogolyubov excitations and
neglecting the bound state occupation do not fully capture the
description of the induced potential which features a kink close to the
local density maximum. This indicates that ab-initio many-body
simulations are of paramount importance for studying long-ranged
impurity-bath interactions.

While themagnitude of the effective potential is vast compared to
the gas energy scales, it is still much smaller than the Coulomb
repulsion between the ions. Notwithstanding, it leads to shifts in the
phononmode energies of an ionic chain compared to the vacuumcase
that can be experimentally observed. This fact might be relevant for
quantum technologies based on trapped ions, where the phonon
modes are exploited as a “quantum bus” to mediate interactions
between spatially separated quantum bits. As we discussed in the

Fig. 6 | Bipolaron density profiles in theMBBS regime.Density profiles projected
onto a line denoted by x-axis connecting two impurities in the MBBS regime (arbi-
trary units). Symbols: Blue squares denote the results of QMC calculations, while the
solid line is a fit to the defect in the projected atom density natoms(x) = 1 + fpol(x) with

fpol(x) =Δn+A/(1 +BrC) with Δn,A,B,C being fitting parameters. a Single ion
(polaron) density profile used to obtain the fit fpol(x). b–d Two-ion (bipolaron)
density profile for distances between ions equal to 0, 2R⋆, 5R⋆ as compared to the
prediction for two non-interacting polarons located at the ion positions.
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introduction, a cold atomic ensemble could be exploited to keep the
ions cold to aim at fault-tolerance quantum computation for long
times. Our investigations show that the phononmodes canbe affected
by the presence of the gas. At the same time, however, our findings
prove that the phononic shift can be controlled by tunning both the
number of two-body atom-ion bound states and the ion-atom scat-
tering length, providing thus, an additional tool for tuning the phonon
modes of an ion crystal.

In the future, it will be interesting to investigate the impact of
the ion motion degrees of freedom both on the ground state and
transport properties, especially in the many-body bound state
regime. Furthermore, the role of larger ionic chains and the possi-
bility of multipolarons states67,68 in hybrid atom-ion systemsmay also
be an interesting path to explore. Finally, an important issue is finite
temperature effects and how thermal fluctuations affect our findings.
In this regard, we note that Monte Carlo techniques can be used as
well, as has been shown in a recent study on the neutral Bose
polaron69.

Methods
Numerical method
We employ the diffusion Monte Carlo method which computes the
ground state energy of Hamiltonian (1) by propagating themany-body
Schrödinger equation in imaginary time. The boson-boson interaction
is modelled by soft-spheres with a diameter RSS small as compared to
the atom-ion range, i.e., RSS = 0.1R⋆, whereas the height is adjusted to
have a small value of the three-dimensional s-wave scattering length
abb = 0.02R⋆. The guiding wave function is written in a pair product
form Ψ =∏i<jfBB(rij)∏i,αfBI(riα), similarly to the one used in ref. 47. It
consists of boson-boson and boson-ion Jastrow pair-product terms,
each one constructed in such a way that the two-body scattering at
small distances matches the phononic long-range asymptotic70. Spe-
cifically, calculations are performed for N = 200 bosons in a box with
periodic boundary conditions and with NI = 2, 1, 0 ions. We consider
dilute densities with the gas parameter equal to na3

bb = 10
�6. In that

case, the atomic chemical potential is small as compared to the typical
ion energy, μbb = 4πℏ2nabb/m =0.0314E⋆, and the healing length is
larger than the characteristic interaction length, ξ = 4R⋆.

The energy shift due to the interaction between two ionic polar-
ons mediated by the bath is computed as

Epol�pol = EðN; 2Þ � 2EðN; 1Þ+ EðN;0Þ, ð7Þ

where E(N;NI) denotes the ground-state energy of the system
containing N atoms and NI ions. In the case of neutral impurities, this
value is on the order of the single polaron energy
En =

_2

2m 6π2n
� �2=3 ∼ E? for very large values of of the neutral

impurity-boson scattering length aab. The induced interaction is
attractive regardless the sign of aab48 as well as for the case where a
two-body bound-state for aab < 0 does not exist. For the atom-ion
compound system we consider both two-body bound and scattering
states.

Data availability
The data generated in this study have been deposited in the figshare
database under the https://doi.org/10.6084/m9.figshare.22134527.v1.

Code availability
The code that supports the plots within this paper is available from the
first author upon reasonable request.
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